1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/dmi.h> 23 #include <linux/errno.h> 24 #include <linux/fs.h> 25 #include <linux/genhd.h> 26 #include <linux/hdreg.h> 27 #include <linux/idr.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/io.h> 31 #include <linux/kdev_t.h> 32 #include <linux/kernel.h> 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/mutex.h> 37 #include <linux/pci.h> 38 #include <linux/poison.h> 39 #include <linux/ptrace.h> 40 #include <linux/sched.h> 41 #include <linux/slab.h> 42 #include <linux/t10-pi.h> 43 #include <linux/timer.h> 44 #include <linux/types.h> 45 #include <linux/io-64-nonatomic-lo-hi.h> 46 #include <asm/unaligned.h> 47 #include <linux/sed-opal.h> 48 49 #include "nvme.h" 50 51 #define NVME_Q_DEPTH 1024 52 #define NVME_AQ_DEPTH 256 53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 55 56 /* 57 * We handle AEN commands ourselves and don't even let the 58 * block layer know about them. 59 */ 60 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 61 62 static int use_threaded_interrupts; 63 module_param(use_threaded_interrupts, int, 0); 64 65 static bool use_cmb_sqes = true; 66 module_param(use_cmb_sqes, bool, 0644); 67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 68 69 static struct workqueue_struct *nvme_workq; 70 71 struct nvme_dev; 72 struct nvme_queue; 73 74 static int nvme_reset(struct nvme_dev *dev); 75 static void nvme_process_cq(struct nvme_queue *nvmeq); 76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 77 78 /* 79 * Represents an NVM Express device. Each nvme_dev is a PCI function. 80 */ 81 struct nvme_dev { 82 struct nvme_queue **queues; 83 struct blk_mq_tag_set tagset; 84 struct blk_mq_tag_set admin_tagset; 85 u32 __iomem *dbs; 86 struct device *dev; 87 struct dma_pool *prp_page_pool; 88 struct dma_pool *prp_small_pool; 89 unsigned queue_count; 90 unsigned online_queues; 91 unsigned max_qid; 92 int q_depth; 93 u32 db_stride; 94 void __iomem *bar; 95 struct work_struct reset_work; 96 struct work_struct remove_work; 97 struct timer_list watchdog_timer; 98 struct mutex shutdown_lock; 99 bool subsystem; 100 void __iomem *cmb; 101 dma_addr_t cmb_dma_addr; 102 u64 cmb_size; 103 u32 cmbsz; 104 u32 cmbloc; 105 struct nvme_ctrl ctrl; 106 struct completion ioq_wait; 107 u32 *dbbuf_dbs; 108 dma_addr_t dbbuf_dbs_dma_addr; 109 u32 *dbbuf_eis; 110 dma_addr_t dbbuf_eis_dma_addr; 111 }; 112 113 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 114 { 115 return qid * 2 * stride; 116 } 117 118 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 119 { 120 return (qid * 2 + 1) * stride; 121 } 122 123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_dev, ctrl); 126 } 127 128 /* 129 * An NVM Express queue. Each device has at least two (one for admin 130 * commands and one for I/O commands). 131 */ 132 struct nvme_queue { 133 struct device *q_dmadev; 134 struct nvme_dev *dev; 135 char irqname[24]; /* nvme4294967295-65535\0 */ 136 spinlock_t q_lock; 137 struct nvme_command *sq_cmds; 138 struct nvme_command __iomem *sq_cmds_io; 139 volatile struct nvme_completion *cqes; 140 struct blk_mq_tags **tags; 141 dma_addr_t sq_dma_addr; 142 dma_addr_t cq_dma_addr; 143 u32 __iomem *q_db; 144 u16 q_depth; 145 s16 cq_vector; 146 u16 sq_tail; 147 u16 cq_head; 148 u16 qid; 149 u8 cq_phase; 150 u8 cqe_seen; 151 u32 *dbbuf_sq_db; 152 u32 *dbbuf_cq_db; 153 u32 *dbbuf_sq_ei; 154 u32 *dbbuf_cq_ei; 155 }; 156 157 /* 158 * The nvme_iod describes the data in an I/O, including the list of PRP 159 * entries. You can't see it in this data structure because C doesn't let 160 * me express that. Use nvme_init_iod to ensure there's enough space 161 * allocated to store the PRP list. 162 */ 163 struct nvme_iod { 164 struct nvme_request req; 165 struct nvme_queue *nvmeq; 166 int aborted; 167 int npages; /* In the PRP list. 0 means small pool in use */ 168 int nents; /* Used in scatterlist */ 169 int length; /* Of data, in bytes */ 170 dma_addr_t first_dma; 171 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 172 struct scatterlist *sg; 173 struct scatterlist inline_sg[0]; 174 }; 175 176 /* 177 * Check we didin't inadvertently grow the command struct 178 */ 179 static inline void _nvme_check_size(void) 180 { 181 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 182 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 183 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 184 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 185 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 186 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 187 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 188 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 189 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 190 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 191 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 192 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 193 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 194 } 195 196 static inline unsigned int nvme_dbbuf_size(u32 stride) 197 { 198 return ((num_possible_cpus() + 1) * 8 * stride); 199 } 200 201 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 202 { 203 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 204 205 if (dev->dbbuf_dbs) 206 return 0; 207 208 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 209 &dev->dbbuf_dbs_dma_addr, 210 GFP_KERNEL); 211 if (!dev->dbbuf_dbs) 212 return -ENOMEM; 213 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 214 &dev->dbbuf_eis_dma_addr, 215 GFP_KERNEL); 216 if (!dev->dbbuf_eis) { 217 dma_free_coherent(dev->dev, mem_size, 218 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 219 dev->dbbuf_dbs = NULL; 220 return -ENOMEM; 221 } 222 223 return 0; 224 } 225 226 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 227 { 228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 229 230 if (dev->dbbuf_dbs) { 231 dma_free_coherent(dev->dev, mem_size, 232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 233 dev->dbbuf_dbs = NULL; 234 } 235 if (dev->dbbuf_eis) { 236 dma_free_coherent(dev->dev, mem_size, 237 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 238 dev->dbbuf_eis = NULL; 239 } 240 } 241 242 static void nvme_dbbuf_init(struct nvme_dev *dev, 243 struct nvme_queue *nvmeq, int qid) 244 { 245 if (!dev->dbbuf_dbs || !qid) 246 return; 247 248 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 249 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 250 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 251 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 252 } 253 254 static void nvme_dbbuf_set(struct nvme_dev *dev) 255 { 256 struct nvme_command c; 257 258 if (!dev->dbbuf_dbs) 259 return; 260 261 memset(&c, 0, sizeof(c)); 262 c.dbbuf.opcode = nvme_admin_dbbuf; 263 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 264 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 265 266 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 267 dev_warn(dev->dev, "unable to set dbbuf\n"); 268 /* Free memory and continue on */ 269 nvme_dbbuf_dma_free(dev); 270 } 271 } 272 273 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 274 { 275 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 276 } 277 278 /* Update dbbuf and return true if an MMIO is required */ 279 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 280 volatile u32 *dbbuf_ei) 281 { 282 if (dbbuf_db) { 283 u16 old_value; 284 285 /* 286 * Ensure that the queue is written before updating 287 * the doorbell in memory 288 */ 289 wmb(); 290 291 old_value = *dbbuf_db; 292 *dbbuf_db = value; 293 294 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 295 return false; 296 } 297 298 return true; 299 } 300 301 /* 302 * Max size of iod being embedded in the request payload 303 */ 304 #define NVME_INT_PAGES 2 305 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 306 307 /* 308 * Will slightly overestimate the number of pages needed. This is OK 309 * as it only leads to a small amount of wasted memory for the lifetime of 310 * the I/O. 311 */ 312 static int nvme_npages(unsigned size, struct nvme_dev *dev) 313 { 314 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 315 dev->ctrl.page_size); 316 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 317 } 318 319 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 320 unsigned int size, unsigned int nseg) 321 { 322 return sizeof(__le64 *) * nvme_npages(size, dev) + 323 sizeof(struct scatterlist) * nseg; 324 } 325 326 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 327 { 328 return sizeof(struct nvme_iod) + 329 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 330 } 331 332 static int nvmeq_irq(struct nvme_queue *nvmeq) 333 { 334 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 335 } 336 337 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 338 unsigned int hctx_idx) 339 { 340 struct nvme_dev *dev = data; 341 struct nvme_queue *nvmeq = dev->queues[0]; 342 343 WARN_ON(hctx_idx != 0); 344 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 345 WARN_ON(nvmeq->tags); 346 347 hctx->driver_data = nvmeq; 348 nvmeq->tags = &dev->admin_tagset.tags[0]; 349 return 0; 350 } 351 352 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 353 { 354 struct nvme_queue *nvmeq = hctx->driver_data; 355 356 nvmeq->tags = NULL; 357 } 358 359 static int nvme_admin_init_request(void *data, struct request *req, 360 unsigned int hctx_idx, unsigned int rq_idx, 361 unsigned int numa_node) 362 { 363 struct nvme_dev *dev = data; 364 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 365 struct nvme_queue *nvmeq = dev->queues[0]; 366 367 BUG_ON(!nvmeq); 368 iod->nvmeq = nvmeq; 369 return 0; 370 } 371 372 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 373 unsigned int hctx_idx) 374 { 375 struct nvme_dev *dev = data; 376 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 377 378 if (!nvmeq->tags) 379 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 380 381 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 382 hctx->driver_data = nvmeq; 383 return 0; 384 } 385 386 static int nvme_init_request(void *data, struct request *req, 387 unsigned int hctx_idx, unsigned int rq_idx, 388 unsigned int numa_node) 389 { 390 struct nvme_dev *dev = data; 391 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 392 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 393 394 BUG_ON(!nvmeq); 395 iod->nvmeq = nvmeq; 396 return 0; 397 } 398 399 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 400 { 401 struct nvme_dev *dev = set->driver_data; 402 403 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 404 } 405 406 /** 407 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 408 * @nvmeq: The queue to use 409 * @cmd: The command to send 410 * 411 * Safe to use from interrupt context 412 */ 413 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 414 struct nvme_command *cmd) 415 { 416 u16 tail = nvmeq->sq_tail; 417 418 if (nvmeq->sq_cmds_io) 419 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 420 else 421 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 422 423 if (++tail == nvmeq->q_depth) 424 tail = 0; 425 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db, 426 nvmeq->dbbuf_sq_ei)) 427 writel(tail, nvmeq->q_db); 428 nvmeq->sq_tail = tail; 429 } 430 431 static __le64 **iod_list(struct request *req) 432 { 433 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 434 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 435 } 436 437 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 438 { 439 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 440 int nseg = blk_rq_nr_phys_segments(rq); 441 unsigned int size = blk_rq_payload_bytes(rq); 442 443 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 444 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 445 if (!iod->sg) 446 return BLK_MQ_RQ_QUEUE_BUSY; 447 } else { 448 iod->sg = iod->inline_sg; 449 } 450 451 iod->aborted = 0; 452 iod->npages = -1; 453 iod->nents = 0; 454 iod->length = size; 455 456 return BLK_MQ_RQ_QUEUE_OK; 457 } 458 459 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 460 { 461 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 462 const int last_prp = dev->ctrl.page_size / 8 - 1; 463 int i; 464 __le64 **list = iod_list(req); 465 dma_addr_t prp_dma = iod->first_dma; 466 467 if (iod->npages == 0) 468 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 469 for (i = 0; i < iod->npages; i++) { 470 __le64 *prp_list = list[i]; 471 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 472 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 473 prp_dma = next_prp_dma; 474 } 475 476 if (iod->sg != iod->inline_sg) 477 kfree(iod->sg); 478 } 479 480 #ifdef CONFIG_BLK_DEV_INTEGRITY 481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 482 { 483 if (be32_to_cpu(pi->ref_tag) == v) 484 pi->ref_tag = cpu_to_be32(p); 485 } 486 487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 488 { 489 if (be32_to_cpu(pi->ref_tag) == p) 490 pi->ref_tag = cpu_to_be32(v); 491 } 492 493 /** 494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 495 * 496 * The virtual start sector is the one that was originally submitted by the 497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 498 * start sector may be different. Remap protection information to match the 499 * physical LBA on writes, and back to the original seed on reads. 500 * 501 * Type 0 and 3 do not have a ref tag, so no remapping required. 502 */ 503 static void nvme_dif_remap(struct request *req, 504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 505 { 506 struct nvme_ns *ns = req->rq_disk->private_data; 507 struct bio_integrity_payload *bip; 508 struct t10_pi_tuple *pi; 509 void *p, *pmap; 510 u32 i, nlb, ts, phys, virt; 511 512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 513 return; 514 515 bip = bio_integrity(req->bio); 516 if (!bip) 517 return; 518 519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 520 521 p = pmap; 522 virt = bip_get_seed(bip); 523 phys = nvme_block_nr(ns, blk_rq_pos(req)); 524 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 525 ts = ns->disk->queue->integrity.tuple_size; 526 527 for (i = 0; i < nlb; i++, virt++, phys++) { 528 pi = (struct t10_pi_tuple *)p; 529 dif_swap(phys, virt, pi); 530 p += ts; 531 } 532 kunmap_atomic(pmap); 533 } 534 #else /* CONFIG_BLK_DEV_INTEGRITY */ 535 static void nvme_dif_remap(struct request *req, 536 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 537 { 538 } 539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 540 { 541 } 542 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 543 { 544 } 545 #endif 546 547 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req) 548 { 549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 550 struct dma_pool *pool; 551 int length = blk_rq_payload_bytes(req); 552 struct scatterlist *sg = iod->sg; 553 int dma_len = sg_dma_len(sg); 554 u64 dma_addr = sg_dma_address(sg); 555 u32 page_size = dev->ctrl.page_size; 556 int offset = dma_addr & (page_size - 1); 557 __le64 *prp_list; 558 __le64 **list = iod_list(req); 559 dma_addr_t prp_dma; 560 int nprps, i; 561 562 length -= (page_size - offset); 563 if (length <= 0) 564 return true; 565 566 dma_len -= (page_size - offset); 567 if (dma_len) { 568 dma_addr += (page_size - offset); 569 } else { 570 sg = sg_next(sg); 571 dma_addr = sg_dma_address(sg); 572 dma_len = sg_dma_len(sg); 573 } 574 575 if (length <= page_size) { 576 iod->first_dma = dma_addr; 577 return true; 578 } 579 580 nprps = DIV_ROUND_UP(length, page_size); 581 if (nprps <= (256 / 8)) { 582 pool = dev->prp_small_pool; 583 iod->npages = 0; 584 } else { 585 pool = dev->prp_page_pool; 586 iod->npages = 1; 587 } 588 589 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 590 if (!prp_list) { 591 iod->first_dma = dma_addr; 592 iod->npages = -1; 593 return false; 594 } 595 list[0] = prp_list; 596 iod->first_dma = prp_dma; 597 i = 0; 598 for (;;) { 599 if (i == page_size >> 3) { 600 __le64 *old_prp_list = prp_list; 601 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 602 if (!prp_list) 603 return false; 604 list[iod->npages++] = prp_list; 605 prp_list[0] = old_prp_list[i - 1]; 606 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 607 i = 1; 608 } 609 prp_list[i++] = cpu_to_le64(dma_addr); 610 dma_len -= page_size; 611 dma_addr += page_size; 612 length -= page_size; 613 if (length <= 0) 614 break; 615 if (dma_len > 0) 616 continue; 617 BUG_ON(dma_len < 0); 618 sg = sg_next(sg); 619 dma_addr = sg_dma_address(sg); 620 dma_len = sg_dma_len(sg); 621 } 622 623 return true; 624 } 625 626 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 627 struct nvme_command *cmnd) 628 { 629 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 630 struct request_queue *q = req->q; 631 enum dma_data_direction dma_dir = rq_data_dir(req) ? 632 DMA_TO_DEVICE : DMA_FROM_DEVICE; 633 int ret = BLK_MQ_RQ_QUEUE_ERROR; 634 635 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 636 iod->nents = blk_rq_map_sg(q, req, iod->sg); 637 if (!iod->nents) 638 goto out; 639 640 ret = BLK_MQ_RQ_QUEUE_BUSY; 641 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 642 DMA_ATTR_NO_WARN)) 643 goto out; 644 645 if (!nvme_setup_prps(dev, req)) 646 goto out_unmap; 647 648 ret = BLK_MQ_RQ_QUEUE_ERROR; 649 if (blk_integrity_rq(req)) { 650 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 651 goto out_unmap; 652 653 sg_init_table(&iod->meta_sg, 1); 654 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 655 goto out_unmap; 656 657 if (rq_data_dir(req)) 658 nvme_dif_remap(req, nvme_dif_prep); 659 660 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 661 goto out_unmap; 662 } 663 664 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 665 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 666 if (blk_integrity_rq(req)) 667 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 668 return BLK_MQ_RQ_QUEUE_OK; 669 670 out_unmap: 671 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 672 out: 673 return ret; 674 } 675 676 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 677 { 678 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 679 enum dma_data_direction dma_dir = rq_data_dir(req) ? 680 DMA_TO_DEVICE : DMA_FROM_DEVICE; 681 682 if (iod->nents) { 683 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 684 if (blk_integrity_rq(req)) { 685 if (!rq_data_dir(req)) 686 nvme_dif_remap(req, nvme_dif_complete); 687 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 688 } 689 } 690 691 nvme_cleanup_cmd(req); 692 nvme_free_iod(dev, req); 693 } 694 695 /* 696 * NOTE: ns is NULL when called on the admin queue. 697 */ 698 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 699 const struct blk_mq_queue_data *bd) 700 { 701 struct nvme_ns *ns = hctx->queue->queuedata; 702 struct nvme_queue *nvmeq = hctx->driver_data; 703 struct nvme_dev *dev = nvmeq->dev; 704 struct request *req = bd->rq; 705 struct nvme_command cmnd; 706 int ret = BLK_MQ_RQ_QUEUE_OK; 707 708 /* 709 * If formated with metadata, require the block layer provide a buffer 710 * unless this namespace is formated such that the metadata can be 711 * stripped/generated by the controller with PRACT=1. 712 */ 713 if (ns && ns->ms && !blk_integrity_rq(req)) { 714 if (!(ns->pi_type && ns->ms == 8) && 715 !blk_rq_is_passthrough(req)) { 716 blk_mq_end_request(req, -EFAULT); 717 return BLK_MQ_RQ_QUEUE_OK; 718 } 719 } 720 721 ret = nvme_setup_cmd(ns, req, &cmnd); 722 if (ret != BLK_MQ_RQ_QUEUE_OK) 723 return ret; 724 725 ret = nvme_init_iod(req, dev); 726 if (ret != BLK_MQ_RQ_QUEUE_OK) 727 goto out_free_cmd; 728 729 if (blk_rq_nr_phys_segments(req)) 730 ret = nvme_map_data(dev, req, &cmnd); 731 732 if (ret != BLK_MQ_RQ_QUEUE_OK) 733 goto out_cleanup_iod; 734 735 blk_mq_start_request(req); 736 737 spin_lock_irq(&nvmeq->q_lock); 738 if (unlikely(nvmeq->cq_vector < 0)) { 739 ret = BLK_MQ_RQ_QUEUE_ERROR; 740 spin_unlock_irq(&nvmeq->q_lock); 741 goto out_cleanup_iod; 742 } 743 __nvme_submit_cmd(nvmeq, &cmnd); 744 nvme_process_cq(nvmeq); 745 spin_unlock_irq(&nvmeq->q_lock); 746 return BLK_MQ_RQ_QUEUE_OK; 747 out_cleanup_iod: 748 nvme_free_iod(dev, req); 749 out_free_cmd: 750 nvme_cleanup_cmd(req); 751 return ret; 752 } 753 754 static void nvme_pci_complete_rq(struct request *req) 755 { 756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 757 758 nvme_unmap_data(iod->nvmeq->dev, req); 759 nvme_complete_rq(req); 760 } 761 762 /* We read the CQE phase first to check if the rest of the entry is valid */ 763 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 764 u16 phase) 765 { 766 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 767 } 768 769 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 770 { 771 u16 head, phase; 772 773 head = nvmeq->cq_head; 774 phase = nvmeq->cq_phase; 775 776 while (nvme_cqe_valid(nvmeq, head, phase)) { 777 struct nvme_completion cqe = nvmeq->cqes[head]; 778 struct request *req; 779 780 if (++head == nvmeq->q_depth) { 781 head = 0; 782 phase = !phase; 783 } 784 785 if (tag && *tag == cqe.command_id) 786 *tag = -1; 787 788 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 789 dev_warn(nvmeq->dev->ctrl.device, 790 "invalid id %d completed on queue %d\n", 791 cqe.command_id, le16_to_cpu(cqe.sq_id)); 792 continue; 793 } 794 795 /* 796 * AEN requests are special as they don't time out and can 797 * survive any kind of queue freeze and often don't respond to 798 * aborts. We don't even bother to allocate a struct request 799 * for them but rather special case them here. 800 */ 801 if (unlikely(nvmeq->qid == 0 && 802 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 803 nvme_complete_async_event(&nvmeq->dev->ctrl, 804 cqe.status, &cqe.result); 805 continue; 806 } 807 808 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 809 nvme_end_request(req, cqe.status, cqe.result); 810 } 811 812 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 813 return; 814 815 if (likely(nvmeq->cq_vector >= 0)) 816 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 817 nvmeq->dbbuf_cq_ei)) 818 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 819 nvmeq->cq_head = head; 820 nvmeq->cq_phase = phase; 821 822 nvmeq->cqe_seen = 1; 823 } 824 825 static void nvme_process_cq(struct nvme_queue *nvmeq) 826 { 827 __nvme_process_cq(nvmeq, NULL); 828 } 829 830 static irqreturn_t nvme_irq(int irq, void *data) 831 { 832 irqreturn_t result; 833 struct nvme_queue *nvmeq = data; 834 spin_lock(&nvmeq->q_lock); 835 nvme_process_cq(nvmeq); 836 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 837 nvmeq->cqe_seen = 0; 838 spin_unlock(&nvmeq->q_lock); 839 return result; 840 } 841 842 static irqreturn_t nvme_irq_check(int irq, void *data) 843 { 844 struct nvme_queue *nvmeq = data; 845 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 846 return IRQ_WAKE_THREAD; 847 return IRQ_NONE; 848 } 849 850 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) 851 { 852 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 853 spin_lock_irq(&nvmeq->q_lock); 854 __nvme_process_cq(nvmeq, &tag); 855 spin_unlock_irq(&nvmeq->q_lock); 856 857 if (tag == -1) 858 return 1; 859 } 860 861 return 0; 862 } 863 864 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 865 { 866 struct nvme_queue *nvmeq = hctx->driver_data; 867 868 return __nvme_poll(nvmeq, tag); 869 } 870 871 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 872 { 873 struct nvme_dev *dev = to_nvme_dev(ctrl); 874 struct nvme_queue *nvmeq = dev->queues[0]; 875 struct nvme_command c; 876 877 memset(&c, 0, sizeof(c)); 878 c.common.opcode = nvme_admin_async_event; 879 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 880 881 spin_lock_irq(&nvmeq->q_lock); 882 __nvme_submit_cmd(nvmeq, &c); 883 spin_unlock_irq(&nvmeq->q_lock); 884 } 885 886 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 887 { 888 struct nvme_command c; 889 890 memset(&c, 0, sizeof(c)); 891 c.delete_queue.opcode = opcode; 892 c.delete_queue.qid = cpu_to_le16(id); 893 894 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 895 } 896 897 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 898 struct nvme_queue *nvmeq) 899 { 900 struct nvme_command c; 901 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 902 903 /* 904 * Note: we (ab)use the fact the the prp fields survive if no data 905 * is attached to the request. 906 */ 907 memset(&c, 0, sizeof(c)); 908 c.create_cq.opcode = nvme_admin_create_cq; 909 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 910 c.create_cq.cqid = cpu_to_le16(qid); 911 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 912 c.create_cq.cq_flags = cpu_to_le16(flags); 913 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 914 915 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 916 } 917 918 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 919 struct nvme_queue *nvmeq) 920 { 921 struct nvme_command c; 922 int flags = NVME_QUEUE_PHYS_CONTIG; 923 924 /* 925 * Note: we (ab)use the fact the the prp fields survive if no data 926 * is attached to the request. 927 */ 928 memset(&c, 0, sizeof(c)); 929 c.create_sq.opcode = nvme_admin_create_sq; 930 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 931 c.create_sq.sqid = cpu_to_le16(qid); 932 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 933 c.create_sq.sq_flags = cpu_to_le16(flags); 934 c.create_sq.cqid = cpu_to_le16(qid); 935 936 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 937 } 938 939 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 940 { 941 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 942 } 943 944 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 945 { 946 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 947 } 948 949 static void abort_endio(struct request *req, int error) 950 { 951 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 952 struct nvme_queue *nvmeq = iod->nvmeq; 953 954 dev_warn(nvmeq->dev->ctrl.device, 955 "Abort status: 0x%x", nvme_req(req)->status); 956 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 957 blk_mq_free_request(req); 958 } 959 960 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 961 { 962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 963 struct nvme_queue *nvmeq = iod->nvmeq; 964 struct nvme_dev *dev = nvmeq->dev; 965 struct request *abort_req; 966 struct nvme_command cmd; 967 968 /* 969 * Did we miss an interrupt? 970 */ 971 if (__nvme_poll(nvmeq, req->tag)) { 972 dev_warn(dev->ctrl.device, 973 "I/O %d QID %d timeout, completion polled\n", 974 req->tag, nvmeq->qid); 975 return BLK_EH_HANDLED; 976 } 977 978 /* 979 * Shutdown immediately if controller times out while starting. The 980 * reset work will see the pci device disabled when it gets the forced 981 * cancellation error. All outstanding requests are completed on 982 * shutdown, so we return BLK_EH_HANDLED. 983 */ 984 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 985 dev_warn(dev->ctrl.device, 986 "I/O %d QID %d timeout, disable controller\n", 987 req->tag, nvmeq->qid); 988 nvme_dev_disable(dev, false); 989 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 990 return BLK_EH_HANDLED; 991 } 992 993 /* 994 * Shutdown the controller immediately and schedule a reset if the 995 * command was already aborted once before and still hasn't been 996 * returned to the driver, or if this is the admin queue. 997 */ 998 if (!nvmeq->qid || iod->aborted) { 999 dev_warn(dev->ctrl.device, 1000 "I/O %d QID %d timeout, reset controller\n", 1001 req->tag, nvmeq->qid); 1002 nvme_dev_disable(dev, false); 1003 nvme_reset(dev); 1004 1005 /* 1006 * Mark the request as handled, since the inline shutdown 1007 * forces all outstanding requests to complete. 1008 */ 1009 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1010 return BLK_EH_HANDLED; 1011 } 1012 1013 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1014 atomic_inc(&dev->ctrl.abort_limit); 1015 return BLK_EH_RESET_TIMER; 1016 } 1017 iod->aborted = 1; 1018 1019 memset(&cmd, 0, sizeof(cmd)); 1020 cmd.abort.opcode = nvme_admin_abort_cmd; 1021 cmd.abort.cid = req->tag; 1022 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1023 1024 dev_warn(nvmeq->dev->ctrl.device, 1025 "I/O %d QID %d timeout, aborting\n", 1026 req->tag, nvmeq->qid); 1027 1028 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1029 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1030 if (IS_ERR(abort_req)) { 1031 atomic_inc(&dev->ctrl.abort_limit); 1032 return BLK_EH_RESET_TIMER; 1033 } 1034 1035 abort_req->timeout = ADMIN_TIMEOUT; 1036 abort_req->end_io_data = NULL; 1037 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1038 1039 /* 1040 * The aborted req will be completed on receiving the abort req. 1041 * We enable the timer again. If hit twice, it'll cause a device reset, 1042 * as the device then is in a faulty state. 1043 */ 1044 return BLK_EH_RESET_TIMER; 1045 } 1046 1047 static void nvme_free_queue(struct nvme_queue *nvmeq) 1048 { 1049 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1050 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1051 if (nvmeq->sq_cmds) 1052 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1053 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1054 kfree(nvmeq); 1055 } 1056 1057 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1058 { 1059 int i; 1060 1061 for (i = dev->queue_count - 1; i >= lowest; i--) { 1062 struct nvme_queue *nvmeq = dev->queues[i]; 1063 dev->queue_count--; 1064 dev->queues[i] = NULL; 1065 nvme_free_queue(nvmeq); 1066 } 1067 } 1068 1069 /** 1070 * nvme_suspend_queue - put queue into suspended state 1071 * @nvmeq - queue to suspend 1072 */ 1073 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1074 { 1075 int vector; 1076 1077 spin_lock_irq(&nvmeq->q_lock); 1078 if (nvmeq->cq_vector == -1) { 1079 spin_unlock_irq(&nvmeq->q_lock); 1080 return 1; 1081 } 1082 vector = nvmeq_irq(nvmeq); 1083 nvmeq->dev->online_queues--; 1084 nvmeq->cq_vector = -1; 1085 spin_unlock_irq(&nvmeq->q_lock); 1086 1087 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1088 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 1089 1090 free_irq(vector, nvmeq); 1091 1092 return 0; 1093 } 1094 1095 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1096 { 1097 struct nvme_queue *nvmeq = dev->queues[0]; 1098 1099 if (!nvmeq) 1100 return; 1101 if (nvme_suspend_queue(nvmeq)) 1102 return; 1103 1104 if (shutdown) 1105 nvme_shutdown_ctrl(&dev->ctrl); 1106 else 1107 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1108 dev->bar + NVME_REG_CAP)); 1109 1110 spin_lock_irq(&nvmeq->q_lock); 1111 nvme_process_cq(nvmeq); 1112 spin_unlock_irq(&nvmeq->q_lock); 1113 } 1114 1115 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1116 int entry_size) 1117 { 1118 int q_depth = dev->q_depth; 1119 unsigned q_size_aligned = roundup(q_depth * entry_size, 1120 dev->ctrl.page_size); 1121 1122 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1123 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1124 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1125 q_depth = div_u64(mem_per_q, entry_size); 1126 1127 /* 1128 * Ensure the reduced q_depth is above some threshold where it 1129 * would be better to map queues in system memory with the 1130 * original depth 1131 */ 1132 if (q_depth < 64) 1133 return -ENOMEM; 1134 } 1135 1136 return q_depth; 1137 } 1138 1139 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1140 int qid, int depth) 1141 { 1142 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1143 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1144 dev->ctrl.page_size); 1145 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1146 nvmeq->sq_cmds_io = dev->cmb + offset; 1147 } else { 1148 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1149 &nvmeq->sq_dma_addr, GFP_KERNEL); 1150 if (!nvmeq->sq_cmds) 1151 return -ENOMEM; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1158 int depth, int node) 1159 { 1160 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1161 node); 1162 if (!nvmeq) 1163 return NULL; 1164 1165 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1166 &nvmeq->cq_dma_addr, GFP_KERNEL); 1167 if (!nvmeq->cqes) 1168 goto free_nvmeq; 1169 1170 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1171 goto free_cqdma; 1172 1173 nvmeq->q_dmadev = dev->dev; 1174 nvmeq->dev = dev; 1175 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1176 dev->ctrl.instance, qid); 1177 spin_lock_init(&nvmeq->q_lock); 1178 nvmeq->cq_head = 0; 1179 nvmeq->cq_phase = 1; 1180 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1181 nvmeq->q_depth = depth; 1182 nvmeq->qid = qid; 1183 nvmeq->cq_vector = -1; 1184 dev->queues[qid] = nvmeq; 1185 dev->queue_count++; 1186 1187 return nvmeq; 1188 1189 free_cqdma: 1190 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1191 nvmeq->cq_dma_addr); 1192 free_nvmeq: 1193 kfree(nvmeq); 1194 return NULL; 1195 } 1196 1197 static int queue_request_irq(struct nvme_queue *nvmeq) 1198 { 1199 if (use_threaded_interrupts) 1200 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1201 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1202 else 1203 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1204 nvmeq->irqname, nvmeq); 1205 } 1206 1207 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1208 { 1209 struct nvme_dev *dev = nvmeq->dev; 1210 1211 spin_lock_irq(&nvmeq->q_lock); 1212 nvmeq->sq_tail = 0; 1213 nvmeq->cq_head = 0; 1214 nvmeq->cq_phase = 1; 1215 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1216 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1217 nvme_dbbuf_init(dev, nvmeq, qid); 1218 dev->online_queues++; 1219 spin_unlock_irq(&nvmeq->q_lock); 1220 } 1221 1222 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1223 { 1224 struct nvme_dev *dev = nvmeq->dev; 1225 int result; 1226 1227 nvmeq->cq_vector = qid - 1; 1228 result = adapter_alloc_cq(dev, qid, nvmeq); 1229 if (result < 0) 1230 return result; 1231 1232 result = adapter_alloc_sq(dev, qid, nvmeq); 1233 if (result < 0) 1234 goto release_cq; 1235 1236 result = queue_request_irq(nvmeq); 1237 if (result < 0) 1238 goto release_sq; 1239 1240 nvme_init_queue(nvmeq, qid); 1241 return result; 1242 1243 release_sq: 1244 adapter_delete_sq(dev, qid); 1245 release_cq: 1246 adapter_delete_cq(dev, qid); 1247 return result; 1248 } 1249 1250 static const struct blk_mq_ops nvme_mq_admin_ops = { 1251 .queue_rq = nvme_queue_rq, 1252 .complete = nvme_pci_complete_rq, 1253 .init_hctx = nvme_admin_init_hctx, 1254 .exit_hctx = nvme_admin_exit_hctx, 1255 .init_request = nvme_admin_init_request, 1256 .timeout = nvme_timeout, 1257 }; 1258 1259 static const struct blk_mq_ops nvme_mq_ops = { 1260 .queue_rq = nvme_queue_rq, 1261 .complete = nvme_pci_complete_rq, 1262 .init_hctx = nvme_init_hctx, 1263 .init_request = nvme_init_request, 1264 .map_queues = nvme_pci_map_queues, 1265 .timeout = nvme_timeout, 1266 .poll = nvme_poll, 1267 }; 1268 1269 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1270 { 1271 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1272 /* 1273 * If the controller was reset during removal, it's possible 1274 * user requests may be waiting on a stopped queue. Start the 1275 * queue to flush these to completion. 1276 */ 1277 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1278 blk_cleanup_queue(dev->ctrl.admin_q); 1279 blk_mq_free_tag_set(&dev->admin_tagset); 1280 } 1281 } 1282 1283 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1284 { 1285 if (!dev->ctrl.admin_q) { 1286 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1287 dev->admin_tagset.nr_hw_queues = 1; 1288 1289 /* 1290 * Subtract one to leave an empty queue entry for 'Full Queue' 1291 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1292 */ 1293 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1294 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1295 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1296 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1297 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1298 dev->admin_tagset.driver_data = dev; 1299 1300 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1301 return -ENOMEM; 1302 1303 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1304 if (IS_ERR(dev->ctrl.admin_q)) { 1305 blk_mq_free_tag_set(&dev->admin_tagset); 1306 return -ENOMEM; 1307 } 1308 if (!blk_get_queue(dev->ctrl.admin_q)) { 1309 nvme_dev_remove_admin(dev); 1310 dev->ctrl.admin_q = NULL; 1311 return -ENODEV; 1312 } 1313 } else 1314 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1315 1316 return 0; 1317 } 1318 1319 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1320 { 1321 int result; 1322 u32 aqa; 1323 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1324 struct nvme_queue *nvmeq; 1325 1326 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1327 NVME_CAP_NSSRC(cap) : 0; 1328 1329 if (dev->subsystem && 1330 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1331 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1332 1333 result = nvme_disable_ctrl(&dev->ctrl, cap); 1334 if (result < 0) 1335 return result; 1336 1337 nvmeq = dev->queues[0]; 1338 if (!nvmeq) { 1339 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1340 dev_to_node(dev->dev)); 1341 if (!nvmeq) 1342 return -ENOMEM; 1343 } 1344 1345 aqa = nvmeq->q_depth - 1; 1346 aqa |= aqa << 16; 1347 1348 writel(aqa, dev->bar + NVME_REG_AQA); 1349 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1350 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1351 1352 result = nvme_enable_ctrl(&dev->ctrl, cap); 1353 if (result) 1354 return result; 1355 1356 nvmeq->cq_vector = 0; 1357 result = queue_request_irq(nvmeq); 1358 if (result) { 1359 nvmeq->cq_vector = -1; 1360 return result; 1361 } 1362 1363 return result; 1364 } 1365 1366 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1367 { 1368 1369 /* If true, indicates loss of adapter communication, possibly by a 1370 * NVMe Subsystem reset. 1371 */ 1372 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1373 1374 /* If there is a reset ongoing, we shouldn't reset again. */ 1375 if (work_busy(&dev->reset_work)) 1376 return false; 1377 1378 /* We shouldn't reset unless the controller is on fatal error state 1379 * _or_ if we lost the communication with it. 1380 */ 1381 if (!(csts & NVME_CSTS_CFS) && !nssro) 1382 return false; 1383 1384 /* If PCI error recovery process is happening, we cannot reset or 1385 * the recovery mechanism will surely fail. 1386 */ 1387 if (pci_channel_offline(to_pci_dev(dev->dev))) 1388 return false; 1389 1390 return true; 1391 } 1392 1393 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1394 { 1395 /* Read a config register to help see what died. */ 1396 u16 pci_status; 1397 int result; 1398 1399 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1400 &pci_status); 1401 if (result == PCIBIOS_SUCCESSFUL) 1402 dev_warn(dev->dev, 1403 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1404 csts, pci_status); 1405 else 1406 dev_warn(dev->dev, 1407 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1408 csts, result); 1409 } 1410 1411 static void nvme_watchdog_timer(unsigned long data) 1412 { 1413 struct nvme_dev *dev = (struct nvme_dev *)data; 1414 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1415 1416 /* Skip controllers under certain specific conditions. */ 1417 if (nvme_should_reset(dev, csts)) { 1418 if (!nvme_reset(dev)) 1419 nvme_warn_reset(dev, csts); 1420 return; 1421 } 1422 1423 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1424 } 1425 1426 static int nvme_create_io_queues(struct nvme_dev *dev) 1427 { 1428 unsigned i, max; 1429 int ret = 0; 1430 1431 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1432 /* vector == qid - 1, match nvme_create_queue */ 1433 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1434 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1435 ret = -ENOMEM; 1436 break; 1437 } 1438 } 1439 1440 max = min(dev->max_qid, dev->queue_count - 1); 1441 for (i = dev->online_queues; i <= max; i++) { 1442 ret = nvme_create_queue(dev->queues[i], i); 1443 if (ret) 1444 break; 1445 } 1446 1447 /* 1448 * Ignore failing Create SQ/CQ commands, we can continue with less 1449 * than the desired aount of queues, and even a controller without 1450 * I/O queues an still be used to issue admin commands. This might 1451 * be useful to upgrade a buggy firmware for example. 1452 */ 1453 return ret >= 0 ? 0 : ret; 1454 } 1455 1456 static ssize_t nvme_cmb_show(struct device *dev, 1457 struct device_attribute *attr, 1458 char *buf) 1459 { 1460 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1461 1462 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1463 ndev->cmbloc, ndev->cmbsz); 1464 } 1465 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1466 1467 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1468 { 1469 u64 szu, size, offset; 1470 resource_size_t bar_size; 1471 struct pci_dev *pdev = to_pci_dev(dev->dev); 1472 void __iomem *cmb; 1473 dma_addr_t dma_addr; 1474 1475 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1476 if (!(NVME_CMB_SZ(dev->cmbsz))) 1477 return NULL; 1478 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1479 1480 if (!use_cmb_sqes) 1481 return NULL; 1482 1483 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1484 size = szu * NVME_CMB_SZ(dev->cmbsz); 1485 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1486 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1487 1488 if (offset > bar_size) 1489 return NULL; 1490 1491 /* 1492 * Controllers may support a CMB size larger than their BAR, 1493 * for example, due to being behind a bridge. Reduce the CMB to 1494 * the reported size of the BAR 1495 */ 1496 if (size > bar_size - offset) 1497 size = bar_size - offset; 1498 1499 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1500 cmb = ioremap_wc(dma_addr, size); 1501 if (!cmb) 1502 return NULL; 1503 1504 dev->cmb_dma_addr = dma_addr; 1505 dev->cmb_size = size; 1506 return cmb; 1507 } 1508 1509 static inline void nvme_release_cmb(struct nvme_dev *dev) 1510 { 1511 if (dev->cmb) { 1512 iounmap(dev->cmb); 1513 dev->cmb = NULL; 1514 } 1515 } 1516 1517 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1518 { 1519 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1520 } 1521 1522 static int nvme_setup_io_queues(struct nvme_dev *dev) 1523 { 1524 struct nvme_queue *adminq = dev->queues[0]; 1525 struct pci_dev *pdev = to_pci_dev(dev->dev); 1526 int result, nr_io_queues, size; 1527 1528 nr_io_queues = num_online_cpus(); 1529 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1530 if (result < 0) 1531 return result; 1532 1533 if (nr_io_queues == 0) 1534 return 0; 1535 1536 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1537 result = nvme_cmb_qdepth(dev, nr_io_queues, 1538 sizeof(struct nvme_command)); 1539 if (result > 0) 1540 dev->q_depth = result; 1541 else 1542 nvme_release_cmb(dev); 1543 } 1544 1545 size = db_bar_size(dev, nr_io_queues); 1546 if (size > 8192) { 1547 iounmap(dev->bar); 1548 do { 1549 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1550 if (dev->bar) 1551 break; 1552 if (!--nr_io_queues) 1553 return -ENOMEM; 1554 size = db_bar_size(dev, nr_io_queues); 1555 } while (1); 1556 dev->dbs = dev->bar + 4096; 1557 adminq->q_db = dev->dbs; 1558 } 1559 1560 /* Deregister the admin queue's interrupt */ 1561 free_irq(pci_irq_vector(pdev, 0), adminq); 1562 1563 /* 1564 * If we enable msix early due to not intx, disable it again before 1565 * setting up the full range we need. 1566 */ 1567 pci_free_irq_vectors(pdev); 1568 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1569 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1570 if (nr_io_queues <= 0) 1571 return -EIO; 1572 dev->max_qid = nr_io_queues; 1573 1574 /* 1575 * Should investigate if there's a performance win from allocating 1576 * more queues than interrupt vectors; it might allow the submission 1577 * path to scale better, even if the receive path is limited by the 1578 * number of interrupts. 1579 */ 1580 1581 result = queue_request_irq(adminq); 1582 if (result) { 1583 adminq->cq_vector = -1; 1584 return result; 1585 } 1586 return nvme_create_io_queues(dev); 1587 } 1588 1589 static void nvme_del_queue_end(struct request *req, int error) 1590 { 1591 struct nvme_queue *nvmeq = req->end_io_data; 1592 1593 blk_mq_free_request(req); 1594 complete(&nvmeq->dev->ioq_wait); 1595 } 1596 1597 static void nvme_del_cq_end(struct request *req, int error) 1598 { 1599 struct nvme_queue *nvmeq = req->end_io_data; 1600 1601 if (!error) { 1602 unsigned long flags; 1603 1604 /* 1605 * We might be called with the AQ q_lock held 1606 * and the I/O queue q_lock should always 1607 * nest inside the AQ one. 1608 */ 1609 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1610 SINGLE_DEPTH_NESTING); 1611 nvme_process_cq(nvmeq); 1612 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1613 } 1614 1615 nvme_del_queue_end(req, error); 1616 } 1617 1618 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1619 { 1620 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1621 struct request *req; 1622 struct nvme_command cmd; 1623 1624 memset(&cmd, 0, sizeof(cmd)); 1625 cmd.delete_queue.opcode = opcode; 1626 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1627 1628 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1629 if (IS_ERR(req)) 1630 return PTR_ERR(req); 1631 1632 req->timeout = ADMIN_TIMEOUT; 1633 req->end_io_data = nvmeq; 1634 1635 blk_execute_rq_nowait(q, NULL, req, false, 1636 opcode == nvme_admin_delete_cq ? 1637 nvme_del_cq_end : nvme_del_queue_end); 1638 return 0; 1639 } 1640 1641 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1642 { 1643 int pass; 1644 unsigned long timeout; 1645 u8 opcode = nvme_admin_delete_sq; 1646 1647 for (pass = 0; pass < 2; pass++) { 1648 int sent = 0, i = queues; 1649 1650 reinit_completion(&dev->ioq_wait); 1651 retry: 1652 timeout = ADMIN_TIMEOUT; 1653 for (; i > 0; i--, sent++) 1654 if (nvme_delete_queue(dev->queues[i], opcode)) 1655 break; 1656 1657 while (sent--) { 1658 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1659 if (timeout == 0) 1660 return; 1661 if (i) 1662 goto retry; 1663 } 1664 opcode = nvme_admin_delete_cq; 1665 } 1666 } 1667 1668 /* 1669 * Return: error value if an error occurred setting up the queues or calling 1670 * Identify Device. 0 if these succeeded, even if adding some of the 1671 * namespaces failed. At the moment, these failures are silent. TBD which 1672 * failures should be reported. 1673 */ 1674 static int nvme_dev_add(struct nvme_dev *dev) 1675 { 1676 if (!dev->ctrl.tagset) { 1677 dev->tagset.ops = &nvme_mq_ops; 1678 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1679 dev->tagset.timeout = NVME_IO_TIMEOUT; 1680 dev->tagset.numa_node = dev_to_node(dev->dev); 1681 dev->tagset.queue_depth = 1682 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1683 dev->tagset.cmd_size = nvme_cmd_size(dev); 1684 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1685 dev->tagset.driver_data = dev; 1686 1687 if (blk_mq_alloc_tag_set(&dev->tagset)) 1688 return 0; 1689 dev->ctrl.tagset = &dev->tagset; 1690 1691 nvme_dbbuf_set(dev); 1692 } else { 1693 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1694 1695 /* Free previously allocated queues that are no longer usable */ 1696 nvme_free_queues(dev, dev->online_queues); 1697 } 1698 1699 return 0; 1700 } 1701 1702 static int nvme_pci_enable(struct nvme_dev *dev) 1703 { 1704 u64 cap; 1705 int result = -ENOMEM; 1706 struct pci_dev *pdev = to_pci_dev(dev->dev); 1707 1708 if (pci_enable_device_mem(pdev)) 1709 return result; 1710 1711 pci_set_master(pdev); 1712 1713 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1714 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1715 goto disable; 1716 1717 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1718 result = -ENODEV; 1719 goto disable; 1720 } 1721 1722 /* 1723 * Some devices and/or platforms don't advertise or work with INTx 1724 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1725 * adjust this later. 1726 */ 1727 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1728 if (result < 0) 1729 return result; 1730 1731 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1732 1733 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1734 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1735 dev->dbs = dev->bar + 4096; 1736 1737 /* 1738 * Temporary fix for the Apple controller found in the MacBook8,1 and 1739 * some MacBook7,1 to avoid controller resets and data loss. 1740 */ 1741 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1742 dev->q_depth = 2; 1743 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1744 "queue depth=%u to work around controller resets\n", 1745 dev->q_depth); 1746 } 1747 1748 /* 1749 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1750 * populate sysfs if a CMB is implemented. Note that we add the 1751 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1752 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1753 * NULL as final argument to sysfs_add_file_to_group. 1754 */ 1755 1756 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1757 dev->cmb = nvme_map_cmb(dev); 1758 1759 if (dev->cmbsz) { 1760 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1761 &dev_attr_cmb.attr, NULL)) 1762 dev_warn(dev->dev, 1763 "failed to add sysfs attribute for CMB\n"); 1764 } 1765 } 1766 1767 pci_enable_pcie_error_reporting(pdev); 1768 pci_save_state(pdev); 1769 return 0; 1770 1771 disable: 1772 pci_disable_device(pdev); 1773 return result; 1774 } 1775 1776 static void nvme_dev_unmap(struct nvme_dev *dev) 1777 { 1778 if (dev->bar) 1779 iounmap(dev->bar); 1780 pci_release_mem_regions(to_pci_dev(dev->dev)); 1781 } 1782 1783 static void nvme_pci_disable(struct nvme_dev *dev) 1784 { 1785 struct pci_dev *pdev = to_pci_dev(dev->dev); 1786 1787 pci_free_irq_vectors(pdev); 1788 1789 if (pci_is_enabled(pdev)) { 1790 pci_disable_pcie_error_reporting(pdev); 1791 pci_disable_device(pdev); 1792 } 1793 } 1794 1795 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1796 { 1797 int i, queues; 1798 bool dead = true; 1799 struct pci_dev *pdev = to_pci_dev(dev->dev); 1800 1801 del_timer_sync(&dev->watchdog_timer); 1802 1803 mutex_lock(&dev->shutdown_lock); 1804 if (pci_is_enabled(pdev)) { 1805 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1806 1807 if (dev->ctrl.state == NVME_CTRL_LIVE) 1808 nvme_start_freeze(&dev->ctrl); 1809 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 1810 pdev->error_state != pci_channel_io_normal); 1811 } 1812 1813 /* 1814 * Give the controller a chance to complete all entered requests if 1815 * doing a safe shutdown. 1816 */ 1817 if (!dead && shutdown) 1818 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 1819 nvme_stop_queues(&dev->ctrl); 1820 1821 queues = dev->online_queues - 1; 1822 for (i = dev->queue_count - 1; i > 0; i--) 1823 nvme_suspend_queue(dev->queues[i]); 1824 1825 if (dead) { 1826 /* A device might become IO incapable very soon during 1827 * probe, before the admin queue is configured. Thus, 1828 * queue_count can be 0 here. 1829 */ 1830 if (dev->queue_count) 1831 nvme_suspend_queue(dev->queues[0]); 1832 } else { 1833 nvme_disable_io_queues(dev, queues); 1834 nvme_disable_admin_queue(dev, shutdown); 1835 } 1836 nvme_pci_disable(dev); 1837 1838 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1839 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1840 1841 /* 1842 * The driver will not be starting up queues again if shutting down so 1843 * must flush all entered requests to their failed completion to avoid 1844 * deadlocking blk-mq hot-cpu notifier. 1845 */ 1846 if (shutdown) 1847 nvme_start_queues(&dev->ctrl); 1848 mutex_unlock(&dev->shutdown_lock); 1849 } 1850 1851 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1852 { 1853 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1854 PAGE_SIZE, PAGE_SIZE, 0); 1855 if (!dev->prp_page_pool) 1856 return -ENOMEM; 1857 1858 /* Optimisation for I/Os between 4k and 128k */ 1859 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1860 256, 256, 0); 1861 if (!dev->prp_small_pool) { 1862 dma_pool_destroy(dev->prp_page_pool); 1863 return -ENOMEM; 1864 } 1865 return 0; 1866 } 1867 1868 static void nvme_release_prp_pools(struct nvme_dev *dev) 1869 { 1870 dma_pool_destroy(dev->prp_page_pool); 1871 dma_pool_destroy(dev->prp_small_pool); 1872 } 1873 1874 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1875 { 1876 struct nvme_dev *dev = to_nvme_dev(ctrl); 1877 1878 nvme_dbbuf_dma_free(dev); 1879 put_device(dev->dev); 1880 if (dev->tagset.tags) 1881 blk_mq_free_tag_set(&dev->tagset); 1882 if (dev->ctrl.admin_q) 1883 blk_put_queue(dev->ctrl.admin_q); 1884 kfree(dev->queues); 1885 free_opal_dev(dev->ctrl.opal_dev); 1886 kfree(dev); 1887 } 1888 1889 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1890 { 1891 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1892 1893 kref_get(&dev->ctrl.kref); 1894 nvme_dev_disable(dev, false); 1895 if (!schedule_work(&dev->remove_work)) 1896 nvme_put_ctrl(&dev->ctrl); 1897 } 1898 1899 static void nvme_reset_work(struct work_struct *work) 1900 { 1901 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1902 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 1903 int result = -ENODEV; 1904 1905 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1906 goto out; 1907 1908 /* 1909 * If we're called to reset a live controller first shut it down before 1910 * moving on. 1911 */ 1912 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1913 nvme_dev_disable(dev, false); 1914 1915 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1916 goto out; 1917 1918 result = nvme_pci_enable(dev); 1919 if (result) 1920 goto out; 1921 1922 result = nvme_configure_admin_queue(dev); 1923 if (result) 1924 goto out; 1925 1926 nvme_init_queue(dev->queues[0], 0); 1927 result = nvme_alloc_admin_tags(dev); 1928 if (result) 1929 goto out; 1930 1931 result = nvme_init_identify(&dev->ctrl); 1932 if (result) 1933 goto out; 1934 1935 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 1936 if (!dev->ctrl.opal_dev) 1937 dev->ctrl.opal_dev = 1938 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 1939 else if (was_suspend) 1940 opal_unlock_from_suspend(dev->ctrl.opal_dev); 1941 } else { 1942 free_opal_dev(dev->ctrl.opal_dev); 1943 dev->ctrl.opal_dev = NULL; 1944 } 1945 1946 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 1947 result = nvme_dbbuf_dma_alloc(dev); 1948 if (result) 1949 dev_warn(dev->dev, 1950 "unable to allocate dma for dbbuf\n"); 1951 } 1952 1953 result = nvme_setup_io_queues(dev); 1954 if (result) 1955 goto out; 1956 1957 /* 1958 * A controller that can not execute IO typically requires user 1959 * intervention to correct. For such degraded controllers, the driver 1960 * should not submit commands the user did not request, so skip 1961 * registering for asynchronous event notification on this condition. 1962 */ 1963 if (dev->online_queues > 1) 1964 nvme_queue_async_events(&dev->ctrl); 1965 1966 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1967 1968 /* 1969 * Keep the controller around but remove all namespaces if we don't have 1970 * any working I/O queue. 1971 */ 1972 if (dev->online_queues < 2) { 1973 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1974 nvme_kill_queues(&dev->ctrl); 1975 nvme_remove_namespaces(&dev->ctrl); 1976 } else { 1977 nvme_start_queues(&dev->ctrl); 1978 nvme_wait_freeze(&dev->ctrl); 1979 nvme_dev_add(dev); 1980 nvme_unfreeze(&dev->ctrl); 1981 } 1982 1983 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1984 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1985 goto out; 1986 } 1987 1988 if (dev->online_queues > 1) 1989 nvme_queue_scan(&dev->ctrl); 1990 return; 1991 1992 out: 1993 nvme_remove_dead_ctrl(dev, result); 1994 } 1995 1996 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1997 { 1998 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1999 struct pci_dev *pdev = to_pci_dev(dev->dev); 2000 2001 nvme_kill_queues(&dev->ctrl); 2002 if (pci_get_drvdata(pdev)) 2003 device_release_driver(&pdev->dev); 2004 nvme_put_ctrl(&dev->ctrl); 2005 } 2006 2007 static int nvme_reset(struct nvme_dev *dev) 2008 { 2009 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 2010 return -ENODEV; 2011 if (work_busy(&dev->reset_work)) 2012 return -ENODEV; 2013 if (!queue_work(nvme_workq, &dev->reset_work)) 2014 return -EBUSY; 2015 return 0; 2016 } 2017 2018 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2019 { 2020 *val = readl(to_nvme_dev(ctrl)->bar + off); 2021 return 0; 2022 } 2023 2024 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2025 { 2026 writel(val, to_nvme_dev(ctrl)->bar + off); 2027 return 0; 2028 } 2029 2030 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2031 { 2032 *val = readq(to_nvme_dev(ctrl)->bar + off); 2033 return 0; 2034 } 2035 2036 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 2037 { 2038 struct nvme_dev *dev = to_nvme_dev(ctrl); 2039 int ret = nvme_reset(dev); 2040 2041 if (!ret) 2042 flush_work(&dev->reset_work); 2043 return ret; 2044 } 2045 2046 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2047 .name = "pcie", 2048 .module = THIS_MODULE, 2049 .reg_read32 = nvme_pci_reg_read32, 2050 .reg_write32 = nvme_pci_reg_write32, 2051 .reg_read64 = nvme_pci_reg_read64, 2052 .reset_ctrl = nvme_pci_reset_ctrl, 2053 .free_ctrl = nvme_pci_free_ctrl, 2054 .submit_async_event = nvme_pci_submit_async_event, 2055 }; 2056 2057 static int nvme_dev_map(struct nvme_dev *dev) 2058 { 2059 struct pci_dev *pdev = to_pci_dev(dev->dev); 2060 2061 if (pci_request_mem_regions(pdev, "nvme")) 2062 return -ENODEV; 2063 2064 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 2065 if (!dev->bar) 2066 goto release; 2067 2068 return 0; 2069 release: 2070 pci_release_mem_regions(pdev); 2071 return -ENODEV; 2072 } 2073 2074 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev) 2075 { 2076 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2077 /* 2078 * Several Samsung devices seem to drop off the PCIe bus 2079 * randomly when APST is on and uses the deepest sleep state. 2080 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2081 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2082 * 950 PRO 256GB", but it seems to be restricted to two Dell 2083 * laptops. 2084 */ 2085 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2086 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2087 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2088 return NVME_QUIRK_NO_DEEPEST_PS; 2089 } 2090 2091 return 0; 2092 } 2093 2094 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2095 { 2096 int node, result = -ENOMEM; 2097 struct nvme_dev *dev; 2098 unsigned long quirks = id->driver_data; 2099 2100 node = dev_to_node(&pdev->dev); 2101 if (node == NUMA_NO_NODE) 2102 set_dev_node(&pdev->dev, first_memory_node); 2103 2104 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2105 if (!dev) 2106 return -ENOMEM; 2107 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2108 GFP_KERNEL, node); 2109 if (!dev->queues) 2110 goto free; 2111 2112 dev->dev = get_device(&pdev->dev); 2113 pci_set_drvdata(pdev, dev); 2114 2115 result = nvme_dev_map(dev); 2116 if (result) 2117 goto free; 2118 2119 INIT_WORK(&dev->reset_work, nvme_reset_work); 2120 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2121 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 2122 (unsigned long)dev); 2123 mutex_init(&dev->shutdown_lock); 2124 init_completion(&dev->ioq_wait); 2125 2126 result = nvme_setup_prp_pools(dev); 2127 if (result) 2128 goto put_pci; 2129 2130 quirks |= check_dell_samsung_bug(pdev); 2131 2132 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2133 quirks); 2134 if (result) 2135 goto release_pools; 2136 2137 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2138 2139 queue_work(nvme_workq, &dev->reset_work); 2140 return 0; 2141 2142 release_pools: 2143 nvme_release_prp_pools(dev); 2144 put_pci: 2145 put_device(dev->dev); 2146 nvme_dev_unmap(dev); 2147 free: 2148 kfree(dev->queues); 2149 kfree(dev); 2150 return result; 2151 } 2152 2153 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2154 { 2155 struct nvme_dev *dev = pci_get_drvdata(pdev); 2156 2157 if (prepare) 2158 nvme_dev_disable(dev, false); 2159 else 2160 nvme_reset(dev); 2161 } 2162 2163 static void nvme_shutdown(struct pci_dev *pdev) 2164 { 2165 struct nvme_dev *dev = pci_get_drvdata(pdev); 2166 nvme_dev_disable(dev, true); 2167 } 2168 2169 /* 2170 * The driver's remove may be called on a device in a partially initialized 2171 * state. This function must not have any dependencies on the device state in 2172 * order to proceed. 2173 */ 2174 static void nvme_remove(struct pci_dev *pdev) 2175 { 2176 struct nvme_dev *dev = pci_get_drvdata(pdev); 2177 2178 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2179 2180 pci_set_drvdata(pdev, NULL); 2181 2182 if (!pci_device_is_present(pdev)) { 2183 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2184 nvme_dev_disable(dev, false); 2185 } 2186 2187 flush_work(&dev->reset_work); 2188 nvme_uninit_ctrl(&dev->ctrl); 2189 nvme_dev_disable(dev, true); 2190 nvme_dev_remove_admin(dev); 2191 nvme_free_queues(dev, 0); 2192 nvme_release_cmb(dev); 2193 nvme_release_prp_pools(dev); 2194 nvme_dev_unmap(dev); 2195 nvme_put_ctrl(&dev->ctrl); 2196 } 2197 2198 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2199 { 2200 int ret = 0; 2201 2202 if (numvfs == 0) { 2203 if (pci_vfs_assigned(pdev)) { 2204 dev_warn(&pdev->dev, 2205 "Cannot disable SR-IOV VFs while assigned\n"); 2206 return -EPERM; 2207 } 2208 pci_disable_sriov(pdev); 2209 return 0; 2210 } 2211 2212 ret = pci_enable_sriov(pdev, numvfs); 2213 return ret ? ret : numvfs; 2214 } 2215 2216 #ifdef CONFIG_PM_SLEEP 2217 static int nvme_suspend(struct device *dev) 2218 { 2219 struct pci_dev *pdev = to_pci_dev(dev); 2220 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2221 2222 nvme_dev_disable(ndev, true); 2223 return 0; 2224 } 2225 2226 static int nvme_resume(struct device *dev) 2227 { 2228 struct pci_dev *pdev = to_pci_dev(dev); 2229 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2230 2231 nvme_reset(ndev); 2232 return 0; 2233 } 2234 #endif 2235 2236 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2237 2238 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2239 pci_channel_state_t state) 2240 { 2241 struct nvme_dev *dev = pci_get_drvdata(pdev); 2242 2243 /* 2244 * A frozen channel requires a reset. When detected, this method will 2245 * shutdown the controller to quiesce. The controller will be restarted 2246 * after the slot reset through driver's slot_reset callback. 2247 */ 2248 switch (state) { 2249 case pci_channel_io_normal: 2250 return PCI_ERS_RESULT_CAN_RECOVER; 2251 case pci_channel_io_frozen: 2252 dev_warn(dev->ctrl.device, 2253 "frozen state error detected, reset controller\n"); 2254 nvme_dev_disable(dev, false); 2255 return PCI_ERS_RESULT_NEED_RESET; 2256 case pci_channel_io_perm_failure: 2257 dev_warn(dev->ctrl.device, 2258 "failure state error detected, request disconnect\n"); 2259 return PCI_ERS_RESULT_DISCONNECT; 2260 } 2261 return PCI_ERS_RESULT_NEED_RESET; 2262 } 2263 2264 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2265 { 2266 struct nvme_dev *dev = pci_get_drvdata(pdev); 2267 2268 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2269 pci_restore_state(pdev); 2270 nvme_reset(dev); 2271 return PCI_ERS_RESULT_RECOVERED; 2272 } 2273 2274 static void nvme_error_resume(struct pci_dev *pdev) 2275 { 2276 pci_cleanup_aer_uncorrect_error_status(pdev); 2277 } 2278 2279 static const struct pci_error_handlers nvme_err_handler = { 2280 .error_detected = nvme_error_detected, 2281 .slot_reset = nvme_slot_reset, 2282 .resume = nvme_error_resume, 2283 .reset_notify = nvme_reset_notify, 2284 }; 2285 2286 static const struct pci_device_id nvme_id_table[] = { 2287 { PCI_VDEVICE(INTEL, 0x0953), 2288 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2289 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2290 { PCI_VDEVICE(INTEL, 0x0a53), 2291 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2292 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2293 { PCI_VDEVICE(INTEL, 0x0a54), 2294 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2295 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2296 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2297 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2298 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2299 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2300 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2301 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2302 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2303 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2304 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2305 { 0, } 2306 }; 2307 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2308 2309 static struct pci_driver nvme_driver = { 2310 .name = "nvme", 2311 .id_table = nvme_id_table, 2312 .probe = nvme_probe, 2313 .remove = nvme_remove, 2314 .shutdown = nvme_shutdown, 2315 .driver = { 2316 .pm = &nvme_dev_pm_ops, 2317 }, 2318 .sriov_configure = nvme_pci_sriov_configure, 2319 .err_handler = &nvme_err_handler, 2320 }; 2321 2322 static int __init nvme_init(void) 2323 { 2324 int result; 2325 2326 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2327 if (!nvme_workq) 2328 return -ENOMEM; 2329 2330 result = pci_register_driver(&nvme_driver); 2331 if (result) 2332 destroy_workqueue(nvme_workq); 2333 return result; 2334 } 2335 2336 static void __exit nvme_exit(void) 2337 { 2338 pci_unregister_driver(&nvme_driver); 2339 destroy_workqueue(nvme_workq); 2340 _nvme_check_size(); 2341 } 2342 2343 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2344 MODULE_LICENSE("GPL"); 2345 MODULE_VERSION("1.0"); 2346 module_init(nvme_init); 2347 module_exit(nvme_exit); 2348