xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 1b8ddbee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	int nents;		/* Used in scatterlist */
234 	dma_addr_t first_dma;
235 	unsigned int dma_len;	/* length of single DMA segment mapping */
236 	dma_addr_t meta_dma;
237 	struct scatterlist *sg;
238 };
239 
240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 	return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244 
245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 	unsigned int mem_size = nvme_dbbuf_size(dev);
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return 0;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		return -ENOMEM;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis) {
268 		dma_free_coherent(dev->dev, mem_size,
269 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270 		dev->dbbuf_dbs = NULL;
271 		return -ENOMEM;
272 	}
273 
274 	return 0;
275 }
276 
277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
278 {
279 	unsigned int mem_size = nvme_dbbuf_size(dev);
280 
281 	if (dev->dbbuf_dbs) {
282 		dma_free_coherent(dev->dev, mem_size,
283 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 		dev->dbbuf_dbs = NULL;
285 	}
286 	if (dev->dbbuf_eis) {
287 		dma_free_coherent(dev->dev, mem_size,
288 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289 		dev->dbbuf_eis = NULL;
290 	}
291 }
292 
293 static void nvme_dbbuf_init(struct nvme_dev *dev,
294 			    struct nvme_queue *nvmeq, int qid)
295 {
296 	if (!dev->dbbuf_dbs || !qid)
297 		return;
298 
299 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
303 }
304 
305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
306 {
307 	if (!nvmeq->qid)
308 		return;
309 
310 	nvmeq->dbbuf_sq_db = NULL;
311 	nvmeq->dbbuf_cq_db = NULL;
312 	nvmeq->dbbuf_sq_ei = NULL;
313 	nvmeq->dbbuf_cq_ei = NULL;
314 }
315 
316 static void nvme_dbbuf_set(struct nvme_dev *dev)
317 {
318 	struct nvme_command c = { };
319 	unsigned int i;
320 
321 	if (!dev->dbbuf_dbs)
322 		return;
323 
324 	c.dbbuf.opcode = nvme_admin_dbbuf;
325 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
327 
328 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
329 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
330 		/* Free memory and continue on */
331 		nvme_dbbuf_dma_free(dev);
332 
333 		for (i = 1; i <= dev->online_queues; i++)
334 			nvme_dbbuf_free(&dev->queues[i]);
335 	}
336 }
337 
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339 {
340 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341 }
342 
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 					      volatile u32 *dbbuf_ei)
346 {
347 	if (dbbuf_db) {
348 		u16 old_value;
349 
350 		/*
351 		 * Ensure that the queue is written before updating
352 		 * the doorbell in memory
353 		 */
354 		wmb();
355 
356 		old_value = *dbbuf_db;
357 		*dbbuf_db = value;
358 
359 		/*
360 		 * Ensure that the doorbell is updated before reading the event
361 		 * index from memory.  The controller needs to provide similar
362 		 * ordering to ensure the envent index is updated before reading
363 		 * the doorbell.
364 		 */
365 		mb();
366 
367 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368 			return false;
369 	}
370 
371 	return true;
372 }
373 
374 /*
375  * Will slightly overestimate the number of pages needed.  This is OK
376  * as it only leads to a small amount of wasted memory for the lifetime of
377  * the I/O.
378  */
379 static int nvme_pci_npages_prp(void)
380 {
381 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
382 				      NVME_CTRL_PAGE_SIZE);
383 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
384 }
385 
386 /*
387  * Calculates the number of pages needed for the SGL segments. For example a 4k
388  * page can accommodate 256 SGL descriptors.
389  */
390 static int nvme_pci_npages_sgl(void)
391 {
392 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
393 			PAGE_SIZE);
394 }
395 
396 static size_t nvme_pci_iod_alloc_size(void)
397 {
398 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
399 
400 	return sizeof(__le64 *) * npages +
401 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
402 }
403 
404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 				unsigned int hctx_idx)
406 {
407 	struct nvme_dev *dev = data;
408 	struct nvme_queue *nvmeq = &dev->queues[0];
409 
410 	WARN_ON(hctx_idx != 0);
411 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
412 
413 	hctx->driver_data = nvmeq;
414 	return 0;
415 }
416 
417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418 			  unsigned int hctx_idx)
419 {
420 	struct nvme_dev *dev = data;
421 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
422 
423 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
424 	hctx->driver_data = nvmeq;
425 	return 0;
426 }
427 
428 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
429 		unsigned int hctx_idx, unsigned int numa_node)
430 {
431 	struct nvme_dev *dev = set->driver_data;
432 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
434 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
435 
436 	BUG_ON(!nvmeq);
437 	iod->nvmeq = nvmeq;
438 
439 	nvme_req(req)->ctrl = &dev->ctrl;
440 	nvme_req(req)->cmd = &iod->cmd;
441 	return 0;
442 }
443 
444 static int queue_irq_offset(struct nvme_dev *dev)
445 {
446 	/* if we have more than 1 vec, admin queue offsets us by 1 */
447 	if (dev->num_vecs > 1)
448 		return 1;
449 
450 	return 0;
451 }
452 
453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
454 {
455 	struct nvme_dev *dev = set->driver_data;
456 	int i, qoff, offset;
457 
458 	offset = queue_irq_offset(dev);
459 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
460 		struct blk_mq_queue_map *map = &set->map[i];
461 
462 		map->nr_queues = dev->io_queues[i];
463 		if (!map->nr_queues) {
464 			BUG_ON(i == HCTX_TYPE_DEFAULT);
465 			continue;
466 		}
467 
468 		/*
469 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
470 		 * affinity), so use the regular blk-mq cpu mapping
471 		 */
472 		map->queue_offset = qoff;
473 		if (i != HCTX_TYPE_POLL && offset)
474 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
475 		else
476 			blk_mq_map_queues(map);
477 		qoff += map->nr_queues;
478 		offset += map->nr_queues;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Write sq tail if we are asked to, or if the next command would wrap.
486  */
487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
488 {
489 	if (!write_sq) {
490 		u16 next_tail = nvmeq->sq_tail + 1;
491 
492 		if (next_tail == nvmeq->q_depth)
493 			next_tail = 0;
494 		if (next_tail != nvmeq->last_sq_tail)
495 			return;
496 	}
497 
498 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
499 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
500 		writel(nvmeq->sq_tail, nvmeq->q_db);
501 	nvmeq->last_sq_tail = nvmeq->sq_tail;
502 }
503 
504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
505 				    struct nvme_command *cmd)
506 {
507 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 		absolute_pointer(cmd), sizeof(*cmd));
509 	if (++nvmeq->sq_tail == nvmeq->q_depth)
510 		nvmeq->sq_tail = 0;
511 }
512 
513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
514 {
515 	struct nvme_queue *nvmeq = hctx->driver_data;
516 
517 	spin_lock(&nvmeq->sq_lock);
518 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
519 		nvme_write_sq_db(nvmeq, true);
520 	spin_unlock(&nvmeq->sq_lock);
521 }
522 
523 static void **nvme_pci_iod_list(struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
527 }
528 
529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
530 {
531 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
532 	int nseg = blk_rq_nr_phys_segments(req);
533 	unsigned int avg_seg_size;
534 
535 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
536 
537 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
538 		return false;
539 	if (!iod->nvmeq->qid)
540 		return false;
541 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
542 		return false;
543 	return true;
544 }
545 
546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
547 {
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550 	dma_addr_t dma_addr = iod->first_dma;
551 	int i;
552 
553 	for (i = 0; i < iod->npages; i++) {
554 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
555 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
556 
557 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
558 		dma_addr = next_dma_addr;
559 	}
560 }
561 
562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
563 {
564 	const int last_sg = SGES_PER_PAGE - 1;
565 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 	dma_addr_t dma_addr = iod->first_dma;
567 	int i;
568 
569 	for (i = 0; i < iod->npages; i++) {
570 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
571 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
572 
573 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
574 		dma_addr = next_dma_addr;
575 	}
576 }
577 
578 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
579 {
580 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
581 
582 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
583 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
584 				    rq_dma_dir(req));
585 	else
586 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
587 }
588 
589 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
590 {
591 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
592 
593 	if (iod->dma_len) {
594 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
595 			       rq_dma_dir(req));
596 		return;
597 	}
598 
599 	WARN_ON_ONCE(!iod->nents);
600 
601 	nvme_unmap_sg(dev, req);
602 	if (iod->npages == 0)
603 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
604 			      iod->first_dma);
605 	else if (iod->use_sgl)
606 		nvme_free_sgls(dev, req);
607 	else
608 		nvme_free_prps(dev, req);
609 	mempool_free(iod->sg, dev->iod_mempool);
610 }
611 
612 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
613 {
614 	int i;
615 	struct scatterlist *sg;
616 
617 	for_each_sg(sgl, sg, nents, i) {
618 		dma_addr_t phys = sg_phys(sg);
619 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
620 			"dma_address:%pad dma_length:%d\n",
621 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
622 			sg_dma_len(sg));
623 	}
624 }
625 
626 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
627 		struct request *req, struct nvme_rw_command *cmnd)
628 {
629 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
630 	struct dma_pool *pool;
631 	int length = blk_rq_payload_bytes(req);
632 	struct scatterlist *sg = iod->sg;
633 	int dma_len = sg_dma_len(sg);
634 	u64 dma_addr = sg_dma_address(sg);
635 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
636 	__le64 *prp_list;
637 	void **list = nvme_pci_iod_list(req);
638 	dma_addr_t prp_dma;
639 	int nprps, i;
640 
641 	length -= (NVME_CTRL_PAGE_SIZE - offset);
642 	if (length <= 0) {
643 		iod->first_dma = 0;
644 		goto done;
645 	}
646 
647 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
648 	if (dma_len) {
649 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
650 	} else {
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 
656 	if (length <= NVME_CTRL_PAGE_SIZE) {
657 		iod->first_dma = dma_addr;
658 		goto done;
659 	}
660 
661 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
662 	if (nprps <= (256 / 8)) {
663 		pool = dev->prp_small_pool;
664 		iod->npages = 0;
665 	} else {
666 		pool = dev->prp_page_pool;
667 		iod->npages = 1;
668 	}
669 
670 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 	if (!prp_list) {
672 		iod->first_dma = dma_addr;
673 		iod->npages = -1;
674 		return BLK_STS_RESOURCE;
675 	}
676 	list[0] = prp_list;
677 	iod->first_dma = prp_dma;
678 	i = 0;
679 	for (;;) {
680 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
681 			__le64 *old_prp_list = prp_list;
682 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
683 			if (!prp_list)
684 				goto free_prps;
685 			list[iod->npages++] = prp_list;
686 			prp_list[0] = old_prp_list[i - 1];
687 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688 			i = 1;
689 		}
690 		prp_list[i++] = cpu_to_le64(dma_addr);
691 		dma_len -= NVME_CTRL_PAGE_SIZE;
692 		dma_addr += NVME_CTRL_PAGE_SIZE;
693 		length -= NVME_CTRL_PAGE_SIZE;
694 		if (length <= 0)
695 			break;
696 		if (dma_len > 0)
697 			continue;
698 		if (unlikely(dma_len < 0))
699 			goto bad_sgl;
700 		sg = sg_next(sg);
701 		dma_addr = sg_dma_address(sg);
702 		dma_len = sg_dma_len(sg);
703 	}
704 done:
705 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
706 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
707 	return BLK_STS_OK;
708 free_prps:
709 	nvme_free_prps(dev, req);
710 	return BLK_STS_RESOURCE;
711 bad_sgl:
712 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
713 			"Invalid SGL for payload:%d nents:%d\n",
714 			blk_rq_payload_bytes(req), iod->nents);
715 	return BLK_STS_IOERR;
716 }
717 
718 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
719 		struct scatterlist *sg)
720 {
721 	sge->addr = cpu_to_le64(sg_dma_address(sg));
722 	sge->length = cpu_to_le32(sg_dma_len(sg));
723 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
724 }
725 
726 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
727 		dma_addr_t dma_addr, int entries)
728 {
729 	sge->addr = cpu_to_le64(dma_addr);
730 	if (entries < SGES_PER_PAGE) {
731 		sge->length = cpu_to_le32(entries * sizeof(*sge));
732 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
733 	} else {
734 		sge->length = cpu_to_le32(PAGE_SIZE);
735 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
736 	}
737 }
738 
739 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
740 		struct request *req, struct nvme_rw_command *cmd, int entries)
741 {
742 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
743 	struct dma_pool *pool;
744 	struct nvme_sgl_desc *sg_list;
745 	struct scatterlist *sg = iod->sg;
746 	dma_addr_t sgl_dma;
747 	int i = 0;
748 
749 	/* setting the transfer type as SGL */
750 	cmd->flags = NVME_CMD_SGL_METABUF;
751 
752 	if (entries == 1) {
753 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
754 		return BLK_STS_OK;
755 	}
756 
757 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
758 		pool = dev->prp_small_pool;
759 		iod->npages = 0;
760 	} else {
761 		pool = dev->prp_page_pool;
762 		iod->npages = 1;
763 	}
764 
765 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
766 	if (!sg_list) {
767 		iod->npages = -1;
768 		return BLK_STS_RESOURCE;
769 	}
770 
771 	nvme_pci_iod_list(req)[0] = sg_list;
772 	iod->first_dma = sgl_dma;
773 
774 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
775 
776 	do {
777 		if (i == SGES_PER_PAGE) {
778 			struct nvme_sgl_desc *old_sg_desc = sg_list;
779 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
780 
781 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
782 			if (!sg_list)
783 				goto free_sgls;
784 
785 			i = 0;
786 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
787 			sg_list[i++] = *link;
788 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
789 		}
790 
791 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
792 		sg = sg_next(sg);
793 	} while (--entries > 0);
794 
795 	return BLK_STS_OK;
796 free_sgls:
797 	nvme_free_sgls(dev, req);
798 	return BLK_STS_RESOURCE;
799 }
800 
801 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
802 		struct request *req, struct nvme_rw_command *cmnd,
803 		struct bio_vec *bv)
804 {
805 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
806 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
807 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
808 
809 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810 	if (dma_mapping_error(dev->dev, iod->first_dma))
811 		return BLK_STS_RESOURCE;
812 	iod->dma_len = bv->bv_len;
813 
814 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
815 	if (bv->bv_len > first_prp_len)
816 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
817 	return BLK_STS_OK;
818 }
819 
820 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
821 		struct request *req, struct nvme_rw_command *cmnd,
822 		struct bio_vec *bv)
823 {
824 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825 
826 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
827 	if (dma_mapping_error(dev->dev, iod->first_dma))
828 		return BLK_STS_RESOURCE;
829 	iod->dma_len = bv->bv_len;
830 
831 	cmnd->flags = NVME_CMD_SGL_METABUF;
832 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
833 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
834 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
839 		struct nvme_command *cmnd)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret = BLK_STS_RESOURCE;
843 	int nr_mapped;
844 
845 	if (blk_rq_nr_phys_segments(req) == 1) {
846 		struct bio_vec bv = req_bvec(req);
847 
848 		if (!is_pci_p2pdma_page(bv.bv_page)) {
849 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
850 				return nvme_setup_prp_simple(dev, req,
851 							     &cmnd->rw, &bv);
852 
853 			if (iod->nvmeq->qid && sgl_threshold &&
854 			    nvme_ctrl_sgl_supported(&dev->ctrl))
855 				return nvme_setup_sgl_simple(dev, req,
856 							     &cmnd->rw, &bv);
857 		}
858 	}
859 
860 	iod->dma_len = 0;
861 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
862 	if (!iod->sg)
863 		return BLK_STS_RESOURCE;
864 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
865 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
866 	if (!iod->nents)
867 		goto out_free_sg;
868 
869 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
870 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
871 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
872 	else
873 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
874 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
875 	if (!nr_mapped)
876 		goto out_free_sg;
877 
878 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
879 	if (iod->use_sgl)
880 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
881 	else
882 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
883 	if (ret != BLK_STS_OK)
884 		goto out_unmap_sg;
885 	return BLK_STS_OK;
886 
887 out_unmap_sg:
888 	nvme_unmap_sg(dev, req);
889 out_free_sg:
890 	mempool_free(iod->sg, dev->iod_mempool);
891 	return ret;
892 }
893 
894 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
895 		struct nvme_command *cmnd)
896 {
897 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
898 
899 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
900 			rq_dma_dir(req), 0);
901 	if (dma_mapping_error(dev->dev, iod->meta_dma))
902 		return BLK_STS_IOERR;
903 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
904 	return BLK_STS_OK;
905 }
906 
907 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
908 {
909 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 	blk_status_t ret;
911 
912 	iod->aborted = 0;
913 	iod->npages = -1;
914 	iod->nents = 0;
915 
916 	ret = nvme_setup_cmd(req->q->queuedata, req);
917 	if (ret)
918 		return ret;
919 
920 	if (blk_rq_nr_phys_segments(req)) {
921 		ret = nvme_map_data(dev, req, &iod->cmd);
922 		if (ret)
923 			goto out_free_cmd;
924 	}
925 
926 	if (blk_integrity_rq(req)) {
927 		ret = nvme_map_metadata(dev, req, &iod->cmd);
928 		if (ret)
929 			goto out_unmap_data;
930 	}
931 
932 	blk_mq_start_request(req);
933 	return BLK_STS_OK;
934 out_unmap_data:
935 	nvme_unmap_data(dev, req);
936 out_free_cmd:
937 	nvme_cleanup_cmd(req);
938 	return ret;
939 }
940 
941 /*
942  * NOTE: ns is NULL when called on the admin queue.
943  */
944 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
945 			 const struct blk_mq_queue_data *bd)
946 {
947 	struct nvme_queue *nvmeq = hctx->driver_data;
948 	struct nvme_dev *dev = nvmeq->dev;
949 	struct request *req = bd->rq;
950 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
951 	blk_status_t ret;
952 
953 	/*
954 	 * We should not need to do this, but we're still using this to
955 	 * ensure we can drain requests on a dying queue.
956 	 */
957 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
958 		return BLK_STS_IOERR;
959 
960 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
961 		return nvme_fail_nonready_command(&dev->ctrl, req);
962 
963 	ret = nvme_prep_rq(dev, req);
964 	if (unlikely(ret))
965 		return ret;
966 	spin_lock(&nvmeq->sq_lock);
967 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
968 	nvme_write_sq_db(nvmeq, bd->last);
969 	spin_unlock(&nvmeq->sq_lock);
970 	return BLK_STS_OK;
971 }
972 
973 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
974 {
975 	spin_lock(&nvmeq->sq_lock);
976 	while (!rq_list_empty(*rqlist)) {
977 		struct request *req = rq_list_pop(rqlist);
978 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
979 
980 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
981 	}
982 	nvme_write_sq_db(nvmeq, true);
983 	spin_unlock(&nvmeq->sq_lock);
984 }
985 
986 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
987 {
988 	/*
989 	 * We should not need to do this, but we're still using this to
990 	 * ensure we can drain requests on a dying queue.
991 	 */
992 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
993 		return false;
994 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
995 		return false;
996 
997 	req->mq_hctx->tags->rqs[req->tag] = req;
998 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
999 }
1000 
1001 static void nvme_queue_rqs(struct request **rqlist)
1002 {
1003 	struct request *req, *next, *prev = NULL;
1004 	struct request *requeue_list = NULL;
1005 
1006 	rq_list_for_each_safe(rqlist, req, next) {
1007 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1008 
1009 		if (!nvme_prep_rq_batch(nvmeq, req)) {
1010 			/* detach 'req' and add to remainder list */
1011 			rq_list_move(rqlist, &requeue_list, req, prev);
1012 
1013 			req = prev;
1014 			if (!req)
1015 				continue;
1016 		}
1017 
1018 		if (!next || req->mq_hctx != next->mq_hctx) {
1019 			/* detach rest of list, and submit */
1020 			req->rq_next = NULL;
1021 			nvme_submit_cmds(nvmeq, rqlist);
1022 			*rqlist = next;
1023 			prev = NULL;
1024 		} else
1025 			prev = req;
1026 	}
1027 
1028 	*rqlist = requeue_list;
1029 }
1030 
1031 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1032 {
1033 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1034 	struct nvme_dev *dev = iod->nvmeq->dev;
1035 
1036 	if (blk_integrity_rq(req))
1037 		dma_unmap_page(dev->dev, iod->meta_dma,
1038 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1039 	if (blk_rq_nr_phys_segments(req))
1040 		nvme_unmap_data(dev, req);
1041 }
1042 
1043 static void nvme_pci_complete_rq(struct request *req)
1044 {
1045 	nvme_pci_unmap_rq(req);
1046 	nvme_complete_rq(req);
1047 }
1048 
1049 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1050 {
1051 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1052 }
1053 
1054 /* We read the CQE phase first to check if the rest of the entry is valid */
1055 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1056 {
1057 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1058 
1059 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1060 }
1061 
1062 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1063 {
1064 	u16 head = nvmeq->cq_head;
1065 
1066 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1067 					      nvmeq->dbbuf_cq_ei))
1068 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1069 }
1070 
1071 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1072 {
1073 	if (!nvmeq->qid)
1074 		return nvmeq->dev->admin_tagset.tags[0];
1075 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1076 }
1077 
1078 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1079 				   struct io_comp_batch *iob, u16 idx)
1080 {
1081 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1082 	__u16 command_id = READ_ONCE(cqe->command_id);
1083 	struct request *req;
1084 
1085 	/*
1086 	 * AEN requests are special as they don't time out and can
1087 	 * survive any kind of queue freeze and often don't respond to
1088 	 * aborts.  We don't even bother to allocate a struct request
1089 	 * for them but rather special case them here.
1090 	 */
1091 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1092 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1093 				cqe->status, &cqe->result);
1094 		return;
1095 	}
1096 
1097 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1098 	if (unlikely(!req)) {
1099 		dev_warn(nvmeq->dev->ctrl.device,
1100 			"invalid id %d completed on queue %d\n",
1101 			command_id, le16_to_cpu(cqe->sq_id));
1102 		return;
1103 	}
1104 
1105 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1106 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1107 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1108 					nvme_pci_complete_batch))
1109 		nvme_pci_complete_rq(req);
1110 }
1111 
1112 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1113 {
1114 	u32 tmp = nvmeq->cq_head + 1;
1115 
1116 	if (tmp == nvmeq->q_depth) {
1117 		nvmeq->cq_head = 0;
1118 		nvmeq->cq_phase ^= 1;
1119 	} else {
1120 		nvmeq->cq_head = tmp;
1121 	}
1122 }
1123 
1124 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1125 			       struct io_comp_batch *iob)
1126 {
1127 	int found = 0;
1128 
1129 	while (nvme_cqe_pending(nvmeq)) {
1130 		found++;
1131 		/*
1132 		 * load-load control dependency between phase and the rest of
1133 		 * the cqe requires a full read memory barrier
1134 		 */
1135 		dma_rmb();
1136 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1137 		nvme_update_cq_head(nvmeq);
1138 	}
1139 
1140 	if (found)
1141 		nvme_ring_cq_doorbell(nvmeq);
1142 	return found;
1143 }
1144 
1145 static irqreturn_t nvme_irq(int irq, void *data)
1146 {
1147 	struct nvme_queue *nvmeq = data;
1148 	DEFINE_IO_COMP_BATCH(iob);
1149 
1150 	if (nvme_poll_cq(nvmeq, &iob)) {
1151 		if (!rq_list_empty(iob.req_list))
1152 			nvme_pci_complete_batch(&iob);
1153 		return IRQ_HANDLED;
1154 	}
1155 	return IRQ_NONE;
1156 }
1157 
1158 static irqreturn_t nvme_irq_check(int irq, void *data)
1159 {
1160 	struct nvme_queue *nvmeq = data;
1161 
1162 	if (nvme_cqe_pending(nvmeq))
1163 		return IRQ_WAKE_THREAD;
1164 	return IRQ_NONE;
1165 }
1166 
1167 /*
1168  * Poll for completions for any interrupt driven queue
1169  * Can be called from any context.
1170  */
1171 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1172 {
1173 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1174 
1175 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1176 
1177 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1178 	nvme_poll_cq(nvmeq, NULL);
1179 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1180 }
1181 
1182 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1183 {
1184 	struct nvme_queue *nvmeq = hctx->driver_data;
1185 	bool found;
1186 
1187 	if (!nvme_cqe_pending(nvmeq))
1188 		return 0;
1189 
1190 	spin_lock(&nvmeq->cq_poll_lock);
1191 	found = nvme_poll_cq(nvmeq, iob);
1192 	spin_unlock(&nvmeq->cq_poll_lock);
1193 
1194 	return found;
1195 }
1196 
1197 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1198 {
1199 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1200 	struct nvme_queue *nvmeq = &dev->queues[0];
1201 	struct nvme_command c = { };
1202 
1203 	c.common.opcode = nvme_admin_async_event;
1204 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1205 
1206 	spin_lock(&nvmeq->sq_lock);
1207 	nvme_sq_copy_cmd(nvmeq, &c);
1208 	nvme_write_sq_db(nvmeq, true);
1209 	spin_unlock(&nvmeq->sq_lock);
1210 }
1211 
1212 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1213 {
1214 	struct nvme_command c = { };
1215 
1216 	c.delete_queue.opcode = opcode;
1217 	c.delete_queue.qid = cpu_to_le16(id);
1218 
1219 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1220 }
1221 
1222 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1223 		struct nvme_queue *nvmeq, s16 vector)
1224 {
1225 	struct nvme_command c = { };
1226 	int flags = NVME_QUEUE_PHYS_CONTIG;
1227 
1228 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1229 		flags |= NVME_CQ_IRQ_ENABLED;
1230 
1231 	/*
1232 	 * Note: we (ab)use the fact that the prp fields survive if no data
1233 	 * is attached to the request.
1234 	 */
1235 	c.create_cq.opcode = nvme_admin_create_cq;
1236 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1237 	c.create_cq.cqid = cpu_to_le16(qid);
1238 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1239 	c.create_cq.cq_flags = cpu_to_le16(flags);
1240 	c.create_cq.irq_vector = cpu_to_le16(vector);
1241 
1242 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1243 }
1244 
1245 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1246 						struct nvme_queue *nvmeq)
1247 {
1248 	struct nvme_ctrl *ctrl = &dev->ctrl;
1249 	struct nvme_command c = { };
1250 	int flags = NVME_QUEUE_PHYS_CONTIG;
1251 
1252 	/*
1253 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1254 	 * set. Since URGENT priority is zeroes, it makes all queues
1255 	 * URGENT.
1256 	 */
1257 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1258 		flags |= NVME_SQ_PRIO_MEDIUM;
1259 
1260 	/*
1261 	 * Note: we (ab)use the fact that the prp fields survive if no data
1262 	 * is attached to the request.
1263 	 */
1264 	c.create_sq.opcode = nvme_admin_create_sq;
1265 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1266 	c.create_sq.sqid = cpu_to_le16(qid);
1267 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1268 	c.create_sq.sq_flags = cpu_to_le16(flags);
1269 	c.create_sq.cqid = cpu_to_le16(qid);
1270 
1271 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1272 }
1273 
1274 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1275 {
1276 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1277 }
1278 
1279 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1280 {
1281 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1282 }
1283 
1284 static void abort_endio(struct request *req, blk_status_t error)
1285 {
1286 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1287 	struct nvme_queue *nvmeq = iod->nvmeq;
1288 
1289 	dev_warn(nvmeq->dev->ctrl.device,
1290 		 "Abort status: 0x%x", nvme_req(req)->status);
1291 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1292 	blk_mq_free_request(req);
1293 }
1294 
1295 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1296 {
1297 	/* If true, indicates loss of adapter communication, possibly by a
1298 	 * NVMe Subsystem reset.
1299 	 */
1300 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1301 
1302 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1303 	switch (dev->ctrl.state) {
1304 	case NVME_CTRL_RESETTING:
1305 	case NVME_CTRL_CONNECTING:
1306 		return false;
1307 	default:
1308 		break;
1309 	}
1310 
1311 	/* We shouldn't reset unless the controller is on fatal error state
1312 	 * _or_ if we lost the communication with it.
1313 	 */
1314 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1315 		return false;
1316 
1317 	return true;
1318 }
1319 
1320 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1321 {
1322 	/* Read a config register to help see what died. */
1323 	u16 pci_status;
1324 	int result;
1325 
1326 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1327 				      &pci_status);
1328 	if (result == PCIBIOS_SUCCESSFUL)
1329 		dev_warn(dev->ctrl.device,
1330 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1331 			 csts, pci_status);
1332 	else
1333 		dev_warn(dev->ctrl.device,
1334 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1335 			 csts, result);
1336 }
1337 
1338 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1339 {
1340 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1341 	struct nvme_queue *nvmeq = iod->nvmeq;
1342 	struct nvme_dev *dev = nvmeq->dev;
1343 	struct request *abort_req;
1344 	struct nvme_command cmd = { };
1345 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1346 
1347 	/* If PCI error recovery process is happening, we cannot reset or
1348 	 * the recovery mechanism will surely fail.
1349 	 */
1350 	mb();
1351 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1352 		return BLK_EH_RESET_TIMER;
1353 
1354 	/*
1355 	 * Reset immediately if the controller is failed
1356 	 */
1357 	if (nvme_should_reset(dev, csts)) {
1358 		nvme_warn_reset(dev, csts);
1359 		nvme_dev_disable(dev, false);
1360 		nvme_reset_ctrl(&dev->ctrl);
1361 		return BLK_EH_DONE;
1362 	}
1363 
1364 	/*
1365 	 * Did we miss an interrupt?
1366 	 */
1367 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1368 		nvme_poll(req->mq_hctx, NULL);
1369 	else
1370 		nvme_poll_irqdisable(nvmeq);
1371 
1372 	if (blk_mq_request_completed(req)) {
1373 		dev_warn(dev->ctrl.device,
1374 			 "I/O %d QID %d timeout, completion polled\n",
1375 			 req->tag, nvmeq->qid);
1376 		return BLK_EH_DONE;
1377 	}
1378 
1379 	/*
1380 	 * Shutdown immediately if controller times out while starting. The
1381 	 * reset work will see the pci device disabled when it gets the forced
1382 	 * cancellation error. All outstanding requests are completed on
1383 	 * shutdown, so we return BLK_EH_DONE.
1384 	 */
1385 	switch (dev->ctrl.state) {
1386 	case NVME_CTRL_CONNECTING:
1387 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1388 		fallthrough;
1389 	case NVME_CTRL_DELETING:
1390 		dev_warn_ratelimited(dev->ctrl.device,
1391 			 "I/O %d QID %d timeout, disable controller\n",
1392 			 req->tag, nvmeq->qid);
1393 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1394 		nvme_dev_disable(dev, true);
1395 		return BLK_EH_DONE;
1396 	case NVME_CTRL_RESETTING:
1397 		return BLK_EH_RESET_TIMER;
1398 	default:
1399 		break;
1400 	}
1401 
1402 	/*
1403 	 * Shutdown the controller immediately and schedule a reset if the
1404 	 * command was already aborted once before and still hasn't been
1405 	 * returned to the driver, or if this is the admin queue.
1406 	 */
1407 	if (!nvmeq->qid || iod->aborted) {
1408 		dev_warn(dev->ctrl.device,
1409 			 "I/O %d QID %d timeout, reset controller\n",
1410 			 req->tag, nvmeq->qid);
1411 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1412 		nvme_dev_disable(dev, false);
1413 		nvme_reset_ctrl(&dev->ctrl);
1414 
1415 		return BLK_EH_DONE;
1416 	}
1417 
1418 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1419 		atomic_inc(&dev->ctrl.abort_limit);
1420 		return BLK_EH_RESET_TIMER;
1421 	}
1422 	iod->aborted = 1;
1423 
1424 	cmd.abort.opcode = nvme_admin_abort_cmd;
1425 	cmd.abort.cid = nvme_cid(req);
1426 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1427 
1428 	dev_warn(nvmeq->dev->ctrl.device,
1429 		"I/O %d QID %d timeout, aborting\n",
1430 		 req->tag, nvmeq->qid);
1431 
1432 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1433 			BLK_MQ_REQ_NOWAIT);
1434 	if (IS_ERR(abort_req)) {
1435 		atomic_inc(&dev->ctrl.abort_limit);
1436 		return BLK_EH_RESET_TIMER;
1437 	}
1438 
1439 	abort_req->end_io_data = NULL;
1440 	blk_execute_rq_nowait(abort_req, false, abort_endio);
1441 
1442 	/*
1443 	 * The aborted req will be completed on receiving the abort req.
1444 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1445 	 * as the device then is in a faulty state.
1446 	 */
1447 	return BLK_EH_RESET_TIMER;
1448 }
1449 
1450 static void nvme_free_queue(struct nvme_queue *nvmeq)
1451 {
1452 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1453 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1454 	if (!nvmeq->sq_cmds)
1455 		return;
1456 
1457 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1458 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1459 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1460 	} else {
1461 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1462 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1463 	}
1464 }
1465 
1466 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1467 {
1468 	int i;
1469 
1470 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1471 		dev->ctrl.queue_count--;
1472 		nvme_free_queue(&dev->queues[i]);
1473 	}
1474 }
1475 
1476 /**
1477  * nvme_suspend_queue - put queue into suspended state
1478  * @nvmeq: queue to suspend
1479  */
1480 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1481 {
1482 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1483 		return 1;
1484 
1485 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1486 	mb();
1487 
1488 	nvmeq->dev->online_queues--;
1489 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1490 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1491 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1492 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1493 	return 0;
1494 }
1495 
1496 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1497 {
1498 	int i;
1499 
1500 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1501 		nvme_suspend_queue(&dev->queues[i]);
1502 }
1503 
1504 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1505 {
1506 	struct nvme_queue *nvmeq = &dev->queues[0];
1507 
1508 	if (shutdown)
1509 		nvme_shutdown_ctrl(&dev->ctrl);
1510 	else
1511 		nvme_disable_ctrl(&dev->ctrl);
1512 
1513 	nvme_poll_irqdisable(nvmeq);
1514 }
1515 
1516 /*
1517  * Called only on a device that has been disabled and after all other threads
1518  * that can check this device's completion queues have synced, except
1519  * nvme_poll(). This is the last chance for the driver to see a natural
1520  * completion before nvme_cancel_request() terminates all incomplete requests.
1521  */
1522 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1523 {
1524 	int i;
1525 
1526 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1527 		spin_lock(&dev->queues[i].cq_poll_lock);
1528 		nvme_poll_cq(&dev->queues[i], NULL);
1529 		spin_unlock(&dev->queues[i].cq_poll_lock);
1530 	}
1531 }
1532 
1533 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1534 				int entry_size)
1535 {
1536 	int q_depth = dev->q_depth;
1537 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1538 					  NVME_CTRL_PAGE_SIZE);
1539 
1540 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1541 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1542 
1543 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1544 		q_depth = div_u64(mem_per_q, entry_size);
1545 
1546 		/*
1547 		 * Ensure the reduced q_depth is above some threshold where it
1548 		 * would be better to map queues in system memory with the
1549 		 * original depth
1550 		 */
1551 		if (q_depth < 64)
1552 			return -ENOMEM;
1553 	}
1554 
1555 	return q_depth;
1556 }
1557 
1558 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1559 				int qid)
1560 {
1561 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1562 
1563 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1564 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1565 		if (nvmeq->sq_cmds) {
1566 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1567 							nvmeq->sq_cmds);
1568 			if (nvmeq->sq_dma_addr) {
1569 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1570 				return 0;
1571 			}
1572 
1573 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1574 		}
1575 	}
1576 
1577 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1578 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1579 	if (!nvmeq->sq_cmds)
1580 		return -ENOMEM;
1581 	return 0;
1582 }
1583 
1584 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1585 {
1586 	struct nvme_queue *nvmeq = &dev->queues[qid];
1587 
1588 	if (dev->ctrl.queue_count > qid)
1589 		return 0;
1590 
1591 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1592 	nvmeq->q_depth = depth;
1593 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1594 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1595 	if (!nvmeq->cqes)
1596 		goto free_nvmeq;
1597 
1598 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1599 		goto free_cqdma;
1600 
1601 	nvmeq->dev = dev;
1602 	spin_lock_init(&nvmeq->sq_lock);
1603 	spin_lock_init(&nvmeq->cq_poll_lock);
1604 	nvmeq->cq_head = 0;
1605 	nvmeq->cq_phase = 1;
1606 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1607 	nvmeq->qid = qid;
1608 	dev->ctrl.queue_count++;
1609 
1610 	return 0;
1611 
1612  free_cqdma:
1613 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1614 			  nvmeq->cq_dma_addr);
1615  free_nvmeq:
1616 	return -ENOMEM;
1617 }
1618 
1619 static int queue_request_irq(struct nvme_queue *nvmeq)
1620 {
1621 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1622 	int nr = nvmeq->dev->ctrl.instance;
1623 
1624 	if (use_threaded_interrupts) {
1625 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1626 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1627 	} else {
1628 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1629 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1630 	}
1631 }
1632 
1633 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1634 {
1635 	struct nvme_dev *dev = nvmeq->dev;
1636 
1637 	nvmeq->sq_tail = 0;
1638 	nvmeq->last_sq_tail = 0;
1639 	nvmeq->cq_head = 0;
1640 	nvmeq->cq_phase = 1;
1641 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1642 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1643 	nvme_dbbuf_init(dev, nvmeq, qid);
1644 	dev->online_queues++;
1645 	wmb(); /* ensure the first interrupt sees the initialization */
1646 }
1647 
1648 /*
1649  * Try getting shutdown_lock while setting up IO queues.
1650  */
1651 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1652 {
1653 	/*
1654 	 * Give up if the lock is being held by nvme_dev_disable.
1655 	 */
1656 	if (!mutex_trylock(&dev->shutdown_lock))
1657 		return -ENODEV;
1658 
1659 	/*
1660 	 * Controller is in wrong state, fail early.
1661 	 */
1662 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1663 		mutex_unlock(&dev->shutdown_lock);
1664 		return -ENODEV;
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1671 {
1672 	struct nvme_dev *dev = nvmeq->dev;
1673 	int result;
1674 	u16 vector = 0;
1675 
1676 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1677 
1678 	/*
1679 	 * A queue's vector matches the queue identifier unless the controller
1680 	 * has only one vector available.
1681 	 */
1682 	if (!polled)
1683 		vector = dev->num_vecs == 1 ? 0 : qid;
1684 	else
1685 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1686 
1687 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1688 	if (result)
1689 		return result;
1690 
1691 	result = adapter_alloc_sq(dev, qid, nvmeq);
1692 	if (result < 0)
1693 		return result;
1694 	if (result)
1695 		goto release_cq;
1696 
1697 	nvmeq->cq_vector = vector;
1698 
1699 	result = nvme_setup_io_queues_trylock(dev);
1700 	if (result)
1701 		return result;
1702 	nvme_init_queue(nvmeq, qid);
1703 	if (!polled) {
1704 		result = queue_request_irq(nvmeq);
1705 		if (result < 0)
1706 			goto release_sq;
1707 	}
1708 
1709 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710 	mutex_unlock(&dev->shutdown_lock);
1711 	return result;
1712 
1713 release_sq:
1714 	dev->online_queues--;
1715 	mutex_unlock(&dev->shutdown_lock);
1716 	adapter_delete_sq(dev, qid);
1717 release_cq:
1718 	adapter_delete_cq(dev, qid);
1719 	return result;
1720 }
1721 
1722 static const struct blk_mq_ops nvme_mq_admin_ops = {
1723 	.queue_rq	= nvme_queue_rq,
1724 	.complete	= nvme_pci_complete_rq,
1725 	.init_hctx	= nvme_admin_init_hctx,
1726 	.init_request	= nvme_init_request,
1727 	.timeout	= nvme_timeout,
1728 };
1729 
1730 static const struct blk_mq_ops nvme_mq_ops = {
1731 	.queue_rq	= nvme_queue_rq,
1732 	.queue_rqs	= nvme_queue_rqs,
1733 	.complete	= nvme_pci_complete_rq,
1734 	.commit_rqs	= nvme_commit_rqs,
1735 	.init_hctx	= nvme_init_hctx,
1736 	.init_request	= nvme_init_request,
1737 	.map_queues	= nvme_pci_map_queues,
1738 	.timeout	= nvme_timeout,
1739 	.poll		= nvme_poll,
1740 };
1741 
1742 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1743 {
1744 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1745 		/*
1746 		 * If the controller was reset during removal, it's possible
1747 		 * user requests may be waiting on a stopped queue. Start the
1748 		 * queue to flush these to completion.
1749 		 */
1750 		nvme_start_admin_queue(&dev->ctrl);
1751 		blk_cleanup_queue(dev->ctrl.admin_q);
1752 		blk_mq_free_tag_set(&dev->admin_tagset);
1753 	}
1754 }
1755 
1756 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1757 {
1758 	if (!dev->ctrl.admin_q) {
1759 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1760 		dev->admin_tagset.nr_hw_queues = 1;
1761 
1762 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1763 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1764 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1765 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1766 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1767 		dev->admin_tagset.driver_data = dev;
1768 
1769 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1770 			return -ENOMEM;
1771 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1772 
1773 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1774 		if (IS_ERR(dev->ctrl.admin_q)) {
1775 			blk_mq_free_tag_set(&dev->admin_tagset);
1776 			return -ENOMEM;
1777 		}
1778 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1779 			nvme_dev_remove_admin(dev);
1780 			dev->ctrl.admin_q = NULL;
1781 			return -ENODEV;
1782 		}
1783 	} else
1784 		nvme_start_admin_queue(&dev->ctrl);
1785 
1786 	return 0;
1787 }
1788 
1789 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1790 {
1791 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1792 }
1793 
1794 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1795 {
1796 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1797 
1798 	if (size <= dev->bar_mapped_size)
1799 		return 0;
1800 	if (size > pci_resource_len(pdev, 0))
1801 		return -ENOMEM;
1802 	if (dev->bar)
1803 		iounmap(dev->bar);
1804 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1805 	if (!dev->bar) {
1806 		dev->bar_mapped_size = 0;
1807 		return -ENOMEM;
1808 	}
1809 	dev->bar_mapped_size = size;
1810 	dev->dbs = dev->bar + NVME_REG_DBS;
1811 
1812 	return 0;
1813 }
1814 
1815 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1816 {
1817 	int result;
1818 	u32 aqa;
1819 	struct nvme_queue *nvmeq;
1820 
1821 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1822 	if (result < 0)
1823 		return result;
1824 
1825 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1826 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1827 
1828 	if (dev->subsystem &&
1829 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1830 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1831 
1832 	result = nvme_disable_ctrl(&dev->ctrl);
1833 	if (result < 0)
1834 		return result;
1835 
1836 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1837 	if (result)
1838 		return result;
1839 
1840 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1841 
1842 	nvmeq = &dev->queues[0];
1843 	aqa = nvmeq->q_depth - 1;
1844 	aqa |= aqa << 16;
1845 
1846 	writel(aqa, dev->bar + NVME_REG_AQA);
1847 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1848 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1849 
1850 	result = nvme_enable_ctrl(&dev->ctrl);
1851 	if (result)
1852 		return result;
1853 
1854 	nvmeq->cq_vector = 0;
1855 	nvme_init_queue(nvmeq, 0);
1856 	result = queue_request_irq(nvmeq);
1857 	if (result) {
1858 		dev->online_queues--;
1859 		return result;
1860 	}
1861 
1862 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1863 	return result;
1864 }
1865 
1866 static int nvme_create_io_queues(struct nvme_dev *dev)
1867 {
1868 	unsigned i, max, rw_queues;
1869 	int ret = 0;
1870 
1871 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1872 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1873 			ret = -ENOMEM;
1874 			break;
1875 		}
1876 	}
1877 
1878 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1879 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1880 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1881 				dev->io_queues[HCTX_TYPE_READ];
1882 	} else {
1883 		rw_queues = max;
1884 	}
1885 
1886 	for (i = dev->online_queues; i <= max; i++) {
1887 		bool polled = i > rw_queues;
1888 
1889 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1890 		if (ret)
1891 			break;
1892 	}
1893 
1894 	/*
1895 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1896 	 * than the desired amount of queues, and even a controller without
1897 	 * I/O queues can still be used to issue admin commands.  This might
1898 	 * be useful to upgrade a buggy firmware for example.
1899 	 */
1900 	return ret >= 0 ? 0 : ret;
1901 }
1902 
1903 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1904 {
1905 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1906 
1907 	return 1ULL << (12 + 4 * szu);
1908 }
1909 
1910 static u32 nvme_cmb_size(struct nvme_dev *dev)
1911 {
1912 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1913 }
1914 
1915 static void nvme_map_cmb(struct nvme_dev *dev)
1916 {
1917 	u64 size, offset;
1918 	resource_size_t bar_size;
1919 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1920 	int bar;
1921 
1922 	if (dev->cmb_size)
1923 		return;
1924 
1925 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1926 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1927 
1928 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1929 	if (!dev->cmbsz)
1930 		return;
1931 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1932 
1933 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1934 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1935 	bar = NVME_CMB_BIR(dev->cmbloc);
1936 	bar_size = pci_resource_len(pdev, bar);
1937 
1938 	if (offset > bar_size)
1939 		return;
1940 
1941 	/*
1942 	 * Tell the controller about the host side address mapping the CMB,
1943 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1944 	 */
1945 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1946 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1947 			     (pci_bus_address(pdev, bar) + offset),
1948 			     dev->bar + NVME_REG_CMBMSC);
1949 	}
1950 
1951 	/*
1952 	 * Controllers may support a CMB size larger than their BAR,
1953 	 * for example, due to being behind a bridge. Reduce the CMB to
1954 	 * the reported size of the BAR
1955 	 */
1956 	if (size > bar_size - offset)
1957 		size = bar_size - offset;
1958 
1959 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1960 		dev_warn(dev->ctrl.device,
1961 			 "failed to register the CMB\n");
1962 		return;
1963 	}
1964 
1965 	dev->cmb_size = size;
1966 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1967 
1968 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1969 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1970 		pci_p2pmem_publish(pdev, true);
1971 }
1972 
1973 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1974 {
1975 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1976 	u64 dma_addr = dev->host_mem_descs_dma;
1977 	struct nvme_command c = { };
1978 	int ret;
1979 
1980 	c.features.opcode	= nvme_admin_set_features;
1981 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1982 	c.features.dword11	= cpu_to_le32(bits);
1983 	c.features.dword12	= cpu_to_le32(host_mem_size);
1984 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1985 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1986 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1987 
1988 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1989 	if (ret) {
1990 		dev_warn(dev->ctrl.device,
1991 			 "failed to set host mem (err %d, flags %#x).\n",
1992 			 ret, bits);
1993 	} else
1994 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1995 
1996 	return ret;
1997 }
1998 
1999 static void nvme_free_host_mem(struct nvme_dev *dev)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2004 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2005 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2006 
2007 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2008 			       le64_to_cpu(desc->addr),
2009 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2010 	}
2011 
2012 	kfree(dev->host_mem_desc_bufs);
2013 	dev->host_mem_desc_bufs = NULL;
2014 	dma_free_coherent(dev->dev,
2015 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2016 			dev->host_mem_descs, dev->host_mem_descs_dma);
2017 	dev->host_mem_descs = NULL;
2018 	dev->nr_host_mem_descs = 0;
2019 }
2020 
2021 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2022 		u32 chunk_size)
2023 {
2024 	struct nvme_host_mem_buf_desc *descs;
2025 	u32 max_entries, len;
2026 	dma_addr_t descs_dma;
2027 	int i = 0;
2028 	void **bufs;
2029 	u64 size, tmp;
2030 
2031 	tmp = (preferred + chunk_size - 1);
2032 	do_div(tmp, chunk_size);
2033 	max_entries = tmp;
2034 
2035 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2036 		max_entries = dev->ctrl.hmmaxd;
2037 
2038 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2039 				   &descs_dma, GFP_KERNEL);
2040 	if (!descs)
2041 		goto out;
2042 
2043 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2044 	if (!bufs)
2045 		goto out_free_descs;
2046 
2047 	for (size = 0; size < preferred && i < max_entries; size += len) {
2048 		dma_addr_t dma_addr;
2049 
2050 		len = min_t(u64, chunk_size, preferred - size);
2051 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2052 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2053 		if (!bufs[i])
2054 			break;
2055 
2056 		descs[i].addr = cpu_to_le64(dma_addr);
2057 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2058 		i++;
2059 	}
2060 
2061 	if (!size)
2062 		goto out_free_bufs;
2063 
2064 	dev->nr_host_mem_descs = i;
2065 	dev->host_mem_size = size;
2066 	dev->host_mem_descs = descs;
2067 	dev->host_mem_descs_dma = descs_dma;
2068 	dev->host_mem_desc_bufs = bufs;
2069 	return 0;
2070 
2071 out_free_bufs:
2072 	while (--i >= 0) {
2073 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2074 
2075 		dma_free_attrs(dev->dev, size, bufs[i],
2076 			       le64_to_cpu(descs[i].addr),
2077 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2078 	}
2079 
2080 	kfree(bufs);
2081 out_free_descs:
2082 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2083 			descs_dma);
2084 out:
2085 	dev->host_mem_descs = NULL;
2086 	return -ENOMEM;
2087 }
2088 
2089 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2090 {
2091 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2092 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2093 	u64 chunk_size;
2094 
2095 	/* start big and work our way down */
2096 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2097 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2098 			if (!min || dev->host_mem_size >= min)
2099 				return 0;
2100 			nvme_free_host_mem(dev);
2101 		}
2102 	}
2103 
2104 	return -ENOMEM;
2105 }
2106 
2107 static int nvme_setup_host_mem(struct nvme_dev *dev)
2108 {
2109 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2110 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2111 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2112 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2113 	int ret;
2114 
2115 	preferred = min(preferred, max);
2116 	if (min > max) {
2117 		dev_warn(dev->ctrl.device,
2118 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2119 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2120 		nvme_free_host_mem(dev);
2121 		return 0;
2122 	}
2123 
2124 	/*
2125 	 * If we already have a buffer allocated check if we can reuse it.
2126 	 */
2127 	if (dev->host_mem_descs) {
2128 		if (dev->host_mem_size >= min)
2129 			enable_bits |= NVME_HOST_MEM_RETURN;
2130 		else
2131 			nvme_free_host_mem(dev);
2132 	}
2133 
2134 	if (!dev->host_mem_descs) {
2135 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2136 			dev_warn(dev->ctrl.device,
2137 				"failed to allocate host memory buffer.\n");
2138 			return 0; /* controller must work without HMB */
2139 		}
2140 
2141 		dev_info(dev->ctrl.device,
2142 			"allocated %lld MiB host memory buffer.\n",
2143 			dev->host_mem_size >> ilog2(SZ_1M));
2144 	}
2145 
2146 	ret = nvme_set_host_mem(dev, enable_bits);
2147 	if (ret)
2148 		nvme_free_host_mem(dev);
2149 	return ret;
2150 }
2151 
2152 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2153 		char *buf)
2154 {
2155 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2156 
2157 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2158 		       ndev->cmbloc, ndev->cmbsz);
2159 }
2160 static DEVICE_ATTR_RO(cmb);
2161 
2162 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2163 		char *buf)
2164 {
2165 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2166 
2167 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2168 }
2169 static DEVICE_ATTR_RO(cmbloc);
2170 
2171 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2172 		char *buf)
2173 {
2174 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2175 
2176 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2177 }
2178 static DEVICE_ATTR_RO(cmbsz);
2179 
2180 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2181 			char *buf)
2182 {
2183 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2184 
2185 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2186 }
2187 
2188 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2189 			 const char *buf, size_t count)
2190 {
2191 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2192 	bool new;
2193 	int ret;
2194 
2195 	if (strtobool(buf, &new) < 0)
2196 		return -EINVAL;
2197 
2198 	if (new == ndev->hmb)
2199 		return count;
2200 
2201 	if (new) {
2202 		ret = nvme_setup_host_mem(ndev);
2203 	} else {
2204 		ret = nvme_set_host_mem(ndev, 0);
2205 		if (!ret)
2206 			nvme_free_host_mem(ndev);
2207 	}
2208 
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	return count;
2213 }
2214 static DEVICE_ATTR_RW(hmb);
2215 
2216 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2217 		struct attribute *a, int n)
2218 {
2219 	struct nvme_ctrl *ctrl =
2220 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2221 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2222 
2223 	if (a == &dev_attr_cmb.attr ||
2224 	    a == &dev_attr_cmbloc.attr ||
2225 	    a == &dev_attr_cmbsz.attr) {
2226 	    	if (!dev->cmbsz)
2227 			return 0;
2228 	}
2229 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2230 		return 0;
2231 
2232 	return a->mode;
2233 }
2234 
2235 static struct attribute *nvme_pci_attrs[] = {
2236 	&dev_attr_cmb.attr,
2237 	&dev_attr_cmbloc.attr,
2238 	&dev_attr_cmbsz.attr,
2239 	&dev_attr_hmb.attr,
2240 	NULL,
2241 };
2242 
2243 static const struct attribute_group nvme_pci_attr_group = {
2244 	.attrs		= nvme_pci_attrs,
2245 	.is_visible	= nvme_pci_attrs_are_visible,
2246 };
2247 
2248 /*
2249  * nirqs is the number of interrupts available for write and read
2250  * queues. The core already reserved an interrupt for the admin queue.
2251  */
2252 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2253 {
2254 	struct nvme_dev *dev = affd->priv;
2255 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2256 
2257 	/*
2258 	 * If there is no interrupt available for queues, ensure that
2259 	 * the default queue is set to 1. The affinity set size is
2260 	 * also set to one, but the irq core ignores it for this case.
2261 	 *
2262 	 * If only one interrupt is available or 'write_queue' == 0, combine
2263 	 * write and read queues.
2264 	 *
2265 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2266 	 * queue.
2267 	 */
2268 	if (!nrirqs) {
2269 		nrirqs = 1;
2270 		nr_read_queues = 0;
2271 	} else if (nrirqs == 1 || !nr_write_queues) {
2272 		nr_read_queues = 0;
2273 	} else if (nr_write_queues >= nrirqs) {
2274 		nr_read_queues = 1;
2275 	} else {
2276 		nr_read_queues = nrirqs - nr_write_queues;
2277 	}
2278 
2279 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2282 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2283 	affd->nr_sets = nr_read_queues ? 2 : 1;
2284 }
2285 
2286 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2287 {
2288 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2289 	struct irq_affinity affd = {
2290 		.pre_vectors	= 1,
2291 		.calc_sets	= nvme_calc_irq_sets,
2292 		.priv		= dev,
2293 	};
2294 	unsigned int irq_queues, poll_queues;
2295 
2296 	/*
2297 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2298 	 * left over for non-polled I/O.
2299 	 */
2300 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2301 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2302 
2303 	/*
2304 	 * Initialize for the single interrupt case, will be updated in
2305 	 * nvme_calc_irq_sets().
2306 	 */
2307 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2308 	dev->io_queues[HCTX_TYPE_READ] = 0;
2309 
2310 	/*
2311 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2312 	 * but some Apple controllers require all queues to use the first
2313 	 * vector.
2314 	 */
2315 	irq_queues = 1;
2316 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2317 		irq_queues += (nr_io_queues - poll_queues);
2318 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2319 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2320 }
2321 
2322 static void nvme_disable_io_queues(struct nvme_dev *dev)
2323 {
2324 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2325 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2326 }
2327 
2328 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2329 {
2330 	/*
2331 	 * If tags are shared with admin queue (Apple bug), then
2332 	 * make sure we only use one IO queue.
2333 	 */
2334 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2335 		return 1;
2336 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2337 }
2338 
2339 static int nvme_setup_io_queues(struct nvme_dev *dev)
2340 {
2341 	struct nvme_queue *adminq = &dev->queues[0];
2342 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2343 	unsigned int nr_io_queues;
2344 	unsigned long size;
2345 	int result;
2346 
2347 	/*
2348 	 * Sample the module parameters once at reset time so that we have
2349 	 * stable values to work with.
2350 	 */
2351 	dev->nr_write_queues = write_queues;
2352 	dev->nr_poll_queues = poll_queues;
2353 
2354 	nr_io_queues = dev->nr_allocated_queues - 1;
2355 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2356 	if (result < 0)
2357 		return result;
2358 
2359 	if (nr_io_queues == 0)
2360 		return 0;
2361 
2362 	/*
2363 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2364 	 * from set to unset. If there is a window to it is truely freed,
2365 	 * pci_free_irq_vectors() jumping into this window will crash.
2366 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2367 	 * nvme_dev_disable() path.
2368 	 */
2369 	result = nvme_setup_io_queues_trylock(dev);
2370 	if (result)
2371 		return result;
2372 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2373 		pci_free_irq(pdev, 0, adminq);
2374 
2375 	if (dev->cmb_use_sqes) {
2376 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2377 				sizeof(struct nvme_command));
2378 		if (result > 0)
2379 			dev->q_depth = result;
2380 		else
2381 			dev->cmb_use_sqes = false;
2382 	}
2383 
2384 	do {
2385 		size = db_bar_size(dev, nr_io_queues);
2386 		result = nvme_remap_bar(dev, size);
2387 		if (!result)
2388 			break;
2389 		if (!--nr_io_queues) {
2390 			result = -ENOMEM;
2391 			goto out_unlock;
2392 		}
2393 	} while (1);
2394 	adminq->q_db = dev->dbs;
2395 
2396  retry:
2397 	/* Deregister the admin queue's interrupt */
2398 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2399 		pci_free_irq(pdev, 0, adminq);
2400 
2401 	/*
2402 	 * If we enable msix early due to not intx, disable it again before
2403 	 * setting up the full range we need.
2404 	 */
2405 	pci_free_irq_vectors(pdev);
2406 
2407 	result = nvme_setup_irqs(dev, nr_io_queues);
2408 	if (result <= 0) {
2409 		result = -EIO;
2410 		goto out_unlock;
2411 	}
2412 
2413 	dev->num_vecs = result;
2414 	result = max(result - 1, 1);
2415 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2416 
2417 	/*
2418 	 * Should investigate if there's a performance win from allocating
2419 	 * more queues than interrupt vectors; it might allow the submission
2420 	 * path to scale better, even if the receive path is limited by the
2421 	 * number of interrupts.
2422 	 */
2423 	result = queue_request_irq(adminq);
2424 	if (result)
2425 		goto out_unlock;
2426 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2427 	mutex_unlock(&dev->shutdown_lock);
2428 
2429 	result = nvme_create_io_queues(dev);
2430 	if (result || dev->online_queues < 2)
2431 		return result;
2432 
2433 	if (dev->online_queues - 1 < dev->max_qid) {
2434 		nr_io_queues = dev->online_queues - 1;
2435 		nvme_disable_io_queues(dev);
2436 		result = nvme_setup_io_queues_trylock(dev);
2437 		if (result)
2438 			return result;
2439 		nvme_suspend_io_queues(dev);
2440 		goto retry;
2441 	}
2442 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2443 					dev->io_queues[HCTX_TYPE_DEFAULT],
2444 					dev->io_queues[HCTX_TYPE_READ],
2445 					dev->io_queues[HCTX_TYPE_POLL]);
2446 	return 0;
2447 out_unlock:
2448 	mutex_unlock(&dev->shutdown_lock);
2449 	return result;
2450 }
2451 
2452 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2453 {
2454 	struct nvme_queue *nvmeq = req->end_io_data;
2455 
2456 	blk_mq_free_request(req);
2457 	complete(&nvmeq->delete_done);
2458 }
2459 
2460 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2461 {
2462 	struct nvme_queue *nvmeq = req->end_io_data;
2463 
2464 	if (error)
2465 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2466 
2467 	nvme_del_queue_end(req, error);
2468 }
2469 
2470 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2471 {
2472 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2473 	struct request *req;
2474 	struct nvme_command cmd = { };
2475 
2476 	cmd.delete_queue.opcode = opcode;
2477 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2478 
2479 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2480 	if (IS_ERR(req))
2481 		return PTR_ERR(req);
2482 
2483 	req->end_io_data = nvmeq;
2484 
2485 	init_completion(&nvmeq->delete_done);
2486 	blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ?
2487 			nvme_del_cq_end : nvme_del_queue_end);
2488 	return 0;
2489 }
2490 
2491 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2492 {
2493 	int nr_queues = dev->online_queues - 1, sent = 0;
2494 	unsigned long timeout;
2495 
2496  retry:
2497 	timeout = NVME_ADMIN_TIMEOUT;
2498 	while (nr_queues > 0) {
2499 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2500 			break;
2501 		nr_queues--;
2502 		sent++;
2503 	}
2504 	while (sent) {
2505 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2506 
2507 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2508 				timeout);
2509 		if (timeout == 0)
2510 			return false;
2511 
2512 		sent--;
2513 		if (nr_queues)
2514 			goto retry;
2515 	}
2516 	return true;
2517 }
2518 
2519 static void nvme_dev_add(struct nvme_dev *dev)
2520 {
2521 	int ret;
2522 
2523 	if (!dev->ctrl.tagset) {
2524 		dev->tagset.ops = &nvme_mq_ops;
2525 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2526 		dev->tagset.nr_maps = 2; /* default + read */
2527 		if (dev->io_queues[HCTX_TYPE_POLL])
2528 			dev->tagset.nr_maps++;
2529 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2530 		dev->tagset.numa_node = dev->ctrl.numa_node;
2531 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2532 						BLK_MQ_MAX_DEPTH) - 1;
2533 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2534 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2535 		dev->tagset.driver_data = dev;
2536 
2537 		/*
2538 		 * Some Apple controllers requires tags to be unique
2539 		 * across admin and IO queue, so reserve the first 32
2540 		 * tags of the IO queue.
2541 		 */
2542 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2543 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2544 
2545 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2546 		if (ret) {
2547 			dev_warn(dev->ctrl.device,
2548 				"IO queues tagset allocation failed %d\n", ret);
2549 			return;
2550 		}
2551 		dev->ctrl.tagset = &dev->tagset;
2552 	} else {
2553 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2554 
2555 		/* Free previously allocated queues that are no longer usable */
2556 		nvme_free_queues(dev, dev->online_queues);
2557 	}
2558 
2559 	nvme_dbbuf_set(dev);
2560 }
2561 
2562 static int nvme_pci_enable(struct nvme_dev *dev)
2563 {
2564 	int result = -ENOMEM;
2565 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2566 	int dma_address_bits = 64;
2567 
2568 	if (pci_enable_device_mem(pdev))
2569 		return result;
2570 
2571 	pci_set_master(pdev);
2572 
2573 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2574 		dma_address_bits = 48;
2575 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2576 		goto disable;
2577 
2578 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2579 		result = -ENODEV;
2580 		goto disable;
2581 	}
2582 
2583 	/*
2584 	 * Some devices and/or platforms don't advertise or work with INTx
2585 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2586 	 * adjust this later.
2587 	 */
2588 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2589 	if (result < 0)
2590 		return result;
2591 
2592 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2593 
2594 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2595 				io_queue_depth);
2596 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2597 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2598 	dev->dbs = dev->bar + 4096;
2599 
2600 	/*
2601 	 * Some Apple controllers require a non-standard SQE size.
2602 	 * Interestingly they also seem to ignore the CC:IOSQES register
2603 	 * so we don't bother updating it here.
2604 	 */
2605 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2606 		dev->io_sqes = 7;
2607 	else
2608 		dev->io_sqes = NVME_NVM_IOSQES;
2609 
2610 	/*
2611 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2612 	 * some MacBook7,1 to avoid controller resets and data loss.
2613 	 */
2614 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2615 		dev->q_depth = 2;
2616 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2617 			"set queue depth=%u to work around controller resets\n",
2618 			dev->q_depth);
2619 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2620 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2621 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2622 		dev->q_depth = 64;
2623 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2624                         "set queue depth=%u\n", dev->q_depth);
2625 	}
2626 
2627 	/*
2628 	 * Controllers with the shared tags quirk need the IO queue to be
2629 	 * big enough so that we get 32 tags for the admin queue
2630 	 */
2631 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2632 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2633 		dev->q_depth = NVME_AQ_DEPTH + 2;
2634 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2635 			 dev->q_depth);
2636 	}
2637 
2638 
2639 	nvme_map_cmb(dev);
2640 
2641 	pci_enable_pcie_error_reporting(pdev);
2642 	pci_save_state(pdev);
2643 	return 0;
2644 
2645  disable:
2646 	pci_disable_device(pdev);
2647 	return result;
2648 }
2649 
2650 static void nvme_dev_unmap(struct nvme_dev *dev)
2651 {
2652 	if (dev->bar)
2653 		iounmap(dev->bar);
2654 	pci_release_mem_regions(to_pci_dev(dev->dev));
2655 }
2656 
2657 static void nvme_pci_disable(struct nvme_dev *dev)
2658 {
2659 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2660 
2661 	pci_free_irq_vectors(pdev);
2662 
2663 	if (pci_is_enabled(pdev)) {
2664 		pci_disable_pcie_error_reporting(pdev);
2665 		pci_disable_device(pdev);
2666 	}
2667 }
2668 
2669 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2670 {
2671 	bool dead = true, freeze = false;
2672 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2673 
2674 	mutex_lock(&dev->shutdown_lock);
2675 	if (pci_is_enabled(pdev)) {
2676 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2677 
2678 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2679 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2680 			freeze = true;
2681 			nvme_start_freeze(&dev->ctrl);
2682 		}
2683 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2684 			pdev->error_state  != pci_channel_io_normal);
2685 	}
2686 
2687 	/*
2688 	 * Give the controller a chance to complete all entered requests if
2689 	 * doing a safe shutdown.
2690 	 */
2691 	if (!dead && shutdown && freeze)
2692 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2693 
2694 	nvme_stop_queues(&dev->ctrl);
2695 
2696 	if (!dead && dev->ctrl.queue_count > 0) {
2697 		nvme_disable_io_queues(dev);
2698 		nvme_disable_admin_queue(dev, shutdown);
2699 	}
2700 	nvme_suspend_io_queues(dev);
2701 	nvme_suspend_queue(&dev->queues[0]);
2702 	nvme_pci_disable(dev);
2703 	nvme_reap_pending_cqes(dev);
2704 
2705 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2706 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2707 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2708 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2709 
2710 	/*
2711 	 * The driver will not be starting up queues again if shutting down so
2712 	 * must flush all entered requests to their failed completion to avoid
2713 	 * deadlocking blk-mq hot-cpu notifier.
2714 	 */
2715 	if (shutdown) {
2716 		nvme_start_queues(&dev->ctrl);
2717 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2718 			nvme_start_admin_queue(&dev->ctrl);
2719 	}
2720 	mutex_unlock(&dev->shutdown_lock);
2721 }
2722 
2723 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2724 {
2725 	if (!nvme_wait_reset(&dev->ctrl))
2726 		return -EBUSY;
2727 	nvme_dev_disable(dev, shutdown);
2728 	return 0;
2729 }
2730 
2731 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2732 {
2733 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2734 						NVME_CTRL_PAGE_SIZE,
2735 						NVME_CTRL_PAGE_SIZE, 0);
2736 	if (!dev->prp_page_pool)
2737 		return -ENOMEM;
2738 
2739 	/* Optimisation for I/Os between 4k and 128k */
2740 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2741 						256, 256, 0);
2742 	if (!dev->prp_small_pool) {
2743 		dma_pool_destroy(dev->prp_page_pool);
2744 		return -ENOMEM;
2745 	}
2746 	return 0;
2747 }
2748 
2749 static void nvme_release_prp_pools(struct nvme_dev *dev)
2750 {
2751 	dma_pool_destroy(dev->prp_page_pool);
2752 	dma_pool_destroy(dev->prp_small_pool);
2753 }
2754 
2755 static void nvme_free_tagset(struct nvme_dev *dev)
2756 {
2757 	if (dev->tagset.tags)
2758 		blk_mq_free_tag_set(&dev->tagset);
2759 	dev->ctrl.tagset = NULL;
2760 }
2761 
2762 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2763 {
2764 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2765 
2766 	nvme_dbbuf_dma_free(dev);
2767 	nvme_free_tagset(dev);
2768 	if (dev->ctrl.admin_q)
2769 		blk_put_queue(dev->ctrl.admin_q);
2770 	free_opal_dev(dev->ctrl.opal_dev);
2771 	mempool_destroy(dev->iod_mempool);
2772 	put_device(dev->dev);
2773 	kfree(dev->queues);
2774 	kfree(dev);
2775 }
2776 
2777 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2778 {
2779 	/*
2780 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2781 	 * may be holding this pci_dev's device lock.
2782 	 */
2783 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784 	nvme_get_ctrl(&dev->ctrl);
2785 	nvme_dev_disable(dev, false);
2786 	nvme_kill_queues(&dev->ctrl);
2787 	if (!queue_work(nvme_wq, &dev->remove_work))
2788 		nvme_put_ctrl(&dev->ctrl);
2789 }
2790 
2791 static void nvme_reset_work(struct work_struct *work)
2792 {
2793 	struct nvme_dev *dev =
2794 		container_of(work, struct nvme_dev, ctrl.reset_work);
2795 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2796 	int result;
2797 
2798 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2799 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2800 			 dev->ctrl.state);
2801 		result = -ENODEV;
2802 		goto out;
2803 	}
2804 
2805 	/*
2806 	 * If we're called to reset a live controller first shut it down before
2807 	 * moving on.
2808 	 */
2809 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2810 		nvme_dev_disable(dev, false);
2811 	nvme_sync_queues(&dev->ctrl);
2812 
2813 	mutex_lock(&dev->shutdown_lock);
2814 	result = nvme_pci_enable(dev);
2815 	if (result)
2816 		goto out_unlock;
2817 
2818 	result = nvme_pci_configure_admin_queue(dev);
2819 	if (result)
2820 		goto out_unlock;
2821 
2822 	result = nvme_alloc_admin_tags(dev);
2823 	if (result)
2824 		goto out_unlock;
2825 
2826 	/*
2827 	 * Limit the max command size to prevent iod->sg allocations going
2828 	 * over a single page.
2829 	 */
2830 	dev->ctrl.max_hw_sectors = min_t(u32,
2831 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2832 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2833 
2834 	/*
2835 	 * Don't limit the IOMMU merged segment size.
2836 	 */
2837 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2838 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2839 
2840 	mutex_unlock(&dev->shutdown_lock);
2841 
2842 	/*
2843 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2844 	 * initializing procedure here.
2845 	 */
2846 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2847 		dev_warn(dev->ctrl.device,
2848 			"failed to mark controller CONNECTING\n");
2849 		result = -EBUSY;
2850 		goto out;
2851 	}
2852 
2853 	/*
2854 	 * We do not support an SGL for metadata (yet), so we are limited to a
2855 	 * single integrity segment for the separate metadata pointer.
2856 	 */
2857 	dev->ctrl.max_integrity_segments = 1;
2858 
2859 	result = nvme_init_ctrl_finish(&dev->ctrl);
2860 	if (result)
2861 		goto out;
2862 
2863 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2864 		if (!dev->ctrl.opal_dev)
2865 			dev->ctrl.opal_dev =
2866 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2867 		else if (was_suspend)
2868 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2869 	} else {
2870 		free_opal_dev(dev->ctrl.opal_dev);
2871 		dev->ctrl.opal_dev = NULL;
2872 	}
2873 
2874 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2875 		result = nvme_dbbuf_dma_alloc(dev);
2876 		if (result)
2877 			dev_warn(dev->dev,
2878 				 "unable to allocate dma for dbbuf\n");
2879 	}
2880 
2881 	if (dev->ctrl.hmpre) {
2882 		result = nvme_setup_host_mem(dev);
2883 		if (result < 0)
2884 			goto out;
2885 	}
2886 
2887 	result = nvme_setup_io_queues(dev);
2888 	if (result)
2889 		goto out;
2890 
2891 	/*
2892 	 * Keep the controller around but remove all namespaces if we don't have
2893 	 * any working I/O queue.
2894 	 */
2895 	if (dev->online_queues < 2) {
2896 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2897 		nvme_kill_queues(&dev->ctrl);
2898 		nvme_remove_namespaces(&dev->ctrl);
2899 		nvme_free_tagset(dev);
2900 	} else {
2901 		nvme_start_queues(&dev->ctrl);
2902 		nvme_wait_freeze(&dev->ctrl);
2903 		nvme_dev_add(dev);
2904 		nvme_unfreeze(&dev->ctrl);
2905 	}
2906 
2907 	/*
2908 	 * If only admin queue live, keep it to do further investigation or
2909 	 * recovery.
2910 	 */
2911 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2912 		dev_warn(dev->ctrl.device,
2913 			"failed to mark controller live state\n");
2914 		result = -ENODEV;
2915 		goto out;
2916 	}
2917 
2918 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2919 			&nvme_pci_attr_group))
2920 		dev->attrs_added = true;
2921 
2922 	nvme_start_ctrl(&dev->ctrl);
2923 	return;
2924 
2925  out_unlock:
2926 	mutex_unlock(&dev->shutdown_lock);
2927  out:
2928 	if (result)
2929 		dev_warn(dev->ctrl.device,
2930 			 "Removing after probe failure status: %d\n", result);
2931 	nvme_remove_dead_ctrl(dev);
2932 }
2933 
2934 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2935 {
2936 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2937 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2938 
2939 	if (pci_get_drvdata(pdev))
2940 		device_release_driver(&pdev->dev);
2941 	nvme_put_ctrl(&dev->ctrl);
2942 }
2943 
2944 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2945 {
2946 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2947 	return 0;
2948 }
2949 
2950 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2951 {
2952 	writel(val, to_nvme_dev(ctrl)->bar + off);
2953 	return 0;
2954 }
2955 
2956 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2957 {
2958 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2959 	return 0;
2960 }
2961 
2962 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2963 {
2964 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2965 
2966 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2967 }
2968 
2969 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2970 	.name			= "pcie",
2971 	.module			= THIS_MODULE,
2972 	.flags			= NVME_F_METADATA_SUPPORTED |
2973 				  NVME_F_PCI_P2PDMA,
2974 	.reg_read32		= nvme_pci_reg_read32,
2975 	.reg_write32		= nvme_pci_reg_write32,
2976 	.reg_read64		= nvme_pci_reg_read64,
2977 	.free_ctrl		= nvme_pci_free_ctrl,
2978 	.submit_async_event	= nvme_pci_submit_async_event,
2979 	.get_address		= nvme_pci_get_address,
2980 };
2981 
2982 static int nvme_dev_map(struct nvme_dev *dev)
2983 {
2984 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2985 
2986 	if (pci_request_mem_regions(pdev, "nvme"))
2987 		return -ENODEV;
2988 
2989 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2990 		goto release;
2991 
2992 	return 0;
2993   release:
2994 	pci_release_mem_regions(pdev);
2995 	return -ENODEV;
2996 }
2997 
2998 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2999 {
3000 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3001 		/*
3002 		 * Several Samsung devices seem to drop off the PCIe bus
3003 		 * randomly when APST is on and uses the deepest sleep state.
3004 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3005 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3006 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3007 		 * laptops.
3008 		 */
3009 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3010 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3011 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3012 			return NVME_QUIRK_NO_DEEPEST_PS;
3013 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3014 		/*
3015 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3016 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3017 		 * within few minutes after bootup on a Coffee Lake board -
3018 		 * ASUS PRIME Z370-A
3019 		 */
3020 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3021 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3022 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3023 			return NVME_QUIRK_NO_APST;
3024 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3025 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3026 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3027 		/*
3028 		 * Forcing to use host managed nvme power settings for
3029 		 * lowest idle power with quick resume latency on
3030 		 * Samsung and Toshiba SSDs based on suspend behavior
3031 		 * on Coffee Lake board for LENOVO C640
3032 		 */
3033 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3034 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3035 			return NVME_QUIRK_SIMPLE_SUSPEND;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 static void nvme_async_probe(void *data, async_cookie_t cookie)
3042 {
3043 	struct nvme_dev *dev = data;
3044 
3045 	flush_work(&dev->ctrl.reset_work);
3046 	flush_work(&dev->ctrl.scan_work);
3047 	nvme_put_ctrl(&dev->ctrl);
3048 }
3049 
3050 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3051 {
3052 	int node, result = -ENOMEM;
3053 	struct nvme_dev *dev;
3054 	unsigned long quirks = id->driver_data;
3055 	size_t alloc_size;
3056 
3057 	node = dev_to_node(&pdev->dev);
3058 	if (node == NUMA_NO_NODE)
3059 		set_dev_node(&pdev->dev, first_memory_node);
3060 
3061 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3062 	if (!dev)
3063 		return -ENOMEM;
3064 
3065 	dev->nr_write_queues = write_queues;
3066 	dev->nr_poll_queues = poll_queues;
3067 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3068 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3069 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3070 	if (!dev->queues)
3071 		goto free;
3072 
3073 	dev->dev = get_device(&pdev->dev);
3074 	pci_set_drvdata(pdev, dev);
3075 
3076 	result = nvme_dev_map(dev);
3077 	if (result)
3078 		goto put_pci;
3079 
3080 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3081 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3082 	mutex_init(&dev->shutdown_lock);
3083 
3084 	result = nvme_setup_prp_pools(dev);
3085 	if (result)
3086 		goto unmap;
3087 
3088 	quirks |= check_vendor_combination_bug(pdev);
3089 
3090 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3091 		/*
3092 		 * Some systems use a bios work around to ask for D3 on
3093 		 * platforms that support kernel managed suspend.
3094 		 */
3095 		dev_info(&pdev->dev,
3096 			 "platform quirk: setting simple suspend\n");
3097 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3098 	}
3099 
3100 	/*
3101 	 * Double check that our mempool alloc size will cover the biggest
3102 	 * command we support.
3103 	 */
3104 	alloc_size = nvme_pci_iod_alloc_size();
3105 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3106 
3107 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3108 						mempool_kfree,
3109 						(void *) alloc_size,
3110 						GFP_KERNEL, node);
3111 	if (!dev->iod_mempool) {
3112 		result = -ENOMEM;
3113 		goto release_pools;
3114 	}
3115 
3116 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3117 			quirks);
3118 	if (result)
3119 		goto release_mempool;
3120 
3121 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3122 
3123 	nvme_reset_ctrl(&dev->ctrl);
3124 	async_schedule(nvme_async_probe, dev);
3125 
3126 	return 0;
3127 
3128  release_mempool:
3129 	mempool_destroy(dev->iod_mempool);
3130  release_pools:
3131 	nvme_release_prp_pools(dev);
3132  unmap:
3133 	nvme_dev_unmap(dev);
3134  put_pci:
3135 	put_device(dev->dev);
3136  free:
3137 	kfree(dev->queues);
3138 	kfree(dev);
3139 	return result;
3140 }
3141 
3142 static void nvme_reset_prepare(struct pci_dev *pdev)
3143 {
3144 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3145 
3146 	/*
3147 	 * We don't need to check the return value from waiting for the reset
3148 	 * state as pci_dev device lock is held, making it impossible to race
3149 	 * with ->remove().
3150 	 */
3151 	nvme_disable_prepare_reset(dev, false);
3152 	nvme_sync_queues(&dev->ctrl);
3153 }
3154 
3155 static void nvme_reset_done(struct pci_dev *pdev)
3156 {
3157 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3158 
3159 	if (!nvme_try_sched_reset(&dev->ctrl))
3160 		flush_work(&dev->ctrl.reset_work);
3161 }
3162 
3163 static void nvme_shutdown(struct pci_dev *pdev)
3164 {
3165 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3166 
3167 	nvme_disable_prepare_reset(dev, true);
3168 }
3169 
3170 static void nvme_remove_attrs(struct nvme_dev *dev)
3171 {
3172 	if (dev->attrs_added)
3173 		sysfs_remove_group(&dev->ctrl.device->kobj,
3174 				   &nvme_pci_attr_group);
3175 }
3176 
3177 /*
3178  * The driver's remove may be called on a device in a partially initialized
3179  * state. This function must not have any dependencies on the device state in
3180  * order to proceed.
3181  */
3182 static void nvme_remove(struct pci_dev *pdev)
3183 {
3184 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3185 
3186 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3187 	pci_set_drvdata(pdev, NULL);
3188 
3189 	if (!pci_device_is_present(pdev)) {
3190 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3191 		nvme_dev_disable(dev, true);
3192 	}
3193 
3194 	flush_work(&dev->ctrl.reset_work);
3195 	nvme_stop_ctrl(&dev->ctrl);
3196 	nvme_remove_namespaces(&dev->ctrl);
3197 	nvme_dev_disable(dev, true);
3198 	nvme_remove_attrs(dev);
3199 	nvme_free_host_mem(dev);
3200 	nvme_dev_remove_admin(dev);
3201 	nvme_free_queues(dev, 0);
3202 	nvme_release_prp_pools(dev);
3203 	nvme_dev_unmap(dev);
3204 	nvme_uninit_ctrl(&dev->ctrl);
3205 }
3206 
3207 #ifdef CONFIG_PM_SLEEP
3208 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3209 {
3210 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3211 }
3212 
3213 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3214 {
3215 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3216 }
3217 
3218 static int nvme_resume(struct device *dev)
3219 {
3220 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3221 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3222 
3223 	if (ndev->last_ps == U32_MAX ||
3224 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3225 		goto reset;
3226 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3227 		goto reset;
3228 
3229 	return 0;
3230 reset:
3231 	return nvme_try_sched_reset(ctrl);
3232 }
3233 
3234 static int nvme_suspend(struct device *dev)
3235 {
3236 	struct pci_dev *pdev = to_pci_dev(dev);
3237 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3238 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3239 	int ret = -EBUSY;
3240 
3241 	ndev->last_ps = U32_MAX;
3242 
3243 	/*
3244 	 * The platform does not remove power for a kernel managed suspend so
3245 	 * use host managed nvme power settings for lowest idle power if
3246 	 * possible. This should have quicker resume latency than a full device
3247 	 * shutdown.  But if the firmware is involved after the suspend or the
3248 	 * device does not support any non-default power states, shut down the
3249 	 * device fully.
3250 	 *
3251 	 * If ASPM is not enabled for the device, shut down the device and allow
3252 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3253 	 * down, so as to allow the platform to achieve its minimum low-power
3254 	 * state (which may not be possible if the link is up).
3255 	 */
3256 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3257 	    !pcie_aspm_enabled(pdev) ||
3258 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3259 		return nvme_disable_prepare_reset(ndev, true);
3260 
3261 	nvme_start_freeze(ctrl);
3262 	nvme_wait_freeze(ctrl);
3263 	nvme_sync_queues(ctrl);
3264 
3265 	if (ctrl->state != NVME_CTRL_LIVE)
3266 		goto unfreeze;
3267 
3268 	/*
3269 	 * Host memory access may not be successful in a system suspend state,
3270 	 * but the specification allows the controller to access memory in a
3271 	 * non-operational power state.
3272 	 */
3273 	if (ndev->hmb) {
3274 		ret = nvme_set_host_mem(ndev, 0);
3275 		if (ret < 0)
3276 			goto unfreeze;
3277 	}
3278 
3279 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3280 	if (ret < 0)
3281 		goto unfreeze;
3282 
3283 	/*
3284 	 * A saved state prevents pci pm from generically controlling the
3285 	 * device's power. If we're using protocol specific settings, we don't
3286 	 * want pci interfering.
3287 	 */
3288 	pci_save_state(pdev);
3289 
3290 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3291 	if (ret < 0)
3292 		goto unfreeze;
3293 
3294 	if (ret) {
3295 		/* discard the saved state */
3296 		pci_load_saved_state(pdev, NULL);
3297 
3298 		/*
3299 		 * Clearing npss forces a controller reset on resume. The
3300 		 * correct value will be rediscovered then.
3301 		 */
3302 		ret = nvme_disable_prepare_reset(ndev, true);
3303 		ctrl->npss = 0;
3304 	}
3305 unfreeze:
3306 	nvme_unfreeze(ctrl);
3307 	return ret;
3308 }
3309 
3310 static int nvme_simple_suspend(struct device *dev)
3311 {
3312 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3313 
3314 	return nvme_disable_prepare_reset(ndev, true);
3315 }
3316 
3317 static int nvme_simple_resume(struct device *dev)
3318 {
3319 	struct pci_dev *pdev = to_pci_dev(dev);
3320 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3321 
3322 	return nvme_try_sched_reset(&ndev->ctrl);
3323 }
3324 
3325 static const struct dev_pm_ops nvme_dev_pm_ops = {
3326 	.suspend	= nvme_suspend,
3327 	.resume		= nvme_resume,
3328 	.freeze		= nvme_simple_suspend,
3329 	.thaw		= nvme_simple_resume,
3330 	.poweroff	= nvme_simple_suspend,
3331 	.restore	= nvme_simple_resume,
3332 };
3333 #endif /* CONFIG_PM_SLEEP */
3334 
3335 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3336 						pci_channel_state_t state)
3337 {
3338 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3339 
3340 	/*
3341 	 * A frozen channel requires a reset. When detected, this method will
3342 	 * shutdown the controller to quiesce. The controller will be restarted
3343 	 * after the slot reset through driver's slot_reset callback.
3344 	 */
3345 	switch (state) {
3346 	case pci_channel_io_normal:
3347 		return PCI_ERS_RESULT_CAN_RECOVER;
3348 	case pci_channel_io_frozen:
3349 		dev_warn(dev->ctrl.device,
3350 			"frozen state error detected, reset controller\n");
3351 		nvme_dev_disable(dev, false);
3352 		return PCI_ERS_RESULT_NEED_RESET;
3353 	case pci_channel_io_perm_failure:
3354 		dev_warn(dev->ctrl.device,
3355 			"failure state error detected, request disconnect\n");
3356 		return PCI_ERS_RESULT_DISCONNECT;
3357 	}
3358 	return PCI_ERS_RESULT_NEED_RESET;
3359 }
3360 
3361 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3362 {
3363 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3364 
3365 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3366 	pci_restore_state(pdev);
3367 	nvme_reset_ctrl(&dev->ctrl);
3368 	return PCI_ERS_RESULT_RECOVERED;
3369 }
3370 
3371 static void nvme_error_resume(struct pci_dev *pdev)
3372 {
3373 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3374 
3375 	flush_work(&dev->ctrl.reset_work);
3376 }
3377 
3378 static const struct pci_error_handlers nvme_err_handler = {
3379 	.error_detected	= nvme_error_detected,
3380 	.slot_reset	= nvme_slot_reset,
3381 	.resume		= nvme_error_resume,
3382 	.reset_prepare	= nvme_reset_prepare,
3383 	.reset_done	= nvme_reset_done,
3384 };
3385 
3386 static const struct pci_device_id nvme_id_table[] = {
3387 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3388 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3389 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3390 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3391 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3392 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3393 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3394 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3395 				NVME_QUIRK_DEALLOCATE_ZEROES |
3396 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3397 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3398 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3399 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3400 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3401 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3402 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3403 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3404 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3405 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3406 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3407 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3408 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3409 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3411 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3412 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3413 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3414 				NVME_QUIRK_NO_NS_DESC_LIST, },
3415 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3416 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3417 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3418 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3419 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3420 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3421 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3422 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3423 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3424 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3425 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3426 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3427 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3428 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3429 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3430 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3431 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3432 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3433 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3434 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3435 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3436 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3437 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3438 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3440 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3441 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3442 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3443 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3444 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3445 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3446 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3447 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3448 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3449 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3450 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3451 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3452 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3453 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3454 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3455 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3456 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3457 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3458 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3459 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3460 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3461 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3462 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3463 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3464 				NVME_QUIRK_128_BYTES_SQES |
3465 				NVME_QUIRK_SHARED_TAGS |
3466 				NVME_QUIRK_SKIP_CID_GEN },
3467 
3468 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3469 	{ 0, }
3470 };
3471 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3472 
3473 static struct pci_driver nvme_driver = {
3474 	.name		= "nvme",
3475 	.id_table	= nvme_id_table,
3476 	.probe		= nvme_probe,
3477 	.remove		= nvme_remove,
3478 	.shutdown	= nvme_shutdown,
3479 #ifdef CONFIG_PM_SLEEP
3480 	.driver		= {
3481 		.pm	= &nvme_dev_pm_ops,
3482 	},
3483 #endif
3484 	.sriov_configure = pci_sriov_configure_simple,
3485 	.err_handler	= &nvme_err_handler,
3486 };
3487 
3488 static int __init nvme_init(void)
3489 {
3490 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3491 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3492 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3493 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3494 
3495 	return pci_register_driver(&nvme_driver);
3496 }
3497 
3498 static void __exit nvme_exit(void)
3499 {
3500 	pci_unregister_driver(&nvme_driver);
3501 	flush_workqueue(nvme_wq);
3502 }
3503 
3504 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3505 MODULE_LICENSE("GPL");
3506 MODULE_VERSION("1.0");
3507 module_init(nvme_init);
3508 module_exit(nvme_exit);
3509