xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 1c2dd16a)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48 
49 #include "nvme.h"
50 
51 #define NVME_Q_DEPTH		1024
52 #define NVME_AQ_DEPTH		256
53 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
55 
56 /*
57  * We handle AEN commands ourselves and don't even let the
58  * block layer know about them.
59  */
60 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
61 
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64 
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68 
69 static struct workqueue_struct *nvme_workq;
70 
71 struct nvme_dev;
72 struct nvme_queue;
73 
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77 
78 /*
79  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
80  */
81 struct nvme_dev {
82 	struct nvme_queue **queues;
83 	struct blk_mq_tag_set tagset;
84 	struct blk_mq_tag_set admin_tagset;
85 	u32 __iomem *dbs;
86 	struct device *dev;
87 	struct dma_pool *prp_page_pool;
88 	struct dma_pool *prp_small_pool;
89 	unsigned queue_count;
90 	unsigned online_queues;
91 	unsigned max_qid;
92 	int q_depth;
93 	u32 db_stride;
94 	void __iomem *bar;
95 	struct work_struct reset_work;
96 	struct work_struct remove_work;
97 	struct timer_list watchdog_timer;
98 	struct mutex shutdown_lock;
99 	bool subsystem;
100 	void __iomem *cmb;
101 	dma_addr_t cmb_dma_addr;
102 	u64 cmb_size;
103 	u32 cmbsz;
104 	u32 cmbloc;
105 	struct nvme_ctrl ctrl;
106 	struct completion ioq_wait;
107 	u32 *dbbuf_dbs;
108 	dma_addr_t dbbuf_dbs_dma_addr;
109 	u32 *dbbuf_eis;
110 	dma_addr_t dbbuf_eis_dma_addr;
111 };
112 
113 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114 {
115 	return qid * 2 * stride;
116 }
117 
118 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119 {
120 	return (qid * 2 + 1) * stride;
121 }
122 
123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124 {
125 	return container_of(ctrl, struct nvme_dev, ctrl);
126 }
127 
128 /*
129  * An NVM Express queue.  Each device has at least two (one for admin
130  * commands and one for I/O commands).
131  */
132 struct nvme_queue {
133 	struct device *q_dmadev;
134 	struct nvme_dev *dev;
135 	char irqname[24];	/* nvme4294967295-65535\0 */
136 	spinlock_t q_lock;
137 	struct nvme_command *sq_cmds;
138 	struct nvme_command __iomem *sq_cmds_io;
139 	volatile struct nvme_completion *cqes;
140 	struct blk_mq_tags **tags;
141 	dma_addr_t sq_dma_addr;
142 	dma_addr_t cq_dma_addr;
143 	u32 __iomem *q_db;
144 	u16 q_depth;
145 	s16 cq_vector;
146 	u16 sq_tail;
147 	u16 cq_head;
148 	u16 qid;
149 	u8 cq_phase;
150 	u8 cqe_seen;
151 	u32 *dbbuf_sq_db;
152 	u32 *dbbuf_cq_db;
153 	u32 *dbbuf_sq_ei;
154 	u32 *dbbuf_cq_ei;
155 };
156 
157 /*
158  * The nvme_iod describes the data in an I/O, including the list of PRP
159  * entries.  You can't see it in this data structure because C doesn't let
160  * me express that.  Use nvme_init_iod to ensure there's enough space
161  * allocated to store the PRP list.
162  */
163 struct nvme_iod {
164 	struct nvme_request req;
165 	struct nvme_queue *nvmeq;
166 	int aborted;
167 	int npages;		/* In the PRP list. 0 means small pool in use */
168 	int nents;		/* Used in scatterlist */
169 	int length;		/* Of data, in bytes */
170 	dma_addr_t first_dma;
171 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
172 	struct scatterlist *sg;
173 	struct scatterlist inline_sg[0];
174 };
175 
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
194 }
195 
196 static inline unsigned int nvme_dbbuf_size(u32 stride)
197 {
198 	return ((num_possible_cpus() + 1) * 8 * stride);
199 }
200 
201 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
202 {
203 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
204 
205 	if (dev->dbbuf_dbs)
206 		return 0;
207 
208 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
209 					    &dev->dbbuf_dbs_dma_addr,
210 					    GFP_KERNEL);
211 	if (!dev->dbbuf_dbs)
212 		return -ENOMEM;
213 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
214 					    &dev->dbbuf_eis_dma_addr,
215 					    GFP_KERNEL);
216 	if (!dev->dbbuf_eis) {
217 		dma_free_coherent(dev->dev, mem_size,
218 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
219 		dev->dbbuf_dbs = NULL;
220 		return -ENOMEM;
221 	}
222 
223 	return 0;
224 }
225 
226 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
227 {
228 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229 
230 	if (dev->dbbuf_dbs) {
231 		dma_free_coherent(dev->dev, mem_size,
232 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 		dev->dbbuf_dbs = NULL;
234 	}
235 	if (dev->dbbuf_eis) {
236 		dma_free_coherent(dev->dev, mem_size,
237 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
238 		dev->dbbuf_eis = NULL;
239 	}
240 }
241 
242 static void nvme_dbbuf_init(struct nvme_dev *dev,
243 			    struct nvme_queue *nvmeq, int qid)
244 {
245 	if (!dev->dbbuf_dbs || !qid)
246 		return;
247 
248 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
249 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
250 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
251 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
252 }
253 
254 static void nvme_dbbuf_set(struct nvme_dev *dev)
255 {
256 	struct nvme_command c;
257 
258 	if (!dev->dbbuf_dbs)
259 		return;
260 
261 	memset(&c, 0, sizeof(c));
262 	c.dbbuf.opcode = nvme_admin_dbbuf;
263 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
264 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
265 
266 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
267 		dev_warn(dev->dev, "unable to set dbbuf\n");
268 		/* Free memory and continue on */
269 		nvme_dbbuf_dma_free(dev);
270 	}
271 }
272 
273 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
274 {
275 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
276 }
277 
278 /* Update dbbuf and return true if an MMIO is required */
279 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
280 					      volatile u32 *dbbuf_ei)
281 {
282 	if (dbbuf_db) {
283 		u16 old_value;
284 
285 		/*
286 		 * Ensure that the queue is written before updating
287 		 * the doorbell in memory
288 		 */
289 		wmb();
290 
291 		old_value = *dbbuf_db;
292 		*dbbuf_db = value;
293 
294 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
295 			return false;
296 	}
297 
298 	return true;
299 }
300 
301 /*
302  * Max size of iod being embedded in the request payload
303  */
304 #define NVME_INT_PAGES		2
305 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
306 
307 /*
308  * Will slightly overestimate the number of pages needed.  This is OK
309  * as it only leads to a small amount of wasted memory for the lifetime of
310  * the I/O.
311  */
312 static int nvme_npages(unsigned size, struct nvme_dev *dev)
313 {
314 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
315 				      dev->ctrl.page_size);
316 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
317 }
318 
319 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
320 		unsigned int size, unsigned int nseg)
321 {
322 	return sizeof(__le64 *) * nvme_npages(size, dev) +
323 			sizeof(struct scatterlist) * nseg;
324 }
325 
326 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
327 {
328 	return sizeof(struct nvme_iod) +
329 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
330 }
331 
332 static int nvmeq_irq(struct nvme_queue *nvmeq)
333 {
334 	return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
335 }
336 
337 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
338 				unsigned int hctx_idx)
339 {
340 	struct nvme_dev *dev = data;
341 	struct nvme_queue *nvmeq = dev->queues[0];
342 
343 	WARN_ON(hctx_idx != 0);
344 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
345 	WARN_ON(nvmeq->tags);
346 
347 	hctx->driver_data = nvmeq;
348 	nvmeq->tags = &dev->admin_tagset.tags[0];
349 	return 0;
350 }
351 
352 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
353 {
354 	struct nvme_queue *nvmeq = hctx->driver_data;
355 
356 	nvmeq->tags = NULL;
357 }
358 
359 static int nvme_admin_init_request(void *data, struct request *req,
360 				unsigned int hctx_idx, unsigned int rq_idx,
361 				unsigned int numa_node)
362 {
363 	struct nvme_dev *dev = data;
364 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
365 	struct nvme_queue *nvmeq = dev->queues[0];
366 
367 	BUG_ON(!nvmeq);
368 	iod->nvmeq = nvmeq;
369 	return 0;
370 }
371 
372 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373 			  unsigned int hctx_idx)
374 {
375 	struct nvme_dev *dev = data;
376 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
377 
378 	if (!nvmeq->tags)
379 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
380 
381 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
382 	hctx->driver_data = nvmeq;
383 	return 0;
384 }
385 
386 static int nvme_init_request(void *data, struct request *req,
387 				unsigned int hctx_idx, unsigned int rq_idx,
388 				unsigned int numa_node)
389 {
390 	struct nvme_dev *dev = data;
391 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
392 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
393 
394 	BUG_ON(!nvmeq);
395 	iod->nvmeq = nvmeq;
396 	return 0;
397 }
398 
399 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
400 {
401 	struct nvme_dev *dev = set->driver_data;
402 
403 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
404 }
405 
406 /**
407  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
408  * @nvmeq: The queue to use
409  * @cmd: The command to send
410  *
411  * Safe to use from interrupt context
412  */
413 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
414 						struct nvme_command *cmd)
415 {
416 	u16 tail = nvmeq->sq_tail;
417 
418 	if (nvmeq->sq_cmds_io)
419 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
420 	else
421 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
422 
423 	if (++tail == nvmeq->q_depth)
424 		tail = 0;
425 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
426 					      nvmeq->dbbuf_sq_ei))
427 		writel(tail, nvmeq->q_db);
428 	nvmeq->sq_tail = tail;
429 }
430 
431 static __le64 **iod_list(struct request *req)
432 {
433 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
435 }
436 
437 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
438 {
439 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
440 	int nseg = blk_rq_nr_phys_segments(rq);
441 	unsigned int size = blk_rq_payload_bytes(rq);
442 
443 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
444 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
445 		if (!iod->sg)
446 			return BLK_MQ_RQ_QUEUE_BUSY;
447 	} else {
448 		iod->sg = iod->inline_sg;
449 	}
450 
451 	iod->aborted = 0;
452 	iod->npages = -1;
453 	iod->nents = 0;
454 	iod->length = size;
455 
456 	return BLK_MQ_RQ_QUEUE_OK;
457 }
458 
459 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
460 {
461 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
462 	const int last_prp = dev->ctrl.page_size / 8 - 1;
463 	int i;
464 	__le64 **list = iod_list(req);
465 	dma_addr_t prp_dma = iod->first_dma;
466 
467 	if (iod->npages == 0)
468 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
469 	for (i = 0; i < iod->npages; i++) {
470 		__le64 *prp_list = list[i];
471 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
472 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
473 		prp_dma = next_prp_dma;
474 	}
475 
476 	if (iod->sg != iod->inline_sg)
477 		kfree(iod->sg);
478 }
479 
480 #ifdef CONFIG_BLK_DEV_INTEGRITY
481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482 {
483 	if (be32_to_cpu(pi->ref_tag) == v)
484 		pi->ref_tag = cpu_to_be32(p);
485 }
486 
487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489 	if (be32_to_cpu(pi->ref_tag) == p)
490 		pi->ref_tag = cpu_to_be32(v);
491 }
492 
493 /**
494  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495  *
496  * The virtual start sector is the one that was originally submitted by the
497  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
498  * start sector may be different. Remap protection information to match the
499  * physical LBA on writes, and back to the original seed on reads.
500  *
501  * Type 0 and 3 do not have a ref tag, so no remapping required.
502  */
503 static void nvme_dif_remap(struct request *req,
504 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505 {
506 	struct nvme_ns *ns = req->rq_disk->private_data;
507 	struct bio_integrity_payload *bip;
508 	struct t10_pi_tuple *pi;
509 	void *p, *pmap;
510 	u32 i, nlb, ts, phys, virt;
511 
512 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 		return;
514 
515 	bip = bio_integrity(req->bio);
516 	if (!bip)
517 		return;
518 
519 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
520 
521 	p = pmap;
522 	virt = bip_get_seed(bip);
523 	phys = nvme_block_nr(ns, blk_rq_pos(req));
524 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 	ts = ns->disk->queue->integrity.tuple_size;
526 
527 	for (i = 0; i < nlb; i++, virt++, phys++) {
528 		pi = (struct t10_pi_tuple *)p;
529 		dif_swap(phys, virt, pi);
530 		p += ts;
531 	}
532 	kunmap_atomic(pmap);
533 }
534 #else /* CONFIG_BLK_DEV_INTEGRITY */
535 static void nvme_dif_remap(struct request *req,
536 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
537 {
538 }
539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 }
542 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
543 {
544 }
545 #endif
546 
547 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
548 {
549 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550 	struct dma_pool *pool;
551 	int length = blk_rq_payload_bytes(req);
552 	struct scatterlist *sg = iod->sg;
553 	int dma_len = sg_dma_len(sg);
554 	u64 dma_addr = sg_dma_address(sg);
555 	u32 page_size = dev->ctrl.page_size;
556 	int offset = dma_addr & (page_size - 1);
557 	__le64 *prp_list;
558 	__le64 **list = iod_list(req);
559 	dma_addr_t prp_dma;
560 	int nprps, i;
561 
562 	length -= (page_size - offset);
563 	if (length <= 0)
564 		return true;
565 
566 	dma_len -= (page_size - offset);
567 	if (dma_len) {
568 		dma_addr += (page_size - offset);
569 	} else {
570 		sg = sg_next(sg);
571 		dma_addr = sg_dma_address(sg);
572 		dma_len = sg_dma_len(sg);
573 	}
574 
575 	if (length <= page_size) {
576 		iod->first_dma = dma_addr;
577 		return true;
578 	}
579 
580 	nprps = DIV_ROUND_UP(length, page_size);
581 	if (nprps <= (256 / 8)) {
582 		pool = dev->prp_small_pool;
583 		iod->npages = 0;
584 	} else {
585 		pool = dev->prp_page_pool;
586 		iod->npages = 1;
587 	}
588 
589 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
590 	if (!prp_list) {
591 		iod->first_dma = dma_addr;
592 		iod->npages = -1;
593 		return false;
594 	}
595 	list[0] = prp_list;
596 	iod->first_dma = prp_dma;
597 	i = 0;
598 	for (;;) {
599 		if (i == page_size >> 3) {
600 			__le64 *old_prp_list = prp_list;
601 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
602 			if (!prp_list)
603 				return false;
604 			list[iod->npages++] = prp_list;
605 			prp_list[0] = old_prp_list[i - 1];
606 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
607 			i = 1;
608 		}
609 		prp_list[i++] = cpu_to_le64(dma_addr);
610 		dma_len -= page_size;
611 		dma_addr += page_size;
612 		length -= page_size;
613 		if (length <= 0)
614 			break;
615 		if (dma_len > 0)
616 			continue;
617 		BUG_ON(dma_len < 0);
618 		sg = sg_next(sg);
619 		dma_addr = sg_dma_address(sg);
620 		dma_len = sg_dma_len(sg);
621 	}
622 
623 	return true;
624 }
625 
626 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
627 		struct nvme_command *cmnd)
628 {
629 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
630 	struct request_queue *q = req->q;
631 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
632 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
633 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
634 
635 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
636 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
637 	if (!iod->nents)
638 		goto out;
639 
640 	ret = BLK_MQ_RQ_QUEUE_BUSY;
641 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
642 				DMA_ATTR_NO_WARN))
643 		goto out;
644 
645 	if (!nvme_setup_prps(dev, req))
646 		goto out_unmap;
647 
648 	ret = BLK_MQ_RQ_QUEUE_ERROR;
649 	if (blk_integrity_rq(req)) {
650 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
651 			goto out_unmap;
652 
653 		sg_init_table(&iod->meta_sg, 1);
654 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
655 			goto out_unmap;
656 
657 		if (rq_data_dir(req))
658 			nvme_dif_remap(req, nvme_dif_prep);
659 
660 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
661 			goto out_unmap;
662 	}
663 
664 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
665 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
666 	if (blk_integrity_rq(req))
667 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
668 	return BLK_MQ_RQ_QUEUE_OK;
669 
670 out_unmap:
671 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
672 out:
673 	return ret;
674 }
675 
676 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
677 {
678 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
679 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
680 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
681 
682 	if (iod->nents) {
683 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684 		if (blk_integrity_rq(req)) {
685 			if (!rq_data_dir(req))
686 				nvme_dif_remap(req, nvme_dif_complete);
687 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
688 		}
689 	}
690 
691 	nvme_cleanup_cmd(req);
692 	nvme_free_iod(dev, req);
693 }
694 
695 /*
696  * NOTE: ns is NULL when called on the admin queue.
697  */
698 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
699 			 const struct blk_mq_queue_data *bd)
700 {
701 	struct nvme_ns *ns = hctx->queue->queuedata;
702 	struct nvme_queue *nvmeq = hctx->driver_data;
703 	struct nvme_dev *dev = nvmeq->dev;
704 	struct request *req = bd->rq;
705 	struct nvme_command cmnd;
706 	int ret = BLK_MQ_RQ_QUEUE_OK;
707 
708 	/*
709 	 * If formated with metadata, require the block layer provide a buffer
710 	 * unless this namespace is formated such that the metadata can be
711 	 * stripped/generated by the controller with PRACT=1.
712 	 */
713 	if (ns && ns->ms && !blk_integrity_rq(req)) {
714 		if (!(ns->pi_type && ns->ms == 8) &&
715 		    !blk_rq_is_passthrough(req)) {
716 			blk_mq_end_request(req, -EFAULT);
717 			return BLK_MQ_RQ_QUEUE_OK;
718 		}
719 	}
720 
721 	ret = nvme_setup_cmd(ns, req, &cmnd);
722 	if (ret != BLK_MQ_RQ_QUEUE_OK)
723 		return ret;
724 
725 	ret = nvme_init_iod(req, dev);
726 	if (ret != BLK_MQ_RQ_QUEUE_OK)
727 		goto out_free_cmd;
728 
729 	if (blk_rq_nr_phys_segments(req))
730 		ret = nvme_map_data(dev, req, &cmnd);
731 
732 	if (ret != BLK_MQ_RQ_QUEUE_OK)
733 		goto out_cleanup_iod;
734 
735 	blk_mq_start_request(req);
736 
737 	spin_lock_irq(&nvmeq->q_lock);
738 	if (unlikely(nvmeq->cq_vector < 0)) {
739 		ret = BLK_MQ_RQ_QUEUE_ERROR;
740 		spin_unlock_irq(&nvmeq->q_lock);
741 		goto out_cleanup_iod;
742 	}
743 	__nvme_submit_cmd(nvmeq, &cmnd);
744 	nvme_process_cq(nvmeq);
745 	spin_unlock_irq(&nvmeq->q_lock);
746 	return BLK_MQ_RQ_QUEUE_OK;
747 out_cleanup_iod:
748 	nvme_free_iod(dev, req);
749 out_free_cmd:
750 	nvme_cleanup_cmd(req);
751 	return ret;
752 }
753 
754 static void nvme_pci_complete_rq(struct request *req)
755 {
756 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757 
758 	nvme_unmap_data(iod->nvmeq->dev, req);
759 	nvme_complete_rq(req);
760 }
761 
762 /* We read the CQE phase first to check if the rest of the entry is valid */
763 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
764 		u16 phase)
765 {
766 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
767 }
768 
769 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
770 {
771 	u16 head, phase;
772 
773 	head = nvmeq->cq_head;
774 	phase = nvmeq->cq_phase;
775 
776 	while (nvme_cqe_valid(nvmeq, head, phase)) {
777 		struct nvme_completion cqe = nvmeq->cqes[head];
778 		struct request *req;
779 
780 		if (++head == nvmeq->q_depth) {
781 			head = 0;
782 			phase = !phase;
783 		}
784 
785 		if (tag && *tag == cqe.command_id)
786 			*tag = -1;
787 
788 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
789 			dev_warn(nvmeq->dev->ctrl.device,
790 				"invalid id %d completed on queue %d\n",
791 				cqe.command_id, le16_to_cpu(cqe.sq_id));
792 			continue;
793 		}
794 
795 		/*
796 		 * AEN requests are special as they don't time out and can
797 		 * survive any kind of queue freeze and often don't respond to
798 		 * aborts.  We don't even bother to allocate a struct request
799 		 * for them but rather special case them here.
800 		 */
801 		if (unlikely(nvmeq->qid == 0 &&
802 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
803 			nvme_complete_async_event(&nvmeq->dev->ctrl,
804 					cqe.status, &cqe.result);
805 			continue;
806 		}
807 
808 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
809 		nvme_end_request(req, cqe.status, cqe.result);
810 	}
811 
812 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
813 		return;
814 
815 	if (likely(nvmeq->cq_vector >= 0))
816 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
817 						      nvmeq->dbbuf_cq_ei))
818 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
819 	nvmeq->cq_head = head;
820 	nvmeq->cq_phase = phase;
821 
822 	nvmeq->cqe_seen = 1;
823 }
824 
825 static void nvme_process_cq(struct nvme_queue *nvmeq)
826 {
827 	__nvme_process_cq(nvmeq, NULL);
828 }
829 
830 static irqreturn_t nvme_irq(int irq, void *data)
831 {
832 	irqreturn_t result;
833 	struct nvme_queue *nvmeq = data;
834 	spin_lock(&nvmeq->q_lock);
835 	nvme_process_cq(nvmeq);
836 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
837 	nvmeq->cqe_seen = 0;
838 	spin_unlock(&nvmeq->q_lock);
839 	return result;
840 }
841 
842 static irqreturn_t nvme_irq_check(int irq, void *data)
843 {
844 	struct nvme_queue *nvmeq = data;
845 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
846 		return IRQ_WAKE_THREAD;
847 	return IRQ_NONE;
848 }
849 
850 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
851 {
852 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
853 		spin_lock_irq(&nvmeq->q_lock);
854 		__nvme_process_cq(nvmeq, &tag);
855 		spin_unlock_irq(&nvmeq->q_lock);
856 
857 		if (tag == -1)
858 			return 1;
859 	}
860 
861 	return 0;
862 }
863 
864 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
865 {
866 	struct nvme_queue *nvmeq = hctx->driver_data;
867 
868 	return __nvme_poll(nvmeq, tag);
869 }
870 
871 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
872 {
873 	struct nvme_dev *dev = to_nvme_dev(ctrl);
874 	struct nvme_queue *nvmeq = dev->queues[0];
875 	struct nvme_command c;
876 
877 	memset(&c, 0, sizeof(c));
878 	c.common.opcode = nvme_admin_async_event;
879 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
880 
881 	spin_lock_irq(&nvmeq->q_lock);
882 	__nvme_submit_cmd(nvmeq, &c);
883 	spin_unlock_irq(&nvmeq->q_lock);
884 }
885 
886 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
887 {
888 	struct nvme_command c;
889 
890 	memset(&c, 0, sizeof(c));
891 	c.delete_queue.opcode = opcode;
892 	c.delete_queue.qid = cpu_to_le16(id);
893 
894 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
895 }
896 
897 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
898 						struct nvme_queue *nvmeq)
899 {
900 	struct nvme_command c;
901 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
902 
903 	/*
904 	 * Note: we (ab)use the fact the the prp fields survive if no data
905 	 * is attached to the request.
906 	 */
907 	memset(&c, 0, sizeof(c));
908 	c.create_cq.opcode = nvme_admin_create_cq;
909 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
910 	c.create_cq.cqid = cpu_to_le16(qid);
911 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
912 	c.create_cq.cq_flags = cpu_to_le16(flags);
913 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
914 
915 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917 
918 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
919 						struct nvme_queue *nvmeq)
920 {
921 	struct nvme_command c;
922 	int flags = NVME_QUEUE_PHYS_CONTIG;
923 
924 	/*
925 	 * Note: we (ab)use the fact the the prp fields survive if no data
926 	 * is attached to the request.
927 	 */
928 	memset(&c, 0, sizeof(c));
929 	c.create_sq.opcode = nvme_admin_create_sq;
930 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
931 	c.create_sq.sqid = cpu_to_le16(qid);
932 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933 	c.create_sq.sq_flags = cpu_to_le16(flags);
934 	c.create_sq.cqid = cpu_to_le16(qid);
935 
936 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938 
939 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
940 {
941 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
942 }
943 
944 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
945 {
946 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
947 }
948 
949 static void abort_endio(struct request *req, int error)
950 {
951 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952 	struct nvme_queue *nvmeq = iod->nvmeq;
953 
954 	dev_warn(nvmeq->dev->ctrl.device,
955 		 "Abort status: 0x%x", nvme_req(req)->status);
956 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
957 	blk_mq_free_request(req);
958 }
959 
960 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
961 {
962 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963 	struct nvme_queue *nvmeq = iod->nvmeq;
964 	struct nvme_dev *dev = nvmeq->dev;
965 	struct request *abort_req;
966 	struct nvme_command cmd;
967 
968 	/*
969 	 * Did we miss an interrupt?
970 	 */
971 	if (__nvme_poll(nvmeq, req->tag)) {
972 		dev_warn(dev->ctrl.device,
973 			 "I/O %d QID %d timeout, completion polled\n",
974 			 req->tag, nvmeq->qid);
975 		return BLK_EH_HANDLED;
976 	}
977 
978 	/*
979 	 * Shutdown immediately if controller times out while starting. The
980 	 * reset work will see the pci device disabled when it gets the forced
981 	 * cancellation error. All outstanding requests are completed on
982 	 * shutdown, so we return BLK_EH_HANDLED.
983 	 */
984 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
985 		dev_warn(dev->ctrl.device,
986 			 "I/O %d QID %d timeout, disable controller\n",
987 			 req->tag, nvmeq->qid);
988 		nvme_dev_disable(dev, false);
989 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
990 		return BLK_EH_HANDLED;
991 	}
992 
993 	/*
994  	 * Shutdown the controller immediately and schedule a reset if the
995  	 * command was already aborted once before and still hasn't been
996  	 * returned to the driver, or if this is the admin queue.
997 	 */
998 	if (!nvmeq->qid || iod->aborted) {
999 		dev_warn(dev->ctrl.device,
1000 			 "I/O %d QID %d timeout, reset controller\n",
1001 			 req->tag, nvmeq->qid);
1002 		nvme_dev_disable(dev, false);
1003 		nvme_reset(dev);
1004 
1005 		/*
1006 		 * Mark the request as handled, since the inline shutdown
1007 		 * forces all outstanding requests to complete.
1008 		 */
1009 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1010 		return BLK_EH_HANDLED;
1011 	}
1012 
1013 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1014 		atomic_inc(&dev->ctrl.abort_limit);
1015 		return BLK_EH_RESET_TIMER;
1016 	}
1017 	iod->aborted = 1;
1018 
1019 	memset(&cmd, 0, sizeof(cmd));
1020 	cmd.abort.opcode = nvme_admin_abort_cmd;
1021 	cmd.abort.cid = req->tag;
1022 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1023 
1024 	dev_warn(nvmeq->dev->ctrl.device,
1025 		"I/O %d QID %d timeout, aborting\n",
1026 		 req->tag, nvmeq->qid);
1027 
1028 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1029 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1030 	if (IS_ERR(abort_req)) {
1031 		atomic_inc(&dev->ctrl.abort_limit);
1032 		return BLK_EH_RESET_TIMER;
1033 	}
1034 
1035 	abort_req->timeout = ADMIN_TIMEOUT;
1036 	abort_req->end_io_data = NULL;
1037 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1038 
1039 	/*
1040 	 * The aborted req will be completed on receiving the abort req.
1041 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1042 	 * as the device then is in a faulty state.
1043 	 */
1044 	return BLK_EH_RESET_TIMER;
1045 }
1046 
1047 static void nvme_free_queue(struct nvme_queue *nvmeq)
1048 {
1049 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1050 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1051 	if (nvmeq->sq_cmds)
1052 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1053 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1054 	kfree(nvmeq);
1055 }
1056 
1057 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1058 {
1059 	int i;
1060 
1061 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1062 		struct nvme_queue *nvmeq = dev->queues[i];
1063 		dev->queue_count--;
1064 		dev->queues[i] = NULL;
1065 		nvme_free_queue(nvmeq);
1066 	}
1067 }
1068 
1069 /**
1070  * nvme_suspend_queue - put queue into suspended state
1071  * @nvmeq - queue to suspend
1072  */
1073 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1074 {
1075 	int vector;
1076 
1077 	spin_lock_irq(&nvmeq->q_lock);
1078 	if (nvmeq->cq_vector == -1) {
1079 		spin_unlock_irq(&nvmeq->q_lock);
1080 		return 1;
1081 	}
1082 	vector = nvmeq_irq(nvmeq);
1083 	nvmeq->dev->online_queues--;
1084 	nvmeq->cq_vector = -1;
1085 	spin_unlock_irq(&nvmeq->q_lock);
1086 
1087 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1088 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1089 
1090 	free_irq(vector, nvmeq);
1091 
1092 	return 0;
1093 }
1094 
1095 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1096 {
1097 	struct nvme_queue *nvmeq = dev->queues[0];
1098 
1099 	if (!nvmeq)
1100 		return;
1101 	if (nvme_suspend_queue(nvmeq))
1102 		return;
1103 
1104 	if (shutdown)
1105 		nvme_shutdown_ctrl(&dev->ctrl);
1106 	else
1107 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1108 						dev->bar + NVME_REG_CAP));
1109 
1110 	spin_lock_irq(&nvmeq->q_lock);
1111 	nvme_process_cq(nvmeq);
1112 	spin_unlock_irq(&nvmeq->q_lock);
1113 }
1114 
1115 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1116 				int entry_size)
1117 {
1118 	int q_depth = dev->q_depth;
1119 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1120 					  dev->ctrl.page_size);
1121 
1122 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1123 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1124 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1125 		q_depth = div_u64(mem_per_q, entry_size);
1126 
1127 		/*
1128 		 * Ensure the reduced q_depth is above some threshold where it
1129 		 * would be better to map queues in system memory with the
1130 		 * original depth
1131 		 */
1132 		if (q_depth < 64)
1133 			return -ENOMEM;
1134 	}
1135 
1136 	return q_depth;
1137 }
1138 
1139 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1140 				int qid, int depth)
1141 {
1142 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1143 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1144 						      dev->ctrl.page_size);
1145 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1146 		nvmeq->sq_cmds_io = dev->cmb + offset;
1147 	} else {
1148 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1149 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1150 		if (!nvmeq->sq_cmds)
1151 			return -ENOMEM;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1158 							int depth, int node)
1159 {
1160 	struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1161 							node);
1162 	if (!nvmeq)
1163 		return NULL;
1164 
1165 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1166 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1167 	if (!nvmeq->cqes)
1168 		goto free_nvmeq;
1169 
1170 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1171 		goto free_cqdma;
1172 
1173 	nvmeq->q_dmadev = dev->dev;
1174 	nvmeq->dev = dev;
1175 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1176 			dev->ctrl.instance, qid);
1177 	spin_lock_init(&nvmeq->q_lock);
1178 	nvmeq->cq_head = 0;
1179 	nvmeq->cq_phase = 1;
1180 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1181 	nvmeq->q_depth = depth;
1182 	nvmeq->qid = qid;
1183 	nvmeq->cq_vector = -1;
1184 	dev->queues[qid] = nvmeq;
1185 	dev->queue_count++;
1186 
1187 	return nvmeq;
1188 
1189  free_cqdma:
1190 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1191 							nvmeq->cq_dma_addr);
1192  free_nvmeq:
1193 	kfree(nvmeq);
1194 	return NULL;
1195 }
1196 
1197 static int queue_request_irq(struct nvme_queue *nvmeq)
1198 {
1199 	if (use_threaded_interrupts)
1200 		return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1201 				nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1202 	else
1203 		return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1204 				nvmeq->irqname, nvmeq);
1205 }
1206 
1207 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1208 {
1209 	struct nvme_dev *dev = nvmeq->dev;
1210 
1211 	spin_lock_irq(&nvmeq->q_lock);
1212 	nvmeq->sq_tail = 0;
1213 	nvmeq->cq_head = 0;
1214 	nvmeq->cq_phase = 1;
1215 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1216 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1217 	nvme_dbbuf_init(dev, nvmeq, qid);
1218 	dev->online_queues++;
1219 	spin_unlock_irq(&nvmeq->q_lock);
1220 }
1221 
1222 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1223 {
1224 	struct nvme_dev *dev = nvmeq->dev;
1225 	int result;
1226 
1227 	nvmeq->cq_vector = qid - 1;
1228 	result = adapter_alloc_cq(dev, qid, nvmeq);
1229 	if (result < 0)
1230 		return result;
1231 
1232 	result = adapter_alloc_sq(dev, qid, nvmeq);
1233 	if (result < 0)
1234 		goto release_cq;
1235 
1236 	result = queue_request_irq(nvmeq);
1237 	if (result < 0)
1238 		goto release_sq;
1239 
1240 	nvme_init_queue(nvmeq, qid);
1241 	return result;
1242 
1243  release_sq:
1244 	adapter_delete_sq(dev, qid);
1245  release_cq:
1246 	adapter_delete_cq(dev, qid);
1247 	return result;
1248 }
1249 
1250 static const struct blk_mq_ops nvme_mq_admin_ops = {
1251 	.queue_rq	= nvme_queue_rq,
1252 	.complete	= nvme_pci_complete_rq,
1253 	.init_hctx	= nvme_admin_init_hctx,
1254 	.exit_hctx      = nvme_admin_exit_hctx,
1255 	.init_request	= nvme_admin_init_request,
1256 	.timeout	= nvme_timeout,
1257 };
1258 
1259 static const struct blk_mq_ops nvme_mq_ops = {
1260 	.queue_rq	= nvme_queue_rq,
1261 	.complete	= nvme_pci_complete_rq,
1262 	.init_hctx	= nvme_init_hctx,
1263 	.init_request	= nvme_init_request,
1264 	.map_queues	= nvme_pci_map_queues,
1265 	.timeout	= nvme_timeout,
1266 	.poll		= nvme_poll,
1267 };
1268 
1269 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1270 {
1271 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1272 		/*
1273 		 * If the controller was reset during removal, it's possible
1274 		 * user requests may be waiting on a stopped queue. Start the
1275 		 * queue to flush these to completion.
1276 		 */
1277 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1278 		blk_cleanup_queue(dev->ctrl.admin_q);
1279 		blk_mq_free_tag_set(&dev->admin_tagset);
1280 	}
1281 }
1282 
1283 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1284 {
1285 	if (!dev->ctrl.admin_q) {
1286 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1287 		dev->admin_tagset.nr_hw_queues = 1;
1288 
1289 		/*
1290 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1291 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1292 		 */
1293 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1294 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1295 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1296 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1297 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1298 		dev->admin_tagset.driver_data = dev;
1299 
1300 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1301 			return -ENOMEM;
1302 
1303 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1304 		if (IS_ERR(dev->ctrl.admin_q)) {
1305 			blk_mq_free_tag_set(&dev->admin_tagset);
1306 			return -ENOMEM;
1307 		}
1308 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1309 			nvme_dev_remove_admin(dev);
1310 			dev->ctrl.admin_q = NULL;
1311 			return -ENODEV;
1312 		}
1313 	} else
1314 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1315 
1316 	return 0;
1317 }
1318 
1319 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1320 {
1321 	int result;
1322 	u32 aqa;
1323 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1324 	struct nvme_queue *nvmeq;
1325 
1326 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1327 						NVME_CAP_NSSRC(cap) : 0;
1328 
1329 	if (dev->subsystem &&
1330 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1331 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1332 
1333 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1334 	if (result < 0)
1335 		return result;
1336 
1337 	nvmeq = dev->queues[0];
1338 	if (!nvmeq) {
1339 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1340 					dev_to_node(dev->dev));
1341 		if (!nvmeq)
1342 			return -ENOMEM;
1343 	}
1344 
1345 	aqa = nvmeq->q_depth - 1;
1346 	aqa |= aqa << 16;
1347 
1348 	writel(aqa, dev->bar + NVME_REG_AQA);
1349 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1350 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1351 
1352 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1353 	if (result)
1354 		return result;
1355 
1356 	nvmeq->cq_vector = 0;
1357 	result = queue_request_irq(nvmeq);
1358 	if (result) {
1359 		nvmeq->cq_vector = -1;
1360 		return result;
1361 	}
1362 
1363 	return result;
1364 }
1365 
1366 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1367 {
1368 
1369 	/* If true, indicates loss of adapter communication, possibly by a
1370 	 * NVMe Subsystem reset.
1371 	 */
1372 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1373 
1374 	/* If there is a reset ongoing, we shouldn't reset again. */
1375 	if (work_busy(&dev->reset_work))
1376 		return false;
1377 
1378 	/* We shouldn't reset unless the controller is on fatal error state
1379 	 * _or_ if we lost the communication with it.
1380 	 */
1381 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1382 		return false;
1383 
1384 	/* If PCI error recovery process is happening, we cannot reset or
1385 	 * the recovery mechanism will surely fail.
1386 	 */
1387 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1388 		return false;
1389 
1390 	return true;
1391 }
1392 
1393 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1394 {
1395 	/* Read a config register to help see what died. */
1396 	u16 pci_status;
1397 	int result;
1398 
1399 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1400 				      &pci_status);
1401 	if (result == PCIBIOS_SUCCESSFUL)
1402 		dev_warn(dev->dev,
1403 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1404 			 csts, pci_status);
1405 	else
1406 		dev_warn(dev->dev,
1407 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1408 			 csts, result);
1409 }
1410 
1411 static void nvme_watchdog_timer(unsigned long data)
1412 {
1413 	struct nvme_dev *dev = (struct nvme_dev *)data;
1414 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1415 
1416 	/* Skip controllers under certain specific conditions. */
1417 	if (nvme_should_reset(dev, csts)) {
1418 		if (!nvme_reset(dev))
1419 			nvme_warn_reset(dev, csts);
1420 		return;
1421 	}
1422 
1423 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1424 }
1425 
1426 static int nvme_create_io_queues(struct nvme_dev *dev)
1427 {
1428 	unsigned i, max;
1429 	int ret = 0;
1430 
1431 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1432 		/* vector == qid - 1, match nvme_create_queue */
1433 		if (!nvme_alloc_queue(dev, i, dev->q_depth,
1434 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1435 			ret = -ENOMEM;
1436 			break;
1437 		}
1438 	}
1439 
1440 	max = min(dev->max_qid, dev->queue_count - 1);
1441 	for (i = dev->online_queues; i <= max; i++) {
1442 		ret = nvme_create_queue(dev->queues[i], i);
1443 		if (ret)
1444 			break;
1445 	}
1446 
1447 	/*
1448 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1449 	 * than the desired aount of queues, and even a controller without
1450 	 * I/O queues an still be used to issue admin commands.  This might
1451 	 * be useful to upgrade a buggy firmware for example.
1452 	 */
1453 	return ret >= 0 ? 0 : ret;
1454 }
1455 
1456 static ssize_t nvme_cmb_show(struct device *dev,
1457 			     struct device_attribute *attr,
1458 			     char *buf)
1459 {
1460 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1461 
1462 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1463 		       ndev->cmbloc, ndev->cmbsz);
1464 }
1465 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1466 
1467 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1468 {
1469 	u64 szu, size, offset;
1470 	resource_size_t bar_size;
1471 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1472 	void __iomem *cmb;
1473 	dma_addr_t dma_addr;
1474 
1475 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1476 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1477 		return NULL;
1478 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1479 
1480 	if (!use_cmb_sqes)
1481 		return NULL;
1482 
1483 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1484 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1485 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1486 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1487 
1488 	if (offset > bar_size)
1489 		return NULL;
1490 
1491 	/*
1492 	 * Controllers may support a CMB size larger than their BAR,
1493 	 * for example, due to being behind a bridge. Reduce the CMB to
1494 	 * the reported size of the BAR
1495 	 */
1496 	if (size > bar_size - offset)
1497 		size = bar_size - offset;
1498 
1499 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1500 	cmb = ioremap_wc(dma_addr, size);
1501 	if (!cmb)
1502 		return NULL;
1503 
1504 	dev->cmb_dma_addr = dma_addr;
1505 	dev->cmb_size = size;
1506 	return cmb;
1507 }
1508 
1509 static inline void nvme_release_cmb(struct nvme_dev *dev)
1510 {
1511 	if (dev->cmb) {
1512 		iounmap(dev->cmb);
1513 		dev->cmb = NULL;
1514 	}
1515 }
1516 
1517 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1518 {
1519 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1520 }
1521 
1522 static int nvme_setup_io_queues(struct nvme_dev *dev)
1523 {
1524 	struct nvme_queue *adminq = dev->queues[0];
1525 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1526 	int result, nr_io_queues, size;
1527 
1528 	nr_io_queues = num_online_cpus();
1529 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1530 	if (result < 0)
1531 		return result;
1532 
1533 	if (nr_io_queues == 0)
1534 		return 0;
1535 
1536 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1537 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1538 				sizeof(struct nvme_command));
1539 		if (result > 0)
1540 			dev->q_depth = result;
1541 		else
1542 			nvme_release_cmb(dev);
1543 	}
1544 
1545 	size = db_bar_size(dev, nr_io_queues);
1546 	if (size > 8192) {
1547 		iounmap(dev->bar);
1548 		do {
1549 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1550 			if (dev->bar)
1551 				break;
1552 			if (!--nr_io_queues)
1553 				return -ENOMEM;
1554 			size = db_bar_size(dev, nr_io_queues);
1555 		} while (1);
1556 		dev->dbs = dev->bar + 4096;
1557 		adminq->q_db = dev->dbs;
1558 	}
1559 
1560 	/* Deregister the admin queue's interrupt */
1561 	free_irq(pci_irq_vector(pdev, 0), adminq);
1562 
1563 	/*
1564 	 * If we enable msix early due to not intx, disable it again before
1565 	 * setting up the full range we need.
1566 	 */
1567 	pci_free_irq_vectors(pdev);
1568 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1569 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1570 	if (nr_io_queues <= 0)
1571 		return -EIO;
1572 	dev->max_qid = nr_io_queues;
1573 
1574 	/*
1575 	 * Should investigate if there's a performance win from allocating
1576 	 * more queues than interrupt vectors; it might allow the submission
1577 	 * path to scale better, even if the receive path is limited by the
1578 	 * number of interrupts.
1579 	 */
1580 
1581 	result = queue_request_irq(adminq);
1582 	if (result) {
1583 		adminq->cq_vector = -1;
1584 		return result;
1585 	}
1586 	return nvme_create_io_queues(dev);
1587 }
1588 
1589 static void nvme_del_queue_end(struct request *req, int error)
1590 {
1591 	struct nvme_queue *nvmeq = req->end_io_data;
1592 
1593 	blk_mq_free_request(req);
1594 	complete(&nvmeq->dev->ioq_wait);
1595 }
1596 
1597 static void nvme_del_cq_end(struct request *req, int error)
1598 {
1599 	struct nvme_queue *nvmeq = req->end_io_data;
1600 
1601 	if (!error) {
1602 		unsigned long flags;
1603 
1604 		/*
1605 		 * We might be called with the AQ q_lock held
1606 		 * and the I/O queue q_lock should always
1607 		 * nest inside the AQ one.
1608 		 */
1609 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1610 					SINGLE_DEPTH_NESTING);
1611 		nvme_process_cq(nvmeq);
1612 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1613 	}
1614 
1615 	nvme_del_queue_end(req, error);
1616 }
1617 
1618 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1619 {
1620 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1621 	struct request *req;
1622 	struct nvme_command cmd;
1623 
1624 	memset(&cmd, 0, sizeof(cmd));
1625 	cmd.delete_queue.opcode = opcode;
1626 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1627 
1628 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1629 	if (IS_ERR(req))
1630 		return PTR_ERR(req);
1631 
1632 	req->timeout = ADMIN_TIMEOUT;
1633 	req->end_io_data = nvmeq;
1634 
1635 	blk_execute_rq_nowait(q, NULL, req, false,
1636 			opcode == nvme_admin_delete_cq ?
1637 				nvme_del_cq_end : nvme_del_queue_end);
1638 	return 0;
1639 }
1640 
1641 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1642 {
1643 	int pass;
1644 	unsigned long timeout;
1645 	u8 opcode = nvme_admin_delete_sq;
1646 
1647 	for (pass = 0; pass < 2; pass++) {
1648 		int sent = 0, i = queues;
1649 
1650 		reinit_completion(&dev->ioq_wait);
1651  retry:
1652 		timeout = ADMIN_TIMEOUT;
1653 		for (; i > 0; i--, sent++)
1654 			if (nvme_delete_queue(dev->queues[i], opcode))
1655 				break;
1656 
1657 		while (sent--) {
1658 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1659 			if (timeout == 0)
1660 				return;
1661 			if (i)
1662 				goto retry;
1663 		}
1664 		opcode = nvme_admin_delete_cq;
1665 	}
1666 }
1667 
1668 /*
1669  * Return: error value if an error occurred setting up the queues or calling
1670  * Identify Device.  0 if these succeeded, even if adding some of the
1671  * namespaces failed.  At the moment, these failures are silent.  TBD which
1672  * failures should be reported.
1673  */
1674 static int nvme_dev_add(struct nvme_dev *dev)
1675 {
1676 	if (!dev->ctrl.tagset) {
1677 		dev->tagset.ops = &nvme_mq_ops;
1678 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1679 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1680 		dev->tagset.numa_node = dev_to_node(dev->dev);
1681 		dev->tagset.queue_depth =
1682 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1683 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1684 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1685 		dev->tagset.driver_data = dev;
1686 
1687 		if (blk_mq_alloc_tag_set(&dev->tagset))
1688 			return 0;
1689 		dev->ctrl.tagset = &dev->tagset;
1690 
1691 		nvme_dbbuf_set(dev);
1692 	} else {
1693 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1694 
1695 		/* Free previously allocated queues that are no longer usable */
1696 		nvme_free_queues(dev, dev->online_queues);
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 static int nvme_pci_enable(struct nvme_dev *dev)
1703 {
1704 	u64 cap;
1705 	int result = -ENOMEM;
1706 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1707 
1708 	if (pci_enable_device_mem(pdev))
1709 		return result;
1710 
1711 	pci_set_master(pdev);
1712 
1713 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1714 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1715 		goto disable;
1716 
1717 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1718 		result = -ENODEV;
1719 		goto disable;
1720 	}
1721 
1722 	/*
1723 	 * Some devices and/or platforms don't advertise or work with INTx
1724 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1725 	 * adjust this later.
1726 	 */
1727 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1728 	if (result < 0)
1729 		return result;
1730 
1731 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1732 
1733 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1734 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1735 	dev->dbs = dev->bar + 4096;
1736 
1737 	/*
1738 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1739 	 * some MacBook7,1 to avoid controller resets and data loss.
1740 	 */
1741 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1742 		dev->q_depth = 2;
1743 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1744 			"queue depth=%u to work around controller resets\n",
1745 			dev->q_depth);
1746 	}
1747 
1748 	/*
1749 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1750 	 * populate sysfs if a CMB is implemented. Note that we add the
1751 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1752 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1753 	 * NULL as final argument to sysfs_add_file_to_group.
1754 	 */
1755 
1756 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1757 		dev->cmb = nvme_map_cmb(dev);
1758 
1759 		if (dev->cmbsz) {
1760 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1761 						    &dev_attr_cmb.attr, NULL))
1762 				dev_warn(dev->dev,
1763 					 "failed to add sysfs attribute for CMB\n");
1764 		}
1765 	}
1766 
1767 	pci_enable_pcie_error_reporting(pdev);
1768 	pci_save_state(pdev);
1769 	return 0;
1770 
1771  disable:
1772 	pci_disable_device(pdev);
1773 	return result;
1774 }
1775 
1776 static void nvme_dev_unmap(struct nvme_dev *dev)
1777 {
1778 	if (dev->bar)
1779 		iounmap(dev->bar);
1780 	pci_release_mem_regions(to_pci_dev(dev->dev));
1781 }
1782 
1783 static void nvme_pci_disable(struct nvme_dev *dev)
1784 {
1785 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1786 
1787 	pci_free_irq_vectors(pdev);
1788 
1789 	if (pci_is_enabled(pdev)) {
1790 		pci_disable_pcie_error_reporting(pdev);
1791 		pci_disable_device(pdev);
1792 	}
1793 }
1794 
1795 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1796 {
1797 	int i, queues;
1798 	bool dead = true;
1799 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1800 
1801 	del_timer_sync(&dev->watchdog_timer);
1802 
1803 	mutex_lock(&dev->shutdown_lock);
1804 	if (pci_is_enabled(pdev)) {
1805 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
1806 
1807 		if (dev->ctrl.state == NVME_CTRL_LIVE)
1808 			nvme_start_freeze(&dev->ctrl);
1809 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1810 			pdev->error_state  != pci_channel_io_normal);
1811 	}
1812 
1813 	/*
1814 	 * Give the controller a chance to complete all entered requests if
1815 	 * doing a safe shutdown.
1816 	 */
1817 	if (!dead && shutdown)
1818 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1819 	nvme_stop_queues(&dev->ctrl);
1820 
1821 	queues = dev->online_queues - 1;
1822 	for (i = dev->queue_count - 1; i > 0; i--)
1823 		nvme_suspend_queue(dev->queues[i]);
1824 
1825 	if (dead) {
1826 		/* A device might become IO incapable very soon during
1827 		 * probe, before the admin queue is configured. Thus,
1828 		 * queue_count can be 0 here.
1829 		 */
1830 		if (dev->queue_count)
1831 			nvme_suspend_queue(dev->queues[0]);
1832 	} else {
1833 		nvme_disable_io_queues(dev, queues);
1834 		nvme_disable_admin_queue(dev, shutdown);
1835 	}
1836 	nvme_pci_disable(dev);
1837 
1838 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1839 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1840 
1841 	/*
1842 	 * The driver will not be starting up queues again if shutting down so
1843 	 * must flush all entered requests to their failed completion to avoid
1844 	 * deadlocking blk-mq hot-cpu notifier.
1845 	 */
1846 	if (shutdown)
1847 		nvme_start_queues(&dev->ctrl);
1848 	mutex_unlock(&dev->shutdown_lock);
1849 }
1850 
1851 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1852 {
1853 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1854 						PAGE_SIZE, PAGE_SIZE, 0);
1855 	if (!dev->prp_page_pool)
1856 		return -ENOMEM;
1857 
1858 	/* Optimisation for I/Os between 4k and 128k */
1859 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1860 						256, 256, 0);
1861 	if (!dev->prp_small_pool) {
1862 		dma_pool_destroy(dev->prp_page_pool);
1863 		return -ENOMEM;
1864 	}
1865 	return 0;
1866 }
1867 
1868 static void nvme_release_prp_pools(struct nvme_dev *dev)
1869 {
1870 	dma_pool_destroy(dev->prp_page_pool);
1871 	dma_pool_destroy(dev->prp_small_pool);
1872 }
1873 
1874 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1875 {
1876 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1877 
1878 	nvme_dbbuf_dma_free(dev);
1879 	put_device(dev->dev);
1880 	if (dev->tagset.tags)
1881 		blk_mq_free_tag_set(&dev->tagset);
1882 	if (dev->ctrl.admin_q)
1883 		blk_put_queue(dev->ctrl.admin_q);
1884 	kfree(dev->queues);
1885 	free_opal_dev(dev->ctrl.opal_dev);
1886 	kfree(dev);
1887 }
1888 
1889 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1890 {
1891 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1892 
1893 	kref_get(&dev->ctrl.kref);
1894 	nvme_dev_disable(dev, false);
1895 	if (!schedule_work(&dev->remove_work))
1896 		nvme_put_ctrl(&dev->ctrl);
1897 }
1898 
1899 static void nvme_reset_work(struct work_struct *work)
1900 {
1901 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1902 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1903 	int result = -ENODEV;
1904 
1905 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1906 		goto out;
1907 
1908 	/*
1909 	 * If we're called to reset a live controller first shut it down before
1910 	 * moving on.
1911 	 */
1912 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1913 		nvme_dev_disable(dev, false);
1914 
1915 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1916 		goto out;
1917 
1918 	result = nvme_pci_enable(dev);
1919 	if (result)
1920 		goto out;
1921 
1922 	result = nvme_configure_admin_queue(dev);
1923 	if (result)
1924 		goto out;
1925 
1926 	nvme_init_queue(dev->queues[0], 0);
1927 	result = nvme_alloc_admin_tags(dev);
1928 	if (result)
1929 		goto out;
1930 
1931 	result = nvme_init_identify(&dev->ctrl);
1932 	if (result)
1933 		goto out;
1934 
1935 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1936 		if (!dev->ctrl.opal_dev)
1937 			dev->ctrl.opal_dev =
1938 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1939 		else if (was_suspend)
1940 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
1941 	} else {
1942 		free_opal_dev(dev->ctrl.opal_dev);
1943 		dev->ctrl.opal_dev = NULL;
1944 	}
1945 
1946 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1947 		result = nvme_dbbuf_dma_alloc(dev);
1948 		if (result)
1949 			dev_warn(dev->dev,
1950 				 "unable to allocate dma for dbbuf\n");
1951 	}
1952 
1953 	result = nvme_setup_io_queues(dev);
1954 	if (result)
1955 		goto out;
1956 
1957 	/*
1958 	 * A controller that can not execute IO typically requires user
1959 	 * intervention to correct. For such degraded controllers, the driver
1960 	 * should not submit commands the user did not request, so skip
1961 	 * registering for asynchronous event notification on this condition.
1962 	 */
1963 	if (dev->online_queues > 1)
1964 		nvme_queue_async_events(&dev->ctrl);
1965 
1966 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1967 
1968 	/*
1969 	 * Keep the controller around but remove all namespaces if we don't have
1970 	 * any working I/O queue.
1971 	 */
1972 	if (dev->online_queues < 2) {
1973 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1974 		nvme_kill_queues(&dev->ctrl);
1975 		nvme_remove_namespaces(&dev->ctrl);
1976 	} else {
1977 		nvme_start_queues(&dev->ctrl);
1978 		nvme_wait_freeze(&dev->ctrl);
1979 		nvme_dev_add(dev);
1980 		nvme_unfreeze(&dev->ctrl);
1981 	}
1982 
1983 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1984 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1985 		goto out;
1986 	}
1987 
1988 	if (dev->online_queues > 1)
1989 		nvme_queue_scan(&dev->ctrl);
1990 	return;
1991 
1992  out:
1993 	nvme_remove_dead_ctrl(dev, result);
1994 }
1995 
1996 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1997 {
1998 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1999 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2000 
2001 	nvme_kill_queues(&dev->ctrl);
2002 	if (pci_get_drvdata(pdev))
2003 		device_release_driver(&pdev->dev);
2004 	nvme_put_ctrl(&dev->ctrl);
2005 }
2006 
2007 static int nvme_reset(struct nvme_dev *dev)
2008 {
2009 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2010 		return -ENODEV;
2011 	if (work_busy(&dev->reset_work))
2012 		return -ENODEV;
2013 	if (!queue_work(nvme_workq, &dev->reset_work))
2014 		return -EBUSY;
2015 	return 0;
2016 }
2017 
2018 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2019 {
2020 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2021 	return 0;
2022 }
2023 
2024 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2025 {
2026 	writel(val, to_nvme_dev(ctrl)->bar + off);
2027 	return 0;
2028 }
2029 
2030 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2031 {
2032 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2033 	return 0;
2034 }
2035 
2036 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2037 {
2038 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2039 	int ret = nvme_reset(dev);
2040 
2041 	if (!ret)
2042 		flush_work(&dev->reset_work);
2043 	return ret;
2044 }
2045 
2046 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2047 	.name			= "pcie",
2048 	.module			= THIS_MODULE,
2049 	.reg_read32		= nvme_pci_reg_read32,
2050 	.reg_write32		= nvme_pci_reg_write32,
2051 	.reg_read64		= nvme_pci_reg_read64,
2052 	.reset_ctrl		= nvme_pci_reset_ctrl,
2053 	.free_ctrl		= nvme_pci_free_ctrl,
2054 	.submit_async_event	= nvme_pci_submit_async_event,
2055 };
2056 
2057 static int nvme_dev_map(struct nvme_dev *dev)
2058 {
2059 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2060 
2061 	if (pci_request_mem_regions(pdev, "nvme"))
2062 		return -ENODEV;
2063 
2064 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2065 	if (!dev->bar)
2066 		goto release;
2067 
2068 	return 0;
2069   release:
2070 	pci_release_mem_regions(pdev);
2071 	return -ENODEV;
2072 }
2073 
2074 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2075 {
2076 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2077 		/*
2078 		 * Several Samsung devices seem to drop off the PCIe bus
2079 		 * randomly when APST is on and uses the deepest sleep state.
2080 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2081 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2082 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2083 		 * laptops.
2084 		 */
2085 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2086 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2087 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2088 			return NVME_QUIRK_NO_DEEPEST_PS;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2095 {
2096 	int node, result = -ENOMEM;
2097 	struct nvme_dev *dev;
2098 	unsigned long quirks = id->driver_data;
2099 
2100 	node = dev_to_node(&pdev->dev);
2101 	if (node == NUMA_NO_NODE)
2102 		set_dev_node(&pdev->dev, first_memory_node);
2103 
2104 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2105 	if (!dev)
2106 		return -ENOMEM;
2107 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2108 							GFP_KERNEL, node);
2109 	if (!dev->queues)
2110 		goto free;
2111 
2112 	dev->dev = get_device(&pdev->dev);
2113 	pci_set_drvdata(pdev, dev);
2114 
2115 	result = nvme_dev_map(dev);
2116 	if (result)
2117 		goto free;
2118 
2119 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2120 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2121 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2122 		(unsigned long)dev);
2123 	mutex_init(&dev->shutdown_lock);
2124 	init_completion(&dev->ioq_wait);
2125 
2126 	result = nvme_setup_prp_pools(dev);
2127 	if (result)
2128 		goto put_pci;
2129 
2130 	quirks |= check_dell_samsung_bug(pdev);
2131 
2132 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2133 			quirks);
2134 	if (result)
2135 		goto release_pools;
2136 
2137 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2138 
2139 	queue_work(nvme_workq, &dev->reset_work);
2140 	return 0;
2141 
2142  release_pools:
2143 	nvme_release_prp_pools(dev);
2144  put_pci:
2145 	put_device(dev->dev);
2146 	nvme_dev_unmap(dev);
2147  free:
2148 	kfree(dev->queues);
2149 	kfree(dev);
2150 	return result;
2151 }
2152 
2153 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2154 {
2155 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2156 
2157 	if (prepare)
2158 		nvme_dev_disable(dev, false);
2159 	else
2160 		nvme_reset(dev);
2161 }
2162 
2163 static void nvme_shutdown(struct pci_dev *pdev)
2164 {
2165 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2166 	nvme_dev_disable(dev, true);
2167 }
2168 
2169 /*
2170  * The driver's remove may be called on a device in a partially initialized
2171  * state. This function must not have any dependencies on the device state in
2172  * order to proceed.
2173  */
2174 static void nvme_remove(struct pci_dev *pdev)
2175 {
2176 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2177 
2178 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2179 
2180 	pci_set_drvdata(pdev, NULL);
2181 
2182 	if (!pci_device_is_present(pdev)) {
2183 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2184 		nvme_dev_disable(dev, false);
2185 	}
2186 
2187 	flush_work(&dev->reset_work);
2188 	nvme_uninit_ctrl(&dev->ctrl);
2189 	nvme_dev_disable(dev, true);
2190 	nvme_dev_remove_admin(dev);
2191 	nvme_free_queues(dev, 0);
2192 	nvme_release_cmb(dev);
2193 	nvme_release_prp_pools(dev);
2194 	nvme_dev_unmap(dev);
2195 	nvme_put_ctrl(&dev->ctrl);
2196 }
2197 
2198 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2199 {
2200 	int ret = 0;
2201 
2202 	if (numvfs == 0) {
2203 		if (pci_vfs_assigned(pdev)) {
2204 			dev_warn(&pdev->dev,
2205 				"Cannot disable SR-IOV VFs while assigned\n");
2206 			return -EPERM;
2207 		}
2208 		pci_disable_sriov(pdev);
2209 		return 0;
2210 	}
2211 
2212 	ret = pci_enable_sriov(pdev, numvfs);
2213 	return ret ? ret : numvfs;
2214 }
2215 
2216 #ifdef CONFIG_PM_SLEEP
2217 static int nvme_suspend(struct device *dev)
2218 {
2219 	struct pci_dev *pdev = to_pci_dev(dev);
2220 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2221 
2222 	nvme_dev_disable(ndev, true);
2223 	return 0;
2224 }
2225 
2226 static int nvme_resume(struct device *dev)
2227 {
2228 	struct pci_dev *pdev = to_pci_dev(dev);
2229 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2230 
2231 	nvme_reset(ndev);
2232 	return 0;
2233 }
2234 #endif
2235 
2236 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2237 
2238 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2239 						pci_channel_state_t state)
2240 {
2241 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2242 
2243 	/*
2244 	 * A frozen channel requires a reset. When detected, this method will
2245 	 * shutdown the controller to quiesce. The controller will be restarted
2246 	 * after the slot reset through driver's slot_reset callback.
2247 	 */
2248 	switch (state) {
2249 	case pci_channel_io_normal:
2250 		return PCI_ERS_RESULT_CAN_RECOVER;
2251 	case pci_channel_io_frozen:
2252 		dev_warn(dev->ctrl.device,
2253 			"frozen state error detected, reset controller\n");
2254 		nvme_dev_disable(dev, false);
2255 		return PCI_ERS_RESULT_NEED_RESET;
2256 	case pci_channel_io_perm_failure:
2257 		dev_warn(dev->ctrl.device,
2258 			"failure state error detected, request disconnect\n");
2259 		return PCI_ERS_RESULT_DISCONNECT;
2260 	}
2261 	return PCI_ERS_RESULT_NEED_RESET;
2262 }
2263 
2264 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2265 {
2266 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2267 
2268 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2269 	pci_restore_state(pdev);
2270 	nvme_reset(dev);
2271 	return PCI_ERS_RESULT_RECOVERED;
2272 }
2273 
2274 static void nvme_error_resume(struct pci_dev *pdev)
2275 {
2276 	pci_cleanup_aer_uncorrect_error_status(pdev);
2277 }
2278 
2279 static const struct pci_error_handlers nvme_err_handler = {
2280 	.error_detected	= nvme_error_detected,
2281 	.slot_reset	= nvme_slot_reset,
2282 	.resume		= nvme_error_resume,
2283 	.reset_notify	= nvme_reset_notify,
2284 };
2285 
2286 static const struct pci_device_id nvme_id_table[] = {
2287 	{ PCI_VDEVICE(INTEL, 0x0953),
2288 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2289 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2290 	{ PCI_VDEVICE(INTEL, 0x0a53),
2291 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2292 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2293 	{ PCI_VDEVICE(INTEL, 0x0a54),
2294 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2295 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2296 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2297 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2298 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2299 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2300 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2301 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2302 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2303 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2304 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2305 	{ 0, }
2306 };
2307 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2308 
2309 static struct pci_driver nvme_driver = {
2310 	.name		= "nvme",
2311 	.id_table	= nvme_id_table,
2312 	.probe		= nvme_probe,
2313 	.remove		= nvme_remove,
2314 	.shutdown	= nvme_shutdown,
2315 	.driver		= {
2316 		.pm	= &nvme_dev_pm_ops,
2317 	},
2318 	.sriov_configure = nvme_pci_sriov_configure,
2319 	.err_handler	= &nvme_err_handler,
2320 };
2321 
2322 static int __init nvme_init(void)
2323 {
2324 	int result;
2325 
2326 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2327 	if (!nvme_workq)
2328 		return -ENOMEM;
2329 
2330 	result = pci_register_driver(&nvme_driver);
2331 	if (result)
2332 		destroy_workqueue(nvme_workq);
2333 	return result;
2334 }
2335 
2336 static void __exit nvme_exit(void)
2337 {
2338 	pci_unregister_driver(&nvme_driver);
2339 	destroy_workqueue(nvme_workq);
2340 	_nvme_check_size();
2341 }
2342 
2343 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2344 MODULE_LICENSE("GPL");
2345 MODULE_VERSION("1.0");
2346 module_init(nvme_init);
2347 module_exit(nvme_exit);
2348