1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 #include <linux/sed-opal.h> 28 #include <linux/pci-p2pdma.h> 29 30 #include "trace.h" 31 #include "nvme.h" 32 33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 35 36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 37 38 /* 39 * These can be higher, but we need to ensure that any command doesn't 40 * require an sg allocation that needs more than a page of data. 41 */ 42 #define NVME_MAX_KB_SZ 4096 43 #define NVME_MAX_SEGS 127 44 45 static int use_threaded_interrupts; 46 module_param(use_threaded_interrupts, int, 0); 47 48 static bool use_cmb_sqes = true; 49 module_param(use_cmb_sqes, bool, 0444); 50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 51 52 static unsigned int max_host_mem_size_mb = 128; 53 module_param(max_host_mem_size_mb, uint, 0444); 54 MODULE_PARM_DESC(max_host_mem_size_mb, 55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 56 57 static unsigned int sgl_threshold = SZ_32K; 58 module_param(sgl_threshold, uint, 0644); 59 MODULE_PARM_DESC(sgl_threshold, 60 "Use SGLs when average request segment size is larger or equal to " 61 "this size. Use 0 to disable SGLs."); 62 63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 64 static const struct kernel_param_ops io_queue_depth_ops = { 65 .set = io_queue_depth_set, 66 .get = param_get_uint, 67 }; 68 69 static unsigned int io_queue_depth = 1024; 70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 72 73 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 74 { 75 unsigned int n; 76 int ret; 77 78 ret = kstrtouint(val, 10, &n); 79 if (ret != 0 || n > num_possible_cpus()) 80 return -EINVAL; 81 return param_set_uint(val, kp); 82 } 83 84 static const struct kernel_param_ops io_queue_count_ops = { 85 .set = io_queue_count_set, 86 .get = param_get_uint, 87 }; 88 89 static unsigned int write_queues; 90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 91 MODULE_PARM_DESC(write_queues, 92 "Number of queues to use for writes. If not set, reads and writes " 93 "will share a queue set."); 94 95 static unsigned int poll_queues; 96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 98 99 static bool noacpi; 100 module_param(noacpi, bool, 0444); 101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 102 103 struct nvme_dev; 104 struct nvme_queue; 105 106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 108 109 /* 110 * Represents an NVM Express device. Each nvme_dev is a PCI function. 111 */ 112 struct nvme_dev { 113 struct nvme_queue *queues; 114 struct blk_mq_tag_set tagset; 115 struct blk_mq_tag_set admin_tagset; 116 u32 __iomem *dbs; 117 struct device *dev; 118 struct dma_pool *prp_page_pool; 119 struct dma_pool *prp_small_pool; 120 unsigned online_queues; 121 unsigned max_qid; 122 unsigned io_queues[HCTX_MAX_TYPES]; 123 unsigned int num_vecs; 124 u32 q_depth; 125 int io_sqes; 126 u32 db_stride; 127 void __iomem *bar; 128 unsigned long bar_mapped_size; 129 struct work_struct remove_work; 130 struct mutex shutdown_lock; 131 bool subsystem; 132 u64 cmb_size; 133 bool cmb_use_sqes; 134 u32 cmbsz; 135 u32 cmbloc; 136 struct nvme_ctrl ctrl; 137 u32 last_ps; 138 139 mempool_t *iod_mempool; 140 141 /* shadow doorbell buffer support: */ 142 u32 *dbbuf_dbs; 143 dma_addr_t dbbuf_dbs_dma_addr; 144 u32 *dbbuf_eis; 145 dma_addr_t dbbuf_eis_dma_addr; 146 147 /* host memory buffer support: */ 148 u64 host_mem_size; 149 u32 nr_host_mem_descs; 150 dma_addr_t host_mem_descs_dma; 151 struct nvme_host_mem_buf_desc *host_mem_descs; 152 void **host_mem_desc_bufs; 153 unsigned int nr_allocated_queues; 154 unsigned int nr_write_queues; 155 unsigned int nr_poll_queues; 156 }; 157 158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 159 { 160 int ret; 161 u32 n; 162 163 ret = kstrtou32(val, 10, &n); 164 if (ret != 0 || n < 2) 165 return -EINVAL; 166 167 return param_set_uint(val, kp); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 u32 *dbbuf_sq_db; 213 u32 *dbbuf_cq_db; 214 u32 *dbbuf_sq_ei; 215 u32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 /* 220 * The nvme_iod describes the data in an I/O. 221 * 222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 223 * to the actual struct scatterlist. 224 */ 225 struct nvme_iod { 226 struct nvme_request req; 227 struct nvme_queue *nvmeq; 228 bool use_sgl; 229 int aborted; 230 int npages; /* In the PRP list. 0 means small pool in use */ 231 int nents; /* Used in scatterlist */ 232 dma_addr_t first_dma; 233 unsigned int dma_len; /* length of single DMA segment mapping */ 234 dma_addr_t meta_dma; 235 struct scatterlist *sg; 236 }; 237 238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 239 { 240 return dev->nr_allocated_queues * 8 * dev->db_stride; 241 } 242 243 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 244 { 245 unsigned int mem_size = nvme_dbbuf_size(dev); 246 247 if (dev->dbbuf_dbs) 248 return 0; 249 250 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 251 &dev->dbbuf_dbs_dma_addr, 252 GFP_KERNEL); 253 if (!dev->dbbuf_dbs) 254 return -ENOMEM; 255 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 256 &dev->dbbuf_eis_dma_addr, 257 GFP_KERNEL); 258 if (!dev->dbbuf_eis) { 259 dma_free_coherent(dev->dev, mem_size, 260 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 261 dev->dbbuf_dbs = NULL; 262 return -ENOMEM; 263 } 264 265 return 0; 266 } 267 268 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 269 { 270 unsigned int mem_size = nvme_dbbuf_size(dev); 271 272 if (dev->dbbuf_dbs) { 273 dma_free_coherent(dev->dev, mem_size, 274 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 275 dev->dbbuf_dbs = NULL; 276 } 277 if (dev->dbbuf_eis) { 278 dma_free_coherent(dev->dev, mem_size, 279 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 280 dev->dbbuf_eis = NULL; 281 } 282 } 283 284 static void nvme_dbbuf_init(struct nvme_dev *dev, 285 struct nvme_queue *nvmeq, int qid) 286 { 287 if (!dev->dbbuf_dbs || !qid) 288 return; 289 290 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 293 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 294 } 295 296 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 297 { 298 if (!nvmeq->qid) 299 return; 300 301 nvmeq->dbbuf_sq_db = NULL; 302 nvmeq->dbbuf_cq_db = NULL; 303 nvmeq->dbbuf_sq_ei = NULL; 304 nvmeq->dbbuf_cq_ei = NULL; 305 } 306 307 static void nvme_dbbuf_set(struct nvme_dev *dev) 308 { 309 struct nvme_command c; 310 unsigned int i; 311 312 if (!dev->dbbuf_dbs) 313 return; 314 315 memset(&c, 0, sizeof(c)); 316 c.dbbuf.opcode = nvme_admin_dbbuf; 317 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 318 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 319 320 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 321 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 322 /* Free memory and continue on */ 323 nvme_dbbuf_dma_free(dev); 324 325 for (i = 1; i <= dev->online_queues; i++) 326 nvme_dbbuf_free(&dev->queues[i]); 327 } 328 } 329 330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 331 { 332 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 333 } 334 335 /* Update dbbuf and return true if an MMIO is required */ 336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 337 volatile u32 *dbbuf_ei) 338 { 339 if (dbbuf_db) { 340 u16 old_value; 341 342 /* 343 * Ensure that the queue is written before updating 344 * the doorbell in memory 345 */ 346 wmb(); 347 348 old_value = *dbbuf_db; 349 *dbbuf_db = value; 350 351 /* 352 * Ensure that the doorbell is updated before reading the event 353 * index from memory. The controller needs to provide similar 354 * ordering to ensure the envent index is updated before reading 355 * the doorbell. 356 */ 357 mb(); 358 359 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 360 return false; 361 } 362 363 return true; 364 } 365 366 /* 367 * Will slightly overestimate the number of pages needed. This is OK 368 * as it only leads to a small amount of wasted memory for the lifetime of 369 * the I/O. 370 */ 371 static int nvme_pci_npages_prp(void) 372 { 373 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 374 NVME_CTRL_PAGE_SIZE); 375 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 376 } 377 378 /* 379 * Calculates the number of pages needed for the SGL segments. For example a 4k 380 * page can accommodate 256 SGL descriptors. 381 */ 382 static int nvme_pci_npages_sgl(void) 383 { 384 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 385 PAGE_SIZE); 386 } 387 388 static size_t nvme_pci_iod_alloc_size(void) 389 { 390 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 391 392 return sizeof(__le64 *) * npages + 393 sizeof(struct scatterlist) * NVME_MAX_SEGS; 394 } 395 396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_dev *dev = data; 400 struct nvme_queue *nvmeq = &dev->queues[0]; 401 402 WARN_ON(hctx_idx != 0); 403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 404 405 hctx->driver_data = nvmeq; 406 return 0; 407 } 408 409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 410 unsigned int hctx_idx) 411 { 412 struct nvme_dev *dev = data; 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 414 415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 416 hctx->driver_data = nvmeq; 417 return 0; 418 } 419 420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 421 unsigned int hctx_idx, unsigned int numa_node) 422 { 423 struct nvme_dev *dev = set->driver_data; 424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 425 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 426 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 427 428 BUG_ON(!nvmeq); 429 iod->nvmeq = nvmeq; 430 431 nvme_req(req)->ctrl = &dev->ctrl; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = set->driver_data; 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 472 return 0; 473 } 474 475 /* 476 * Write sq tail if we are asked to, or if the next command would wrap. 477 */ 478 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 479 { 480 if (!write_sq) { 481 u16 next_tail = nvmeq->sq_tail + 1; 482 483 if (next_tail == nvmeq->q_depth) 484 next_tail = 0; 485 if (next_tail != nvmeq->last_sq_tail) 486 return; 487 } 488 489 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 490 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 491 writel(nvmeq->sq_tail, nvmeq->q_db); 492 nvmeq->last_sq_tail = nvmeq->sq_tail; 493 } 494 495 /** 496 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 497 * @nvmeq: The queue to use 498 * @cmd: The command to send 499 * @write_sq: whether to write to the SQ doorbell 500 */ 501 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 502 bool write_sq) 503 { 504 spin_lock(&nvmeq->sq_lock); 505 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 506 cmd, sizeof(*cmd)); 507 if (++nvmeq->sq_tail == nvmeq->q_depth) 508 nvmeq->sq_tail = 0; 509 nvme_write_sq_db(nvmeq, write_sq); 510 spin_unlock(&nvmeq->sq_lock); 511 } 512 513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 514 { 515 struct nvme_queue *nvmeq = hctx->driver_data; 516 517 spin_lock(&nvmeq->sq_lock); 518 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 519 nvme_write_sq_db(nvmeq, true); 520 spin_unlock(&nvmeq->sq_lock); 521 } 522 523 static void **nvme_pci_iod_list(struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 527 } 528 529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 530 { 531 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 532 int nseg = blk_rq_nr_phys_segments(req); 533 unsigned int avg_seg_size; 534 535 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 536 537 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 538 return false; 539 if (!iod->nvmeq->qid) 540 return false; 541 if (!sgl_threshold || avg_seg_size < sgl_threshold) 542 return false; 543 return true; 544 } 545 546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 547 { 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 550 dma_addr_t dma_addr = iod->first_dma; 551 int i; 552 553 for (i = 0; i < iod->npages; i++) { 554 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 555 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 556 557 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 558 dma_addr = next_dma_addr; 559 } 560 561 } 562 563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 564 { 565 const int last_sg = SGES_PER_PAGE - 1; 566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 567 dma_addr_t dma_addr = iod->first_dma; 568 int i; 569 570 for (i = 0; i < iod->npages; i++) { 571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 573 574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 575 dma_addr = next_dma_addr; 576 } 577 578 } 579 580 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 584 if (is_pci_p2pdma_page(sg_page(iod->sg))) 585 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 586 rq_dma_dir(req)); 587 else 588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 589 } 590 591 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 592 { 593 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 594 595 if (iod->dma_len) { 596 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 597 rq_dma_dir(req)); 598 return; 599 } 600 601 WARN_ON_ONCE(!iod->nents); 602 603 nvme_unmap_sg(dev, req); 604 if (iod->npages == 0) 605 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 606 iod->first_dma); 607 else if (iod->use_sgl) 608 nvme_free_sgls(dev, req); 609 else 610 nvme_free_prps(dev, req); 611 mempool_free(iod->sg, dev->iod_mempool); 612 } 613 614 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 615 { 616 int i; 617 struct scatterlist *sg; 618 619 for_each_sg(sgl, sg, nents, i) { 620 dma_addr_t phys = sg_phys(sg); 621 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 622 "dma_address:%pad dma_length:%d\n", 623 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 624 sg_dma_len(sg)); 625 } 626 } 627 628 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 629 struct request *req, struct nvme_rw_command *cmnd) 630 { 631 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 632 struct dma_pool *pool; 633 int length = blk_rq_payload_bytes(req); 634 struct scatterlist *sg = iod->sg; 635 int dma_len = sg_dma_len(sg); 636 u64 dma_addr = sg_dma_address(sg); 637 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 638 __le64 *prp_list; 639 void **list = nvme_pci_iod_list(req); 640 dma_addr_t prp_dma; 641 int nprps, i; 642 643 length -= (NVME_CTRL_PAGE_SIZE - offset); 644 if (length <= 0) { 645 iod->first_dma = 0; 646 goto done; 647 } 648 649 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 650 if (dma_len) { 651 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 652 } else { 653 sg = sg_next(sg); 654 dma_addr = sg_dma_address(sg); 655 dma_len = sg_dma_len(sg); 656 } 657 658 if (length <= NVME_CTRL_PAGE_SIZE) { 659 iod->first_dma = dma_addr; 660 goto done; 661 } 662 663 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 664 if (nprps <= (256 / 8)) { 665 pool = dev->prp_small_pool; 666 iod->npages = 0; 667 } else { 668 pool = dev->prp_page_pool; 669 iod->npages = 1; 670 } 671 672 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 673 if (!prp_list) { 674 iod->first_dma = dma_addr; 675 iod->npages = -1; 676 return BLK_STS_RESOURCE; 677 } 678 list[0] = prp_list; 679 iod->first_dma = prp_dma; 680 i = 0; 681 for (;;) { 682 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 683 __le64 *old_prp_list = prp_list; 684 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 685 if (!prp_list) 686 goto free_prps; 687 list[iod->npages++] = prp_list; 688 prp_list[0] = old_prp_list[i - 1]; 689 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 690 i = 1; 691 } 692 prp_list[i++] = cpu_to_le64(dma_addr); 693 dma_len -= NVME_CTRL_PAGE_SIZE; 694 dma_addr += NVME_CTRL_PAGE_SIZE; 695 length -= NVME_CTRL_PAGE_SIZE; 696 if (length <= 0) 697 break; 698 if (dma_len > 0) 699 continue; 700 if (unlikely(dma_len < 0)) 701 goto bad_sgl; 702 sg = sg_next(sg); 703 dma_addr = sg_dma_address(sg); 704 dma_len = sg_dma_len(sg); 705 } 706 done: 707 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 708 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 709 return BLK_STS_OK; 710 free_prps: 711 nvme_free_prps(dev, req); 712 return BLK_STS_RESOURCE; 713 bad_sgl: 714 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 715 "Invalid SGL for payload:%d nents:%d\n", 716 blk_rq_payload_bytes(req), iod->nents); 717 return BLK_STS_IOERR; 718 } 719 720 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 721 struct scatterlist *sg) 722 { 723 sge->addr = cpu_to_le64(sg_dma_address(sg)); 724 sge->length = cpu_to_le32(sg_dma_len(sg)); 725 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 726 } 727 728 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 729 dma_addr_t dma_addr, int entries) 730 { 731 sge->addr = cpu_to_le64(dma_addr); 732 if (entries < SGES_PER_PAGE) { 733 sge->length = cpu_to_le32(entries * sizeof(*sge)); 734 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 735 } else { 736 sge->length = cpu_to_le32(PAGE_SIZE); 737 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 738 } 739 } 740 741 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 742 struct request *req, struct nvme_rw_command *cmd, int entries) 743 { 744 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 745 struct dma_pool *pool; 746 struct nvme_sgl_desc *sg_list; 747 struct scatterlist *sg = iod->sg; 748 dma_addr_t sgl_dma; 749 int i = 0; 750 751 /* setting the transfer type as SGL */ 752 cmd->flags = NVME_CMD_SGL_METABUF; 753 754 if (entries == 1) { 755 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 756 return BLK_STS_OK; 757 } 758 759 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 760 pool = dev->prp_small_pool; 761 iod->npages = 0; 762 } else { 763 pool = dev->prp_page_pool; 764 iod->npages = 1; 765 } 766 767 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 768 if (!sg_list) { 769 iod->npages = -1; 770 return BLK_STS_RESOURCE; 771 } 772 773 nvme_pci_iod_list(req)[0] = sg_list; 774 iod->first_dma = sgl_dma; 775 776 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 777 778 do { 779 if (i == SGES_PER_PAGE) { 780 struct nvme_sgl_desc *old_sg_desc = sg_list; 781 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 782 783 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 784 if (!sg_list) 785 goto free_sgls; 786 787 i = 0; 788 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 789 sg_list[i++] = *link; 790 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 791 } 792 793 nvme_pci_sgl_set_data(&sg_list[i++], sg); 794 sg = sg_next(sg); 795 } while (--entries > 0); 796 797 return BLK_STS_OK; 798 free_sgls: 799 nvme_free_sgls(dev, req); 800 return BLK_STS_RESOURCE; 801 } 802 803 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 804 struct request *req, struct nvme_rw_command *cmnd, 805 struct bio_vec *bv) 806 { 807 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 808 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 809 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 810 811 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 812 if (dma_mapping_error(dev->dev, iod->first_dma)) 813 return BLK_STS_RESOURCE; 814 iod->dma_len = bv->bv_len; 815 816 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 817 if (bv->bv_len > first_prp_len) 818 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 819 return BLK_STS_OK; 820 } 821 822 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 823 struct request *req, struct nvme_rw_command *cmnd, 824 struct bio_vec *bv) 825 { 826 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 827 828 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 829 if (dma_mapping_error(dev->dev, iod->first_dma)) 830 return BLK_STS_RESOURCE; 831 iod->dma_len = bv->bv_len; 832 833 cmnd->flags = NVME_CMD_SGL_METABUF; 834 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 835 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 836 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 837 return BLK_STS_OK; 838 } 839 840 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 841 struct nvme_command *cmnd) 842 { 843 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 844 blk_status_t ret = BLK_STS_RESOURCE; 845 int nr_mapped; 846 847 if (blk_rq_nr_phys_segments(req) == 1) { 848 struct bio_vec bv = req_bvec(req); 849 850 if (!is_pci_p2pdma_page(bv.bv_page)) { 851 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 852 return nvme_setup_prp_simple(dev, req, 853 &cmnd->rw, &bv); 854 855 if (iod->nvmeq->qid && 856 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 857 return nvme_setup_sgl_simple(dev, req, 858 &cmnd->rw, &bv); 859 } 860 } 861 862 iod->dma_len = 0; 863 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 864 if (!iod->sg) 865 return BLK_STS_RESOURCE; 866 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 867 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 868 if (!iod->nents) 869 goto out_free_sg; 870 871 if (is_pci_p2pdma_page(sg_page(iod->sg))) 872 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 873 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 874 else 875 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 876 rq_dma_dir(req), DMA_ATTR_NO_WARN); 877 if (!nr_mapped) 878 goto out_free_sg; 879 880 iod->use_sgl = nvme_pci_use_sgls(dev, req); 881 if (iod->use_sgl) 882 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 883 else 884 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 885 if (ret != BLK_STS_OK) 886 goto out_unmap_sg; 887 return BLK_STS_OK; 888 889 out_unmap_sg: 890 nvme_unmap_sg(dev, req); 891 out_free_sg: 892 mempool_free(iod->sg, dev->iod_mempool); 893 return ret; 894 } 895 896 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 897 struct nvme_command *cmnd) 898 { 899 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 900 901 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 902 rq_dma_dir(req), 0); 903 if (dma_mapping_error(dev->dev, iod->meta_dma)) 904 return BLK_STS_IOERR; 905 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 906 return BLK_STS_OK; 907 } 908 909 /* 910 * NOTE: ns is NULL when called on the admin queue. 911 */ 912 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 913 const struct blk_mq_queue_data *bd) 914 { 915 struct nvme_ns *ns = hctx->queue->queuedata; 916 struct nvme_queue *nvmeq = hctx->driver_data; 917 struct nvme_dev *dev = nvmeq->dev; 918 struct request *req = bd->rq; 919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 920 struct nvme_command cmnd; 921 blk_status_t ret; 922 923 iod->aborted = 0; 924 iod->npages = -1; 925 iod->nents = 0; 926 927 /* 928 * We should not need to do this, but we're still using this to 929 * ensure we can drain requests on a dying queue. 930 */ 931 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 932 return BLK_STS_IOERR; 933 934 ret = nvme_setup_cmd(ns, req, &cmnd); 935 if (ret) 936 return ret; 937 938 if (blk_rq_nr_phys_segments(req)) { 939 ret = nvme_map_data(dev, req, &cmnd); 940 if (ret) 941 goto out_free_cmd; 942 } 943 944 if (blk_integrity_rq(req)) { 945 ret = nvme_map_metadata(dev, req, &cmnd); 946 if (ret) 947 goto out_unmap_data; 948 } 949 950 blk_mq_start_request(req); 951 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 952 return BLK_STS_OK; 953 out_unmap_data: 954 nvme_unmap_data(dev, req); 955 out_free_cmd: 956 nvme_cleanup_cmd(req); 957 return ret; 958 } 959 960 static void nvme_pci_complete_rq(struct request *req) 961 { 962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 963 struct nvme_dev *dev = iod->nvmeq->dev; 964 965 if (blk_integrity_rq(req)) 966 dma_unmap_page(dev->dev, iod->meta_dma, 967 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 968 if (blk_rq_nr_phys_segments(req)) 969 nvme_unmap_data(dev, req); 970 nvme_complete_rq(req); 971 } 972 973 /* We read the CQE phase first to check if the rest of the entry is valid */ 974 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 975 { 976 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 977 978 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 979 } 980 981 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 982 { 983 u16 head = nvmeq->cq_head; 984 985 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 986 nvmeq->dbbuf_cq_ei)) 987 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 988 } 989 990 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 991 { 992 if (!nvmeq->qid) 993 return nvmeq->dev->admin_tagset.tags[0]; 994 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 995 } 996 997 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 998 { 999 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1000 __u16 command_id = READ_ONCE(cqe->command_id); 1001 struct request *req; 1002 1003 /* 1004 * AEN requests are special as they don't time out and can 1005 * survive any kind of queue freeze and often don't respond to 1006 * aborts. We don't even bother to allocate a struct request 1007 * for them but rather special case them here. 1008 */ 1009 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1010 nvme_complete_async_event(&nvmeq->dev->ctrl, 1011 cqe->status, &cqe->result); 1012 return; 1013 } 1014 1015 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id); 1016 if (unlikely(!req)) { 1017 dev_warn(nvmeq->dev->ctrl.device, 1018 "invalid id %d completed on queue %d\n", 1019 command_id, le16_to_cpu(cqe->sq_id)); 1020 return; 1021 } 1022 1023 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1024 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 1025 nvme_pci_complete_rq(req); 1026 } 1027 1028 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1029 { 1030 u16 tmp = nvmeq->cq_head + 1; 1031 1032 if (tmp == nvmeq->q_depth) { 1033 nvmeq->cq_head = 0; 1034 nvmeq->cq_phase ^= 1; 1035 } else { 1036 nvmeq->cq_head = tmp; 1037 } 1038 } 1039 1040 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1041 { 1042 int found = 0; 1043 1044 while (nvme_cqe_pending(nvmeq)) { 1045 found++; 1046 /* 1047 * load-load control dependency between phase and the rest of 1048 * the cqe requires a full read memory barrier 1049 */ 1050 dma_rmb(); 1051 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1052 nvme_update_cq_head(nvmeq); 1053 } 1054 1055 if (found) 1056 nvme_ring_cq_doorbell(nvmeq); 1057 return found; 1058 } 1059 1060 static irqreturn_t nvme_irq(int irq, void *data) 1061 { 1062 struct nvme_queue *nvmeq = data; 1063 irqreturn_t ret = IRQ_NONE; 1064 1065 /* 1066 * The rmb/wmb pair ensures we see all updates from a previous run of 1067 * the irq handler, even if that was on another CPU. 1068 */ 1069 rmb(); 1070 if (nvme_process_cq(nvmeq)) 1071 ret = IRQ_HANDLED; 1072 wmb(); 1073 1074 return ret; 1075 } 1076 1077 static irqreturn_t nvme_irq_check(int irq, void *data) 1078 { 1079 struct nvme_queue *nvmeq = data; 1080 1081 if (nvme_cqe_pending(nvmeq)) 1082 return IRQ_WAKE_THREAD; 1083 return IRQ_NONE; 1084 } 1085 1086 /* 1087 * Poll for completions for any interrupt driven queue 1088 * Can be called from any context. 1089 */ 1090 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1091 { 1092 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1093 1094 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1095 1096 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1097 nvme_process_cq(nvmeq); 1098 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1099 } 1100 1101 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1102 { 1103 struct nvme_queue *nvmeq = hctx->driver_data; 1104 bool found; 1105 1106 if (!nvme_cqe_pending(nvmeq)) 1107 return 0; 1108 1109 spin_lock(&nvmeq->cq_poll_lock); 1110 found = nvme_process_cq(nvmeq); 1111 spin_unlock(&nvmeq->cq_poll_lock); 1112 1113 return found; 1114 } 1115 1116 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1117 { 1118 struct nvme_dev *dev = to_nvme_dev(ctrl); 1119 struct nvme_queue *nvmeq = &dev->queues[0]; 1120 struct nvme_command c; 1121 1122 memset(&c, 0, sizeof(c)); 1123 c.common.opcode = nvme_admin_async_event; 1124 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1125 nvme_submit_cmd(nvmeq, &c, true); 1126 } 1127 1128 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1129 { 1130 struct nvme_command c; 1131 1132 memset(&c, 0, sizeof(c)); 1133 c.delete_queue.opcode = opcode; 1134 c.delete_queue.qid = cpu_to_le16(id); 1135 1136 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1137 } 1138 1139 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1140 struct nvme_queue *nvmeq, s16 vector) 1141 { 1142 struct nvme_command c; 1143 int flags = NVME_QUEUE_PHYS_CONTIG; 1144 1145 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1146 flags |= NVME_CQ_IRQ_ENABLED; 1147 1148 /* 1149 * Note: we (ab)use the fact that the prp fields survive if no data 1150 * is attached to the request. 1151 */ 1152 memset(&c, 0, sizeof(c)); 1153 c.create_cq.opcode = nvme_admin_create_cq; 1154 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1155 c.create_cq.cqid = cpu_to_le16(qid); 1156 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1157 c.create_cq.cq_flags = cpu_to_le16(flags); 1158 c.create_cq.irq_vector = cpu_to_le16(vector); 1159 1160 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1161 } 1162 1163 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1164 struct nvme_queue *nvmeq) 1165 { 1166 struct nvme_ctrl *ctrl = &dev->ctrl; 1167 struct nvme_command c; 1168 int flags = NVME_QUEUE_PHYS_CONTIG; 1169 1170 /* 1171 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1172 * set. Since URGENT priority is zeroes, it makes all queues 1173 * URGENT. 1174 */ 1175 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1176 flags |= NVME_SQ_PRIO_MEDIUM; 1177 1178 /* 1179 * Note: we (ab)use the fact that the prp fields survive if no data 1180 * is attached to the request. 1181 */ 1182 memset(&c, 0, sizeof(c)); 1183 c.create_sq.opcode = nvme_admin_create_sq; 1184 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1185 c.create_sq.sqid = cpu_to_le16(qid); 1186 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1187 c.create_sq.sq_flags = cpu_to_le16(flags); 1188 c.create_sq.cqid = cpu_to_le16(qid); 1189 1190 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1191 } 1192 1193 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1194 { 1195 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1196 } 1197 1198 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1199 { 1200 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1201 } 1202 1203 static void abort_endio(struct request *req, blk_status_t error) 1204 { 1205 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1206 struct nvme_queue *nvmeq = iod->nvmeq; 1207 1208 dev_warn(nvmeq->dev->ctrl.device, 1209 "Abort status: 0x%x", nvme_req(req)->status); 1210 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1211 blk_mq_free_request(req); 1212 } 1213 1214 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1215 { 1216 /* If true, indicates loss of adapter communication, possibly by a 1217 * NVMe Subsystem reset. 1218 */ 1219 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1220 1221 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1222 switch (dev->ctrl.state) { 1223 case NVME_CTRL_RESETTING: 1224 case NVME_CTRL_CONNECTING: 1225 return false; 1226 default: 1227 break; 1228 } 1229 1230 /* We shouldn't reset unless the controller is on fatal error state 1231 * _or_ if we lost the communication with it. 1232 */ 1233 if (!(csts & NVME_CSTS_CFS) && !nssro) 1234 return false; 1235 1236 return true; 1237 } 1238 1239 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1240 { 1241 /* Read a config register to help see what died. */ 1242 u16 pci_status; 1243 int result; 1244 1245 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1246 &pci_status); 1247 if (result == PCIBIOS_SUCCESSFUL) 1248 dev_warn(dev->ctrl.device, 1249 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1250 csts, pci_status); 1251 else 1252 dev_warn(dev->ctrl.device, 1253 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1254 csts, result); 1255 } 1256 1257 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1258 { 1259 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1260 struct nvme_queue *nvmeq = iod->nvmeq; 1261 struct nvme_dev *dev = nvmeq->dev; 1262 struct request *abort_req; 1263 struct nvme_command cmd; 1264 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1265 1266 /* If PCI error recovery process is happening, we cannot reset or 1267 * the recovery mechanism will surely fail. 1268 */ 1269 mb(); 1270 if (pci_channel_offline(to_pci_dev(dev->dev))) 1271 return BLK_EH_RESET_TIMER; 1272 1273 /* 1274 * Reset immediately if the controller is failed 1275 */ 1276 if (nvme_should_reset(dev, csts)) { 1277 nvme_warn_reset(dev, csts); 1278 nvme_dev_disable(dev, false); 1279 nvme_reset_ctrl(&dev->ctrl); 1280 return BLK_EH_DONE; 1281 } 1282 1283 /* 1284 * Did we miss an interrupt? 1285 */ 1286 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1287 nvme_poll(req->mq_hctx); 1288 else 1289 nvme_poll_irqdisable(nvmeq); 1290 1291 if (blk_mq_request_completed(req)) { 1292 dev_warn(dev->ctrl.device, 1293 "I/O %d QID %d timeout, completion polled\n", 1294 req->tag, nvmeq->qid); 1295 return BLK_EH_DONE; 1296 } 1297 1298 /* 1299 * Shutdown immediately if controller times out while starting. The 1300 * reset work will see the pci device disabled when it gets the forced 1301 * cancellation error. All outstanding requests are completed on 1302 * shutdown, so we return BLK_EH_DONE. 1303 */ 1304 switch (dev->ctrl.state) { 1305 case NVME_CTRL_CONNECTING: 1306 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1307 fallthrough; 1308 case NVME_CTRL_DELETING: 1309 dev_warn_ratelimited(dev->ctrl.device, 1310 "I/O %d QID %d timeout, disable controller\n", 1311 req->tag, nvmeq->qid); 1312 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1313 nvme_dev_disable(dev, true); 1314 return BLK_EH_DONE; 1315 case NVME_CTRL_RESETTING: 1316 return BLK_EH_RESET_TIMER; 1317 default: 1318 break; 1319 } 1320 1321 /* 1322 * Shutdown the controller immediately and schedule a reset if the 1323 * command was already aborted once before and still hasn't been 1324 * returned to the driver, or if this is the admin queue. 1325 */ 1326 if (!nvmeq->qid || iod->aborted) { 1327 dev_warn(dev->ctrl.device, 1328 "I/O %d QID %d timeout, reset controller\n", 1329 req->tag, nvmeq->qid); 1330 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1331 nvme_dev_disable(dev, false); 1332 nvme_reset_ctrl(&dev->ctrl); 1333 1334 return BLK_EH_DONE; 1335 } 1336 1337 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1338 atomic_inc(&dev->ctrl.abort_limit); 1339 return BLK_EH_RESET_TIMER; 1340 } 1341 iod->aborted = 1; 1342 1343 memset(&cmd, 0, sizeof(cmd)); 1344 cmd.abort.opcode = nvme_admin_abort_cmd; 1345 cmd.abort.cid = req->tag; 1346 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1347 1348 dev_warn(nvmeq->dev->ctrl.device, 1349 "I/O %d QID %d timeout, aborting\n", 1350 req->tag, nvmeq->qid); 1351 1352 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1353 BLK_MQ_REQ_NOWAIT); 1354 if (IS_ERR(abort_req)) { 1355 atomic_inc(&dev->ctrl.abort_limit); 1356 return BLK_EH_RESET_TIMER; 1357 } 1358 1359 abort_req->end_io_data = NULL; 1360 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio); 1361 1362 /* 1363 * The aborted req will be completed on receiving the abort req. 1364 * We enable the timer again. If hit twice, it'll cause a device reset, 1365 * as the device then is in a faulty state. 1366 */ 1367 return BLK_EH_RESET_TIMER; 1368 } 1369 1370 static void nvme_free_queue(struct nvme_queue *nvmeq) 1371 { 1372 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1373 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1374 if (!nvmeq->sq_cmds) 1375 return; 1376 1377 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1378 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1379 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1380 } else { 1381 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1382 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1383 } 1384 } 1385 1386 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1387 { 1388 int i; 1389 1390 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1391 dev->ctrl.queue_count--; 1392 nvme_free_queue(&dev->queues[i]); 1393 } 1394 } 1395 1396 /** 1397 * nvme_suspend_queue - put queue into suspended state 1398 * @nvmeq: queue to suspend 1399 */ 1400 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1401 { 1402 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1403 return 1; 1404 1405 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1406 mb(); 1407 1408 nvmeq->dev->online_queues--; 1409 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1410 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1411 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1412 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1413 return 0; 1414 } 1415 1416 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1417 { 1418 int i; 1419 1420 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1421 nvme_suspend_queue(&dev->queues[i]); 1422 } 1423 1424 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1425 { 1426 struct nvme_queue *nvmeq = &dev->queues[0]; 1427 1428 if (shutdown) 1429 nvme_shutdown_ctrl(&dev->ctrl); 1430 else 1431 nvme_disable_ctrl(&dev->ctrl); 1432 1433 nvme_poll_irqdisable(nvmeq); 1434 } 1435 1436 /* 1437 * Called only on a device that has been disabled and after all other threads 1438 * that can check this device's completion queues have synced, except 1439 * nvme_poll(). This is the last chance for the driver to see a natural 1440 * completion before nvme_cancel_request() terminates all incomplete requests. 1441 */ 1442 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1443 { 1444 int i; 1445 1446 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1447 spin_lock(&dev->queues[i].cq_poll_lock); 1448 nvme_process_cq(&dev->queues[i]); 1449 spin_unlock(&dev->queues[i].cq_poll_lock); 1450 } 1451 } 1452 1453 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1454 int entry_size) 1455 { 1456 int q_depth = dev->q_depth; 1457 unsigned q_size_aligned = roundup(q_depth * entry_size, 1458 NVME_CTRL_PAGE_SIZE); 1459 1460 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1461 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1462 1463 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1464 q_depth = div_u64(mem_per_q, entry_size); 1465 1466 /* 1467 * Ensure the reduced q_depth is above some threshold where it 1468 * would be better to map queues in system memory with the 1469 * original depth 1470 */ 1471 if (q_depth < 64) 1472 return -ENOMEM; 1473 } 1474 1475 return q_depth; 1476 } 1477 1478 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1479 int qid) 1480 { 1481 struct pci_dev *pdev = to_pci_dev(dev->dev); 1482 1483 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1484 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1485 if (nvmeq->sq_cmds) { 1486 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1487 nvmeq->sq_cmds); 1488 if (nvmeq->sq_dma_addr) { 1489 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1490 return 0; 1491 } 1492 1493 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1494 } 1495 } 1496 1497 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1498 &nvmeq->sq_dma_addr, GFP_KERNEL); 1499 if (!nvmeq->sq_cmds) 1500 return -ENOMEM; 1501 return 0; 1502 } 1503 1504 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1505 { 1506 struct nvme_queue *nvmeq = &dev->queues[qid]; 1507 1508 if (dev->ctrl.queue_count > qid) 1509 return 0; 1510 1511 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1512 nvmeq->q_depth = depth; 1513 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1514 &nvmeq->cq_dma_addr, GFP_KERNEL); 1515 if (!nvmeq->cqes) 1516 goto free_nvmeq; 1517 1518 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1519 goto free_cqdma; 1520 1521 nvmeq->dev = dev; 1522 spin_lock_init(&nvmeq->sq_lock); 1523 spin_lock_init(&nvmeq->cq_poll_lock); 1524 nvmeq->cq_head = 0; 1525 nvmeq->cq_phase = 1; 1526 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1527 nvmeq->qid = qid; 1528 dev->ctrl.queue_count++; 1529 1530 return 0; 1531 1532 free_cqdma: 1533 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1534 nvmeq->cq_dma_addr); 1535 free_nvmeq: 1536 return -ENOMEM; 1537 } 1538 1539 static int queue_request_irq(struct nvme_queue *nvmeq) 1540 { 1541 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1542 int nr = nvmeq->dev->ctrl.instance; 1543 1544 if (use_threaded_interrupts) { 1545 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1546 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1547 } else { 1548 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1549 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1550 } 1551 } 1552 1553 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1554 { 1555 struct nvme_dev *dev = nvmeq->dev; 1556 1557 nvmeq->sq_tail = 0; 1558 nvmeq->last_sq_tail = 0; 1559 nvmeq->cq_head = 0; 1560 nvmeq->cq_phase = 1; 1561 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1562 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1563 nvme_dbbuf_init(dev, nvmeq, qid); 1564 dev->online_queues++; 1565 wmb(); /* ensure the first interrupt sees the initialization */ 1566 } 1567 1568 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1569 { 1570 struct nvme_dev *dev = nvmeq->dev; 1571 int result; 1572 u16 vector = 0; 1573 1574 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1575 1576 /* 1577 * A queue's vector matches the queue identifier unless the controller 1578 * has only one vector available. 1579 */ 1580 if (!polled) 1581 vector = dev->num_vecs == 1 ? 0 : qid; 1582 else 1583 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1584 1585 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1586 if (result) 1587 return result; 1588 1589 result = adapter_alloc_sq(dev, qid, nvmeq); 1590 if (result < 0) 1591 return result; 1592 if (result) 1593 goto release_cq; 1594 1595 nvmeq->cq_vector = vector; 1596 nvme_init_queue(nvmeq, qid); 1597 1598 if (!polled) { 1599 result = queue_request_irq(nvmeq); 1600 if (result < 0) 1601 goto release_sq; 1602 } 1603 1604 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1605 return result; 1606 1607 release_sq: 1608 dev->online_queues--; 1609 adapter_delete_sq(dev, qid); 1610 release_cq: 1611 adapter_delete_cq(dev, qid); 1612 return result; 1613 } 1614 1615 static const struct blk_mq_ops nvme_mq_admin_ops = { 1616 .queue_rq = nvme_queue_rq, 1617 .complete = nvme_pci_complete_rq, 1618 .init_hctx = nvme_admin_init_hctx, 1619 .init_request = nvme_init_request, 1620 .timeout = nvme_timeout, 1621 }; 1622 1623 static const struct blk_mq_ops nvme_mq_ops = { 1624 .queue_rq = nvme_queue_rq, 1625 .complete = nvme_pci_complete_rq, 1626 .commit_rqs = nvme_commit_rqs, 1627 .init_hctx = nvme_init_hctx, 1628 .init_request = nvme_init_request, 1629 .map_queues = nvme_pci_map_queues, 1630 .timeout = nvme_timeout, 1631 .poll = nvme_poll, 1632 }; 1633 1634 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1635 { 1636 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1637 /* 1638 * If the controller was reset during removal, it's possible 1639 * user requests may be waiting on a stopped queue. Start the 1640 * queue to flush these to completion. 1641 */ 1642 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1643 blk_cleanup_queue(dev->ctrl.admin_q); 1644 blk_mq_free_tag_set(&dev->admin_tagset); 1645 } 1646 } 1647 1648 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1649 { 1650 if (!dev->ctrl.admin_q) { 1651 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1652 dev->admin_tagset.nr_hw_queues = 1; 1653 1654 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1655 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1656 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1657 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1658 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1659 dev->admin_tagset.driver_data = dev; 1660 1661 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1662 return -ENOMEM; 1663 dev->ctrl.admin_tagset = &dev->admin_tagset; 1664 1665 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1666 if (IS_ERR(dev->ctrl.admin_q)) { 1667 blk_mq_free_tag_set(&dev->admin_tagset); 1668 return -ENOMEM; 1669 } 1670 if (!blk_get_queue(dev->ctrl.admin_q)) { 1671 nvme_dev_remove_admin(dev); 1672 dev->ctrl.admin_q = NULL; 1673 return -ENODEV; 1674 } 1675 } else 1676 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1677 1678 return 0; 1679 } 1680 1681 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1682 { 1683 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1684 } 1685 1686 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1687 { 1688 struct pci_dev *pdev = to_pci_dev(dev->dev); 1689 1690 if (size <= dev->bar_mapped_size) 1691 return 0; 1692 if (size > pci_resource_len(pdev, 0)) 1693 return -ENOMEM; 1694 if (dev->bar) 1695 iounmap(dev->bar); 1696 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1697 if (!dev->bar) { 1698 dev->bar_mapped_size = 0; 1699 return -ENOMEM; 1700 } 1701 dev->bar_mapped_size = size; 1702 dev->dbs = dev->bar + NVME_REG_DBS; 1703 1704 return 0; 1705 } 1706 1707 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1708 { 1709 int result; 1710 u32 aqa; 1711 struct nvme_queue *nvmeq; 1712 1713 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1714 if (result < 0) 1715 return result; 1716 1717 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1718 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1719 1720 if (dev->subsystem && 1721 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1722 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1723 1724 result = nvme_disable_ctrl(&dev->ctrl); 1725 if (result < 0) 1726 return result; 1727 1728 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1729 if (result) 1730 return result; 1731 1732 dev->ctrl.numa_node = dev_to_node(dev->dev); 1733 1734 nvmeq = &dev->queues[0]; 1735 aqa = nvmeq->q_depth - 1; 1736 aqa |= aqa << 16; 1737 1738 writel(aqa, dev->bar + NVME_REG_AQA); 1739 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1740 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1741 1742 result = nvme_enable_ctrl(&dev->ctrl); 1743 if (result) 1744 return result; 1745 1746 nvmeq->cq_vector = 0; 1747 nvme_init_queue(nvmeq, 0); 1748 result = queue_request_irq(nvmeq); 1749 if (result) { 1750 dev->online_queues--; 1751 return result; 1752 } 1753 1754 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1755 return result; 1756 } 1757 1758 static int nvme_create_io_queues(struct nvme_dev *dev) 1759 { 1760 unsigned i, max, rw_queues; 1761 int ret = 0; 1762 1763 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1764 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1765 ret = -ENOMEM; 1766 break; 1767 } 1768 } 1769 1770 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1771 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1772 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1773 dev->io_queues[HCTX_TYPE_READ]; 1774 } else { 1775 rw_queues = max; 1776 } 1777 1778 for (i = dev->online_queues; i <= max; i++) { 1779 bool polled = i > rw_queues; 1780 1781 ret = nvme_create_queue(&dev->queues[i], i, polled); 1782 if (ret) 1783 break; 1784 } 1785 1786 /* 1787 * Ignore failing Create SQ/CQ commands, we can continue with less 1788 * than the desired amount of queues, and even a controller without 1789 * I/O queues can still be used to issue admin commands. This might 1790 * be useful to upgrade a buggy firmware for example. 1791 */ 1792 return ret >= 0 ? 0 : ret; 1793 } 1794 1795 static ssize_t nvme_cmb_show(struct device *dev, 1796 struct device_attribute *attr, 1797 char *buf) 1798 { 1799 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1800 1801 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1802 ndev->cmbloc, ndev->cmbsz); 1803 } 1804 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1805 1806 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1807 { 1808 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1809 1810 return 1ULL << (12 + 4 * szu); 1811 } 1812 1813 static u32 nvme_cmb_size(struct nvme_dev *dev) 1814 { 1815 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1816 } 1817 1818 static void nvme_map_cmb(struct nvme_dev *dev) 1819 { 1820 u64 size, offset; 1821 resource_size_t bar_size; 1822 struct pci_dev *pdev = to_pci_dev(dev->dev); 1823 int bar; 1824 1825 if (dev->cmb_size) 1826 return; 1827 1828 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1829 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1830 1831 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1832 if (!dev->cmbsz) 1833 return; 1834 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1835 1836 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1837 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1838 bar = NVME_CMB_BIR(dev->cmbloc); 1839 bar_size = pci_resource_len(pdev, bar); 1840 1841 if (offset > bar_size) 1842 return; 1843 1844 /* 1845 * Tell the controller about the host side address mapping the CMB, 1846 * and enable CMB decoding for the NVMe 1.4+ scheme: 1847 */ 1848 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1849 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1850 (pci_bus_address(pdev, bar) + offset), 1851 dev->bar + NVME_REG_CMBMSC); 1852 } 1853 1854 /* 1855 * Controllers may support a CMB size larger than their BAR, 1856 * for example, due to being behind a bridge. Reduce the CMB to 1857 * the reported size of the BAR 1858 */ 1859 if (size > bar_size - offset) 1860 size = bar_size - offset; 1861 1862 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1863 dev_warn(dev->ctrl.device, 1864 "failed to register the CMB\n"); 1865 return; 1866 } 1867 1868 dev->cmb_size = size; 1869 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1870 1871 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1872 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1873 pci_p2pmem_publish(pdev, true); 1874 1875 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1876 &dev_attr_cmb.attr, NULL)) 1877 dev_warn(dev->ctrl.device, 1878 "failed to add sysfs attribute for CMB\n"); 1879 } 1880 1881 static inline void nvme_release_cmb(struct nvme_dev *dev) 1882 { 1883 if (dev->cmb_size) { 1884 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1885 &dev_attr_cmb.attr, NULL); 1886 dev->cmb_size = 0; 1887 } 1888 } 1889 1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1891 { 1892 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1893 u64 dma_addr = dev->host_mem_descs_dma; 1894 struct nvme_command c; 1895 int ret; 1896 1897 memset(&c, 0, sizeof(c)); 1898 c.features.opcode = nvme_admin_set_features; 1899 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1900 c.features.dword11 = cpu_to_le32(bits); 1901 c.features.dword12 = cpu_to_le32(host_mem_size); 1902 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1903 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1904 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1905 1906 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1907 if (ret) { 1908 dev_warn(dev->ctrl.device, 1909 "failed to set host mem (err %d, flags %#x).\n", 1910 ret, bits); 1911 } 1912 return ret; 1913 } 1914 1915 static void nvme_free_host_mem(struct nvme_dev *dev) 1916 { 1917 int i; 1918 1919 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1920 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1921 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1922 1923 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1924 le64_to_cpu(desc->addr), 1925 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1926 } 1927 1928 kfree(dev->host_mem_desc_bufs); 1929 dev->host_mem_desc_bufs = NULL; 1930 dma_free_coherent(dev->dev, 1931 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1932 dev->host_mem_descs, dev->host_mem_descs_dma); 1933 dev->host_mem_descs = NULL; 1934 dev->nr_host_mem_descs = 0; 1935 } 1936 1937 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1938 u32 chunk_size) 1939 { 1940 struct nvme_host_mem_buf_desc *descs; 1941 u32 max_entries, len; 1942 dma_addr_t descs_dma; 1943 int i = 0; 1944 void **bufs; 1945 u64 size, tmp; 1946 1947 tmp = (preferred + chunk_size - 1); 1948 do_div(tmp, chunk_size); 1949 max_entries = tmp; 1950 1951 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1952 max_entries = dev->ctrl.hmmaxd; 1953 1954 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1955 &descs_dma, GFP_KERNEL); 1956 if (!descs) 1957 goto out; 1958 1959 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1960 if (!bufs) 1961 goto out_free_descs; 1962 1963 for (size = 0; size < preferred && i < max_entries; size += len) { 1964 dma_addr_t dma_addr; 1965 1966 len = min_t(u64, chunk_size, preferred - size); 1967 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1968 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1969 if (!bufs[i]) 1970 break; 1971 1972 descs[i].addr = cpu_to_le64(dma_addr); 1973 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1974 i++; 1975 } 1976 1977 if (!size) 1978 goto out_free_bufs; 1979 1980 dev->nr_host_mem_descs = i; 1981 dev->host_mem_size = size; 1982 dev->host_mem_descs = descs; 1983 dev->host_mem_descs_dma = descs_dma; 1984 dev->host_mem_desc_bufs = bufs; 1985 return 0; 1986 1987 out_free_bufs: 1988 while (--i >= 0) { 1989 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1990 1991 dma_free_attrs(dev->dev, size, bufs[i], 1992 le64_to_cpu(descs[i].addr), 1993 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1994 } 1995 1996 kfree(bufs); 1997 out_free_descs: 1998 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1999 descs_dma); 2000 out: 2001 dev->host_mem_descs = NULL; 2002 return -ENOMEM; 2003 } 2004 2005 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2006 { 2007 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2008 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2009 u64 chunk_size; 2010 2011 /* start big and work our way down */ 2012 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2013 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2014 if (!min || dev->host_mem_size >= min) 2015 return 0; 2016 nvme_free_host_mem(dev); 2017 } 2018 } 2019 2020 return -ENOMEM; 2021 } 2022 2023 static int nvme_setup_host_mem(struct nvme_dev *dev) 2024 { 2025 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2026 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2027 u64 min = (u64)dev->ctrl.hmmin * 4096; 2028 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2029 int ret; 2030 2031 preferred = min(preferred, max); 2032 if (min > max) { 2033 dev_warn(dev->ctrl.device, 2034 "min host memory (%lld MiB) above limit (%d MiB).\n", 2035 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2036 nvme_free_host_mem(dev); 2037 return 0; 2038 } 2039 2040 /* 2041 * If we already have a buffer allocated check if we can reuse it. 2042 */ 2043 if (dev->host_mem_descs) { 2044 if (dev->host_mem_size >= min) 2045 enable_bits |= NVME_HOST_MEM_RETURN; 2046 else 2047 nvme_free_host_mem(dev); 2048 } 2049 2050 if (!dev->host_mem_descs) { 2051 if (nvme_alloc_host_mem(dev, min, preferred)) { 2052 dev_warn(dev->ctrl.device, 2053 "failed to allocate host memory buffer.\n"); 2054 return 0; /* controller must work without HMB */ 2055 } 2056 2057 dev_info(dev->ctrl.device, 2058 "allocated %lld MiB host memory buffer.\n", 2059 dev->host_mem_size >> ilog2(SZ_1M)); 2060 } 2061 2062 ret = nvme_set_host_mem(dev, enable_bits); 2063 if (ret) 2064 nvme_free_host_mem(dev); 2065 return ret; 2066 } 2067 2068 /* 2069 * nirqs is the number of interrupts available for write and read 2070 * queues. The core already reserved an interrupt for the admin queue. 2071 */ 2072 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2073 { 2074 struct nvme_dev *dev = affd->priv; 2075 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2076 2077 /* 2078 * If there is no interrupt available for queues, ensure that 2079 * the default queue is set to 1. The affinity set size is 2080 * also set to one, but the irq core ignores it for this case. 2081 * 2082 * If only one interrupt is available or 'write_queue' == 0, combine 2083 * write and read queues. 2084 * 2085 * If 'write_queues' > 0, ensure it leaves room for at least one read 2086 * queue. 2087 */ 2088 if (!nrirqs) { 2089 nrirqs = 1; 2090 nr_read_queues = 0; 2091 } else if (nrirqs == 1 || !nr_write_queues) { 2092 nr_read_queues = 0; 2093 } else if (nr_write_queues >= nrirqs) { 2094 nr_read_queues = 1; 2095 } else { 2096 nr_read_queues = nrirqs - nr_write_queues; 2097 } 2098 2099 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2100 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2101 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2102 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2103 affd->nr_sets = nr_read_queues ? 2 : 1; 2104 } 2105 2106 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2107 { 2108 struct pci_dev *pdev = to_pci_dev(dev->dev); 2109 struct irq_affinity affd = { 2110 .pre_vectors = 1, 2111 .calc_sets = nvme_calc_irq_sets, 2112 .priv = dev, 2113 }; 2114 unsigned int irq_queues, poll_queues; 2115 2116 /* 2117 * Poll queues don't need interrupts, but we need at least one I/O queue 2118 * left over for non-polled I/O. 2119 */ 2120 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2121 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2122 2123 /* 2124 * Initialize for the single interrupt case, will be updated in 2125 * nvme_calc_irq_sets(). 2126 */ 2127 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2128 dev->io_queues[HCTX_TYPE_READ] = 0; 2129 2130 /* 2131 * We need interrupts for the admin queue and each non-polled I/O queue, 2132 * but some Apple controllers require all queues to use the first 2133 * vector. 2134 */ 2135 irq_queues = 1; 2136 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2137 irq_queues += (nr_io_queues - poll_queues); 2138 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2139 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2140 } 2141 2142 static void nvme_disable_io_queues(struct nvme_dev *dev) 2143 { 2144 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2145 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2146 } 2147 2148 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2149 { 2150 /* 2151 * If tags are shared with admin queue (Apple bug), then 2152 * make sure we only use one IO queue. 2153 */ 2154 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2155 return 1; 2156 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2157 } 2158 2159 static int nvme_setup_io_queues(struct nvme_dev *dev) 2160 { 2161 struct nvme_queue *adminq = &dev->queues[0]; 2162 struct pci_dev *pdev = to_pci_dev(dev->dev); 2163 unsigned int nr_io_queues; 2164 unsigned long size; 2165 int result; 2166 2167 /* 2168 * Sample the module parameters once at reset time so that we have 2169 * stable values to work with. 2170 */ 2171 dev->nr_write_queues = write_queues; 2172 dev->nr_poll_queues = poll_queues; 2173 2174 nr_io_queues = dev->nr_allocated_queues - 1; 2175 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2176 if (result < 0) 2177 return result; 2178 2179 if (nr_io_queues == 0) 2180 return 0; 2181 2182 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2183 2184 if (dev->cmb_use_sqes) { 2185 result = nvme_cmb_qdepth(dev, nr_io_queues, 2186 sizeof(struct nvme_command)); 2187 if (result > 0) 2188 dev->q_depth = result; 2189 else 2190 dev->cmb_use_sqes = false; 2191 } 2192 2193 do { 2194 size = db_bar_size(dev, nr_io_queues); 2195 result = nvme_remap_bar(dev, size); 2196 if (!result) 2197 break; 2198 if (!--nr_io_queues) 2199 return -ENOMEM; 2200 } while (1); 2201 adminq->q_db = dev->dbs; 2202 2203 retry: 2204 /* Deregister the admin queue's interrupt */ 2205 pci_free_irq(pdev, 0, adminq); 2206 2207 /* 2208 * If we enable msix early due to not intx, disable it again before 2209 * setting up the full range we need. 2210 */ 2211 pci_free_irq_vectors(pdev); 2212 2213 result = nvme_setup_irqs(dev, nr_io_queues); 2214 if (result <= 0) 2215 return -EIO; 2216 2217 dev->num_vecs = result; 2218 result = max(result - 1, 1); 2219 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2220 2221 /* 2222 * Should investigate if there's a performance win from allocating 2223 * more queues than interrupt vectors; it might allow the submission 2224 * path to scale better, even if the receive path is limited by the 2225 * number of interrupts. 2226 */ 2227 result = queue_request_irq(adminq); 2228 if (result) 2229 return result; 2230 set_bit(NVMEQ_ENABLED, &adminq->flags); 2231 2232 result = nvme_create_io_queues(dev); 2233 if (result || dev->online_queues < 2) 2234 return result; 2235 2236 if (dev->online_queues - 1 < dev->max_qid) { 2237 nr_io_queues = dev->online_queues - 1; 2238 nvme_disable_io_queues(dev); 2239 nvme_suspend_io_queues(dev); 2240 goto retry; 2241 } 2242 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2243 dev->io_queues[HCTX_TYPE_DEFAULT], 2244 dev->io_queues[HCTX_TYPE_READ], 2245 dev->io_queues[HCTX_TYPE_POLL]); 2246 return 0; 2247 } 2248 2249 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2250 { 2251 struct nvme_queue *nvmeq = req->end_io_data; 2252 2253 blk_mq_free_request(req); 2254 complete(&nvmeq->delete_done); 2255 } 2256 2257 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2258 { 2259 struct nvme_queue *nvmeq = req->end_io_data; 2260 2261 if (error) 2262 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2263 2264 nvme_del_queue_end(req, error); 2265 } 2266 2267 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2268 { 2269 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2270 struct request *req; 2271 struct nvme_command cmd; 2272 2273 memset(&cmd, 0, sizeof(cmd)); 2274 cmd.delete_queue.opcode = opcode; 2275 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2276 2277 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2278 if (IS_ERR(req)) 2279 return PTR_ERR(req); 2280 2281 req->end_io_data = nvmeq; 2282 2283 init_completion(&nvmeq->delete_done); 2284 blk_execute_rq_nowait(NULL, req, false, 2285 opcode == nvme_admin_delete_cq ? 2286 nvme_del_cq_end : nvme_del_queue_end); 2287 return 0; 2288 } 2289 2290 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2291 { 2292 int nr_queues = dev->online_queues - 1, sent = 0; 2293 unsigned long timeout; 2294 2295 retry: 2296 timeout = NVME_ADMIN_TIMEOUT; 2297 while (nr_queues > 0) { 2298 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2299 break; 2300 nr_queues--; 2301 sent++; 2302 } 2303 while (sent) { 2304 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2305 2306 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2307 timeout); 2308 if (timeout == 0) 2309 return false; 2310 2311 sent--; 2312 if (nr_queues) 2313 goto retry; 2314 } 2315 return true; 2316 } 2317 2318 static void nvme_dev_add(struct nvme_dev *dev) 2319 { 2320 int ret; 2321 2322 if (!dev->ctrl.tagset) { 2323 dev->tagset.ops = &nvme_mq_ops; 2324 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2325 dev->tagset.nr_maps = 2; /* default + read */ 2326 if (dev->io_queues[HCTX_TYPE_POLL]) 2327 dev->tagset.nr_maps++; 2328 dev->tagset.timeout = NVME_IO_TIMEOUT; 2329 dev->tagset.numa_node = dev->ctrl.numa_node; 2330 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2331 BLK_MQ_MAX_DEPTH) - 1; 2332 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2333 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2334 dev->tagset.driver_data = dev; 2335 2336 /* 2337 * Some Apple controllers requires tags to be unique 2338 * across admin and IO queue, so reserve the first 32 2339 * tags of the IO queue. 2340 */ 2341 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2342 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2343 2344 ret = blk_mq_alloc_tag_set(&dev->tagset); 2345 if (ret) { 2346 dev_warn(dev->ctrl.device, 2347 "IO queues tagset allocation failed %d\n", ret); 2348 return; 2349 } 2350 dev->ctrl.tagset = &dev->tagset; 2351 } else { 2352 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2353 2354 /* Free previously allocated queues that are no longer usable */ 2355 nvme_free_queues(dev, dev->online_queues); 2356 } 2357 2358 nvme_dbbuf_set(dev); 2359 } 2360 2361 static int nvme_pci_enable(struct nvme_dev *dev) 2362 { 2363 int result = -ENOMEM; 2364 struct pci_dev *pdev = to_pci_dev(dev->dev); 2365 int dma_address_bits = 64; 2366 2367 if (pci_enable_device_mem(pdev)) 2368 return result; 2369 2370 pci_set_master(pdev); 2371 2372 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2373 dma_address_bits = 48; 2374 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2375 goto disable; 2376 2377 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2378 result = -ENODEV; 2379 goto disable; 2380 } 2381 2382 /* 2383 * Some devices and/or platforms don't advertise or work with INTx 2384 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2385 * adjust this later. 2386 */ 2387 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2388 if (result < 0) 2389 return result; 2390 2391 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2392 2393 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2394 io_queue_depth); 2395 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2396 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2397 dev->dbs = dev->bar + 4096; 2398 2399 /* 2400 * Some Apple controllers require a non-standard SQE size. 2401 * Interestingly they also seem to ignore the CC:IOSQES register 2402 * so we don't bother updating it here. 2403 */ 2404 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2405 dev->io_sqes = 7; 2406 else 2407 dev->io_sqes = NVME_NVM_IOSQES; 2408 2409 /* 2410 * Temporary fix for the Apple controller found in the MacBook8,1 and 2411 * some MacBook7,1 to avoid controller resets and data loss. 2412 */ 2413 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2414 dev->q_depth = 2; 2415 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2416 "set queue depth=%u to work around controller resets\n", 2417 dev->q_depth); 2418 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2419 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2420 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2421 dev->q_depth = 64; 2422 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2423 "set queue depth=%u\n", dev->q_depth); 2424 } 2425 2426 /* 2427 * Controllers with the shared tags quirk need the IO queue to be 2428 * big enough so that we get 32 tags for the admin queue 2429 */ 2430 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2431 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2432 dev->q_depth = NVME_AQ_DEPTH + 2; 2433 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2434 dev->q_depth); 2435 } 2436 2437 2438 nvme_map_cmb(dev); 2439 2440 pci_enable_pcie_error_reporting(pdev); 2441 pci_save_state(pdev); 2442 return 0; 2443 2444 disable: 2445 pci_disable_device(pdev); 2446 return result; 2447 } 2448 2449 static void nvme_dev_unmap(struct nvme_dev *dev) 2450 { 2451 if (dev->bar) 2452 iounmap(dev->bar); 2453 pci_release_mem_regions(to_pci_dev(dev->dev)); 2454 } 2455 2456 static void nvme_pci_disable(struct nvme_dev *dev) 2457 { 2458 struct pci_dev *pdev = to_pci_dev(dev->dev); 2459 2460 pci_free_irq_vectors(pdev); 2461 2462 if (pci_is_enabled(pdev)) { 2463 pci_disable_pcie_error_reporting(pdev); 2464 pci_disable_device(pdev); 2465 } 2466 } 2467 2468 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2469 { 2470 bool dead = true, freeze = false; 2471 struct pci_dev *pdev = to_pci_dev(dev->dev); 2472 2473 mutex_lock(&dev->shutdown_lock); 2474 if (pci_is_enabled(pdev)) { 2475 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2476 2477 if (dev->ctrl.state == NVME_CTRL_LIVE || 2478 dev->ctrl.state == NVME_CTRL_RESETTING) { 2479 freeze = true; 2480 nvme_start_freeze(&dev->ctrl); 2481 } 2482 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2483 pdev->error_state != pci_channel_io_normal); 2484 } 2485 2486 /* 2487 * Give the controller a chance to complete all entered requests if 2488 * doing a safe shutdown. 2489 */ 2490 if (!dead && shutdown && freeze) 2491 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2492 2493 nvme_stop_queues(&dev->ctrl); 2494 2495 if (!dead && dev->ctrl.queue_count > 0) { 2496 nvme_disable_io_queues(dev); 2497 nvme_disable_admin_queue(dev, shutdown); 2498 } 2499 nvme_suspend_io_queues(dev); 2500 nvme_suspend_queue(&dev->queues[0]); 2501 nvme_pci_disable(dev); 2502 nvme_reap_pending_cqes(dev); 2503 2504 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2505 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2506 blk_mq_tagset_wait_completed_request(&dev->tagset); 2507 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2508 2509 /* 2510 * The driver will not be starting up queues again if shutting down so 2511 * must flush all entered requests to their failed completion to avoid 2512 * deadlocking blk-mq hot-cpu notifier. 2513 */ 2514 if (shutdown) { 2515 nvme_start_queues(&dev->ctrl); 2516 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2517 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2518 } 2519 mutex_unlock(&dev->shutdown_lock); 2520 } 2521 2522 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2523 { 2524 if (!nvme_wait_reset(&dev->ctrl)) 2525 return -EBUSY; 2526 nvme_dev_disable(dev, shutdown); 2527 return 0; 2528 } 2529 2530 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2531 { 2532 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2533 NVME_CTRL_PAGE_SIZE, 2534 NVME_CTRL_PAGE_SIZE, 0); 2535 if (!dev->prp_page_pool) 2536 return -ENOMEM; 2537 2538 /* Optimisation for I/Os between 4k and 128k */ 2539 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2540 256, 256, 0); 2541 if (!dev->prp_small_pool) { 2542 dma_pool_destroy(dev->prp_page_pool); 2543 return -ENOMEM; 2544 } 2545 return 0; 2546 } 2547 2548 static void nvme_release_prp_pools(struct nvme_dev *dev) 2549 { 2550 dma_pool_destroy(dev->prp_page_pool); 2551 dma_pool_destroy(dev->prp_small_pool); 2552 } 2553 2554 static void nvme_free_tagset(struct nvme_dev *dev) 2555 { 2556 if (dev->tagset.tags) 2557 blk_mq_free_tag_set(&dev->tagset); 2558 dev->ctrl.tagset = NULL; 2559 } 2560 2561 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2562 { 2563 struct nvme_dev *dev = to_nvme_dev(ctrl); 2564 2565 nvme_dbbuf_dma_free(dev); 2566 nvme_free_tagset(dev); 2567 if (dev->ctrl.admin_q) 2568 blk_put_queue(dev->ctrl.admin_q); 2569 free_opal_dev(dev->ctrl.opal_dev); 2570 mempool_destroy(dev->iod_mempool); 2571 put_device(dev->dev); 2572 kfree(dev->queues); 2573 kfree(dev); 2574 } 2575 2576 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2577 { 2578 /* 2579 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2580 * may be holding this pci_dev's device lock. 2581 */ 2582 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2583 nvme_get_ctrl(&dev->ctrl); 2584 nvme_dev_disable(dev, false); 2585 nvme_kill_queues(&dev->ctrl); 2586 if (!queue_work(nvme_wq, &dev->remove_work)) 2587 nvme_put_ctrl(&dev->ctrl); 2588 } 2589 2590 static void nvme_reset_work(struct work_struct *work) 2591 { 2592 struct nvme_dev *dev = 2593 container_of(work, struct nvme_dev, ctrl.reset_work); 2594 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2595 int result; 2596 2597 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2598 result = -ENODEV; 2599 goto out; 2600 } 2601 2602 /* 2603 * If we're called to reset a live controller first shut it down before 2604 * moving on. 2605 */ 2606 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2607 nvme_dev_disable(dev, false); 2608 nvme_sync_queues(&dev->ctrl); 2609 2610 mutex_lock(&dev->shutdown_lock); 2611 result = nvme_pci_enable(dev); 2612 if (result) 2613 goto out_unlock; 2614 2615 result = nvme_pci_configure_admin_queue(dev); 2616 if (result) 2617 goto out_unlock; 2618 2619 result = nvme_alloc_admin_tags(dev); 2620 if (result) 2621 goto out_unlock; 2622 2623 /* 2624 * Limit the max command size to prevent iod->sg allocations going 2625 * over a single page. 2626 */ 2627 dev->ctrl.max_hw_sectors = min_t(u32, 2628 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2629 dev->ctrl.max_segments = NVME_MAX_SEGS; 2630 2631 /* 2632 * Don't limit the IOMMU merged segment size. 2633 */ 2634 dma_set_max_seg_size(dev->dev, 0xffffffff); 2635 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2636 2637 mutex_unlock(&dev->shutdown_lock); 2638 2639 /* 2640 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2641 * initializing procedure here. 2642 */ 2643 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2644 dev_warn(dev->ctrl.device, 2645 "failed to mark controller CONNECTING\n"); 2646 result = -EBUSY; 2647 goto out; 2648 } 2649 2650 /* 2651 * We do not support an SGL for metadata (yet), so we are limited to a 2652 * single integrity segment for the separate metadata pointer. 2653 */ 2654 dev->ctrl.max_integrity_segments = 1; 2655 2656 result = nvme_init_identify(&dev->ctrl); 2657 if (result) 2658 goto out; 2659 2660 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2661 if (!dev->ctrl.opal_dev) 2662 dev->ctrl.opal_dev = 2663 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2664 else if (was_suspend) 2665 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2666 } else { 2667 free_opal_dev(dev->ctrl.opal_dev); 2668 dev->ctrl.opal_dev = NULL; 2669 } 2670 2671 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2672 result = nvme_dbbuf_dma_alloc(dev); 2673 if (result) 2674 dev_warn(dev->dev, 2675 "unable to allocate dma for dbbuf\n"); 2676 } 2677 2678 if (dev->ctrl.hmpre) { 2679 result = nvme_setup_host_mem(dev); 2680 if (result < 0) 2681 goto out; 2682 } 2683 2684 result = nvme_setup_io_queues(dev); 2685 if (result) 2686 goto out; 2687 2688 /* 2689 * Keep the controller around but remove all namespaces if we don't have 2690 * any working I/O queue. 2691 */ 2692 if (dev->online_queues < 2) { 2693 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2694 nvme_kill_queues(&dev->ctrl); 2695 nvme_remove_namespaces(&dev->ctrl); 2696 nvme_free_tagset(dev); 2697 } else { 2698 nvme_start_queues(&dev->ctrl); 2699 nvme_wait_freeze(&dev->ctrl); 2700 nvme_dev_add(dev); 2701 nvme_unfreeze(&dev->ctrl); 2702 } 2703 2704 /* 2705 * If only admin queue live, keep it to do further investigation or 2706 * recovery. 2707 */ 2708 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2709 dev_warn(dev->ctrl.device, 2710 "failed to mark controller live state\n"); 2711 result = -ENODEV; 2712 goto out; 2713 } 2714 2715 nvme_start_ctrl(&dev->ctrl); 2716 return; 2717 2718 out_unlock: 2719 mutex_unlock(&dev->shutdown_lock); 2720 out: 2721 if (result) 2722 dev_warn(dev->ctrl.device, 2723 "Removing after probe failure status: %d\n", result); 2724 nvme_remove_dead_ctrl(dev); 2725 } 2726 2727 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2728 { 2729 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2730 struct pci_dev *pdev = to_pci_dev(dev->dev); 2731 2732 if (pci_get_drvdata(pdev)) 2733 device_release_driver(&pdev->dev); 2734 nvme_put_ctrl(&dev->ctrl); 2735 } 2736 2737 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2738 { 2739 *val = readl(to_nvme_dev(ctrl)->bar + off); 2740 return 0; 2741 } 2742 2743 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2744 { 2745 writel(val, to_nvme_dev(ctrl)->bar + off); 2746 return 0; 2747 } 2748 2749 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2750 { 2751 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2752 return 0; 2753 } 2754 2755 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2756 { 2757 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2758 2759 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2760 } 2761 2762 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2763 .name = "pcie", 2764 .module = THIS_MODULE, 2765 .flags = NVME_F_METADATA_SUPPORTED | 2766 NVME_F_PCI_P2PDMA, 2767 .reg_read32 = nvme_pci_reg_read32, 2768 .reg_write32 = nvme_pci_reg_write32, 2769 .reg_read64 = nvme_pci_reg_read64, 2770 .free_ctrl = nvme_pci_free_ctrl, 2771 .submit_async_event = nvme_pci_submit_async_event, 2772 .get_address = nvme_pci_get_address, 2773 }; 2774 2775 static int nvme_dev_map(struct nvme_dev *dev) 2776 { 2777 struct pci_dev *pdev = to_pci_dev(dev->dev); 2778 2779 if (pci_request_mem_regions(pdev, "nvme")) 2780 return -ENODEV; 2781 2782 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2783 goto release; 2784 2785 return 0; 2786 release: 2787 pci_release_mem_regions(pdev); 2788 return -ENODEV; 2789 } 2790 2791 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2792 { 2793 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2794 /* 2795 * Several Samsung devices seem to drop off the PCIe bus 2796 * randomly when APST is on and uses the deepest sleep state. 2797 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2798 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2799 * 950 PRO 256GB", but it seems to be restricted to two Dell 2800 * laptops. 2801 */ 2802 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2803 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2804 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2805 return NVME_QUIRK_NO_DEEPEST_PS; 2806 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2807 /* 2808 * Samsung SSD 960 EVO drops off the PCIe bus after system 2809 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2810 * within few minutes after bootup on a Coffee Lake board - 2811 * ASUS PRIME Z370-A 2812 */ 2813 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2814 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2815 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2816 return NVME_QUIRK_NO_APST; 2817 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2818 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2819 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2820 /* 2821 * Forcing to use host managed nvme power settings for 2822 * lowest idle power with quick resume latency on 2823 * Samsung and Toshiba SSDs based on suspend behavior 2824 * on Coffee Lake board for LENOVO C640 2825 */ 2826 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2827 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2828 return NVME_QUIRK_SIMPLE_SUSPEND; 2829 } 2830 2831 return 0; 2832 } 2833 2834 #ifdef CONFIG_ACPI 2835 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2836 { 2837 struct acpi_device *adev; 2838 struct pci_dev *root; 2839 acpi_handle handle; 2840 acpi_status status; 2841 u8 val; 2842 2843 /* 2844 * Look for _DSD property specifying that the storage device on the port 2845 * must use D3 to support deep platform power savings during 2846 * suspend-to-idle. 2847 */ 2848 root = pcie_find_root_port(dev); 2849 if (!root) 2850 return false; 2851 2852 adev = ACPI_COMPANION(&root->dev); 2853 if (!adev) 2854 return false; 2855 2856 /* 2857 * The property is defined in the PXSX device for South complex ports 2858 * and in the PEGP device for North complex ports. 2859 */ 2860 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2861 if (ACPI_FAILURE(status)) { 2862 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2863 if (ACPI_FAILURE(status)) 2864 return false; 2865 } 2866 2867 if (acpi_bus_get_device(handle, &adev)) 2868 return false; 2869 2870 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2871 &val)) 2872 return false; 2873 return val == 1; 2874 } 2875 #else 2876 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2877 { 2878 return false; 2879 } 2880 #endif /* CONFIG_ACPI */ 2881 2882 static void nvme_async_probe(void *data, async_cookie_t cookie) 2883 { 2884 struct nvme_dev *dev = data; 2885 2886 flush_work(&dev->ctrl.reset_work); 2887 flush_work(&dev->ctrl.scan_work); 2888 nvme_put_ctrl(&dev->ctrl); 2889 } 2890 2891 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2892 { 2893 int node, result = -ENOMEM; 2894 struct nvme_dev *dev; 2895 unsigned long quirks = id->driver_data; 2896 size_t alloc_size; 2897 2898 node = dev_to_node(&pdev->dev); 2899 if (node == NUMA_NO_NODE) 2900 set_dev_node(&pdev->dev, first_memory_node); 2901 2902 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2903 if (!dev) 2904 return -ENOMEM; 2905 2906 dev->nr_write_queues = write_queues; 2907 dev->nr_poll_queues = poll_queues; 2908 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2909 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2910 sizeof(struct nvme_queue), GFP_KERNEL, node); 2911 if (!dev->queues) 2912 goto free; 2913 2914 dev->dev = get_device(&pdev->dev); 2915 pci_set_drvdata(pdev, dev); 2916 2917 result = nvme_dev_map(dev); 2918 if (result) 2919 goto put_pci; 2920 2921 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2922 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2923 mutex_init(&dev->shutdown_lock); 2924 2925 result = nvme_setup_prp_pools(dev); 2926 if (result) 2927 goto unmap; 2928 2929 quirks |= check_vendor_combination_bug(pdev); 2930 2931 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2932 /* 2933 * Some systems use a bios work around to ask for D3 on 2934 * platforms that support kernel managed suspend. 2935 */ 2936 dev_info(&pdev->dev, 2937 "platform quirk: setting simple suspend\n"); 2938 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2939 } 2940 2941 /* 2942 * Double check that our mempool alloc size will cover the biggest 2943 * command we support. 2944 */ 2945 alloc_size = nvme_pci_iod_alloc_size(); 2946 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2947 2948 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2949 mempool_kfree, 2950 (void *) alloc_size, 2951 GFP_KERNEL, node); 2952 if (!dev->iod_mempool) { 2953 result = -ENOMEM; 2954 goto release_pools; 2955 } 2956 2957 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2958 quirks); 2959 if (result) 2960 goto release_mempool; 2961 2962 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2963 2964 nvme_reset_ctrl(&dev->ctrl); 2965 async_schedule(nvme_async_probe, dev); 2966 2967 return 0; 2968 2969 release_mempool: 2970 mempool_destroy(dev->iod_mempool); 2971 release_pools: 2972 nvme_release_prp_pools(dev); 2973 unmap: 2974 nvme_dev_unmap(dev); 2975 put_pci: 2976 put_device(dev->dev); 2977 free: 2978 kfree(dev->queues); 2979 kfree(dev); 2980 return result; 2981 } 2982 2983 static void nvme_reset_prepare(struct pci_dev *pdev) 2984 { 2985 struct nvme_dev *dev = pci_get_drvdata(pdev); 2986 2987 /* 2988 * We don't need to check the return value from waiting for the reset 2989 * state as pci_dev device lock is held, making it impossible to race 2990 * with ->remove(). 2991 */ 2992 nvme_disable_prepare_reset(dev, false); 2993 nvme_sync_queues(&dev->ctrl); 2994 } 2995 2996 static void nvme_reset_done(struct pci_dev *pdev) 2997 { 2998 struct nvme_dev *dev = pci_get_drvdata(pdev); 2999 3000 if (!nvme_try_sched_reset(&dev->ctrl)) 3001 flush_work(&dev->ctrl.reset_work); 3002 } 3003 3004 static void nvme_shutdown(struct pci_dev *pdev) 3005 { 3006 struct nvme_dev *dev = pci_get_drvdata(pdev); 3007 3008 nvme_disable_prepare_reset(dev, true); 3009 } 3010 3011 /* 3012 * The driver's remove may be called on a device in a partially initialized 3013 * state. This function must not have any dependencies on the device state in 3014 * order to proceed. 3015 */ 3016 static void nvme_remove(struct pci_dev *pdev) 3017 { 3018 struct nvme_dev *dev = pci_get_drvdata(pdev); 3019 3020 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3021 pci_set_drvdata(pdev, NULL); 3022 3023 if (!pci_device_is_present(pdev)) { 3024 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3025 nvme_dev_disable(dev, true); 3026 nvme_dev_remove_admin(dev); 3027 } 3028 3029 flush_work(&dev->ctrl.reset_work); 3030 nvme_stop_ctrl(&dev->ctrl); 3031 nvme_remove_namespaces(&dev->ctrl); 3032 nvme_dev_disable(dev, true); 3033 nvme_release_cmb(dev); 3034 nvme_free_host_mem(dev); 3035 nvme_dev_remove_admin(dev); 3036 nvme_free_queues(dev, 0); 3037 nvme_release_prp_pools(dev); 3038 nvme_dev_unmap(dev); 3039 nvme_uninit_ctrl(&dev->ctrl); 3040 } 3041 3042 #ifdef CONFIG_PM_SLEEP 3043 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3044 { 3045 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3046 } 3047 3048 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3049 { 3050 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3051 } 3052 3053 static int nvme_resume(struct device *dev) 3054 { 3055 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3056 struct nvme_ctrl *ctrl = &ndev->ctrl; 3057 3058 if (ndev->last_ps == U32_MAX || 3059 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3060 return nvme_try_sched_reset(&ndev->ctrl); 3061 return 0; 3062 } 3063 3064 static int nvme_suspend(struct device *dev) 3065 { 3066 struct pci_dev *pdev = to_pci_dev(dev); 3067 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3068 struct nvme_ctrl *ctrl = &ndev->ctrl; 3069 int ret = -EBUSY; 3070 3071 ndev->last_ps = U32_MAX; 3072 3073 /* 3074 * The platform does not remove power for a kernel managed suspend so 3075 * use host managed nvme power settings for lowest idle power if 3076 * possible. This should have quicker resume latency than a full device 3077 * shutdown. But if the firmware is involved after the suspend or the 3078 * device does not support any non-default power states, shut down the 3079 * device fully. 3080 * 3081 * If ASPM is not enabled for the device, shut down the device and allow 3082 * the PCI bus layer to put it into D3 in order to take the PCIe link 3083 * down, so as to allow the platform to achieve its minimum low-power 3084 * state (which may not be possible if the link is up). 3085 * 3086 * If a host memory buffer is enabled, shut down the device as the NVMe 3087 * specification allows the device to access the host memory buffer in 3088 * host DRAM from all power states, but hosts will fail access to DRAM 3089 * during S3. 3090 */ 3091 if (pm_suspend_via_firmware() || !ctrl->npss || 3092 !pcie_aspm_enabled(pdev) || 3093 ndev->nr_host_mem_descs || 3094 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3095 return nvme_disable_prepare_reset(ndev, true); 3096 3097 nvme_start_freeze(ctrl); 3098 nvme_wait_freeze(ctrl); 3099 nvme_sync_queues(ctrl); 3100 3101 if (ctrl->state != NVME_CTRL_LIVE) 3102 goto unfreeze; 3103 3104 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3105 if (ret < 0) 3106 goto unfreeze; 3107 3108 /* 3109 * A saved state prevents pci pm from generically controlling the 3110 * device's power. If we're using protocol specific settings, we don't 3111 * want pci interfering. 3112 */ 3113 pci_save_state(pdev); 3114 3115 ret = nvme_set_power_state(ctrl, ctrl->npss); 3116 if (ret < 0) 3117 goto unfreeze; 3118 3119 if (ret) { 3120 /* discard the saved state */ 3121 pci_load_saved_state(pdev, NULL); 3122 3123 /* 3124 * Clearing npss forces a controller reset on resume. The 3125 * correct value will be rediscovered then. 3126 */ 3127 ret = nvme_disable_prepare_reset(ndev, true); 3128 ctrl->npss = 0; 3129 } 3130 unfreeze: 3131 nvme_unfreeze(ctrl); 3132 return ret; 3133 } 3134 3135 static int nvme_simple_suspend(struct device *dev) 3136 { 3137 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3138 3139 return nvme_disable_prepare_reset(ndev, true); 3140 } 3141 3142 static int nvme_simple_resume(struct device *dev) 3143 { 3144 struct pci_dev *pdev = to_pci_dev(dev); 3145 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3146 3147 return nvme_try_sched_reset(&ndev->ctrl); 3148 } 3149 3150 static const struct dev_pm_ops nvme_dev_pm_ops = { 3151 .suspend = nvme_suspend, 3152 .resume = nvme_resume, 3153 .freeze = nvme_simple_suspend, 3154 .thaw = nvme_simple_resume, 3155 .poweroff = nvme_simple_suspend, 3156 .restore = nvme_simple_resume, 3157 }; 3158 #endif /* CONFIG_PM_SLEEP */ 3159 3160 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3161 pci_channel_state_t state) 3162 { 3163 struct nvme_dev *dev = pci_get_drvdata(pdev); 3164 3165 /* 3166 * A frozen channel requires a reset. When detected, this method will 3167 * shutdown the controller to quiesce. The controller will be restarted 3168 * after the slot reset through driver's slot_reset callback. 3169 */ 3170 switch (state) { 3171 case pci_channel_io_normal: 3172 return PCI_ERS_RESULT_CAN_RECOVER; 3173 case pci_channel_io_frozen: 3174 dev_warn(dev->ctrl.device, 3175 "frozen state error detected, reset controller\n"); 3176 nvme_dev_disable(dev, false); 3177 return PCI_ERS_RESULT_NEED_RESET; 3178 case pci_channel_io_perm_failure: 3179 dev_warn(dev->ctrl.device, 3180 "failure state error detected, request disconnect\n"); 3181 return PCI_ERS_RESULT_DISCONNECT; 3182 } 3183 return PCI_ERS_RESULT_NEED_RESET; 3184 } 3185 3186 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3187 { 3188 struct nvme_dev *dev = pci_get_drvdata(pdev); 3189 3190 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3191 pci_restore_state(pdev); 3192 nvme_reset_ctrl(&dev->ctrl); 3193 return PCI_ERS_RESULT_RECOVERED; 3194 } 3195 3196 static void nvme_error_resume(struct pci_dev *pdev) 3197 { 3198 struct nvme_dev *dev = pci_get_drvdata(pdev); 3199 3200 flush_work(&dev->ctrl.reset_work); 3201 } 3202 3203 static const struct pci_error_handlers nvme_err_handler = { 3204 .error_detected = nvme_error_detected, 3205 .slot_reset = nvme_slot_reset, 3206 .resume = nvme_error_resume, 3207 .reset_prepare = nvme_reset_prepare, 3208 .reset_done = nvme_reset_done, 3209 }; 3210 3211 static const struct pci_device_id nvme_id_table[] = { 3212 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3213 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3214 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3215 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3216 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3217 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3218 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3219 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3220 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3221 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3222 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3223 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3224 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3225 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3226 NVME_QUIRK_MEDIUM_PRIO_SQ | 3227 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3228 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3229 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3230 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3231 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3232 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3233 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3234 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3235 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3236 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3237 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3238 NVME_QUIRK_NO_NS_DESC_LIST, }, 3239 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3240 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3241 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3242 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3243 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3244 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3245 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3246 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3247 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3248 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3249 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3250 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3251 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3252 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3253 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3254 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3255 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3256 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3257 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3258 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3259 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3260 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3261 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3262 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3263 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3264 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3265 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3266 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3267 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3268 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3269 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3270 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3271 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3272 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3273 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3274 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3275 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3276 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3277 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3278 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3279 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3280 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3281 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3282 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3283 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3284 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3285 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3286 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3287 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3288 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3289 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3290 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3291 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3292 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3293 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3294 NVME_QUIRK_128_BYTES_SQES | 3295 NVME_QUIRK_SHARED_TAGS }, 3296 3297 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3298 { 0, } 3299 }; 3300 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3301 3302 static struct pci_driver nvme_driver = { 3303 .name = "nvme", 3304 .id_table = nvme_id_table, 3305 .probe = nvme_probe, 3306 .remove = nvme_remove, 3307 .shutdown = nvme_shutdown, 3308 #ifdef CONFIG_PM_SLEEP 3309 .driver = { 3310 .pm = &nvme_dev_pm_ops, 3311 }, 3312 #endif 3313 .sriov_configure = pci_sriov_configure_simple, 3314 .err_handler = &nvme_err_handler, 3315 }; 3316 3317 static int __init nvme_init(void) 3318 { 3319 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3320 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3321 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3322 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3323 3324 return pci_register_driver(&nvme_driver); 3325 } 3326 3327 static void __exit nvme_exit(void) 3328 { 3329 pci_unregister_driver(&nvme_driver); 3330 flush_workqueue(nvme_wq); 3331 } 3332 3333 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3334 MODULE_LICENSE("GPL"); 3335 MODULE_VERSION("1.0"); 3336 module_init(nvme_init); 3337 module_exit(nvme_exit); 3338