1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 4096 45 #define NVME_MAX_SEGS 127 46 47 static int use_threaded_interrupts; 48 module_param(use_threaded_interrupts, int, 0); 49 50 static bool use_cmb_sqes = true; 51 module_param(use_cmb_sqes, bool, 0444); 52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 53 54 static unsigned int max_host_mem_size_mb = 128; 55 module_param(max_host_mem_size_mb, uint, 0444); 56 MODULE_PARM_DESC(max_host_mem_size_mb, 57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 58 59 static unsigned int sgl_threshold = SZ_32K; 60 module_param(sgl_threshold, uint, 0644); 61 MODULE_PARM_DESC(sgl_threshold, 62 "Use SGLs when average request segment size is larger or equal to " 63 "this size. Use 0 to disable SGLs."); 64 65 #define NVME_PCI_MIN_QUEUE_SIZE 2 66 #define NVME_PCI_MAX_QUEUE_SIZE 4095 67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 68 static const struct kernel_param_ops io_queue_depth_ops = { 69 .set = io_queue_depth_set, 70 .get = param_get_uint, 71 }; 72 73 static unsigned int io_queue_depth = 1024; 74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 76 77 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 78 { 79 unsigned int n; 80 int ret; 81 82 ret = kstrtouint(val, 10, &n); 83 if (ret != 0 || n > num_possible_cpus()) 84 return -EINVAL; 85 return param_set_uint(val, kp); 86 } 87 88 static const struct kernel_param_ops io_queue_count_ops = { 89 .set = io_queue_count_set, 90 .get = param_get_uint, 91 }; 92 93 static unsigned int write_queues; 94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 95 MODULE_PARM_DESC(write_queues, 96 "Number of queues to use for writes. If not set, reads and writes " 97 "will share a queue set."); 98 99 static unsigned int poll_queues; 100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 102 103 static bool noacpi; 104 module_param(noacpi, bool, 0444); 105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 106 107 struct nvme_dev; 108 struct nvme_queue; 109 110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 112 113 /* 114 * Represents an NVM Express device. Each nvme_dev is a PCI function. 115 */ 116 struct nvme_dev { 117 struct nvme_queue *queues; 118 struct blk_mq_tag_set tagset; 119 struct blk_mq_tag_set admin_tagset; 120 u32 __iomem *dbs; 121 struct device *dev; 122 struct dma_pool *prp_page_pool; 123 struct dma_pool *prp_small_pool; 124 unsigned online_queues; 125 unsigned max_qid; 126 unsigned io_queues[HCTX_MAX_TYPES]; 127 unsigned int num_vecs; 128 u32 q_depth; 129 int io_sqes; 130 u32 db_stride; 131 void __iomem *bar; 132 unsigned long bar_mapped_size; 133 struct work_struct remove_work; 134 struct mutex shutdown_lock; 135 bool subsystem; 136 u64 cmb_size; 137 bool cmb_use_sqes; 138 u32 cmbsz; 139 u32 cmbloc; 140 struct nvme_ctrl ctrl; 141 u32 last_ps; 142 bool hmb; 143 144 mempool_t *iod_mempool; 145 146 /* shadow doorbell buffer support: */ 147 u32 *dbbuf_dbs; 148 dma_addr_t dbbuf_dbs_dma_addr; 149 u32 *dbbuf_eis; 150 dma_addr_t dbbuf_eis_dma_addr; 151 152 /* host memory buffer support: */ 153 u64 host_mem_size; 154 u32 nr_host_mem_descs; 155 dma_addr_t host_mem_descs_dma; 156 struct nvme_host_mem_buf_desc *host_mem_descs; 157 void **host_mem_desc_bufs; 158 unsigned int nr_allocated_queues; 159 unsigned int nr_write_queues; 160 unsigned int nr_poll_queues; 161 162 bool attrs_added; 163 }; 164 165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 166 { 167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 168 NVME_PCI_MAX_QUEUE_SIZE); 169 } 170 171 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 172 { 173 return qid * 2 * stride; 174 } 175 176 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 177 { 178 return (qid * 2 + 1) * stride; 179 } 180 181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_dev, ctrl); 184 } 185 186 /* 187 * An NVM Express queue. Each device has at least two (one for admin 188 * commands and one for I/O commands). 189 */ 190 struct nvme_queue { 191 struct nvme_dev *dev; 192 spinlock_t sq_lock; 193 void *sq_cmds; 194 /* only used for poll queues: */ 195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 196 struct nvme_completion *cqes; 197 dma_addr_t sq_dma_addr; 198 dma_addr_t cq_dma_addr; 199 u32 __iomem *q_db; 200 u32 q_depth; 201 u16 cq_vector; 202 u16 sq_tail; 203 u16 last_sq_tail; 204 u16 cq_head; 205 u16 qid; 206 u8 cq_phase; 207 u8 sqes; 208 unsigned long flags; 209 #define NVMEQ_ENABLED 0 210 #define NVMEQ_SQ_CMB 1 211 #define NVMEQ_DELETE_ERROR 2 212 #define NVMEQ_POLLED 3 213 u32 *dbbuf_sq_db; 214 u32 *dbbuf_cq_db; 215 u32 *dbbuf_sq_ei; 216 u32 *dbbuf_cq_ei; 217 struct completion delete_done; 218 }; 219 220 /* 221 * The nvme_iod describes the data in an I/O. 222 * 223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 224 * to the actual struct scatterlist. 225 */ 226 struct nvme_iod { 227 struct nvme_request req; 228 struct nvme_command cmd; 229 struct nvme_queue *nvmeq; 230 bool use_sgl; 231 int aborted; 232 int npages; /* In the PRP list. 0 means small pool in use */ 233 int nents; /* Used in scatterlist */ 234 dma_addr_t first_dma; 235 unsigned int dma_len; /* length of single DMA segment mapping */ 236 dma_addr_t meta_dma; 237 struct scatterlist *sg; 238 }; 239 240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 241 { 242 return dev->nr_allocated_queues * 8 * dev->db_stride; 243 } 244 245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 246 { 247 unsigned int mem_size = nvme_dbbuf_size(dev); 248 249 if (dev->dbbuf_dbs) { 250 /* 251 * Clear the dbbuf memory so the driver doesn't observe stale 252 * values from the previous instantiation. 253 */ 254 memset(dev->dbbuf_dbs, 0, mem_size); 255 memset(dev->dbbuf_eis, 0, mem_size); 256 return 0; 257 } 258 259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 260 &dev->dbbuf_dbs_dma_addr, 261 GFP_KERNEL); 262 if (!dev->dbbuf_dbs) 263 return -ENOMEM; 264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 265 &dev->dbbuf_eis_dma_addr, 266 GFP_KERNEL); 267 if (!dev->dbbuf_eis) { 268 dma_free_coherent(dev->dev, mem_size, 269 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 270 dev->dbbuf_dbs = NULL; 271 return -ENOMEM; 272 } 273 274 return 0; 275 } 276 277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 278 { 279 unsigned int mem_size = nvme_dbbuf_size(dev); 280 281 if (dev->dbbuf_dbs) { 282 dma_free_coherent(dev->dev, mem_size, 283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 284 dev->dbbuf_dbs = NULL; 285 } 286 if (dev->dbbuf_eis) { 287 dma_free_coherent(dev->dev, mem_size, 288 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 289 dev->dbbuf_eis = NULL; 290 } 291 } 292 293 static void nvme_dbbuf_init(struct nvme_dev *dev, 294 struct nvme_queue *nvmeq, int qid) 295 { 296 if (!dev->dbbuf_dbs || !qid) 297 return; 298 299 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 300 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 301 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 302 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 303 } 304 305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 306 { 307 if (!nvmeq->qid) 308 return; 309 310 nvmeq->dbbuf_sq_db = NULL; 311 nvmeq->dbbuf_cq_db = NULL; 312 nvmeq->dbbuf_sq_ei = NULL; 313 nvmeq->dbbuf_cq_ei = NULL; 314 } 315 316 static void nvme_dbbuf_set(struct nvme_dev *dev) 317 { 318 struct nvme_command c = { }; 319 unsigned int i; 320 321 if (!dev->dbbuf_dbs) 322 return; 323 324 c.dbbuf.opcode = nvme_admin_dbbuf; 325 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 326 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 327 328 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 329 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 330 /* Free memory and continue on */ 331 nvme_dbbuf_dma_free(dev); 332 333 for (i = 1; i <= dev->online_queues; i++) 334 nvme_dbbuf_free(&dev->queues[i]); 335 } 336 } 337 338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 339 { 340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 341 } 342 343 /* Update dbbuf and return true if an MMIO is required */ 344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 345 volatile u32 *dbbuf_ei) 346 { 347 if (dbbuf_db) { 348 u16 old_value; 349 350 /* 351 * Ensure that the queue is written before updating 352 * the doorbell in memory 353 */ 354 wmb(); 355 356 old_value = *dbbuf_db; 357 *dbbuf_db = value; 358 359 /* 360 * Ensure that the doorbell is updated before reading the event 361 * index from memory. The controller needs to provide similar 362 * ordering to ensure the envent index is updated before reading 363 * the doorbell. 364 */ 365 mb(); 366 367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 368 return false; 369 } 370 371 return true; 372 } 373 374 /* 375 * Will slightly overestimate the number of pages needed. This is OK 376 * as it only leads to a small amount of wasted memory for the lifetime of 377 * the I/O. 378 */ 379 static int nvme_pci_npages_prp(void) 380 { 381 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 382 NVME_CTRL_PAGE_SIZE); 383 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 384 } 385 386 /* 387 * Calculates the number of pages needed for the SGL segments. For example a 4k 388 * page can accommodate 256 SGL descriptors. 389 */ 390 static int nvme_pci_npages_sgl(void) 391 { 392 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 393 PAGE_SIZE); 394 } 395 396 static size_t nvme_pci_iod_alloc_size(void) 397 { 398 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 399 400 return sizeof(__le64 *) * npages + 401 sizeof(struct scatterlist) * NVME_MAX_SEGS; 402 } 403 404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 405 unsigned int hctx_idx) 406 { 407 struct nvme_dev *dev = data; 408 struct nvme_queue *nvmeq = &dev->queues[0]; 409 410 WARN_ON(hctx_idx != 0); 411 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 412 413 hctx->driver_data = nvmeq; 414 return 0; 415 } 416 417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 418 unsigned int hctx_idx) 419 { 420 struct nvme_dev *dev = data; 421 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 422 423 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 424 hctx->driver_data = nvmeq; 425 return 0; 426 } 427 428 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 429 unsigned int hctx_idx, unsigned int numa_node) 430 { 431 struct nvme_dev *dev = set->driver_data; 432 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 433 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 434 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 435 436 BUG_ON(!nvmeq); 437 iod->nvmeq = nvmeq; 438 439 nvme_req(req)->ctrl = &dev->ctrl; 440 nvme_req(req)->cmd = &iod->cmd; 441 return 0; 442 } 443 444 static int queue_irq_offset(struct nvme_dev *dev) 445 { 446 /* if we have more than 1 vec, admin queue offsets us by 1 */ 447 if (dev->num_vecs > 1) 448 return 1; 449 450 return 0; 451 } 452 453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 454 { 455 struct nvme_dev *dev = set->driver_data; 456 int i, qoff, offset; 457 458 offset = queue_irq_offset(dev); 459 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 460 struct blk_mq_queue_map *map = &set->map[i]; 461 462 map->nr_queues = dev->io_queues[i]; 463 if (!map->nr_queues) { 464 BUG_ON(i == HCTX_TYPE_DEFAULT); 465 continue; 466 } 467 468 /* 469 * The poll queue(s) doesn't have an IRQ (and hence IRQ 470 * affinity), so use the regular blk-mq cpu mapping 471 */ 472 map->queue_offset = qoff; 473 if (i != HCTX_TYPE_POLL && offset) 474 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 475 else 476 blk_mq_map_queues(map); 477 qoff += map->nr_queues; 478 offset += map->nr_queues; 479 } 480 481 return 0; 482 } 483 484 /* 485 * Write sq tail if we are asked to, or if the next command would wrap. 486 */ 487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 488 { 489 if (!write_sq) { 490 u16 next_tail = nvmeq->sq_tail + 1; 491 492 if (next_tail == nvmeq->q_depth) 493 next_tail = 0; 494 if (next_tail != nvmeq->last_sq_tail) 495 return; 496 } 497 498 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 499 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 500 writel(nvmeq->sq_tail, nvmeq->q_db); 501 nvmeq->last_sq_tail = nvmeq->sq_tail; 502 } 503 504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 505 struct nvme_command *cmd) 506 { 507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 508 absolute_pointer(cmd), sizeof(*cmd)); 509 if (++nvmeq->sq_tail == nvmeq->q_depth) 510 nvmeq->sq_tail = 0; 511 } 512 513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 514 { 515 struct nvme_queue *nvmeq = hctx->driver_data; 516 517 spin_lock(&nvmeq->sq_lock); 518 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 519 nvme_write_sq_db(nvmeq, true); 520 spin_unlock(&nvmeq->sq_lock); 521 } 522 523 static void **nvme_pci_iod_list(struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 527 } 528 529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 530 { 531 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 532 int nseg = blk_rq_nr_phys_segments(req); 533 unsigned int avg_seg_size; 534 535 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 536 537 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 538 return false; 539 if (!iod->nvmeq->qid) 540 return false; 541 if (!sgl_threshold || avg_seg_size < sgl_threshold) 542 return false; 543 return true; 544 } 545 546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 547 { 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 550 dma_addr_t dma_addr = iod->first_dma; 551 int i; 552 553 for (i = 0; i < iod->npages; i++) { 554 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 555 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 556 557 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 558 dma_addr = next_dma_addr; 559 } 560 } 561 562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 563 { 564 const int last_sg = SGES_PER_PAGE - 1; 565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 566 dma_addr_t dma_addr = iod->first_dma; 567 int i; 568 569 for (i = 0; i < iod->npages; i++) { 570 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 571 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 572 573 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 574 dma_addr = next_dma_addr; 575 } 576 } 577 578 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 579 { 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 581 582 if (is_pci_p2pdma_page(sg_page(iod->sg))) 583 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 584 rq_dma_dir(req)); 585 else 586 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 587 } 588 589 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 590 { 591 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 592 593 if (iod->dma_len) { 594 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 595 rq_dma_dir(req)); 596 return; 597 } 598 599 WARN_ON_ONCE(!iod->nents); 600 601 nvme_unmap_sg(dev, req); 602 if (iod->npages == 0) 603 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 604 iod->first_dma); 605 else if (iod->use_sgl) 606 nvme_free_sgls(dev, req); 607 else 608 nvme_free_prps(dev, req); 609 mempool_free(iod->sg, dev->iod_mempool); 610 } 611 612 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 613 { 614 int i; 615 struct scatterlist *sg; 616 617 for_each_sg(sgl, sg, nents, i) { 618 dma_addr_t phys = sg_phys(sg); 619 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 620 "dma_address:%pad dma_length:%d\n", 621 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 622 sg_dma_len(sg)); 623 } 624 } 625 626 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 627 struct request *req, struct nvme_rw_command *cmnd) 628 { 629 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 630 struct dma_pool *pool; 631 int length = blk_rq_payload_bytes(req); 632 struct scatterlist *sg = iod->sg; 633 int dma_len = sg_dma_len(sg); 634 u64 dma_addr = sg_dma_address(sg); 635 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 636 __le64 *prp_list; 637 void **list = nvme_pci_iod_list(req); 638 dma_addr_t prp_dma; 639 int nprps, i; 640 641 length -= (NVME_CTRL_PAGE_SIZE - offset); 642 if (length <= 0) { 643 iod->first_dma = 0; 644 goto done; 645 } 646 647 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 648 if (dma_len) { 649 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 650 } else { 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 656 if (length <= NVME_CTRL_PAGE_SIZE) { 657 iod->first_dma = dma_addr; 658 goto done; 659 } 660 661 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 662 if (nprps <= (256 / 8)) { 663 pool = dev->prp_small_pool; 664 iod->npages = 0; 665 } else { 666 pool = dev->prp_page_pool; 667 iod->npages = 1; 668 } 669 670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 671 if (!prp_list) { 672 iod->first_dma = dma_addr; 673 iod->npages = -1; 674 return BLK_STS_RESOURCE; 675 } 676 list[0] = prp_list; 677 iod->first_dma = prp_dma; 678 i = 0; 679 for (;;) { 680 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 681 __le64 *old_prp_list = prp_list; 682 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 683 if (!prp_list) 684 goto free_prps; 685 list[iod->npages++] = prp_list; 686 prp_list[0] = old_prp_list[i - 1]; 687 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 688 i = 1; 689 } 690 prp_list[i++] = cpu_to_le64(dma_addr); 691 dma_len -= NVME_CTRL_PAGE_SIZE; 692 dma_addr += NVME_CTRL_PAGE_SIZE; 693 length -= NVME_CTRL_PAGE_SIZE; 694 if (length <= 0) 695 break; 696 if (dma_len > 0) 697 continue; 698 if (unlikely(dma_len < 0)) 699 goto bad_sgl; 700 sg = sg_next(sg); 701 dma_addr = sg_dma_address(sg); 702 dma_len = sg_dma_len(sg); 703 } 704 done: 705 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 706 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 707 return BLK_STS_OK; 708 free_prps: 709 nvme_free_prps(dev, req); 710 return BLK_STS_RESOURCE; 711 bad_sgl: 712 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 713 "Invalid SGL for payload:%d nents:%d\n", 714 blk_rq_payload_bytes(req), iod->nents); 715 return BLK_STS_IOERR; 716 } 717 718 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 719 struct scatterlist *sg) 720 { 721 sge->addr = cpu_to_le64(sg_dma_address(sg)); 722 sge->length = cpu_to_le32(sg_dma_len(sg)); 723 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 724 } 725 726 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 727 dma_addr_t dma_addr, int entries) 728 { 729 sge->addr = cpu_to_le64(dma_addr); 730 if (entries < SGES_PER_PAGE) { 731 sge->length = cpu_to_le32(entries * sizeof(*sge)); 732 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 733 } else { 734 sge->length = cpu_to_le32(PAGE_SIZE); 735 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 736 } 737 } 738 739 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 740 struct request *req, struct nvme_rw_command *cmd, int entries) 741 { 742 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 743 struct dma_pool *pool; 744 struct nvme_sgl_desc *sg_list; 745 struct scatterlist *sg = iod->sg; 746 dma_addr_t sgl_dma; 747 int i = 0; 748 749 /* setting the transfer type as SGL */ 750 cmd->flags = NVME_CMD_SGL_METABUF; 751 752 if (entries == 1) { 753 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 754 return BLK_STS_OK; 755 } 756 757 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 758 pool = dev->prp_small_pool; 759 iod->npages = 0; 760 } else { 761 pool = dev->prp_page_pool; 762 iod->npages = 1; 763 } 764 765 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 766 if (!sg_list) { 767 iod->npages = -1; 768 return BLK_STS_RESOURCE; 769 } 770 771 nvme_pci_iod_list(req)[0] = sg_list; 772 iod->first_dma = sgl_dma; 773 774 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 775 776 do { 777 if (i == SGES_PER_PAGE) { 778 struct nvme_sgl_desc *old_sg_desc = sg_list; 779 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 780 781 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 782 if (!sg_list) 783 goto free_sgls; 784 785 i = 0; 786 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 787 sg_list[i++] = *link; 788 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 789 } 790 791 nvme_pci_sgl_set_data(&sg_list[i++], sg); 792 sg = sg_next(sg); 793 } while (--entries > 0); 794 795 return BLK_STS_OK; 796 free_sgls: 797 nvme_free_sgls(dev, req); 798 return BLK_STS_RESOURCE; 799 } 800 801 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 802 struct request *req, struct nvme_rw_command *cmnd, 803 struct bio_vec *bv) 804 { 805 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 806 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 807 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 808 809 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 810 if (dma_mapping_error(dev->dev, iod->first_dma)) 811 return BLK_STS_RESOURCE; 812 iod->dma_len = bv->bv_len; 813 814 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 815 if (bv->bv_len > first_prp_len) 816 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 817 return BLK_STS_OK; 818 } 819 820 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 821 struct request *req, struct nvme_rw_command *cmnd, 822 struct bio_vec *bv) 823 { 824 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 825 826 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 827 if (dma_mapping_error(dev->dev, iod->first_dma)) 828 return BLK_STS_RESOURCE; 829 iod->dma_len = bv->bv_len; 830 831 cmnd->flags = NVME_CMD_SGL_METABUF; 832 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 833 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 834 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 839 struct nvme_command *cmnd) 840 { 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 842 blk_status_t ret = BLK_STS_RESOURCE; 843 int nr_mapped; 844 845 if (blk_rq_nr_phys_segments(req) == 1) { 846 struct bio_vec bv = req_bvec(req); 847 848 if (!is_pci_p2pdma_page(bv.bv_page)) { 849 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 850 return nvme_setup_prp_simple(dev, req, 851 &cmnd->rw, &bv); 852 853 if (iod->nvmeq->qid && sgl_threshold && 854 nvme_ctrl_sgl_supported(&dev->ctrl)) 855 return nvme_setup_sgl_simple(dev, req, 856 &cmnd->rw, &bv); 857 } 858 } 859 860 iod->dma_len = 0; 861 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 862 if (!iod->sg) 863 return BLK_STS_RESOURCE; 864 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 865 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 866 if (!iod->nents) 867 goto out_free_sg; 868 869 if (is_pci_p2pdma_page(sg_page(iod->sg))) 870 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 871 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 872 else 873 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 874 rq_dma_dir(req), DMA_ATTR_NO_WARN); 875 if (!nr_mapped) 876 goto out_free_sg; 877 878 iod->use_sgl = nvme_pci_use_sgls(dev, req); 879 if (iod->use_sgl) 880 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 881 else 882 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 883 if (ret != BLK_STS_OK) 884 goto out_unmap_sg; 885 return BLK_STS_OK; 886 887 out_unmap_sg: 888 nvme_unmap_sg(dev, req); 889 out_free_sg: 890 mempool_free(iod->sg, dev->iod_mempool); 891 return ret; 892 } 893 894 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 895 struct nvme_command *cmnd) 896 { 897 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 898 899 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 900 rq_dma_dir(req), 0); 901 if (dma_mapping_error(dev->dev, iod->meta_dma)) 902 return BLK_STS_IOERR; 903 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 904 return BLK_STS_OK; 905 } 906 907 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 908 { 909 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 910 blk_status_t ret; 911 912 iod->aborted = 0; 913 iod->npages = -1; 914 iod->nents = 0; 915 916 ret = nvme_setup_cmd(req->q->queuedata, req); 917 if (ret) 918 return ret; 919 920 if (blk_rq_nr_phys_segments(req)) { 921 ret = nvme_map_data(dev, req, &iod->cmd); 922 if (ret) 923 goto out_free_cmd; 924 } 925 926 if (blk_integrity_rq(req)) { 927 ret = nvme_map_metadata(dev, req, &iod->cmd); 928 if (ret) 929 goto out_unmap_data; 930 } 931 932 blk_mq_start_request(req); 933 return BLK_STS_OK; 934 out_unmap_data: 935 nvme_unmap_data(dev, req); 936 out_free_cmd: 937 nvme_cleanup_cmd(req); 938 return ret; 939 } 940 941 /* 942 * NOTE: ns is NULL when called on the admin queue. 943 */ 944 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 945 const struct blk_mq_queue_data *bd) 946 { 947 struct nvme_queue *nvmeq = hctx->driver_data; 948 struct nvme_dev *dev = nvmeq->dev; 949 struct request *req = bd->rq; 950 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 951 blk_status_t ret; 952 953 /* 954 * We should not need to do this, but we're still using this to 955 * ensure we can drain requests on a dying queue. 956 */ 957 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 958 return BLK_STS_IOERR; 959 960 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 961 return nvme_fail_nonready_command(&dev->ctrl, req); 962 963 ret = nvme_prep_rq(dev, req); 964 if (unlikely(ret)) 965 return ret; 966 spin_lock(&nvmeq->sq_lock); 967 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 968 nvme_write_sq_db(nvmeq, bd->last); 969 spin_unlock(&nvmeq->sq_lock); 970 return BLK_STS_OK; 971 } 972 973 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 974 { 975 spin_lock(&nvmeq->sq_lock); 976 while (!rq_list_empty(*rqlist)) { 977 struct request *req = rq_list_pop(rqlist); 978 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 979 980 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 981 } 982 nvme_write_sq_db(nvmeq, true); 983 spin_unlock(&nvmeq->sq_lock); 984 } 985 986 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 987 { 988 /* 989 * We should not need to do this, but we're still using this to 990 * ensure we can drain requests on a dying queue. 991 */ 992 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 993 return false; 994 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 995 return false; 996 997 req->mq_hctx->tags->rqs[req->tag] = req; 998 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 999 } 1000 1001 static void nvme_queue_rqs(struct request **rqlist) 1002 { 1003 struct request *req, *next, *prev = NULL; 1004 struct request *requeue_list = NULL; 1005 1006 rq_list_for_each_safe(rqlist, req, next) { 1007 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1008 1009 if (!nvme_prep_rq_batch(nvmeq, req)) { 1010 /* detach 'req' and add to remainder list */ 1011 rq_list_move(rqlist, &requeue_list, req, prev); 1012 1013 req = prev; 1014 if (!req) 1015 continue; 1016 } 1017 1018 if (!next || req->mq_hctx != next->mq_hctx) { 1019 /* detach rest of list, and submit */ 1020 req->rq_next = NULL; 1021 nvme_submit_cmds(nvmeq, rqlist); 1022 *rqlist = next; 1023 prev = NULL; 1024 } else 1025 prev = req; 1026 } 1027 1028 *rqlist = requeue_list; 1029 } 1030 1031 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1032 { 1033 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1034 struct nvme_dev *dev = iod->nvmeq->dev; 1035 1036 if (blk_integrity_rq(req)) 1037 dma_unmap_page(dev->dev, iod->meta_dma, 1038 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1039 if (blk_rq_nr_phys_segments(req)) 1040 nvme_unmap_data(dev, req); 1041 } 1042 1043 static void nvme_pci_complete_rq(struct request *req) 1044 { 1045 nvme_pci_unmap_rq(req); 1046 nvme_complete_rq(req); 1047 } 1048 1049 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1050 { 1051 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1052 } 1053 1054 /* We read the CQE phase first to check if the rest of the entry is valid */ 1055 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1056 { 1057 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1058 1059 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1060 } 1061 1062 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1063 { 1064 u16 head = nvmeq->cq_head; 1065 1066 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1067 nvmeq->dbbuf_cq_ei)) 1068 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1069 } 1070 1071 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1072 { 1073 if (!nvmeq->qid) 1074 return nvmeq->dev->admin_tagset.tags[0]; 1075 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1076 } 1077 1078 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1079 struct io_comp_batch *iob, u16 idx) 1080 { 1081 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1082 __u16 command_id = READ_ONCE(cqe->command_id); 1083 struct request *req; 1084 1085 /* 1086 * AEN requests are special as they don't time out and can 1087 * survive any kind of queue freeze and often don't respond to 1088 * aborts. We don't even bother to allocate a struct request 1089 * for them but rather special case them here. 1090 */ 1091 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1092 nvme_complete_async_event(&nvmeq->dev->ctrl, 1093 cqe->status, &cqe->result); 1094 return; 1095 } 1096 1097 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1098 if (unlikely(!req)) { 1099 dev_warn(nvmeq->dev->ctrl.device, 1100 "invalid id %d completed on queue %d\n", 1101 command_id, le16_to_cpu(cqe->sq_id)); 1102 return; 1103 } 1104 1105 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1106 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1107 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1108 nvme_pci_complete_batch)) 1109 nvme_pci_complete_rq(req); 1110 } 1111 1112 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1113 { 1114 u32 tmp = nvmeq->cq_head + 1; 1115 1116 if (tmp == nvmeq->q_depth) { 1117 nvmeq->cq_head = 0; 1118 nvmeq->cq_phase ^= 1; 1119 } else { 1120 nvmeq->cq_head = tmp; 1121 } 1122 } 1123 1124 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1125 struct io_comp_batch *iob) 1126 { 1127 int found = 0; 1128 1129 while (nvme_cqe_pending(nvmeq)) { 1130 found++; 1131 /* 1132 * load-load control dependency between phase and the rest of 1133 * the cqe requires a full read memory barrier 1134 */ 1135 dma_rmb(); 1136 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1137 nvme_update_cq_head(nvmeq); 1138 } 1139 1140 if (found) 1141 nvme_ring_cq_doorbell(nvmeq); 1142 return found; 1143 } 1144 1145 static irqreturn_t nvme_irq(int irq, void *data) 1146 { 1147 struct nvme_queue *nvmeq = data; 1148 DEFINE_IO_COMP_BATCH(iob); 1149 1150 if (nvme_poll_cq(nvmeq, &iob)) { 1151 if (!rq_list_empty(iob.req_list)) 1152 nvme_pci_complete_batch(&iob); 1153 return IRQ_HANDLED; 1154 } 1155 return IRQ_NONE; 1156 } 1157 1158 static irqreturn_t nvme_irq_check(int irq, void *data) 1159 { 1160 struct nvme_queue *nvmeq = data; 1161 1162 if (nvme_cqe_pending(nvmeq)) 1163 return IRQ_WAKE_THREAD; 1164 return IRQ_NONE; 1165 } 1166 1167 /* 1168 * Poll for completions for any interrupt driven queue 1169 * Can be called from any context. 1170 */ 1171 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1172 { 1173 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1174 1175 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1176 1177 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1178 nvme_poll_cq(nvmeq, NULL); 1179 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1180 } 1181 1182 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1183 { 1184 struct nvme_queue *nvmeq = hctx->driver_data; 1185 bool found; 1186 1187 if (!nvme_cqe_pending(nvmeq)) 1188 return 0; 1189 1190 spin_lock(&nvmeq->cq_poll_lock); 1191 found = nvme_poll_cq(nvmeq, iob); 1192 spin_unlock(&nvmeq->cq_poll_lock); 1193 1194 return found; 1195 } 1196 1197 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1198 { 1199 struct nvme_dev *dev = to_nvme_dev(ctrl); 1200 struct nvme_queue *nvmeq = &dev->queues[0]; 1201 struct nvme_command c = { }; 1202 1203 c.common.opcode = nvme_admin_async_event; 1204 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1205 1206 spin_lock(&nvmeq->sq_lock); 1207 nvme_sq_copy_cmd(nvmeq, &c); 1208 nvme_write_sq_db(nvmeq, true); 1209 spin_unlock(&nvmeq->sq_lock); 1210 } 1211 1212 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1213 { 1214 struct nvme_command c = { }; 1215 1216 c.delete_queue.opcode = opcode; 1217 c.delete_queue.qid = cpu_to_le16(id); 1218 1219 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1220 } 1221 1222 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1223 struct nvme_queue *nvmeq, s16 vector) 1224 { 1225 struct nvme_command c = { }; 1226 int flags = NVME_QUEUE_PHYS_CONTIG; 1227 1228 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1229 flags |= NVME_CQ_IRQ_ENABLED; 1230 1231 /* 1232 * Note: we (ab)use the fact that the prp fields survive if no data 1233 * is attached to the request. 1234 */ 1235 c.create_cq.opcode = nvme_admin_create_cq; 1236 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1237 c.create_cq.cqid = cpu_to_le16(qid); 1238 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1239 c.create_cq.cq_flags = cpu_to_le16(flags); 1240 c.create_cq.irq_vector = cpu_to_le16(vector); 1241 1242 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1243 } 1244 1245 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1246 struct nvme_queue *nvmeq) 1247 { 1248 struct nvme_ctrl *ctrl = &dev->ctrl; 1249 struct nvme_command c = { }; 1250 int flags = NVME_QUEUE_PHYS_CONTIG; 1251 1252 /* 1253 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1254 * set. Since URGENT priority is zeroes, it makes all queues 1255 * URGENT. 1256 */ 1257 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1258 flags |= NVME_SQ_PRIO_MEDIUM; 1259 1260 /* 1261 * Note: we (ab)use the fact that the prp fields survive if no data 1262 * is attached to the request. 1263 */ 1264 c.create_sq.opcode = nvme_admin_create_sq; 1265 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1266 c.create_sq.sqid = cpu_to_le16(qid); 1267 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1268 c.create_sq.sq_flags = cpu_to_le16(flags); 1269 c.create_sq.cqid = cpu_to_le16(qid); 1270 1271 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1272 } 1273 1274 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1275 { 1276 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1277 } 1278 1279 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1280 { 1281 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1282 } 1283 1284 static void abort_endio(struct request *req, blk_status_t error) 1285 { 1286 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1287 struct nvme_queue *nvmeq = iod->nvmeq; 1288 1289 dev_warn(nvmeq->dev->ctrl.device, 1290 "Abort status: 0x%x", nvme_req(req)->status); 1291 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1292 blk_mq_free_request(req); 1293 } 1294 1295 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1296 { 1297 /* If true, indicates loss of adapter communication, possibly by a 1298 * NVMe Subsystem reset. 1299 */ 1300 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1301 1302 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1303 switch (dev->ctrl.state) { 1304 case NVME_CTRL_RESETTING: 1305 case NVME_CTRL_CONNECTING: 1306 return false; 1307 default: 1308 break; 1309 } 1310 1311 /* We shouldn't reset unless the controller is on fatal error state 1312 * _or_ if we lost the communication with it. 1313 */ 1314 if (!(csts & NVME_CSTS_CFS) && !nssro) 1315 return false; 1316 1317 return true; 1318 } 1319 1320 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1321 { 1322 /* Read a config register to help see what died. */ 1323 u16 pci_status; 1324 int result; 1325 1326 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1327 &pci_status); 1328 if (result == PCIBIOS_SUCCESSFUL) 1329 dev_warn(dev->ctrl.device, 1330 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1331 csts, pci_status); 1332 else 1333 dev_warn(dev->ctrl.device, 1334 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1335 csts, result); 1336 } 1337 1338 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1339 { 1340 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1341 struct nvme_queue *nvmeq = iod->nvmeq; 1342 struct nvme_dev *dev = nvmeq->dev; 1343 struct request *abort_req; 1344 struct nvme_command cmd = { }; 1345 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1346 1347 /* If PCI error recovery process is happening, we cannot reset or 1348 * the recovery mechanism will surely fail. 1349 */ 1350 mb(); 1351 if (pci_channel_offline(to_pci_dev(dev->dev))) 1352 return BLK_EH_RESET_TIMER; 1353 1354 /* 1355 * Reset immediately if the controller is failed 1356 */ 1357 if (nvme_should_reset(dev, csts)) { 1358 nvme_warn_reset(dev, csts); 1359 nvme_dev_disable(dev, false); 1360 nvme_reset_ctrl(&dev->ctrl); 1361 return BLK_EH_DONE; 1362 } 1363 1364 /* 1365 * Did we miss an interrupt? 1366 */ 1367 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1368 nvme_poll(req->mq_hctx, NULL); 1369 else 1370 nvme_poll_irqdisable(nvmeq); 1371 1372 if (blk_mq_request_completed(req)) { 1373 dev_warn(dev->ctrl.device, 1374 "I/O %d QID %d timeout, completion polled\n", 1375 req->tag, nvmeq->qid); 1376 return BLK_EH_DONE; 1377 } 1378 1379 /* 1380 * Shutdown immediately if controller times out while starting. The 1381 * reset work will see the pci device disabled when it gets the forced 1382 * cancellation error. All outstanding requests are completed on 1383 * shutdown, so we return BLK_EH_DONE. 1384 */ 1385 switch (dev->ctrl.state) { 1386 case NVME_CTRL_CONNECTING: 1387 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1388 fallthrough; 1389 case NVME_CTRL_DELETING: 1390 dev_warn_ratelimited(dev->ctrl.device, 1391 "I/O %d QID %d timeout, disable controller\n", 1392 req->tag, nvmeq->qid); 1393 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1394 nvme_dev_disable(dev, true); 1395 return BLK_EH_DONE; 1396 case NVME_CTRL_RESETTING: 1397 return BLK_EH_RESET_TIMER; 1398 default: 1399 break; 1400 } 1401 1402 /* 1403 * Shutdown the controller immediately and schedule a reset if the 1404 * command was already aborted once before and still hasn't been 1405 * returned to the driver, or if this is the admin queue. 1406 */ 1407 if (!nvmeq->qid || iod->aborted) { 1408 dev_warn(dev->ctrl.device, 1409 "I/O %d QID %d timeout, reset controller\n", 1410 req->tag, nvmeq->qid); 1411 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1412 nvme_dev_disable(dev, false); 1413 nvme_reset_ctrl(&dev->ctrl); 1414 1415 return BLK_EH_DONE; 1416 } 1417 1418 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1419 atomic_inc(&dev->ctrl.abort_limit); 1420 return BLK_EH_RESET_TIMER; 1421 } 1422 iod->aborted = 1; 1423 1424 cmd.abort.opcode = nvme_admin_abort_cmd; 1425 cmd.abort.cid = nvme_cid(req); 1426 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1427 1428 dev_warn(nvmeq->dev->ctrl.device, 1429 "I/O %d QID %d timeout, aborting\n", 1430 req->tag, nvmeq->qid); 1431 1432 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1433 BLK_MQ_REQ_NOWAIT); 1434 if (IS_ERR(abort_req)) { 1435 atomic_inc(&dev->ctrl.abort_limit); 1436 return BLK_EH_RESET_TIMER; 1437 } 1438 1439 abort_req->end_io_data = NULL; 1440 blk_execute_rq_nowait(abort_req, false, abort_endio); 1441 1442 /* 1443 * The aborted req will be completed on receiving the abort req. 1444 * We enable the timer again. If hit twice, it'll cause a device reset, 1445 * as the device then is in a faulty state. 1446 */ 1447 return BLK_EH_RESET_TIMER; 1448 } 1449 1450 static void nvme_free_queue(struct nvme_queue *nvmeq) 1451 { 1452 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1453 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1454 if (!nvmeq->sq_cmds) 1455 return; 1456 1457 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1458 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1459 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1460 } else { 1461 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1462 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1463 } 1464 } 1465 1466 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1467 { 1468 int i; 1469 1470 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1471 dev->ctrl.queue_count--; 1472 nvme_free_queue(&dev->queues[i]); 1473 } 1474 } 1475 1476 /** 1477 * nvme_suspend_queue - put queue into suspended state 1478 * @nvmeq: queue to suspend 1479 */ 1480 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1481 { 1482 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1483 return 1; 1484 1485 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1486 mb(); 1487 1488 nvmeq->dev->online_queues--; 1489 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1490 nvme_stop_admin_queue(&nvmeq->dev->ctrl); 1491 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1492 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1493 return 0; 1494 } 1495 1496 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1497 { 1498 int i; 1499 1500 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1501 nvme_suspend_queue(&dev->queues[i]); 1502 } 1503 1504 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1505 { 1506 struct nvme_queue *nvmeq = &dev->queues[0]; 1507 1508 if (shutdown) 1509 nvme_shutdown_ctrl(&dev->ctrl); 1510 else 1511 nvme_disable_ctrl(&dev->ctrl); 1512 1513 nvme_poll_irqdisable(nvmeq); 1514 } 1515 1516 /* 1517 * Called only on a device that has been disabled and after all other threads 1518 * that can check this device's completion queues have synced, except 1519 * nvme_poll(). This is the last chance for the driver to see a natural 1520 * completion before nvme_cancel_request() terminates all incomplete requests. 1521 */ 1522 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1523 { 1524 int i; 1525 1526 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1527 spin_lock(&dev->queues[i].cq_poll_lock); 1528 nvme_poll_cq(&dev->queues[i], NULL); 1529 spin_unlock(&dev->queues[i].cq_poll_lock); 1530 } 1531 } 1532 1533 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1534 int entry_size) 1535 { 1536 int q_depth = dev->q_depth; 1537 unsigned q_size_aligned = roundup(q_depth * entry_size, 1538 NVME_CTRL_PAGE_SIZE); 1539 1540 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1541 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1542 1543 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1544 q_depth = div_u64(mem_per_q, entry_size); 1545 1546 /* 1547 * Ensure the reduced q_depth is above some threshold where it 1548 * would be better to map queues in system memory with the 1549 * original depth 1550 */ 1551 if (q_depth < 64) 1552 return -ENOMEM; 1553 } 1554 1555 return q_depth; 1556 } 1557 1558 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1559 int qid) 1560 { 1561 struct pci_dev *pdev = to_pci_dev(dev->dev); 1562 1563 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1564 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1565 if (nvmeq->sq_cmds) { 1566 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1567 nvmeq->sq_cmds); 1568 if (nvmeq->sq_dma_addr) { 1569 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1570 return 0; 1571 } 1572 1573 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1574 } 1575 } 1576 1577 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1578 &nvmeq->sq_dma_addr, GFP_KERNEL); 1579 if (!nvmeq->sq_cmds) 1580 return -ENOMEM; 1581 return 0; 1582 } 1583 1584 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1585 { 1586 struct nvme_queue *nvmeq = &dev->queues[qid]; 1587 1588 if (dev->ctrl.queue_count > qid) 1589 return 0; 1590 1591 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1592 nvmeq->q_depth = depth; 1593 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1594 &nvmeq->cq_dma_addr, GFP_KERNEL); 1595 if (!nvmeq->cqes) 1596 goto free_nvmeq; 1597 1598 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1599 goto free_cqdma; 1600 1601 nvmeq->dev = dev; 1602 spin_lock_init(&nvmeq->sq_lock); 1603 spin_lock_init(&nvmeq->cq_poll_lock); 1604 nvmeq->cq_head = 0; 1605 nvmeq->cq_phase = 1; 1606 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1607 nvmeq->qid = qid; 1608 dev->ctrl.queue_count++; 1609 1610 return 0; 1611 1612 free_cqdma: 1613 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1614 nvmeq->cq_dma_addr); 1615 free_nvmeq: 1616 return -ENOMEM; 1617 } 1618 1619 static int queue_request_irq(struct nvme_queue *nvmeq) 1620 { 1621 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1622 int nr = nvmeq->dev->ctrl.instance; 1623 1624 if (use_threaded_interrupts) { 1625 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1626 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1627 } else { 1628 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1629 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1630 } 1631 } 1632 1633 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1634 { 1635 struct nvme_dev *dev = nvmeq->dev; 1636 1637 nvmeq->sq_tail = 0; 1638 nvmeq->last_sq_tail = 0; 1639 nvmeq->cq_head = 0; 1640 nvmeq->cq_phase = 1; 1641 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1642 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1643 nvme_dbbuf_init(dev, nvmeq, qid); 1644 dev->online_queues++; 1645 wmb(); /* ensure the first interrupt sees the initialization */ 1646 } 1647 1648 /* 1649 * Try getting shutdown_lock while setting up IO queues. 1650 */ 1651 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1652 { 1653 /* 1654 * Give up if the lock is being held by nvme_dev_disable. 1655 */ 1656 if (!mutex_trylock(&dev->shutdown_lock)) 1657 return -ENODEV; 1658 1659 /* 1660 * Controller is in wrong state, fail early. 1661 */ 1662 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1663 mutex_unlock(&dev->shutdown_lock); 1664 return -ENODEV; 1665 } 1666 1667 return 0; 1668 } 1669 1670 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1671 { 1672 struct nvme_dev *dev = nvmeq->dev; 1673 int result; 1674 u16 vector = 0; 1675 1676 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1677 1678 /* 1679 * A queue's vector matches the queue identifier unless the controller 1680 * has only one vector available. 1681 */ 1682 if (!polled) 1683 vector = dev->num_vecs == 1 ? 0 : qid; 1684 else 1685 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1686 1687 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1688 if (result) 1689 return result; 1690 1691 result = adapter_alloc_sq(dev, qid, nvmeq); 1692 if (result < 0) 1693 return result; 1694 if (result) 1695 goto release_cq; 1696 1697 nvmeq->cq_vector = vector; 1698 1699 result = nvme_setup_io_queues_trylock(dev); 1700 if (result) 1701 return result; 1702 nvme_init_queue(nvmeq, qid); 1703 if (!polled) { 1704 result = queue_request_irq(nvmeq); 1705 if (result < 0) 1706 goto release_sq; 1707 } 1708 1709 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1710 mutex_unlock(&dev->shutdown_lock); 1711 return result; 1712 1713 release_sq: 1714 dev->online_queues--; 1715 mutex_unlock(&dev->shutdown_lock); 1716 adapter_delete_sq(dev, qid); 1717 release_cq: 1718 adapter_delete_cq(dev, qid); 1719 return result; 1720 } 1721 1722 static const struct blk_mq_ops nvme_mq_admin_ops = { 1723 .queue_rq = nvme_queue_rq, 1724 .complete = nvme_pci_complete_rq, 1725 .init_hctx = nvme_admin_init_hctx, 1726 .init_request = nvme_init_request, 1727 .timeout = nvme_timeout, 1728 }; 1729 1730 static const struct blk_mq_ops nvme_mq_ops = { 1731 .queue_rq = nvme_queue_rq, 1732 .queue_rqs = nvme_queue_rqs, 1733 .complete = nvme_pci_complete_rq, 1734 .commit_rqs = nvme_commit_rqs, 1735 .init_hctx = nvme_init_hctx, 1736 .init_request = nvme_init_request, 1737 .map_queues = nvme_pci_map_queues, 1738 .timeout = nvme_timeout, 1739 .poll = nvme_poll, 1740 }; 1741 1742 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1743 { 1744 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1745 /* 1746 * If the controller was reset during removal, it's possible 1747 * user requests may be waiting on a stopped queue. Start the 1748 * queue to flush these to completion. 1749 */ 1750 nvme_start_admin_queue(&dev->ctrl); 1751 blk_cleanup_queue(dev->ctrl.admin_q); 1752 blk_mq_free_tag_set(&dev->admin_tagset); 1753 } 1754 } 1755 1756 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1757 { 1758 if (!dev->ctrl.admin_q) { 1759 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1760 dev->admin_tagset.nr_hw_queues = 1; 1761 1762 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1763 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1764 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1765 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1766 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1767 dev->admin_tagset.driver_data = dev; 1768 1769 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1770 return -ENOMEM; 1771 dev->ctrl.admin_tagset = &dev->admin_tagset; 1772 1773 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1774 if (IS_ERR(dev->ctrl.admin_q)) { 1775 blk_mq_free_tag_set(&dev->admin_tagset); 1776 return -ENOMEM; 1777 } 1778 if (!blk_get_queue(dev->ctrl.admin_q)) { 1779 nvme_dev_remove_admin(dev); 1780 dev->ctrl.admin_q = NULL; 1781 return -ENODEV; 1782 } 1783 } else 1784 nvme_start_admin_queue(&dev->ctrl); 1785 1786 return 0; 1787 } 1788 1789 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1790 { 1791 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1792 } 1793 1794 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1795 { 1796 struct pci_dev *pdev = to_pci_dev(dev->dev); 1797 1798 if (size <= dev->bar_mapped_size) 1799 return 0; 1800 if (size > pci_resource_len(pdev, 0)) 1801 return -ENOMEM; 1802 if (dev->bar) 1803 iounmap(dev->bar); 1804 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1805 if (!dev->bar) { 1806 dev->bar_mapped_size = 0; 1807 return -ENOMEM; 1808 } 1809 dev->bar_mapped_size = size; 1810 dev->dbs = dev->bar + NVME_REG_DBS; 1811 1812 return 0; 1813 } 1814 1815 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1816 { 1817 int result; 1818 u32 aqa; 1819 struct nvme_queue *nvmeq; 1820 1821 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1822 if (result < 0) 1823 return result; 1824 1825 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1826 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1827 1828 if (dev->subsystem && 1829 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1830 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1831 1832 result = nvme_disable_ctrl(&dev->ctrl); 1833 if (result < 0) 1834 return result; 1835 1836 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1837 if (result) 1838 return result; 1839 1840 dev->ctrl.numa_node = dev_to_node(dev->dev); 1841 1842 nvmeq = &dev->queues[0]; 1843 aqa = nvmeq->q_depth - 1; 1844 aqa |= aqa << 16; 1845 1846 writel(aqa, dev->bar + NVME_REG_AQA); 1847 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1848 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1849 1850 result = nvme_enable_ctrl(&dev->ctrl); 1851 if (result) 1852 return result; 1853 1854 nvmeq->cq_vector = 0; 1855 nvme_init_queue(nvmeq, 0); 1856 result = queue_request_irq(nvmeq); 1857 if (result) { 1858 dev->online_queues--; 1859 return result; 1860 } 1861 1862 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1863 return result; 1864 } 1865 1866 static int nvme_create_io_queues(struct nvme_dev *dev) 1867 { 1868 unsigned i, max, rw_queues; 1869 int ret = 0; 1870 1871 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1872 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1873 ret = -ENOMEM; 1874 break; 1875 } 1876 } 1877 1878 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1879 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1880 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1881 dev->io_queues[HCTX_TYPE_READ]; 1882 } else { 1883 rw_queues = max; 1884 } 1885 1886 for (i = dev->online_queues; i <= max; i++) { 1887 bool polled = i > rw_queues; 1888 1889 ret = nvme_create_queue(&dev->queues[i], i, polled); 1890 if (ret) 1891 break; 1892 } 1893 1894 /* 1895 * Ignore failing Create SQ/CQ commands, we can continue with less 1896 * than the desired amount of queues, and even a controller without 1897 * I/O queues can still be used to issue admin commands. This might 1898 * be useful to upgrade a buggy firmware for example. 1899 */ 1900 return ret >= 0 ? 0 : ret; 1901 } 1902 1903 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1904 { 1905 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1906 1907 return 1ULL << (12 + 4 * szu); 1908 } 1909 1910 static u32 nvme_cmb_size(struct nvme_dev *dev) 1911 { 1912 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1913 } 1914 1915 static void nvme_map_cmb(struct nvme_dev *dev) 1916 { 1917 u64 size, offset; 1918 resource_size_t bar_size; 1919 struct pci_dev *pdev = to_pci_dev(dev->dev); 1920 int bar; 1921 1922 if (dev->cmb_size) 1923 return; 1924 1925 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1926 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1927 1928 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1929 if (!dev->cmbsz) 1930 return; 1931 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1932 1933 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1934 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1935 bar = NVME_CMB_BIR(dev->cmbloc); 1936 bar_size = pci_resource_len(pdev, bar); 1937 1938 if (offset > bar_size) 1939 return; 1940 1941 /* 1942 * Tell the controller about the host side address mapping the CMB, 1943 * and enable CMB decoding for the NVMe 1.4+ scheme: 1944 */ 1945 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1946 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1947 (pci_bus_address(pdev, bar) + offset), 1948 dev->bar + NVME_REG_CMBMSC); 1949 } 1950 1951 /* 1952 * Controllers may support a CMB size larger than their BAR, 1953 * for example, due to being behind a bridge. Reduce the CMB to 1954 * the reported size of the BAR 1955 */ 1956 if (size > bar_size - offset) 1957 size = bar_size - offset; 1958 1959 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1960 dev_warn(dev->ctrl.device, 1961 "failed to register the CMB\n"); 1962 return; 1963 } 1964 1965 dev->cmb_size = size; 1966 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1967 1968 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1969 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1970 pci_p2pmem_publish(pdev, true); 1971 } 1972 1973 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1974 { 1975 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1976 u64 dma_addr = dev->host_mem_descs_dma; 1977 struct nvme_command c = { }; 1978 int ret; 1979 1980 c.features.opcode = nvme_admin_set_features; 1981 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1982 c.features.dword11 = cpu_to_le32(bits); 1983 c.features.dword12 = cpu_to_le32(host_mem_size); 1984 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1985 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1986 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1987 1988 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1989 if (ret) { 1990 dev_warn(dev->ctrl.device, 1991 "failed to set host mem (err %d, flags %#x).\n", 1992 ret, bits); 1993 } else 1994 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1995 1996 return ret; 1997 } 1998 1999 static void nvme_free_host_mem(struct nvme_dev *dev) 2000 { 2001 int i; 2002 2003 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2004 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2005 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2006 2007 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2008 le64_to_cpu(desc->addr), 2009 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2010 } 2011 2012 kfree(dev->host_mem_desc_bufs); 2013 dev->host_mem_desc_bufs = NULL; 2014 dma_free_coherent(dev->dev, 2015 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 2016 dev->host_mem_descs, dev->host_mem_descs_dma); 2017 dev->host_mem_descs = NULL; 2018 dev->nr_host_mem_descs = 0; 2019 } 2020 2021 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 2022 u32 chunk_size) 2023 { 2024 struct nvme_host_mem_buf_desc *descs; 2025 u32 max_entries, len; 2026 dma_addr_t descs_dma; 2027 int i = 0; 2028 void **bufs; 2029 u64 size, tmp; 2030 2031 tmp = (preferred + chunk_size - 1); 2032 do_div(tmp, chunk_size); 2033 max_entries = tmp; 2034 2035 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2036 max_entries = dev->ctrl.hmmaxd; 2037 2038 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 2039 &descs_dma, GFP_KERNEL); 2040 if (!descs) 2041 goto out; 2042 2043 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2044 if (!bufs) 2045 goto out_free_descs; 2046 2047 for (size = 0; size < preferred && i < max_entries; size += len) { 2048 dma_addr_t dma_addr; 2049 2050 len = min_t(u64, chunk_size, preferred - size); 2051 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2052 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2053 if (!bufs[i]) 2054 break; 2055 2056 descs[i].addr = cpu_to_le64(dma_addr); 2057 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2058 i++; 2059 } 2060 2061 if (!size) 2062 goto out_free_bufs; 2063 2064 dev->nr_host_mem_descs = i; 2065 dev->host_mem_size = size; 2066 dev->host_mem_descs = descs; 2067 dev->host_mem_descs_dma = descs_dma; 2068 dev->host_mem_desc_bufs = bufs; 2069 return 0; 2070 2071 out_free_bufs: 2072 while (--i >= 0) { 2073 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2074 2075 dma_free_attrs(dev->dev, size, bufs[i], 2076 le64_to_cpu(descs[i].addr), 2077 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2078 } 2079 2080 kfree(bufs); 2081 out_free_descs: 2082 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2083 descs_dma); 2084 out: 2085 dev->host_mem_descs = NULL; 2086 return -ENOMEM; 2087 } 2088 2089 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2090 { 2091 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2092 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2093 u64 chunk_size; 2094 2095 /* start big and work our way down */ 2096 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2097 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2098 if (!min || dev->host_mem_size >= min) 2099 return 0; 2100 nvme_free_host_mem(dev); 2101 } 2102 } 2103 2104 return -ENOMEM; 2105 } 2106 2107 static int nvme_setup_host_mem(struct nvme_dev *dev) 2108 { 2109 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2110 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2111 u64 min = (u64)dev->ctrl.hmmin * 4096; 2112 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2113 int ret; 2114 2115 preferred = min(preferred, max); 2116 if (min > max) { 2117 dev_warn(dev->ctrl.device, 2118 "min host memory (%lld MiB) above limit (%d MiB).\n", 2119 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2120 nvme_free_host_mem(dev); 2121 return 0; 2122 } 2123 2124 /* 2125 * If we already have a buffer allocated check if we can reuse it. 2126 */ 2127 if (dev->host_mem_descs) { 2128 if (dev->host_mem_size >= min) 2129 enable_bits |= NVME_HOST_MEM_RETURN; 2130 else 2131 nvme_free_host_mem(dev); 2132 } 2133 2134 if (!dev->host_mem_descs) { 2135 if (nvme_alloc_host_mem(dev, min, preferred)) { 2136 dev_warn(dev->ctrl.device, 2137 "failed to allocate host memory buffer.\n"); 2138 return 0; /* controller must work without HMB */ 2139 } 2140 2141 dev_info(dev->ctrl.device, 2142 "allocated %lld MiB host memory buffer.\n", 2143 dev->host_mem_size >> ilog2(SZ_1M)); 2144 } 2145 2146 ret = nvme_set_host_mem(dev, enable_bits); 2147 if (ret) 2148 nvme_free_host_mem(dev); 2149 return ret; 2150 } 2151 2152 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2153 char *buf) 2154 { 2155 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2156 2157 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2158 ndev->cmbloc, ndev->cmbsz); 2159 } 2160 static DEVICE_ATTR_RO(cmb); 2161 2162 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2163 char *buf) 2164 { 2165 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2166 2167 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2168 } 2169 static DEVICE_ATTR_RO(cmbloc); 2170 2171 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2172 char *buf) 2173 { 2174 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2175 2176 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2177 } 2178 static DEVICE_ATTR_RO(cmbsz); 2179 2180 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2181 char *buf) 2182 { 2183 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2184 2185 return sysfs_emit(buf, "%d\n", ndev->hmb); 2186 } 2187 2188 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2189 const char *buf, size_t count) 2190 { 2191 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2192 bool new; 2193 int ret; 2194 2195 if (strtobool(buf, &new) < 0) 2196 return -EINVAL; 2197 2198 if (new == ndev->hmb) 2199 return count; 2200 2201 if (new) { 2202 ret = nvme_setup_host_mem(ndev); 2203 } else { 2204 ret = nvme_set_host_mem(ndev, 0); 2205 if (!ret) 2206 nvme_free_host_mem(ndev); 2207 } 2208 2209 if (ret < 0) 2210 return ret; 2211 2212 return count; 2213 } 2214 static DEVICE_ATTR_RW(hmb); 2215 2216 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2217 struct attribute *a, int n) 2218 { 2219 struct nvme_ctrl *ctrl = 2220 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2221 struct nvme_dev *dev = to_nvme_dev(ctrl); 2222 2223 if (a == &dev_attr_cmb.attr || 2224 a == &dev_attr_cmbloc.attr || 2225 a == &dev_attr_cmbsz.attr) { 2226 if (!dev->cmbsz) 2227 return 0; 2228 } 2229 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2230 return 0; 2231 2232 return a->mode; 2233 } 2234 2235 static struct attribute *nvme_pci_attrs[] = { 2236 &dev_attr_cmb.attr, 2237 &dev_attr_cmbloc.attr, 2238 &dev_attr_cmbsz.attr, 2239 &dev_attr_hmb.attr, 2240 NULL, 2241 }; 2242 2243 static const struct attribute_group nvme_pci_attr_group = { 2244 .attrs = nvme_pci_attrs, 2245 .is_visible = nvme_pci_attrs_are_visible, 2246 }; 2247 2248 /* 2249 * nirqs is the number of interrupts available for write and read 2250 * queues. The core already reserved an interrupt for the admin queue. 2251 */ 2252 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2253 { 2254 struct nvme_dev *dev = affd->priv; 2255 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2256 2257 /* 2258 * If there is no interrupt available for queues, ensure that 2259 * the default queue is set to 1. The affinity set size is 2260 * also set to one, but the irq core ignores it for this case. 2261 * 2262 * If only one interrupt is available or 'write_queue' == 0, combine 2263 * write and read queues. 2264 * 2265 * If 'write_queues' > 0, ensure it leaves room for at least one read 2266 * queue. 2267 */ 2268 if (!nrirqs) { 2269 nrirqs = 1; 2270 nr_read_queues = 0; 2271 } else if (nrirqs == 1 || !nr_write_queues) { 2272 nr_read_queues = 0; 2273 } else if (nr_write_queues >= nrirqs) { 2274 nr_read_queues = 1; 2275 } else { 2276 nr_read_queues = nrirqs - nr_write_queues; 2277 } 2278 2279 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2280 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2281 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2282 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2283 affd->nr_sets = nr_read_queues ? 2 : 1; 2284 } 2285 2286 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2287 { 2288 struct pci_dev *pdev = to_pci_dev(dev->dev); 2289 struct irq_affinity affd = { 2290 .pre_vectors = 1, 2291 .calc_sets = nvme_calc_irq_sets, 2292 .priv = dev, 2293 }; 2294 unsigned int irq_queues, poll_queues; 2295 2296 /* 2297 * Poll queues don't need interrupts, but we need at least one I/O queue 2298 * left over for non-polled I/O. 2299 */ 2300 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2301 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2302 2303 /* 2304 * Initialize for the single interrupt case, will be updated in 2305 * nvme_calc_irq_sets(). 2306 */ 2307 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2308 dev->io_queues[HCTX_TYPE_READ] = 0; 2309 2310 /* 2311 * We need interrupts for the admin queue and each non-polled I/O queue, 2312 * but some Apple controllers require all queues to use the first 2313 * vector. 2314 */ 2315 irq_queues = 1; 2316 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2317 irq_queues += (nr_io_queues - poll_queues); 2318 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2319 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2320 } 2321 2322 static void nvme_disable_io_queues(struct nvme_dev *dev) 2323 { 2324 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2325 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2326 } 2327 2328 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2329 { 2330 /* 2331 * If tags are shared with admin queue (Apple bug), then 2332 * make sure we only use one IO queue. 2333 */ 2334 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2335 return 1; 2336 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2337 } 2338 2339 static int nvme_setup_io_queues(struct nvme_dev *dev) 2340 { 2341 struct nvme_queue *adminq = &dev->queues[0]; 2342 struct pci_dev *pdev = to_pci_dev(dev->dev); 2343 unsigned int nr_io_queues; 2344 unsigned long size; 2345 int result; 2346 2347 /* 2348 * Sample the module parameters once at reset time so that we have 2349 * stable values to work with. 2350 */ 2351 dev->nr_write_queues = write_queues; 2352 dev->nr_poll_queues = poll_queues; 2353 2354 nr_io_queues = dev->nr_allocated_queues - 1; 2355 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2356 if (result < 0) 2357 return result; 2358 2359 if (nr_io_queues == 0) 2360 return 0; 2361 2362 /* 2363 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2364 * from set to unset. If there is a window to it is truely freed, 2365 * pci_free_irq_vectors() jumping into this window will crash. 2366 * And take lock to avoid racing with pci_free_irq_vectors() in 2367 * nvme_dev_disable() path. 2368 */ 2369 result = nvme_setup_io_queues_trylock(dev); 2370 if (result) 2371 return result; 2372 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2373 pci_free_irq(pdev, 0, adminq); 2374 2375 if (dev->cmb_use_sqes) { 2376 result = nvme_cmb_qdepth(dev, nr_io_queues, 2377 sizeof(struct nvme_command)); 2378 if (result > 0) 2379 dev->q_depth = result; 2380 else 2381 dev->cmb_use_sqes = false; 2382 } 2383 2384 do { 2385 size = db_bar_size(dev, nr_io_queues); 2386 result = nvme_remap_bar(dev, size); 2387 if (!result) 2388 break; 2389 if (!--nr_io_queues) { 2390 result = -ENOMEM; 2391 goto out_unlock; 2392 } 2393 } while (1); 2394 adminq->q_db = dev->dbs; 2395 2396 retry: 2397 /* Deregister the admin queue's interrupt */ 2398 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2399 pci_free_irq(pdev, 0, adminq); 2400 2401 /* 2402 * If we enable msix early due to not intx, disable it again before 2403 * setting up the full range we need. 2404 */ 2405 pci_free_irq_vectors(pdev); 2406 2407 result = nvme_setup_irqs(dev, nr_io_queues); 2408 if (result <= 0) { 2409 result = -EIO; 2410 goto out_unlock; 2411 } 2412 2413 dev->num_vecs = result; 2414 result = max(result - 1, 1); 2415 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2416 2417 /* 2418 * Should investigate if there's a performance win from allocating 2419 * more queues than interrupt vectors; it might allow the submission 2420 * path to scale better, even if the receive path is limited by the 2421 * number of interrupts. 2422 */ 2423 result = queue_request_irq(adminq); 2424 if (result) 2425 goto out_unlock; 2426 set_bit(NVMEQ_ENABLED, &adminq->flags); 2427 mutex_unlock(&dev->shutdown_lock); 2428 2429 result = nvme_create_io_queues(dev); 2430 if (result || dev->online_queues < 2) 2431 return result; 2432 2433 if (dev->online_queues - 1 < dev->max_qid) { 2434 nr_io_queues = dev->online_queues - 1; 2435 nvme_disable_io_queues(dev); 2436 result = nvme_setup_io_queues_trylock(dev); 2437 if (result) 2438 return result; 2439 nvme_suspend_io_queues(dev); 2440 goto retry; 2441 } 2442 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2443 dev->io_queues[HCTX_TYPE_DEFAULT], 2444 dev->io_queues[HCTX_TYPE_READ], 2445 dev->io_queues[HCTX_TYPE_POLL]); 2446 return 0; 2447 out_unlock: 2448 mutex_unlock(&dev->shutdown_lock); 2449 return result; 2450 } 2451 2452 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2453 { 2454 struct nvme_queue *nvmeq = req->end_io_data; 2455 2456 blk_mq_free_request(req); 2457 complete(&nvmeq->delete_done); 2458 } 2459 2460 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2461 { 2462 struct nvme_queue *nvmeq = req->end_io_data; 2463 2464 if (error) 2465 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2466 2467 nvme_del_queue_end(req, error); 2468 } 2469 2470 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2471 { 2472 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2473 struct request *req; 2474 struct nvme_command cmd = { }; 2475 2476 cmd.delete_queue.opcode = opcode; 2477 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2478 2479 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2480 if (IS_ERR(req)) 2481 return PTR_ERR(req); 2482 2483 req->end_io_data = nvmeq; 2484 2485 init_completion(&nvmeq->delete_done); 2486 blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ? 2487 nvme_del_cq_end : nvme_del_queue_end); 2488 return 0; 2489 } 2490 2491 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2492 { 2493 int nr_queues = dev->online_queues - 1, sent = 0; 2494 unsigned long timeout; 2495 2496 retry: 2497 timeout = NVME_ADMIN_TIMEOUT; 2498 while (nr_queues > 0) { 2499 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2500 break; 2501 nr_queues--; 2502 sent++; 2503 } 2504 while (sent) { 2505 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2506 2507 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2508 timeout); 2509 if (timeout == 0) 2510 return false; 2511 2512 sent--; 2513 if (nr_queues) 2514 goto retry; 2515 } 2516 return true; 2517 } 2518 2519 static void nvme_dev_add(struct nvme_dev *dev) 2520 { 2521 int ret; 2522 2523 if (!dev->ctrl.tagset) { 2524 dev->tagset.ops = &nvme_mq_ops; 2525 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2526 dev->tagset.nr_maps = 2; /* default + read */ 2527 if (dev->io_queues[HCTX_TYPE_POLL]) 2528 dev->tagset.nr_maps++; 2529 dev->tagset.timeout = NVME_IO_TIMEOUT; 2530 dev->tagset.numa_node = dev->ctrl.numa_node; 2531 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2532 BLK_MQ_MAX_DEPTH) - 1; 2533 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2534 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2535 dev->tagset.driver_data = dev; 2536 2537 /* 2538 * Some Apple controllers requires tags to be unique 2539 * across admin and IO queue, so reserve the first 32 2540 * tags of the IO queue. 2541 */ 2542 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2543 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2544 2545 ret = blk_mq_alloc_tag_set(&dev->tagset); 2546 if (ret) { 2547 dev_warn(dev->ctrl.device, 2548 "IO queues tagset allocation failed %d\n", ret); 2549 return; 2550 } 2551 dev->ctrl.tagset = &dev->tagset; 2552 } else { 2553 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2554 2555 /* Free previously allocated queues that are no longer usable */ 2556 nvme_free_queues(dev, dev->online_queues); 2557 } 2558 2559 nvme_dbbuf_set(dev); 2560 } 2561 2562 static int nvme_pci_enable(struct nvme_dev *dev) 2563 { 2564 int result = -ENOMEM; 2565 struct pci_dev *pdev = to_pci_dev(dev->dev); 2566 int dma_address_bits = 64; 2567 2568 if (pci_enable_device_mem(pdev)) 2569 return result; 2570 2571 pci_set_master(pdev); 2572 2573 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2574 dma_address_bits = 48; 2575 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2576 goto disable; 2577 2578 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2579 result = -ENODEV; 2580 goto disable; 2581 } 2582 2583 /* 2584 * Some devices and/or platforms don't advertise or work with INTx 2585 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2586 * adjust this later. 2587 */ 2588 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2589 if (result < 0) 2590 return result; 2591 2592 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2593 2594 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2595 io_queue_depth); 2596 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2597 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2598 dev->dbs = dev->bar + 4096; 2599 2600 /* 2601 * Some Apple controllers require a non-standard SQE size. 2602 * Interestingly they also seem to ignore the CC:IOSQES register 2603 * so we don't bother updating it here. 2604 */ 2605 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2606 dev->io_sqes = 7; 2607 else 2608 dev->io_sqes = NVME_NVM_IOSQES; 2609 2610 /* 2611 * Temporary fix for the Apple controller found in the MacBook8,1 and 2612 * some MacBook7,1 to avoid controller resets and data loss. 2613 */ 2614 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2615 dev->q_depth = 2; 2616 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2617 "set queue depth=%u to work around controller resets\n", 2618 dev->q_depth); 2619 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2620 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2621 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2622 dev->q_depth = 64; 2623 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2624 "set queue depth=%u\n", dev->q_depth); 2625 } 2626 2627 /* 2628 * Controllers with the shared tags quirk need the IO queue to be 2629 * big enough so that we get 32 tags for the admin queue 2630 */ 2631 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2632 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2633 dev->q_depth = NVME_AQ_DEPTH + 2; 2634 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2635 dev->q_depth); 2636 } 2637 2638 2639 nvme_map_cmb(dev); 2640 2641 pci_enable_pcie_error_reporting(pdev); 2642 pci_save_state(pdev); 2643 return 0; 2644 2645 disable: 2646 pci_disable_device(pdev); 2647 return result; 2648 } 2649 2650 static void nvme_dev_unmap(struct nvme_dev *dev) 2651 { 2652 if (dev->bar) 2653 iounmap(dev->bar); 2654 pci_release_mem_regions(to_pci_dev(dev->dev)); 2655 } 2656 2657 static void nvme_pci_disable(struct nvme_dev *dev) 2658 { 2659 struct pci_dev *pdev = to_pci_dev(dev->dev); 2660 2661 pci_free_irq_vectors(pdev); 2662 2663 if (pci_is_enabled(pdev)) { 2664 pci_disable_pcie_error_reporting(pdev); 2665 pci_disable_device(pdev); 2666 } 2667 } 2668 2669 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2670 { 2671 bool dead = true, freeze = false; 2672 struct pci_dev *pdev = to_pci_dev(dev->dev); 2673 2674 mutex_lock(&dev->shutdown_lock); 2675 if (pci_is_enabled(pdev)) { 2676 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2677 2678 if (dev->ctrl.state == NVME_CTRL_LIVE || 2679 dev->ctrl.state == NVME_CTRL_RESETTING) { 2680 freeze = true; 2681 nvme_start_freeze(&dev->ctrl); 2682 } 2683 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2684 pdev->error_state != pci_channel_io_normal); 2685 } 2686 2687 /* 2688 * Give the controller a chance to complete all entered requests if 2689 * doing a safe shutdown. 2690 */ 2691 if (!dead && shutdown && freeze) 2692 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2693 2694 nvme_stop_queues(&dev->ctrl); 2695 2696 if (!dead && dev->ctrl.queue_count > 0) { 2697 nvme_disable_io_queues(dev); 2698 nvme_disable_admin_queue(dev, shutdown); 2699 } 2700 nvme_suspend_io_queues(dev); 2701 nvme_suspend_queue(&dev->queues[0]); 2702 nvme_pci_disable(dev); 2703 nvme_reap_pending_cqes(dev); 2704 2705 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2706 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2707 blk_mq_tagset_wait_completed_request(&dev->tagset); 2708 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2709 2710 /* 2711 * The driver will not be starting up queues again if shutting down so 2712 * must flush all entered requests to their failed completion to avoid 2713 * deadlocking blk-mq hot-cpu notifier. 2714 */ 2715 if (shutdown) { 2716 nvme_start_queues(&dev->ctrl); 2717 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2718 nvme_start_admin_queue(&dev->ctrl); 2719 } 2720 mutex_unlock(&dev->shutdown_lock); 2721 } 2722 2723 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2724 { 2725 if (!nvme_wait_reset(&dev->ctrl)) 2726 return -EBUSY; 2727 nvme_dev_disable(dev, shutdown); 2728 return 0; 2729 } 2730 2731 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2732 { 2733 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2734 NVME_CTRL_PAGE_SIZE, 2735 NVME_CTRL_PAGE_SIZE, 0); 2736 if (!dev->prp_page_pool) 2737 return -ENOMEM; 2738 2739 /* Optimisation for I/Os between 4k and 128k */ 2740 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2741 256, 256, 0); 2742 if (!dev->prp_small_pool) { 2743 dma_pool_destroy(dev->prp_page_pool); 2744 return -ENOMEM; 2745 } 2746 return 0; 2747 } 2748 2749 static void nvme_release_prp_pools(struct nvme_dev *dev) 2750 { 2751 dma_pool_destroy(dev->prp_page_pool); 2752 dma_pool_destroy(dev->prp_small_pool); 2753 } 2754 2755 static void nvme_free_tagset(struct nvme_dev *dev) 2756 { 2757 if (dev->tagset.tags) 2758 blk_mq_free_tag_set(&dev->tagset); 2759 dev->ctrl.tagset = NULL; 2760 } 2761 2762 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2763 { 2764 struct nvme_dev *dev = to_nvme_dev(ctrl); 2765 2766 nvme_dbbuf_dma_free(dev); 2767 nvme_free_tagset(dev); 2768 if (dev->ctrl.admin_q) 2769 blk_put_queue(dev->ctrl.admin_q); 2770 free_opal_dev(dev->ctrl.opal_dev); 2771 mempool_destroy(dev->iod_mempool); 2772 put_device(dev->dev); 2773 kfree(dev->queues); 2774 kfree(dev); 2775 } 2776 2777 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2778 { 2779 /* 2780 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2781 * may be holding this pci_dev's device lock. 2782 */ 2783 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2784 nvme_get_ctrl(&dev->ctrl); 2785 nvme_dev_disable(dev, false); 2786 nvme_kill_queues(&dev->ctrl); 2787 if (!queue_work(nvme_wq, &dev->remove_work)) 2788 nvme_put_ctrl(&dev->ctrl); 2789 } 2790 2791 static void nvme_reset_work(struct work_struct *work) 2792 { 2793 struct nvme_dev *dev = 2794 container_of(work, struct nvme_dev, ctrl.reset_work); 2795 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2796 int result; 2797 2798 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2799 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2800 dev->ctrl.state); 2801 result = -ENODEV; 2802 goto out; 2803 } 2804 2805 /* 2806 * If we're called to reset a live controller first shut it down before 2807 * moving on. 2808 */ 2809 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2810 nvme_dev_disable(dev, false); 2811 nvme_sync_queues(&dev->ctrl); 2812 2813 mutex_lock(&dev->shutdown_lock); 2814 result = nvme_pci_enable(dev); 2815 if (result) 2816 goto out_unlock; 2817 2818 result = nvme_pci_configure_admin_queue(dev); 2819 if (result) 2820 goto out_unlock; 2821 2822 result = nvme_alloc_admin_tags(dev); 2823 if (result) 2824 goto out_unlock; 2825 2826 /* 2827 * Limit the max command size to prevent iod->sg allocations going 2828 * over a single page. 2829 */ 2830 dev->ctrl.max_hw_sectors = min_t(u32, 2831 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2832 dev->ctrl.max_segments = NVME_MAX_SEGS; 2833 2834 /* 2835 * Don't limit the IOMMU merged segment size. 2836 */ 2837 dma_set_max_seg_size(dev->dev, 0xffffffff); 2838 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2839 2840 mutex_unlock(&dev->shutdown_lock); 2841 2842 /* 2843 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2844 * initializing procedure here. 2845 */ 2846 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2847 dev_warn(dev->ctrl.device, 2848 "failed to mark controller CONNECTING\n"); 2849 result = -EBUSY; 2850 goto out; 2851 } 2852 2853 /* 2854 * We do not support an SGL for metadata (yet), so we are limited to a 2855 * single integrity segment for the separate metadata pointer. 2856 */ 2857 dev->ctrl.max_integrity_segments = 1; 2858 2859 result = nvme_init_ctrl_finish(&dev->ctrl); 2860 if (result) 2861 goto out; 2862 2863 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2864 if (!dev->ctrl.opal_dev) 2865 dev->ctrl.opal_dev = 2866 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2867 else if (was_suspend) 2868 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2869 } else { 2870 free_opal_dev(dev->ctrl.opal_dev); 2871 dev->ctrl.opal_dev = NULL; 2872 } 2873 2874 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2875 result = nvme_dbbuf_dma_alloc(dev); 2876 if (result) 2877 dev_warn(dev->dev, 2878 "unable to allocate dma for dbbuf\n"); 2879 } 2880 2881 if (dev->ctrl.hmpre) { 2882 result = nvme_setup_host_mem(dev); 2883 if (result < 0) 2884 goto out; 2885 } 2886 2887 result = nvme_setup_io_queues(dev); 2888 if (result) 2889 goto out; 2890 2891 /* 2892 * Keep the controller around but remove all namespaces if we don't have 2893 * any working I/O queue. 2894 */ 2895 if (dev->online_queues < 2) { 2896 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2897 nvme_kill_queues(&dev->ctrl); 2898 nvme_remove_namespaces(&dev->ctrl); 2899 nvme_free_tagset(dev); 2900 } else { 2901 nvme_start_queues(&dev->ctrl); 2902 nvme_wait_freeze(&dev->ctrl); 2903 nvme_dev_add(dev); 2904 nvme_unfreeze(&dev->ctrl); 2905 } 2906 2907 /* 2908 * If only admin queue live, keep it to do further investigation or 2909 * recovery. 2910 */ 2911 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2912 dev_warn(dev->ctrl.device, 2913 "failed to mark controller live state\n"); 2914 result = -ENODEV; 2915 goto out; 2916 } 2917 2918 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2919 &nvme_pci_attr_group)) 2920 dev->attrs_added = true; 2921 2922 nvme_start_ctrl(&dev->ctrl); 2923 return; 2924 2925 out_unlock: 2926 mutex_unlock(&dev->shutdown_lock); 2927 out: 2928 if (result) 2929 dev_warn(dev->ctrl.device, 2930 "Removing after probe failure status: %d\n", result); 2931 nvme_remove_dead_ctrl(dev); 2932 } 2933 2934 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2935 { 2936 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2937 struct pci_dev *pdev = to_pci_dev(dev->dev); 2938 2939 if (pci_get_drvdata(pdev)) 2940 device_release_driver(&pdev->dev); 2941 nvme_put_ctrl(&dev->ctrl); 2942 } 2943 2944 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2945 { 2946 *val = readl(to_nvme_dev(ctrl)->bar + off); 2947 return 0; 2948 } 2949 2950 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2951 { 2952 writel(val, to_nvme_dev(ctrl)->bar + off); 2953 return 0; 2954 } 2955 2956 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2957 { 2958 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2959 return 0; 2960 } 2961 2962 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2963 { 2964 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2965 2966 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2967 } 2968 2969 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2970 .name = "pcie", 2971 .module = THIS_MODULE, 2972 .flags = NVME_F_METADATA_SUPPORTED | 2973 NVME_F_PCI_P2PDMA, 2974 .reg_read32 = nvme_pci_reg_read32, 2975 .reg_write32 = nvme_pci_reg_write32, 2976 .reg_read64 = nvme_pci_reg_read64, 2977 .free_ctrl = nvme_pci_free_ctrl, 2978 .submit_async_event = nvme_pci_submit_async_event, 2979 .get_address = nvme_pci_get_address, 2980 }; 2981 2982 static int nvme_dev_map(struct nvme_dev *dev) 2983 { 2984 struct pci_dev *pdev = to_pci_dev(dev->dev); 2985 2986 if (pci_request_mem_regions(pdev, "nvme")) 2987 return -ENODEV; 2988 2989 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2990 goto release; 2991 2992 return 0; 2993 release: 2994 pci_release_mem_regions(pdev); 2995 return -ENODEV; 2996 } 2997 2998 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2999 { 3000 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3001 /* 3002 * Several Samsung devices seem to drop off the PCIe bus 3003 * randomly when APST is on and uses the deepest sleep state. 3004 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3005 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3006 * 950 PRO 256GB", but it seems to be restricted to two Dell 3007 * laptops. 3008 */ 3009 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3010 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3011 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3012 return NVME_QUIRK_NO_DEEPEST_PS; 3013 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3014 /* 3015 * Samsung SSD 960 EVO drops off the PCIe bus after system 3016 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3017 * within few minutes after bootup on a Coffee Lake board - 3018 * ASUS PRIME Z370-A 3019 */ 3020 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3021 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3022 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3023 return NVME_QUIRK_NO_APST; 3024 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3025 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3026 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3027 /* 3028 * Forcing to use host managed nvme power settings for 3029 * lowest idle power with quick resume latency on 3030 * Samsung and Toshiba SSDs based on suspend behavior 3031 * on Coffee Lake board for LENOVO C640 3032 */ 3033 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3034 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3035 return NVME_QUIRK_SIMPLE_SUSPEND; 3036 } 3037 3038 return 0; 3039 } 3040 3041 static void nvme_async_probe(void *data, async_cookie_t cookie) 3042 { 3043 struct nvme_dev *dev = data; 3044 3045 flush_work(&dev->ctrl.reset_work); 3046 flush_work(&dev->ctrl.scan_work); 3047 nvme_put_ctrl(&dev->ctrl); 3048 } 3049 3050 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3051 { 3052 int node, result = -ENOMEM; 3053 struct nvme_dev *dev; 3054 unsigned long quirks = id->driver_data; 3055 size_t alloc_size; 3056 3057 node = dev_to_node(&pdev->dev); 3058 if (node == NUMA_NO_NODE) 3059 set_dev_node(&pdev->dev, first_memory_node); 3060 3061 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3062 if (!dev) 3063 return -ENOMEM; 3064 3065 dev->nr_write_queues = write_queues; 3066 dev->nr_poll_queues = poll_queues; 3067 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3068 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3069 sizeof(struct nvme_queue), GFP_KERNEL, node); 3070 if (!dev->queues) 3071 goto free; 3072 3073 dev->dev = get_device(&pdev->dev); 3074 pci_set_drvdata(pdev, dev); 3075 3076 result = nvme_dev_map(dev); 3077 if (result) 3078 goto put_pci; 3079 3080 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3081 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 3082 mutex_init(&dev->shutdown_lock); 3083 3084 result = nvme_setup_prp_pools(dev); 3085 if (result) 3086 goto unmap; 3087 3088 quirks |= check_vendor_combination_bug(pdev); 3089 3090 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 3091 /* 3092 * Some systems use a bios work around to ask for D3 on 3093 * platforms that support kernel managed suspend. 3094 */ 3095 dev_info(&pdev->dev, 3096 "platform quirk: setting simple suspend\n"); 3097 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3098 } 3099 3100 /* 3101 * Double check that our mempool alloc size will cover the biggest 3102 * command we support. 3103 */ 3104 alloc_size = nvme_pci_iod_alloc_size(); 3105 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3106 3107 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3108 mempool_kfree, 3109 (void *) alloc_size, 3110 GFP_KERNEL, node); 3111 if (!dev->iod_mempool) { 3112 result = -ENOMEM; 3113 goto release_pools; 3114 } 3115 3116 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3117 quirks); 3118 if (result) 3119 goto release_mempool; 3120 3121 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3122 3123 nvme_reset_ctrl(&dev->ctrl); 3124 async_schedule(nvme_async_probe, dev); 3125 3126 return 0; 3127 3128 release_mempool: 3129 mempool_destroy(dev->iod_mempool); 3130 release_pools: 3131 nvme_release_prp_pools(dev); 3132 unmap: 3133 nvme_dev_unmap(dev); 3134 put_pci: 3135 put_device(dev->dev); 3136 free: 3137 kfree(dev->queues); 3138 kfree(dev); 3139 return result; 3140 } 3141 3142 static void nvme_reset_prepare(struct pci_dev *pdev) 3143 { 3144 struct nvme_dev *dev = pci_get_drvdata(pdev); 3145 3146 /* 3147 * We don't need to check the return value from waiting for the reset 3148 * state as pci_dev device lock is held, making it impossible to race 3149 * with ->remove(). 3150 */ 3151 nvme_disable_prepare_reset(dev, false); 3152 nvme_sync_queues(&dev->ctrl); 3153 } 3154 3155 static void nvme_reset_done(struct pci_dev *pdev) 3156 { 3157 struct nvme_dev *dev = pci_get_drvdata(pdev); 3158 3159 if (!nvme_try_sched_reset(&dev->ctrl)) 3160 flush_work(&dev->ctrl.reset_work); 3161 } 3162 3163 static void nvme_shutdown(struct pci_dev *pdev) 3164 { 3165 struct nvme_dev *dev = pci_get_drvdata(pdev); 3166 3167 nvme_disable_prepare_reset(dev, true); 3168 } 3169 3170 static void nvme_remove_attrs(struct nvme_dev *dev) 3171 { 3172 if (dev->attrs_added) 3173 sysfs_remove_group(&dev->ctrl.device->kobj, 3174 &nvme_pci_attr_group); 3175 } 3176 3177 /* 3178 * The driver's remove may be called on a device in a partially initialized 3179 * state. This function must not have any dependencies on the device state in 3180 * order to proceed. 3181 */ 3182 static void nvme_remove(struct pci_dev *pdev) 3183 { 3184 struct nvme_dev *dev = pci_get_drvdata(pdev); 3185 3186 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3187 pci_set_drvdata(pdev, NULL); 3188 3189 if (!pci_device_is_present(pdev)) { 3190 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3191 nvme_dev_disable(dev, true); 3192 } 3193 3194 flush_work(&dev->ctrl.reset_work); 3195 nvme_stop_ctrl(&dev->ctrl); 3196 nvme_remove_namespaces(&dev->ctrl); 3197 nvme_dev_disable(dev, true); 3198 nvme_remove_attrs(dev); 3199 nvme_free_host_mem(dev); 3200 nvme_dev_remove_admin(dev); 3201 nvme_free_queues(dev, 0); 3202 nvme_release_prp_pools(dev); 3203 nvme_dev_unmap(dev); 3204 nvme_uninit_ctrl(&dev->ctrl); 3205 } 3206 3207 #ifdef CONFIG_PM_SLEEP 3208 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3209 { 3210 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3211 } 3212 3213 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3214 { 3215 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3216 } 3217 3218 static int nvme_resume(struct device *dev) 3219 { 3220 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3221 struct nvme_ctrl *ctrl = &ndev->ctrl; 3222 3223 if (ndev->last_ps == U32_MAX || 3224 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3225 goto reset; 3226 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3227 goto reset; 3228 3229 return 0; 3230 reset: 3231 return nvme_try_sched_reset(ctrl); 3232 } 3233 3234 static int nvme_suspend(struct device *dev) 3235 { 3236 struct pci_dev *pdev = to_pci_dev(dev); 3237 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3238 struct nvme_ctrl *ctrl = &ndev->ctrl; 3239 int ret = -EBUSY; 3240 3241 ndev->last_ps = U32_MAX; 3242 3243 /* 3244 * The platform does not remove power for a kernel managed suspend so 3245 * use host managed nvme power settings for lowest idle power if 3246 * possible. This should have quicker resume latency than a full device 3247 * shutdown. But if the firmware is involved after the suspend or the 3248 * device does not support any non-default power states, shut down the 3249 * device fully. 3250 * 3251 * If ASPM is not enabled for the device, shut down the device and allow 3252 * the PCI bus layer to put it into D3 in order to take the PCIe link 3253 * down, so as to allow the platform to achieve its minimum low-power 3254 * state (which may not be possible if the link is up). 3255 */ 3256 if (pm_suspend_via_firmware() || !ctrl->npss || 3257 !pcie_aspm_enabled(pdev) || 3258 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3259 return nvme_disable_prepare_reset(ndev, true); 3260 3261 nvme_start_freeze(ctrl); 3262 nvme_wait_freeze(ctrl); 3263 nvme_sync_queues(ctrl); 3264 3265 if (ctrl->state != NVME_CTRL_LIVE) 3266 goto unfreeze; 3267 3268 /* 3269 * Host memory access may not be successful in a system suspend state, 3270 * but the specification allows the controller to access memory in a 3271 * non-operational power state. 3272 */ 3273 if (ndev->hmb) { 3274 ret = nvme_set_host_mem(ndev, 0); 3275 if (ret < 0) 3276 goto unfreeze; 3277 } 3278 3279 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3280 if (ret < 0) 3281 goto unfreeze; 3282 3283 /* 3284 * A saved state prevents pci pm from generically controlling the 3285 * device's power. If we're using protocol specific settings, we don't 3286 * want pci interfering. 3287 */ 3288 pci_save_state(pdev); 3289 3290 ret = nvme_set_power_state(ctrl, ctrl->npss); 3291 if (ret < 0) 3292 goto unfreeze; 3293 3294 if (ret) { 3295 /* discard the saved state */ 3296 pci_load_saved_state(pdev, NULL); 3297 3298 /* 3299 * Clearing npss forces a controller reset on resume. The 3300 * correct value will be rediscovered then. 3301 */ 3302 ret = nvme_disable_prepare_reset(ndev, true); 3303 ctrl->npss = 0; 3304 } 3305 unfreeze: 3306 nvme_unfreeze(ctrl); 3307 return ret; 3308 } 3309 3310 static int nvme_simple_suspend(struct device *dev) 3311 { 3312 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3313 3314 return nvme_disable_prepare_reset(ndev, true); 3315 } 3316 3317 static int nvme_simple_resume(struct device *dev) 3318 { 3319 struct pci_dev *pdev = to_pci_dev(dev); 3320 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3321 3322 return nvme_try_sched_reset(&ndev->ctrl); 3323 } 3324 3325 static const struct dev_pm_ops nvme_dev_pm_ops = { 3326 .suspend = nvme_suspend, 3327 .resume = nvme_resume, 3328 .freeze = nvme_simple_suspend, 3329 .thaw = nvme_simple_resume, 3330 .poweroff = nvme_simple_suspend, 3331 .restore = nvme_simple_resume, 3332 }; 3333 #endif /* CONFIG_PM_SLEEP */ 3334 3335 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3336 pci_channel_state_t state) 3337 { 3338 struct nvme_dev *dev = pci_get_drvdata(pdev); 3339 3340 /* 3341 * A frozen channel requires a reset. When detected, this method will 3342 * shutdown the controller to quiesce. The controller will be restarted 3343 * after the slot reset through driver's slot_reset callback. 3344 */ 3345 switch (state) { 3346 case pci_channel_io_normal: 3347 return PCI_ERS_RESULT_CAN_RECOVER; 3348 case pci_channel_io_frozen: 3349 dev_warn(dev->ctrl.device, 3350 "frozen state error detected, reset controller\n"); 3351 nvme_dev_disable(dev, false); 3352 return PCI_ERS_RESULT_NEED_RESET; 3353 case pci_channel_io_perm_failure: 3354 dev_warn(dev->ctrl.device, 3355 "failure state error detected, request disconnect\n"); 3356 return PCI_ERS_RESULT_DISCONNECT; 3357 } 3358 return PCI_ERS_RESULT_NEED_RESET; 3359 } 3360 3361 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3362 { 3363 struct nvme_dev *dev = pci_get_drvdata(pdev); 3364 3365 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3366 pci_restore_state(pdev); 3367 nvme_reset_ctrl(&dev->ctrl); 3368 return PCI_ERS_RESULT_RECOVERED; 3369 } 3370 3371 static void nvme_error_resume(struct pci_dev *pdev) 3372 { 3373 struct nvme_dev *dev = pci_get_drvdata(pdev); 3374 3375 flush_work(&dev->ctrl.reset_work); 3376 } 3377 3378 static const struct pci_error_handlers nvme_err_handler = { 3379 .error_detected = nvme_error_detected, 3380 .slot_reset = nvme_slot_reset, 3381 .resume = nvme_error_resume, 3382 .reset_prepare = nvme_reset_prepare, 3383 .reset_done = nvme_reset_done, 3384 }; 3385 3386 static const struct pci_device_id nvme_id_table[] = { 3387 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3388 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3389 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3390 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3391 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3392 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3393 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3394 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3395 NVME_QUIRK_DEALLOCATE_ZEROES | 3396 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3397 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3398 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3399 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3400 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3401 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3402 NVME_QUIRK_MEDIUM_PRIO_SQ | 3403 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3404 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3405 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3406 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3407 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3408 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3409 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3410 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3411 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3412 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3413 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3414 NVME_QUIRK_NO_NS_DESC_LIST, }, 3415 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3416 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3417 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3418 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3419 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3420 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3421 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3422 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3423 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3424 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3425 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3426 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3427 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3428 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3429 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3430 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3431 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3432 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3433 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3434 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3435 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3436 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3437 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3440 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3441 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3442 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3443 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3444 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3445 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3446 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3447 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3448 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3449 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3450 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3451 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3452 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3453 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3454 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3455 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3456 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3457 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3458 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3459 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3460 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3461 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3462 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3463 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3464 NVME_QUIRK_128_BYTES_SQES | 3465 NVME_QUIRK_SHARED_TAGS | 3466 NVME_QUIRK_SKIP_CID_GEN }, 3467 3468 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3469 { 0, } 3470 }; 3471 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3472 3473 static struct pci_driver nvme_driver = { 3474 .name = "nvme", 3475 .id_table = nvme_id_table, 3476 .probe = nvme_probe, 3477 .remove = nvme_remove, 3478 .shutdown = nvme_shutdown, 3479 #ifdef CONFIG_PM_SLEEP 3480 .driver = { 3481 .pm = &nvme_dev_pm_ops, 3482 }, 3483 #endif 3484 .sriov_configure = pci_sriov_configure_simple, 3485 .err_handler = &nvme_err_handler, 3486 }; 3487 3488 static int __init nvme_init(void) 3489 { 3490 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3491 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3492 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3493 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3494 3495 return pci_register_driver(&nvme_driver); 3496 } 3497 3498 static void __exit nvme_exit(void) 3499 { 3500 pci_unregister_driver(&nvme_driver); 3501 flush_workqueue(nvme_wq); 3502 } 3503 3504 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3505 MODULE_LICENSE("GPL"); 3506 MODULE_VERSION("1.0"); 3507 module_init(nvme_init); 3508 module_exit(nvme_exit); 3509