xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 0f4630f3)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49 
50 #define NVME_MINORS		(1U << MINORBITS)
51 #define NVME_Q_DEPTH		1024
52 #define NVME_AQ_DEPTH		256
53 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
55 #define ADMIN_TIMEOUT		(admin_timeout * HZ)
56 #define SHUTDOWN_TIMEOUT	(shutdown_timeout * HZ)
57 
58 static unsigned char admin_timeout = 60;
59 module_param(admin_timeout, byte, 0644);
60 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
61 
62 unsigned char nvme_io_timeout = 30;
63 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
64 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
65 
66 static unsigned char shutdown_timeout = 5;
67 module_param(shutdown_timeout, byte, 0644);
68 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69 
70 static int nvme_major;
71 module_param(nvme_major, int, 0);
72 
73 static int nvme_char_major;
74 module_param(nvme_char_major, int, 0);
75 
76 static int use_threaded_interrupts;
77 module_param(use_threaded_interrupts, int, 0);
78 
79 static bool use_cmb_sqes = true;
80 module_param(use_cmb_sqes, bool, 0644);
81 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
82 
83 static DEFINE_SPINLOCK(dev_list_lock);
84 static LIST_HEAD(dev_list);
85 static struct task_struct *nvme_thread;
86 static struct workqueue_struct *nvme_workq;
87 static wait_queue_head_t nvme_kthread_wait;
88 
89 static struct class *nvme_class;
90 
91 static int __nvme_reset(struct nvme_dev *dev);
92 static int nvme_reset(struct nvme_dev *dev);
93 static void nvme_process_cq(struct nvme_queue *nvmeq);
94 static void nvme_dead_ctrl(struct nvme_dev *dev);
95 
96 struct async_cmd_info {
97 	struct kthread_work work;
98 	struct kthread_worker *worker;
99 	struct request *req;
100 	u32 result;
101 	int status;
102 	void *ctx;
103 };
104 
105 /*
106  * An NVM Express queue.  Each device has at least two (one for admin
107  * commands and one for I/O commands).
108  */
109 struct nvme_queue {
110 	struct device *q_dmadev;
111 	struct nvme_dev *dev;
112 	char irqname[24];	/* nvme4294967295-65535\0 */
113 	spinlock_t q_lock;
114 	struct nvme_command *sq_cmds;
115 	struct nvme_command __iomem *sq_cmds_io;
116 	volatile struct nvme_completion *cqes;
117 	struct blk_mq_tags **tags;
118 	dma_addr_t sq_dma_addr;
119 	dma_addr_t cq_dma_addr;
120 	u32 __iomem *q_db;
121 	u16 q_depth;
122 	s16 cq_vector;
123 	u16 sq_head;
124 	u16 sq_tail;
125 	u16 cq_head;
126 	u16 qid;
127 	u8 cq_phase;
128 	u8 cqe_seen;
129 	struct async_cmd_info cmdinfo;
130 };
131 
132 /*
133  * Check we didin't inadvertently grow the command struct
134  */
135 static inline void _nvme_check_size(void)
136 {
137 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
138 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
139 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
140 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
141 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
142 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
143 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
144 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
145 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
146 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
147 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
148 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
149 }
150 
151 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
152 						struct nvme_completion *);
153 
154 struct nvme_cmd_info {
155 	nvme_completion_fn fn;
156 	void *ctx;
157 	int aborted;
158 	struct nvme_queue *nvmeq;
159 	struct nvme_iod iod[0];
160 };
161 
162 /*
163  * Max size of iod being embedded in the request payload
164  */
165 #define NVME_INT_PAGES		2
166 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->page_size)
167 #define NVME_INT_MASK		0x01
168 
169 /*
170  * Will slightly overestimate the number of pages needed.  This is OK
171  * as it only leads to a small amount of wasted memory for the lifetime of
172  * the I/O.
173  */
174 static int nvme_npages(unsigned size, struct nvme_dev *dev)
175 {
176 	unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
177 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
178 }
179 
180 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
181 {
182 	unsigned int ret = sizeof(struct nvme_cmd_info);
183 
184 	ret += sizeof(struct nvme_iod);
185 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
186 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
187 
188 	return ret;
189 }
190 
191 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
192 				unsigned int hctx_idx)
193 {
194 	struct nvme_dev *dev = data;
195 	struct nvme_queue *nvmeq = dev->queues[0];
196 
197 	WARN_ON(hctx_idx != 0);
198 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
199 	WARN_ON(nvmeq->tags);
200 
201 	hctx->driver_data = nvmeq;
202 	nvmeq->tags = &dev->admin_tagset.tags[0];
203 	return 0;
204 }
205 
206 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
207 {
208 	struct nvme_queue *nvmeq = hctx->driver_data;
209 
210 	nvmeq->tags = NULL;
211 }
212 
213 static int nvme_admin_init_request(void *data, struct request *req,
214 				unsigned int hctx_idx, unsigned int rq_idx,
215 				unsigned int numa_node)
216 {
217 	struct nvme_dev *dev = data;
218 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
219 	struct nvme_queue *nvmeq = dev->queues[0];
220 
221 	BUG_ON(!nvmeq);
222 	cmd->nvmeq = nvmeq;
223 	return 0;
224 }
225 
226 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
227 			  unsigned int hctx_idx)
228 {
229 	struct nvme_dev *dev = data;
230 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
231 
232 	if (!nvmeq->tags)
233 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
234 
235 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
236 	hctx->driver_data = nvmeq;
237 	return 0;
238 }
239 
240 static int nvme_init_request(void *data, struct request *req,
241 				unsigned int hctx_idx, unsigned int rq_idx,
242 				unsigned int numa_node)
243 {
244 	struct nvme_dev *dev = data;
245 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
246 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
247 
248 	BUG_ON(!nvmeq);
249 	cmd->nvmeq = nvmeq;
250 	return 0;
251 }
252 
253 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
254 				nvme_completion_fn handler)
255 {
256 	cmd->fn = handler;
257 	cmd->ctx = ctx;
258 	cmd->aborted = 0;
259 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
260 }
261 
262 static void *iod_get_private(struct nvme_iod *iod)
263 {
264 	return (void *) (iod->private & ~0x1UL);
265 }
266 
267 /*
268  * If bit 0 is set, the iod is embedded in the request payload.
269  */
270 static bool iod_should_kfree(struct nvme_iod *iod)
271 {
272 	return (iod->private & NVME_INT_MASK) == 0;
273 }
274 
275 /* Special values must be less than 0x1000 */
276 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
277 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
278 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
279 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
280 
281 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
282 						struct nvme_completion *cqe)
283 {
284 	if (ctx == CMD_CTX_CANCELLED)
285 		return;
286 	if (ctx == CMD_CTX_COMPLETED) {
287 		dev_warn(nvmeq->q_dmadev,
288 				"completed id %d twice on queue %d\n",
289 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
290 		return;
291 	}
292 	if (ctx == CMD_CTX_INVALID) {
293 		dev_warn(nvmeq->q_dmadev,
294 				"invalid id %d completed on queue %d\n",
295 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
296 		return;
297 	}
298 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
299 }
300 
301 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
302 {
303 	void *ctx;
304 
305 	if (fn)
306 		*fn = cmd->fn;
307 	ctx = cmd->ctx;
308 	cmd->fn = special_completion;
309 	cmd->ctx = CMD_CTX_CANCELLED;
310 	return ctx;
311 }
312 
313 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
314 						struct nvme_completion *cqe)
315 {
316 	u32 result = le32_to_cpup(&cqe->result);
317 	u16 status = le16_to_cpup(&cqe->status) >> 1;
318 
319 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
320 		++nvmeq->dev->event_limit;
321 	if (status != NVME_SC_SUCCESS)
322 		return;
323 
324 	switch (result & 0xff07) {
325 	case NVME_AER_NOTICE_NS_CHANGED:
326 		dev_info(nvmeq->q_dmadev, "rescanning\n");
327 		schedule_work(&nvmeq->dev->scan_work);
328 	default:
329 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
330 	}
331 }
332 
333 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
334 						struct nvme_completion *cqe)
335 {
336 	struct request *req = ctx;
337 
338 	u16 status = le16_to_cpup(&cqe->status) >> 1;
339 	u32 result = le32_to_cpup(&cqe->result);
340 
341 	blk_mq_free_request(req);
342 
343 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
344 	++nvmeq->dev->abort_limit;
345 }
346 
347 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
348 						struct nvme_completion *cqe)
349 {
350 	struct async_cmd_info *cmdinfo = ctx;
351 	cmdinfo->result = le32_to_cpup(&cqe->result);
352 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
353 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
354 	blk_mq_free_request(cmdinfo->req);
355 }
356 
357 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
358 				  unsigned int tag)
359 {
360 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
361 
362 	return blk_mq_rq_to_pdu(req);
363 }
364 
365 /*
366  * Called with local interrupts disabled and the q_lock held.  May not sleep.
367  */
368 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
369 						nvme_completion_fn *fn)
370 {
371 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
372 	void *ctx;
373 	if (tag >= nvmeq->q_depth) {
374 		*fn = special_completion;
375 		return CMD_CTX_INVALID;
376 	}
377 	if (fn)
378 		*fn = cmd->fn;
379 	ctx = cmd->ctx;
380 	cmd->fn = special_completion;
381 	cmd->ctx = CMD_CTX_COMPLETED;
382 	return ctx;
383 }
384 
385 /**
386  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
387  * @nvmeq: The queue to use
388  * @cmd: The command to send
389  *
390  * Safe to use from interrupt context
391  */
392 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
393 						struct nvme_command *cmd)
394 {
395 	u16 tail = nvmeq->sq_tail;
396 
397 	if (nvmeq->sq_cmds_io)
398 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
399 	else
400 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
401 
402 	if (++tail == nvmeq->q_depth)
403 		tail = 0;
404 	writel(tail, nvmeq->q_db);
405 	nvmeq->sq_tail = tail;
406 }
407 
408 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
409 {
410 	unsigned long flags;
411 	spin_lock_irqsave(&nvmeq->q_lock, flags);
412 	__nvme_submit_cmd(nvmeq, cmd);
413 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
414 }
415 
416 static __le64 **iod_list(struct nvme_iod *iod)
417 {
418 	return ((void *)iod) + iod->offset;
419 }
420 
421 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
422 			    unsigned nseg, unsigned long private)
423 {
424 	iod->private = private;
425 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
426 	iod->npages = -1;
427 	iod->length = nbytes;
428 	iod->nents = 0;
429 }
430 
431 static struct nvme_iod *
432 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
433 		 unsigned long priv, gfp_t gfp)
434 {
435 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
436 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
437 				sizeof(struct scatterlist) * nseg, gfp);
438 
439 	if (iod)
440 		iod_init(iod, bytes, nseg, priv);
441 
442 	return iod;
443 }
444 
445 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
446 			               gfp_t gfp)
447 {
448 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
449                                                 sizeof(struct nvme_dsm_range);
450 	struct nvme_iod *iod;
451 
452 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
453 	    size <= NVME_INT_BYTES(dev)) {
454 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
455 
456 		iod = cmd->iod;
457 		iod_init(iod, size, rq->nr_phys_segments,
458 				(unsigned long) rq | NVME_INT_MASK);
459 		return iod;
460 	}
461 
462 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
463 				(unsigned long) rq, gfp);
464 }
465 
466 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
467 {
468 	const int last_prp = dev->page_size / 8 - 1;
469 	int i;
470 	__le64 **list = iod_list(iod);
471 	dma_addr_t prp_dma = iod->first_dma;
472 
473 	if (iod->npages == 0)
474 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
475 	for (i = 0; i < iod->npages; i++) {
476 		__le64 *prp_list = list[i];
477 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
478 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
479 		prp_dma = next_prp_dma;
480 	}
481 
482 	if (iod_should_kfree(iod))
483 		kfree(iod);
484 }
485 
486 static int nvme_error_status(u16 status)
487 {
488 	switch (status & 0x7ff) {
489 	case NVME_SC_SUCCESS:
490 		return 0;
491 	case NVME_SC_CAP_EXCEEDED:
492 		return -ENOSPC;
493 	default:
494 		return -EIO;
495 	}
496 }
497 
498 #ifdef CONFIG_BLK_DEV_INTEGRITY
499 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
500 {
501 	if (be32_to_cpu(pi->ref_tag) == v)
502 		pi->ref_tag = cpu_to_be32(p);
503 }
504 
505 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
506 {
507 	if (be32_to_cpu(pi->ref_tag) == p)
508 		pi->ref_tag = cpu_to_be32(v);
509 }
510 
511 /**
512  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
513  *
514  * The virtual start sector is the one that was originally submitted by the
515  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
516  * start sector may be different. Remap protection information to match the
517  * physical LBA on writes, and back to the original seed on reads.
518  *
519  * Type 0 and 3 do not have a ref tag, so no remapping required.
520  */
521 static void nvme_dif_remap(struct request *req,
522 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
523 {
524 	struct nvme_ns *ns = req->rq_disk->private_data;
525 	struct bio_integrity_payload *bip;
526 	struct t10_pi_tuple *pi;
527 	void *p, *pmap;
528 	u32 i, nlb, ts, phys, virt;
529 
530 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
531 		return;
532 
533 	bip = bio_integrity(req->bio);
534 	if (!bip)
535 		return;
536 
537 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
538 
539 	p = pmap;
540 	virt = bip_get_seed(bip);
541 	phys = nvme_block_nr(ns, blk_rq_pos(req));
542 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
543 	ts = ns->disk->queue->integrity.tuple_size;
544 
545 	for (i = 0; i < nlb; i++, virt++, phys++) {
546 		pi = (struct t10_pi_tuple *)p;
547 		dif_swap(phys, virt, pi);
548 		p += ts;
549 	}
550 	kunmap_atomic(pmap);
551 }
552 
553 static void nvme_init_integrity(struct nvme_ns *ns)
554 {
555 	struct blk_integrity integrity;
556 
557 	switch (ns->pi_type) {
558 	case NVME_NS_DPS_PI_TYPE3:
559 		integrity.profile = &t10_pi_type3_crc;
560 		break;
561 	case NVME_NS_DPS_PI_TYPE1:
562 	case NVME_NS_DPS_PI_TYPE2:
563 		integrity.profile = &t10_pi_type1_crc;
564 		break;
565 	default:
566 		integrity.profile = NULL;
567 		break;
568 	}
569 	integrity.tuple_size = ns->ms;
570 	blk_integrity_register(ns->disk, &integrity);
571 	blk_queue_max_integrity_segments(ns->queue, 1);
572 }
573 #else /* CONFIG_BLK_DEV_INTEGRITY */
574 static void nvme_dif_remap(struct request *req,
575 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
576 {
577 }
578 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
579 {
580 }
581 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
582 {
583 }
584 static void nvme_init_integrity(struct nvme_ns *ns)
585 {
586 }
587 #endif
588 
589 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
590 						struct nvme_completion *cqe)
591 {
592 	struct nvme_iod *iod = ctx;
593 	struct request *req = iod_get_private(iod);
594 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
595 	u16 status = le16_to_cpup(&cqe->status) >> 1;
596 	bool requeue = false;
597 	int error = 0;
598 
599 	if (unlikely(status)) {
600 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
601 		    && (jiffies - req->start_time) < req->timeout) {
602 			unsigned long flags;
603 
604 			requeue = true;
605 			blk_mq_requeue_request(req);
606 			spin_lock_irqsave(req->q->queue_lock, flags);
607 			if (!blk_queue_stopped(req->q))
608 				blk_mq_kick_requeue_list(req->q);
609 			spin_unlock_irqrestore(req->q->queue_lock, flags);
610 			goto release_iod;
611 		}
612 
613 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
614 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
615 				error = -EINTR;
616 			else
617 				error = status;
618 		} else {
619 			error = nvme_error_status(status);
620 		}
621 	}
622 
623 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
624 		u32 result = le32_to_cpup(&cqe->result);
625 		req->special = (void *)(uintptr_t)result;
626 	}
627 
628 	if (cmd_rq->aborted)
629 		dev_warn(nvmeq->dev->dev,
630 			"completing aborted command with status:%04x\n",
631 			error);
632 
633 release_iod:
634 	if (iod->nents) {
635 		dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
636 			rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
637 		if (blk_integrity_rq(req)) {
638 			if (!rq_data_dir(req))
639 				nvme_dif_remap(req, nvme_dif_complete);
640 			dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
641 				rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
642 		}
643 	}
644 	nvme_free_iod(nvmeq->dev, iod);
645 
646 	if (likely(!requeue))
647 		blk_mq_complete_request(req, error);
648 }
649 
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652 		int total_len, gfp_t gfp)
653 {
654 	struct dma_pool *pool;
655 	int length = total_len;
656 	struct scatterlist *sg = iod->sg;
657 	int dma_len = sg_dma_len(sg);
658 	u64 dma_addr = sg_dma_address(sg);
659 	u32 page_size = dev->page_size;
660 	int offset = dma_addr & (page_size - 1);
661 	__le64 *prp_list;
662 	__le64 **list = iod_list(iod);
663 	dma_addr_t prp_dma;
664 	int nprps, i;
665 
666 	length -= (page_size - offset);
667 	if (length <= 0)
668 		return total_len;
669 
670 	dma_len -= (page_size - offset);
671 	if (dma_len) {
672 		dma_addr += (page_size - offset);
673 	} else {
674 		sg = sg_next(sg);
675 		dma_addr = sg_dma_address(sg);
676 		dma_len = sg_dma_len(sg);
677 	}
678 
679 	if (length <= page_size) {
680 		iod->first_dma = dma_addr;
681 		return total_len;
682 	}
683 
684 	nprps = DIV_ROUND_UP(length, page_size);
685 	if (nprps <= (256 / 8)) {
686 		pool = dev->prp_small_pool;
687 		iod->npages = 0;
688 	} else {
689 		pool = dev->prp_page_pool;
690 		iod->npages = 1;
691 	}
692 
693 	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694 	if (!prp_list) {
695 		iod->first_dma = dma_addr;
696 		iod->npages = -1;
697 		return (total_len - length) + page_size;
698 	}
699 	list[0] = prp_list;
700 	iod->first_dma = prp_dma;
701 	i = 0;
702 	for (;;) {
703 		if (i == page_size >> 3) {
704 			__le64 *old_prp_list = prp_list;
705 			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706 			if (!prp_list)
707 				return total_len - length;
708 			list[iod->npages++] = prp_list;
709 			prp_list[0] = old_prp_list[i - 1];
710 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711 			i = 1;
712 		}
713 		prp_list[i++] = cpu_to_le64(dma_addr);
714 		dma_len -= page_size;
715 		dma_addr += page_size;
716 		length -= page_size;
717 		if (length <= 0)
718 			break;
719 		if (dma_len > 0)
720 			continue;
721 		BUG_ON(dma_len < 0);
722 		sg = sg_next(sg);
723 		dma_addr = sg_dma_address(sg);
724 		dma_len = sg_dma_len(sg);
725 	}
726 
727 	return total_len;
728 }
729 
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731 		struct nvme_iod *iod)
732 {
733 	struct nvme_command cmnd;
734 
735 	memcpy(&cmnd, req->cmd, sizeof(cmnd));
736 	cmnd.rw.command_id = req->tag;
737 	if (req->nr_phys_segments) {
738 		cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739 		cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
740 	}
741 
742 	__nvme_submit_cmd(nvmeq, &cmnd);
743 }
744 
745 /*
746  * We reuse the small pool to allocate the 16-byte range here as it is not
747  * worth having a special pool for these or additional cases to handle freeing
748  * the iod.
749  */
750 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
751 		struct request *req, struct nvme_iod *iod)
752 {
753 	struct nvme_dsm_range *range =
754 				(struct nvme_dsm_range *)iod_list(iod)[0];
755 	struct nvme_command cmnd;
756 
757 	range->cattr = cpu_to_le32(0);
758 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
759 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
760 
761 	memset(&cmnd, 0, sizeof(cmnd));
762 	cmnd.dsm.opcode = nvme_cmd_dsm;
763 	cmnd.dsm.command_id = req->tag;
764 	cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
765 	cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
766 	cmnd.dsm.nr = 0;
767 	cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
768 
769 	__nvme_submit_cmd(nvmeq, &cmnd);
770 }
771 
772 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
773 								int cmdid)
774 {
775 	struct nvme_command cmnd;
776 
777 	memset(&cmnd, 0, sizeof(cmnd));
778 	cmnd.common.opcode = nvme_cmd_flush;
779 	cmnd.common.command_id = cmdid;
780 	cmnd.common.nsid = cpu_to_le32(ns->ns_id);
781 
782 	__nvme_submit_cmd(nvmeq, &cmnd);
783 }
784 
785 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
786 							struct nvme_ns *ns)
787 {
788 	struct request *req = iod_get_private(iod);
789 	struct nvme_command cmnd;
790 	u16 control = 0;
791 	u32 dsmgmt = 0;
792 
793 	if (req->cmd_flags & REQ_FUA)
794 		control |= NVME_RW_FUA;
795 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796 		control |= NVME_RW_LR;
797 
798 	if (req->cmd_flags & REQ_RAHEAD)
799 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800 
801 	memset(&cmnd, 0, sizeof(cmnd));
802 	cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
803 	cmnd.rw.command_id = req->tag;
804 	cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
805 	cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
806 	cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
807 	cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
808 	cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
809 
810 	if (ns->ms) {
811 		switch (ns->pi_type) {
812 		case NVME_NS_DPS_PI_TYPE3:
813 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
814 			break;
815 		case NVME_NS_DPS_PI_TYPE1:
816 		case NVME_NS_DPS_PI_TYPE2:
817 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
818 					NVME_RW_PRINFO_PRCHK_REF;
819 			cmnd.rw.reftag = cpu_to_le32(
820 					nvme_block_nr(ns, blk_rq_pos(req)));
821 			break;
822 		}
823 		if (blk_integrity_rq(req))
824 			cmnd.rw.metadata =
825 				cpu_to_le64(sg_dma_address(iod->meta_sg));
826 		else
827 			control |= NVME_RW_PRINFO_PRACT;
828 	}
829 
830 	cmnd.rw.control = cpu_to_le16(control);
831 	cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
832 
833 	__nvme_submit_cmd(nvmeq, &cmnd);
834 
835 	return 0;
836 }
837 
838 /*
839  * NOTE: ns is NULL when called on the admin queue.
840  */
841 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
842 			 const struct blk_mq_queue_data *bd)
843 {
844 	struct nvme_ns *ns = hctx->queue->queuedata;
845 	struct nvme_queue *nvmeq = hctx->driver_data;
846 	struct nvme_dev *dev = nvmeq->dev;
847 	struct request *req = bd->rq;
848 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
849 	struct nvme_iod *iod;
850 	enum dma_data_direction dma_dir;
851 
852 	/*
853 	 * If formated with metadata, require the block layer provide a buffer
854 	 * unless this namespace is formated such that the metadata can be
855 	 * stripped/generated by the controller with PRACT=1.
856 	 */
857 	if (ns && ns->ms && !blk_integrity_rq(req)) {
858 		if (!(ns->pi_type && ns->ms == 8) &&
859 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
860 			blk_mq_complete_request(req, -EFAULT);
861 			return BLK_MQ_RQ_QUEUE_OK;
862 		}
863 	}
864 
865 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
866 	if (!iod)
867 		return BLK_MQ_RQ_QUEUE_BUSY;
868 
869 	if (req->cmd_flags & REQ_DISCARD) {
870 		void *range;
871 		/*
872 		 * We reuse the small pool to allocate the 16-byte range here
873 		 * as it is not worth having a special pool for these or
874 		 * additional cases to handle freeing the iod.
875 		 */
876 		range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
877 						&iod->first_dma);
878 		if (!range)
879 			goto retry_cmd;
880 		iod_list(iod)[0] = (__le64 *)range;
881 		iod->npages = 0;
882 	} else if (req->nr_phys_segments) {
883 		dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
884 
885 		sg_init_table(iod->sg, req->nr_phys_segments);
886 		iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
887 		if (!iod->nents)
888 			goto error_cmd;
889 
890 		if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
891 			goto retry_cmd;
892 
893 		if (blk_rq_bytes(req) !=
894                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
895 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
896 			goto retry_cmd;
897 		}
898 		if (blk_integrity_rq(req)) {
899 			if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
900 				dma_unmap_sg(dev->dev, iod->sg, iod->nents,
901 						dma_dir);
902 				goto error_cmd;
903 			}
904 
905 			sg_init_table(iod->meta_sg, 1);
906 			if (blk_rq_map_integrity_sg(
907 					req->q, req->bio, iod->meta_sg) != 1) {
908 				dma_unmap_sg(dev->dev, iod->sg, iod->nents,
909 						dma_dir);
910 				goto error_cmd;
911 			}
912 
913 			if (rq_data_dir(req))
914 				nvme_dif_remap(req, nvme_dif_prep);
915 
916 			if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
917 				dma_unmap_sg(dev->dev, iod->sg, iod->nents,
918 						dma_dir);
919 				goto error_cmd;
920 			}
921 		}
922 	}
923 
924 	nvme_set_info(cmd, iod, req_completion);
925 	spin_lock_irq(&nvmeq->q_lock);
926 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
927 		nvme_submit_priv(nvmeq, req, iod);
928 	else if (req->cmd_flags & REQ_DISCARD)
929 		nvme_submit_discard(nvmeq, ns, req, iod);
930 	else if (req->cmd_flags & REQ_FLUSH)
931 		nvme_submit_flush(nvmeq, ns, req->tag);
932 	else
933 		nvme_submit_iod(nvmeq, iod, ns);
934 
935 	nvme_process_cq(nvmeq);
936 	spin_unlock_irq(&nvmeq->q_lock);
937 	return BLK_MQ_RQ_QUEUE_OK;
938 
939  error_cmd:
940 	nvme_free_iod(dev, iod);
941 	return BLK_MQ_RQ_QUEUE_ERROR;
942  retry_cmd:
943 	nvme_free_iod(dev, iod);
944 	return BLK_MQ_RQ_QUEUE_BUSY;
945 }
946 
947 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
948 {
949 	u16 head, phase;
950 
951 	head = nvmeq->cq_head;
952 	phase = nvmeq->cq_phase;
953 
954 	for (;;) {
955 		void *ctx;
956 		nvme_completion_fn fn;
957 		struct nvme_completion cqe = nvmeq->cqes[head];
958 		if ((le16_to_cpu(cqe.status) & 1) != phase)
959 			break;
960 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
961 		if (++head == nvmeq->q_depth) {
962 			head = 0;
963 			phase = !phase;
964 		}
965 		if (tag && *tag == cqe.command_id)
966 			*tag = -1;
967 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
968 		fn(nvmeq, ctx, &cqe);
969 	}
970 
971 	/* If the controller ignores the cq head doorbell and continuously
972 	 * writes to the queue, it is theoretically possible to wrap around
973 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
974 	 * requires that 0.1% of your interrupts are handled, so this isn't
975 	 * a big problem.
976 	 */
977 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
978 		return;
979 
980 	if (likely(nvmeq->cq_vector >= 0))
981 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
982 	nvmeq->cq_head = head;
983 	nvmeq->cq_phase = phase;
984 
985 	nvmeq->cqe_seen = 1;
986 }
987 
988 static void nvme_process_cq(struct nvme_queue *nvmeq)
989 {
990 	__nvme_process_cq(nvmeq, NULL);
991 }
992 
993 static irqreturn_t nvme_irq(int irq, void *data)
994 {
995 	irqreturn_t result;
996 	struct nvme_queue *nvmeq = data;
997 	spin_lock(&nvmeq->q_lock);
998 	nvme_process_cq(nvmeq);
999 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000 	nvmeq->cqe_seen = 0;
1001 	spin_unlock(&nvmeq->q_lock);
1002 	return result;
1003 }
1004 
1005 static irqreturn_t nvme_irq_check(int irq, void *data)
1006 {
1007 	struct nvme_queue *nvmeq = data;
1008 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1009 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1010 		return IRQ_NONE;
1011 	return IRQ_WAKE_THREAD;
1012 }
1013 
1014 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1015 {
1016 	struct nvme_queue *nvmeq = hctx->driver_data;
1017 
1018 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1019 	    nvmeq->cq_phase) {
1020 		spin_lock_irq(&nvmeq->q_lock);
1021 		__nvme_process_cq(nvmeq, &tag);
1022 		spin_unlock_irq(&nvmeq->q_lock);
1023 
1024 		if (tag == -1)
1025 			return 1;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1033  * if the result is positive, it's an NVM Express status code
1034  */
1035 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1036 		void *buffer, void __user *ubuffer, unsigned bufflen,
1037 		u32 *result, unsigned timeout)
1038 {
1039 	bool write = cmd->common.opcode & 1;
1040 	struct bio *bio = NULL;
1041 	struct request *req;
1042 	int ret;
1043 
1044 	req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1045 	if (IS_ERR(req))
1046 		return PTR_ERR(req);
1047 
1048 	req->cmd_type = REQ_TYPE_DRV_PRIV;
1049 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
1050 	req->__data_len = 0;
1051 	req->__sector = (sector_t) -1;
1052 	req->bio = req->biotail = NULL;
1053 
1054 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1055 
1056 	req->cmd = (unsigned char *)cmd;
1057 	req->cmd_len = sizeof(struct nvme_command);
1058 	req->special = (void *)0;
1059 
1060 	if (buffer && bufflen) {
1061 		ret = blk_rq_map_kern(q, req, buffer, bufflen,
1062 				      __GFP_DIRECT_RECLAIM);
1063 		if (ret)
1064 			goto out;
1065 	} else if (ubuffer && bufflen) {
1066 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1067 				      __GFP_DIRECT_RECLAIM);
1068 		if (ret)
1069 			goto out;
1070 		bio = req->bio;
1071 	}
1072 
1073 	blk_execute_rq(req->q, NULL, req, 0);
1074 	if (bio)
1075 		blk_rq_unmap_user(bio);
1076 	if (result)
1077 		*result = (u32)(uintptr_t)req->special;
1078 	ret = req->errors;
1079  out:
1080 	blk_mq_free_request(req);
1081 	return ret;
1082 }
1083 
1084 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1085 		void *buffer, unsigned bufflen)
1086 {
1087 	return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1088 }
1089 
1090 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1091 {
1092 	struct nvme_queue *nvmeq = dev->queues[0];
1093 	struct nvme_command c;
1094 	struct nvme_cmd_info *cmd_info;
1095 	struct request *req;
1096 
1097 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1098 	if (IS_ERR(req))
1099 		return PTR_ERR(req);
1100 
1101 	req->cmd_flags |= REQ_NO_TIMEOUT;
1102 	cmd_info = blk_mq_rq_to_pdu(req);
1103 	nvme_set_info(cmd_info, NULL, async_req_completion);
1104 
1105 	memset(&c, 0, sizeof(c));
1106 	c.common.opcode = nvme_admin_async_event;
1107 	c.common.command_id = req->tag;
1108 
1109 	blk_mq_free_request(req);
1110 	__nvme_submit_cmd(nvmeq, &c);
1111 	return 0;
1112 }
1113 
1114 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1115 			struct nvme_command *cmd,
1116 			struct async_cmd_info *cmdinfo, unsigned timeout)
1117 {
1118 	struct nvme_queue *nvmeq = dev->queues[0];
1119 	struct request *req;
1120 	struct nvme_cmd_info *cmd_rq;
1121 
1122 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1123 	if (IS_ERR(req))
1124 		return PTR_ERR(req);
1125 
1126 	req->timeout = timeout;
1127 	cmd_rq = blk_mq_rq_to_pdu(req);
1128 	cmdinfo->req = req;
1129 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1130 	cmdinfo->status = -EINTR;
1131 
1132 	cmd->common.command_id = req->tag;
1133 
1134 	nvme_submit_cmd(nvmeq, cmd);
1135 	return 0;
1136 }
1137 
1138 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1139 {
1140 	struct nvme_command c;
1141 
1142 	memset(&c, 0, sizeof(c));
1143 	c.delete_queue.opcode = opcode;
1144 	c.delete_queue.qid = cpu_to_le16(id);
1145 
1146 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1147 }
1148 
1149 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1150 						struct nvme_queue *nvmeq)
1151 {
1152 	struct nvme_command c;
1153 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1154 
1155 	/*
1156 	 * Note: we (ab)use the fact the the prp fields survive if no data
1157 	 * is attached to the request.
1158 	 */
1159 	memset(&c, 0, sizeof(c));
1160 	c.create_cq.opcode = nvme_admin_create_cq;
1161 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1162 	c.create_cq.cqid = cpu_to_le16(qid);
1163 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164 	c.create_cq.cq_flags = cpu_to_le16(flags);
1165 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1166 
1167 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1168 }
1169 
1170 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1171 						struct nvme_queue *nvmeq)
1172 {
1173 	struct nvme_command c;
1174 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1175 
1176 	/*
1177 	 * Note: we (ab)use the fact the the prp fields survive if no data
1178 	 * is attached to the request.
1179 	 */
1180 	memset(&c, 0, sizeof(c));
1181 	c.create_sq.opcode = nvme_admin_create_sq;
1182 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1183 	c.create_sq.sqid = cpu_to_le16(qid);
1184 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1185 	c.create_sq.sq_flags = cpu_to_le16(flags);
1186 	c.create_sq.cqid = cpu_to_le16(qid);
1187 
1188 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1189 }
1190 
1191 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1192 {
1193 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1194 }
1195 
1196 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1197 {
1198 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1199 }
1200 
1201 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1202 {
1203 	struct nvme_command c = { };
1204 	int error;
1205 
1206 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1207 	c.identify.opcode = nvme_admin_identify;
1208 	c.identify.cns = cpu_to_le32(1);
1209 
1210 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1211 	if (!*id)
1212 		return -ENOMEM;
1213 
1214 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1215 			sizeof(struct nvme_id_ctrl));
1216 	if (error)
1217 		kfree(*id);
1218 	return error;
1219 }
1220 
1221 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1222 		struct nvme_id_ns **id)
1223 {
1224 	struct nvme_command c = { };
1225 	int error;
1226 
1227 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1228 	c.identify.opcode = nvme_admin_identify,
1229 	c.identify.nsid = cpu_to_le32(nsid),
1230 
1231 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1232 	if (!*id)
1233 		return -ENOMEM;
1234 
1235 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1236 			sizeof(struct nvme_id_ns));
1237 	if (error)
1238 		kfree(*id);
1239 	return error;
1240 }
1241 
1242 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1243 					dma_addr_t dma_addr, u32 *result)
1244 {
1245 	struct nvme_command c;
1246 
1247 	memset(&c, 0, sizeof(c));
1248 	c.features.opcode = nvme_admin_get_features;
1249 	c.features.nsid = cpu_to_le32(nsid);
1250 	c.features.prp1 = cpu_to_le64(dma_addr);
1251 	c.features.fid = cpu_to_le32(fid);
1252 
1253 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1254 			result, 0);
1255 }
1256 
1257 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1258 					dma_addr_t dma_addr, u32 *result)
1259 {
1260 	struct nvme_command c;
1261 
1262 	memset(&c, 0, sizeof(c));
1263 	c.features.opcode = nvme_admin_set_features;
1264 	c.features.prp1 = cpu_to_le64(dma_addr);
1265 	c.features.fid = cpu_to_le32(fid);
1266 	c.features.dword11 = cpu_to_le32(dword11);
1267 
1268 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1269 			result, 0);
1270 }
1271 
1272 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1273 {
1274 	struct nvme_command c = { };
1275 	int error;
1276 
1277 	c.common.opcode = nvme_admin_get_log_page,
1278 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1279 	c.common.cdw10[0] = cpu_to_le32(
1280 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1281 			 NVME_LOG_SMART),
1282 
1283 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1284 	if (!*log)
1285 		return -ENOMEM;
1286 
1287 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1288 			sizeof(struct nvme_smart_log));
1289 	if (error)
1290 		kfree(*log);
1291 	return error;
1292 }
1293 
1294 /**
1295  * nvme_abort_req - Attempt aborting a request
1296  *
1297  * Schedule controller reset if the command was already aborted once before and
1298  * still hasn't been returned to the driver, or if this is the admin queue.
1299  */
1300 static void nvme_abort_req(struct request *req)
1301 {
1302 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1303 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1304 	struct nvme_dev *dev = nvmeq->dev;
1305 	struct request *abort_req;
1306 	struct nvme_cmd_info *abort_cmd;
1307 	struct nvme_command cmd;
1308 
1309 	if (!nvmeq->qid || cmd_rq->aborted) {
1310 		spin_lock(&dev_list_lock);
1311 		if (!__nvme_reset(dev)) {
1312 			dev_warn(dev->dev,
1313 				 "I/O %d QID %d timeout, reset controller\n",
1314 				 req->tag, nvmeq->qid);
1315 		}
1316 		spin_unlock(&dev_list_lock);
1317 		return;
1318 	}
1319 
1320 	if (!dev->abort_limit)
1321 		return;
1322 
1323 	abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1324 									false);
1325 	if (IS_ERR(abort_req))
1326 		return;
1327 
1328 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1329 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1330 
1331 	memset(&cmd, 0, sizeof(cmd));
1332 	cmd.abort.opcode = nvme_admin_abort_cmd;
1333 	cmd.abort.cid = req->tag;
1334 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1335 	cmd.abort.command_id = abort_req->tag;
1336 
1337 	--dev->abort_limit;
1338 	cmd_rq->aborted = 1;
1339 
1340 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1341 							nvmeq->qid);
1342 	nvme_submit_cmd(dev->queues[0], &cmd);
1343 }
1344 
1345 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1346 {
1347 	struct nvme_queue *nvmeq = data;
1348 	void *ctx;
1349 	nvme_completion_fn fn;
1350 	struct nvme_cmd_info *cmd;
1351 	struct nvme_completion cqe;
1352 
1353 	if (!blk_mq_request_started(req))
1354 		return;
1355 
1356 	cmd = blk_mq_rq_to_pdu(req);
1357 
1358 	if (cmd->ctx == CMD_CTX_CANCELLED)
1359 		return;
1360 
1361 	if (blk_queue_dying(req->q))
1362 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1363 	else
1364 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1365 
1366 
1367 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1368 						req->tag, nvmeq->qid);
1369 	ctx = cancel_cmd_info(cmd, &fn);
1370 	fn(nvmeq, ctx, &cqe);
1371 }
1372 
1373 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1374 {
1375 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1376 	struct nvme_queue *nvmeq = cmd->nvmeq;
1377 
1378 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1379 							nvmeq->qid);
1380 	spin_lock_irq(&nvmeq->q_lock);
1381 	nvme_abort_req(req);
1382 	spin_unlock_irq(&nvmeq->q_lock);
1383 
1384 	/*
1385 	 * The aborted req will be completed on receiving the abort req.
1386 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1387 	 * as the device then is in a faulty state.
1388 	 */
1389 	return BLK_EH_RESET_TIMER;
1390 }
1391 
1392 static void nvme_free_queue(struct nvme_queue *nvmeq)
1393 {
1394 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1395 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1396 	if (nvmeq->sq_cmds)
1397 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1398 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1399 	kfree(nvmeq);
1400 }
1401 
1402 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1403 {
1404 	int i;
1405 
1406 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1407 		struct nvme_queue *nvmeq = dev->queues[i];
1408 		dev->queue_count--;
1409 		dev->queues[i] = NULL;
1410 		nvme_free_queue(nvmeq);
1411 	}
1412 }
1413 
1414 /**
1415  * nvme_suspend_queue - put queue into suspended state
1416  * @nvmeq - queue to suspend
1417  */
1418 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1419 {
1420 	int vector;
1421 
1422 	spin_lock_irq(&nvmeq->q_lock);
1423 	if (nvmeq->cq_vector == -1) {
1424 		spin_unlock_irq(&nvmeq->q_lock);
1425 		return 1;
1426 	}
1427 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1428 	nvmeq->dev->online_queues--;
1429 	nvmeq->cq_vector = -1;
1430 	spin_unlock_irq(&nvmeq->q_lock);
1431 
1432 	if (!nvmeq->qid && nvmeq->dev->admin_q)
1433 		blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1434 
1435 	irq_set_affinity_hint(vector, NULL);
1436 	free_irq(vector, nvmeq);
1437 
1438 	return 0;
1439 }
1440 
1441 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1442 {
1443 	spin_lock_irq(&nvmeq->q_lock);
1444 	if (nvmeq->tags && *nvmeq->tags)
1445 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1446 	spin_unlock_irq(&nvmeq->q_lock);
1447 }
1448 
1449 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1450 {
1451 	struct nvme_queue *nvmeq = dev->queues[qid];
1452 
1453 	if (!nvmeq)
1454 		return;
1455 	if (nvme_suspend_queue(nvmeq))
1456 		return;
1457 
1458 	/* Don't tell the adapter to delete the admin queue.
1459 	 * Don't tell a removed adapter to delete IO queues. */
1460 	if (qid && readl(&dev->bar->csts) != -1) {
1461 		adapter_delete_sq(dev, qid);
1462 		adapter_delete_cq(dev, qid);
1463 	}
1464 
1465 	spin_lock_irq(&nvmeq->q_lock);
1466 	nvme_process_cq(nvmeq);
1467 	spin_unlock_irq(&nvmeq->q_lock);
1468 }
1469 
1470 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471 				int entry_size)
1472 {
1473 	int q_depth = dev->q_depth;
1474 	unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1475 
1476 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1477 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1478 		mem_per_q = round_down(mem_per_q, dev->page_size);
1479 		q_depth = div_u64(mem_per_q, entry_size);
1480 
1481 		/*
1482 		 * Ensure the reduced q_depth is above some threshold where it
1483 		 * would be better to map queues in system memory with the
1484 		 * original depth
1485 		 */
1486 		if (q_depth < 64)
1487 			return -ENOMEM;
1488 	}
1489 
1490 	return q_depth;
1491 }
1492 
1493 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494 				int qid, int depth)
1495 {
1496 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1497 		unsigned offset = (qid - 1) *
1498 					roundup(SQ_SIZE(depth), dev->page_size);
1499 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1500 		nvmeq->sq_cmds_io = dev->cmb + offset;
1501 	} else {
1502 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1503 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1504 		if (!nvmeq->sq_cmds)
1505 			return -ENOMEM;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1512 							int depth)
1513 {
1514 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1515 	if (!nvmeq)
1516 		return NULL;
1517 
1518 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1519 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1520 	if (!nvmeq->cqes)
1521 		goto free_nvmeq;
1522 
1523 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1524 		goto free_cqdma;
1525 
1526 	nvmeq->q_dmadev = dev->dev;
1527 	nvmeq->dev = dev;
1528 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1529 			dev->instance, qid);
1530 	spin_lock_init(&nvmeq->q_lock);
1531 	nvmeq->cq_head = 0;
1532 	nvmeq->cq_phase = 1;
1533 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1534 	nvmeq->q_depth = depth;
1535 	nvmeq->qid = qid;
1536 	nvmeq->cq_vector = -1;
1537 	dev->queues[qid] = nvmeq;
1538 
1539 	/* make sure queue descriptor is set before queue count, for kthread */
1540 	mb();
1541 	dev->queue_count++;
1542 
1543 	return nvmeq;
1544 
1545  free_cqdma:
1546 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1547 							nvmeq->cq_dma_addr);
1548  free_nvmeq:
1549 	kfree(nvmeq);
1550 	return NULL;
1551 }
1552 
1553 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1554 							const char *name)
1555 {
1556 	if (use_threaded_interrupts)
1557 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1558 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1559 					name, nvmeq);
1560 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1561 				IRQF_SHARED, name, nvmeq);
1562 }
1563 
1564 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1565 {
1566 	struct nvme_dev *dev = nvmeq->dev;
1567 
1568 	spin_lock_irq(&nvmeq->q_lock);
1569 	nvmeq->sq_tail = 0;
1570 	nvmeq->cq_head = 0;
1571 	nvmeq->cq_phase = 1;
1572 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1573 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1574 	dev->online_queues++;
1575 	spin_unlock_irq(&nvmeq->q_lock);
1576 }
1577 
1578 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1579 {
1580 	struct nvme_dev *dev = nvmeq->dev;
1581 	int result;
1582 
1583 	nvmeq->cq_vector = qid - 1;
1584 	result = adapter_alloc_cq(dev, qid, nvmeq);
1585 	if (result < 0)
1586 		return result;
1587 
1588 	result = adapter_alloc_sq(dev, qid, nvmeq);
1589 	if (result < 0)
1590 		goto release_cq;
1591 
1592 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1593 	if (result < 0)
1594 		goto release_sq;
1595 
1596 	nvme_init_queue(nvmeq, qid);
1597 	return result;
1598 
1599  release_sq:
1600 	adapter_delete_sq(dev, qid);
1601  release_cq:
1602 	adapter_delete_cq(dev, qid);
1603 	return result;
1604 }
1605 
1606 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1607 {
1608 	unsigned long timeout;
1609 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1610 
1611 	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1612 
1613 	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1614 		msleep(100);
1615 		if (fatal_signal_pending(current))
1616 			return -EINTR;
1617 		if (time_after(jiffies, timeout)) {
1618 			dev_err(dev->dev,
1619 				"Device not ready; aborting %s\n", enabled ?
1620 						"initialisation" : "reset");
1621 			return -ENODEV;
1622 		}
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * If the device has been passed off to us in an enabled state, just clear
1630  * the enabled bit.  The spec says we should set the 'shutdown notification
1631  * bits', but doing so may cause the device to complete commands to the
1632  * admin queue ... and we don't know what memory that might be pointing at!
1633  */
1634 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1635 {
1636 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1637 	dev->ctrl_config &= ~NVME_CC_ENABLE;
1638 	writel(dev->ctrl_config, &dev->bar->cc);
1639 
1640 	return nvme_wait_ready(dev, cap, false);
1641 }
1642 
1643 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1644 {
1645 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1646 	dev->ctrl_config |= NVME_CC_ENABLE;
1647 	writel(dev->ctrl_config, &dev->bar->cc);
1648 
1649 	return nvme_wait_ready(dev, cap, true);
1650 }
1651 
1652 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1653 {
1654 	unsigned long timeout;
1655 
1656 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1657 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1658 
1659 	writel(dev->ctrl_config, &dev->bar->cc);
1660 
1661 	timeout = SHUTDOWN_TIMEOUT + jiffies;
1662 	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1663 							NVME_CSTS_SHST_CMPLT) {
1664 		msleep(100);
1665 		if (fatal_signal_pending(current))
1666 			return -EINTR;
1667 		if (time_after(jiffies, timeout)) {
1668 			dev_err(dev->dev,
1669 				"Device shutdown incomplete; abort shutdown\n");
1670 			return -ENODEV;
1671 		}
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static struct blk_mq_ops nvme_mq_admin_ops = {
1678 	.queue_rq	= nvme_queue_rq,
1679 	.map_queue	= blk_mq_map_queue,
1680 	.init_hctx	= nvme_admin_init_hctx,
1681 	.exit_hctx      = nvme_admin_exit_hctx,
1682 	.init_request	= nvme_admin_init_request,
1683 	.timeout	= nvme_timeout,
1684 };
1685 
1686 static struct blk_mq_ops nvme_mq_ops = {
1687 	.queue_rq	= nvme_queue_rq,
1688 	.map_queue	= blk_mq_map_queue,
1689 	.init_hctx	= nvme_init_hctx,
1690 	.init_request	= nvme_init_request,
1691 	.timeout	= nvme_timeout,
1692 	.poll		= nvme_poll,
1693 };
1694 
1695 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1696 {
1697 	if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1698 		blk_cleanup_queue(dev->admin_q);
1699 		blk_mq_free_tag_set(&dev->admin_tagset);
1700 	}
1701 }
1702 
1703 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1704 {
1705 	if (!dev->admin_q) {
1706 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1707 		dev->admin_tagset.nr_hw_queues = 1;
1708 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1709 		dev->admin_tagset.reserved_tags = 1;
1710 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1711 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1712 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1713 		dev->admin_tagset.driver_data = dev;
1714 
1715 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1716 			return -ENOMEM;
1717 
1718 		dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1719 		if (IS_ERR(dev->admin_q)) {
1720 			blk_mq_free_tag_set(&dev->admin_tagset);
1721 			return -ENOMEM;
1722 		}
1723 		if (!blk_get_queue(dev->admin_q)) {
1724 			nvme_dev_remove_admin(dev);
1725 			dev->admin_q = NULL;
1726 			return -ENODEV;
1727 		}
1728 	} else
1729 		blk_mq_unfreeze_queue(dev->admin_q);
1730 
1731 	return 0;
1732 }
1733 
1734 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1735 {
1736 	int result;
1737 	u32 aqa;
1738 	u64 cap = lo_hi_readq(&dev->bar->cap);
1739 	struct nvme_queue *nvmeq;
1740 	/*
1741 	 * default to a 4K page size, with the intention to update this
1742 	 * path in the future to accomodate architectures with differing
1743 	 * kernel and IO page sizes.
1744 	 */
1745 	unsigned page_shift = 12;
1746 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1747 
1748 	if (page_shift < dev_page_min) {
1749 		dev_err(dev->dev,
1750 				"Minimum device page size (%u) too large for "
1751 				"host (%u)\n", 1 << dev_page_min,
1752 				1 << page_shift);
1753 		return -ENODEV;
1754 	}
1755 
1756 	dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1757 						NVME_CAP_NSSRC(cap) : 0;
1758 
1759 	if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1760 		writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1761 
1762 	result = nvme_disable_ctrl(dev, cap);
1763 	if (result < 0)
1764 		return result;
1765 
1766 	nvmeq = dev->queues[0];
1767 	if (!nvmeq) {
1768 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1769 		if (!nvmeq)
1770 			return -ENOMEM;
1771 	}
1772 
1773 	aqa = nvmeq->q_depth - 1;
1774 	aqa |= aqa << 16;
1775 
1776 	dev->page_size = 1 << page_shift;
1777 
1778 	dev->ctrl_config = NVME_CC_CSS_NVM;
1779 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1780 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1781 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1782 
1783 	writel(aqa, &dev->bar->aqa);
1784 	lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1785 	lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1786 
1787 	result = nvme_enable_ctrl(dev, cap);
1788 	if (result)
1789 		goto free_nvmeq;
1790 
1791 	nvmeq->cq_vector = 0;
1792 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1793 	if (result) {
1794 		nvmeq->cq_vector = -1;
1795 		goto free_nvmeq;
1796 	}
1797 
1798 	return result;
1799 
1800  free_nvmeq:
1801 	nvme_free_queues(dev, 0);
1802 	return result;
1803 }
1804 
1805 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1806 {
1807 	struct nvme_dev *dev = ns->dev;
1808 	struct nvme_user_io io;
1809 	struct nvme_command c;
1810 	unsigned length, meta_len;
1811 	int status, write;
1812 	dma_addr_t meta_dma = 0;
1813 	void *meta = NULL;
1814 	void __user *metadata;
1815 
1816 	if (copy_from_user(&io, uio, sizeof(io)))
1817 		return -EFAULT;
1818 
1819 	switch (io.opcode) {
1820 	case nvme_cmd_write:
1821 	case nvme_cmd_read:
1822 	case nvme_cmd_compare:
1823 		break;
1824 	default:
1825 		return -EINVAL;
1826 	}
1827 
1828 	length = (io.nblocks + 1) << ns->lba_shift;
1829 	meta_len = (io.nblocks + 1) * ns->ms;
1830 	metadata = (void __user *)(uintptr_t)io.metadata;
1831 	write = io.opcode & 1;
1832 
1833 	if (ns->ext) {
1834 		length += meta_len;
1835 		meta_len = 0;
1836 	}
1837 	if (meta_len) {
1838 		if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1839 			return -EINVAL;
1840 
1841 		meta = dma_alloc_coherent(dev->dev, meta_len,
1842 						&meta_dma, GFP_KERNEL);
1843 
1844 		if (!meta) {
1845 			status = -ENOMEM;
1846 			goto unmap;
1847 		}
1848 		if (write) {
1849 			if (copy_from_user(meta, metadata, meta_len)) {
1850 				status = -EFAULT;
1851 				goto unmap;
1852 			}
1853 		}
1854 	}
1855 
1856 	memset(&c, 0, sizeof(c));
1857 	c.rw.opcode = io.opcode;
1858 	c.rw.flags = io.flags;
1859 	c.rw.nsid = cpu_to_le32(ns->ns_id);
1860 	c.rw.slba = cpu_to_le64(io.slba);
1861 	c.rw.length = cpu_to_le16(io.nblocks);
1862 	c.rw.control = cpu_to_le16(io.control);
1863 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1864 	c.rw.reftag = cpu_to_le32(io.reftag);
1865 	c.rw.apptag = cpu_to_le16(io.apptag);
1866 	c.rw.appmask = cpu_to_le16(io.appmask);
1867 	c.rw.metadata = cpu_to_le64(meta_dma);
1868 
1869 	status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1870 			(void __user *)(uintptr_t)io.addr, length, NULL, 0);
1871  unmap:
1872 	if (meta) {
1873 		if (status == NVME_SC_SUCCESS && !write) {
1874 			if (copy_to_user(metadata, meta, meta_len))
1875 				status = -EFAULT;
1876 		}
1877 		dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1878 	}
1879 	return status;
1880 }
1881 
1882 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1883 			struct nvme_passthru_cmd __user *ucmd)
1884 {
1885 	struct nvme_passthru_cmd cmd;
1886 	struct nvme_command c;
1887 	unsigned timeout = 0;
1888 	int status;
1889 
1890 	if (!capable(CAP_SYS_ADMIN))
1891 		return -EACCES;
1892 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1893 		return -EFAULT;
1894 
1895 	memset(&c, 0, sizeof(c));
1896 	c.common.opcode = cmd.opcode;
1897 	c.common.flags = cmd.flags;
1898 	c.common.nsid = cpu_to_le32(cmd.nsid);
1899 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1900 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1901 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1902 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1903 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1904 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1905 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1906 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1907 
1908 	if (cmd.timeout_ms)
1909 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1910 
1911 	status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1912 			NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1913 			&cmd.result, timeout);
1914 	if (status >= 0) {
1915 		if (put_user(cmd.result, &ucmd->result))
1916 			return -EFAULT;
1917 	}
1918 
1919 	return status;
1920 }
1921 
1922 static int nvme_subsys_reset(struct nvme_dev *dev)
1923 {
1924 	if (!dev->subsystem)
1925 		return -ENOTTY;
1926 
1927 	writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1928 	return 0;
1929 }
1930 
1931 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1932 							unsigned long arg)
1933 {
1934 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1935 
1936 	switch (cmd) {
1937 	case NVME_IOCTL_ID:
1938 		force_successful_syscall_return();
1939 		return ns->ns_id;
1940 	case NVME_IOCTL_ADMIN_CMD:
1941 		return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1942 	case NVME_IOCTL_IO_CMD:
1943 		return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1944 	case NVME_IOCTL_SUBMIT_IO:
1945 		return nvme_submit_io(ns, (void __user *)arg);
1946 	case SG_GET_VERSION_NUM:
1947 		return nvme_sg_get_version_num((void __user *)arg);
1948 	case SG_IO:
1949 		return nvme_sg_io(ns, (void __user *)arg);
1950 	default:
1951 		return -ENOTTY;
1952 	}
1953 }
1954 
1955 #ifdef CONFIG_COMPAT
1956 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1957 					unsigned int cmd, unsigned long arg)
1958 {
1959 	switch (cmd) {
1960 	case SG_IO:
1961 		return -ENOIOCTLCMD;
1962 	}
1963 	return nvme_ioctl(bdev, mode, cmd, arg);
1964 }
1965 #else
1966 #define nvme_compat_ioctl	NULL
1967 #endif
1968 
1969 static void nvme_free_dev(struct kref *kref);
1970 static void nvme_free_ns(struct kref *kref)
1971 {
1972 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1973 
1974 	if (ns->type == NVME_NS_LIGHTNVM)
1975 		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1976 
1977 	spin_lock(&dev_list_lock);
1978 	ns->disk->private_data = NULL;
1979 	spin_unlock(&dev_list_lock);
1980 
1981 	kref_put(&ns->dev->kref, nvme_free_dev);
1982 	put_disk(ns->disk);
1983 	kfree(ns);
1984 }
1985 
1986 static int nvme_open(struct block_device *bdev, fmode_t mode)
1987 {
1988 	int ret = 0;
1989 	struct nvme_ns *ns;
1990 
1991 	spin_lock(&dev_list_lock);
1992 	ns = bdev->bd_disk->private_data;
1993 	if (!ns)
1994 		ret = -ENXIO;
1995 	else if (!kref_get_unless_zero(&ns->kref))
1996 		ret = -ENXIO;
1997 	spin_unlock(&dev_list_lock);
1998 
1999 	return ret;
2000 }
2001 
2002 static void nvme_release(struct gendisk *disk, fmode_t mode)
2003 {
2004 	struct nvme_ns *ns = disk->private_data;
2005 	kref_put(&ns->kref, nvme_free_ns);
2006 }
2007 
2008 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
2009 {
2010 	/* some standard values */
2011 	geo->heads = 1 << 6;
2012 	geo->sectors = 1 << 5;
2013 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2014 	return 0;
2015 }
2016 
2017 static void nvme_config_discard(struct nvme_ns *ns)
2018 {
2019 	u32 logical_block_size = queue_logical_block_size(ns->queue);
2020 	ns->queue->limits.discard_zeroes_data = 0;
2021 	ns->queue->limits.discard_alignment = logical_block_size;
2022 	ns->queue->limits.discard_granularity = logical_block_size;
2023 	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
2024 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2025 }
2026 
2027 static int nvme_revalidate_disk(struct gendisk *disk)
2028 {
2029 	struct nvme_ns *ns = disk->private_data;
2030 	struct nvme_dev *dev = ns->dev;
2031 	struct nvme_id_ns *id;
2032 	u8 lbaf, pi_type;
2033 	u16 old_ms;
2034 	unsigned short bs;
2035 
2036 	if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2037 		dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2038 						dev->instance, ns->ns_id);
2039 		return -ENODEV;
2040 	}
2041 	if (id->ncap == 0) {
2042 		kfree(id);
2043 		return -ENODEV;
2044 	}
2045 
2046 	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
2047 		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
2048 			dev_warn(dev->dev,
2049 				"%s: LightNVM init failure\n", __func__);
2050 			kfree(id);
2051 			return -ENODEV;
2052 		}
2053 		ns->type = NVME_NS_LIGHTNVM;
2054 	}
2055 
2056 	old_ms = ns->ms;
2057 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2058 	ns->lba_shift = id->lbaf[lbaf].ds;
2059 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2060 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2061 
2062 	/*
2063 	 * If identify namespace failed, use default 512 byte block size so
2064 	 * block layer can use before failing read/write for 0 capacity.
2065 	 */
2066 	if (ns->lba_shift == 0)
2067 		ns->lba_shift = 9;
2068 	bs = 1 << ns->lba_shift;
2069 
2070 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
2071 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2072 					id->dps & NVME_NS_DPS_PI_MASK : 0;
2073 
2074 	blk_mq_freeze_queue(disk->queue);
2075 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2076 				ns->ms != old_ms ||
2077 				bs != queue_logical_block_size(disk->queue) ||
2078 				(ns->ms && ns->ext)))
2079 		blk_integrity_unregister(disk);
2080 
2081 	ns->pi_type = pi_type;
2082 	blk_queue_logical_block_size(ns->queue, bs);
2083 
2084 	if (ns->ms && !ns->ext)
2085 		nvme_init_integrity(ns);
2086 
2087 	if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
2088 						!blk_get_integrity(disk)) ||
2089 						ns->type == NVME_NS_LIGHTNVM)
2090 		set_capacity(disk, 0);
2091 	else
2092 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2093 
2094 	if (dev->oncs & NVME_CTRL_ONCS_DSM)
2095 		nvme_config_discard(ns);
2096 	blk_mq_unfreeze_queue(disk->queue);
2097 
2098 	kfree(id);
2099 	return 0;
2100 }
2101 
2102 static char nvme_pr_type(enum pr_type type)
2103 {
2104 	switch (type) {
2105 	case PR_WRITE_EXCLUSIVE:
2106 		return 1;
2107 	case PR_EXCLUSIVE_ACCESS:
2108 		return 2;
2109 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2110 		return 3;
2111 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2112 		return 4;
2113 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2114 		return 5;
2115 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2116 		return 6;
2117 	default:
2118 		return 0;
2119 	}
2120 };
2121 
2122 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2123 				u64 key, u64 sa_key, u8 op)
2124 {
2125 	struct nvme_ns *ns = bdev->bd_disk->private_data;
2126 	struct nvme_command c;
2127 	u8 data[16] = { 0, };
2128 
2129 	put_unaligned_le64(key, &data[0]);
2130 	put_unaligned_le64(sa_key, &data[8]);
2131 
2132 	memset(&c, 0, sizeof(c));
2133 	c.common.opcode = op;
2134 	c.common.nsid = cpu_to_le32(ns->ns_id);
2135 	c.common.cdw10[0] = cpu_to_le32(cdw10);
2136 
2137 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2138 }
2139 
2140 static int nvme_pr_register(struct block_device *bdev, u64 old,
2141 		u64 new, unsigned flags)
2142 {
2143 	u32 cdw10;
2144 
2145 	if (flags & ~PR_FL_IGNORE_KEY)
2146 		return -EOPNOTSUPP;
2147 
2148 	cdw10 = old ? 2 : 0;
2149 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2150 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2151 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2152 }
2153 
2154 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2155 		enum pr_type type, unsigned flags)
2156 {
2157 	u32 cdw10;
2158 
2159 	if (flags & ~PR_FL_IGNORE_KEY)
2160 		return -EOPNOTSUPP;
2161 
2162 	cdw10 = nvme_pr_type(type) << 8;
2163 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2164 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2165 }
2166 
2167 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2168 		enum pr_type type, bool abort)
2169 {
2170 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2171 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2172 }
2173 
2174 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2175 {
2176 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2177 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2178 }
2179 
2180 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2181 {
2182 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2183 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2184 }
2185 
2186 static const struct pr_ops nvme_pr_ops = {
2187 	.pr_register	= nvme_pr_register,
2188 	.pr_reserve	= nvme_pr_reserve,
2189 	.pr_release	= nvme_pr_release,
2190 	.pr_preempt	= nvme_pr_preempt,
2191 	.pr_clear	= nvme_pr_clear,
2192 };
2193 
2194 static const struct block_device_operations nvme_fops = {
2195 	.owner		= THIS_MODULE,
2196 	.ioctl		= nvme_ioctl,
2197 	.compat_ioctl	= nvme_compat_ioctl,
2198 	.open		= nvme_open,
2199 	.release	= nvme_release,
2200 	.getgeo		= nvme_getgeo,
2201 	.revalidate_disk= nvme_revalidate_disk,
2202 	.pr_ops		= &nvme_pr_ops,
2203 };
2204 
2205 static int nvme_kthread(void *data)
2206 {
2207 	struct nvme_dev *dev, *next;
2208 
2209 	while (!kthread_should_stop()) {
2210 		set_current_state(TASK_INTERRUPTIBLE);
2211 		spin_lock(&dev_list_lock);
2212 		list_for_each_entry_safe(dev, next, &dev_list, node) {
2213 			int i;
2214 			u32 csts = readl(&dev->bar->csts);
2215 
2216 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2217 							csts & NVME_CSTS_CFS) {
2218 				if (!__nvme_reset(dev)) {
2219 					dev_warn(dev->dev,
2220 						"Failed status: %x, reset controller\n",
2221 						readl(&dev->bar->csts));
2222 				}
2223 				continue;
2224 			}
2225 			for (i = 0; i < dev->queue_count; i++) {
2226 				struct nvme_queue *nvmeq = dev->queues[i];
2227 				if (!nvmeq)
2228 					continue;
2229 				spin_lock_irq(&nvmeq->q_lock);
2230 				nvme_process_cq(nvmeq);
2231 
2232 				while ((i == 0) && (dev->event_limit > 0)) {
2233 					if (nvme_submit_async_admin_req(dev))
2234 						break;
2235 					dev->event_limit--;
2236 				}
2237 				spin_unlock_irq(&nvmeq->q_lock);
2238 			}
2239 		}
2240 		spin_unlock(&dev_list_lock);
2241 		schedule_timeout(round_jiffies_relative(HZ));
2242 	}
2243 	return 0;
2244 }
2245 
2246 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2247 {
2248 	struct nvme_ns *ns;
2249 	struct gendisk *disk;
2250 	int node = dev_to_node(dev->dev);
2251 
2252 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2253 	if (!ns)
2254 		return;
2255 
2256 	ns->queue = blk_mq_init_queue(&dev->tagset);
2257 	if (IS_ERR(ns->queue))
2258 		goto out_free_ns;
2259 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2260 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2261 	ns->dev = dev;
2262 	ns->queue->queuedata = ns;
2263 
2264 	disk = alloc_disk_node(0, node);
2265 	if (!disk)
2266 		goto out_free_queue;
2267 
2268 	kref_init(&ns->kref);
2269 	ns->ns_id = nsid;
2270 	ns->disk = disk;
2271 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2272 	list_add_tail(&ns->list, &dev->namespaces);
2273 
2274 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2275 	if (dev->max_hw_sectors) {
2276 		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2277 		blk_queue_max_segments(ns->queue,
2278 			(dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
2279 	}
2280 	if (dev->stripe_size)
2281 		blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2282 	if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2283 		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2284 	blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2285 
2286 	disk->major = nvme_major;
2287 	disk->first_minor = 0;
2288 	disk->fops = &nvme_fops;
2289 	disk->private_data = ns;
2290 	disk->queue = ns->queue;
2291 	disk->driverfs_dev = dev->device;
2292 	disk->flags = GENHD_FL_EXT_DEVT;
2293 	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2294 
2295 	/*
2296 	 * Initialize capacity to 0 until we establish the namespace format and
2297 	 * setup integrity extentions if necessary. The revalidate_disk after
2298 	 * add_disk allows the driver to register with integrity if the format
2299 	 * requires it.
2300 	 */
2301 	set_capacity(disk, 0);
2302 	if (nvme_revalidate_disk(ns->disk))
2303 		goto out_free_disk;
2304 
2305 	kref_get(&dev->kref);
2306 	if (ns->type != NVME_NS_LIGHTNVM) {
2307 		add_disk(ns->disk);
2308 		if (ns->ms) {
2309 			struct block_device *bd = bdget_disk(ns->disk, 0);
2310 			if (!bd)
2311 				return;
2312 			if (blkdev_get(bd, FMODE_READ, NULL)) {
2313 				bdput(bd);
2314 				return;
2315 			}
2316 			blkdev_reread_part(bd);
2317 			blkdev_put(bd, FMODE_READ);
2318 		}
2319 	}
2320 	return;
2321  out_free_disk:
2322 	kfree(disk);
2323 	list_del(&ns->list);
2324  out_free_queue:
2325 	blk_cleanup_queue(ns->queue);
2326  out_free_ns:
2327 	kfree(ns);
2328 }
2329 
2330 /*
2331  * Create I/O queues.  Failing to create an I/O queue is not an issue,
2332  * we can continue with less than the desired amount of queues, and
2333  * even a controller without I/O queues an still be used to issue
2334  * admin commands.  This might be useful to upgrade a buggy firmware
2335  * for example.
2336  */
2337 static void nvme_create_io_queues(struct nvme_dev *dev)
2338 {
2339 	unsigned i;
2340 
2341 	for (i = dev->queue_count; i <= dev->max_qid; i++)
2342 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
2343 			break;
2344 
2345 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2346 		if (nvme_create_queue(dev->queues[i], i)) {
2347 			nvme_free_queues(dev, i);
2348 			break;
2349 		}
2350 }
2351 
2352 static int set_queue_count(struct nvme_dev *dev, int count)
2353 {
2354 	int status;
2355 	u32 result;
2356 	u32 q_count = (count - 1) | ((count - 1) << 16);
2357 
2358 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2359 								&result);
2360 	if (status < 0)
2361 		return status;
2362 	if (status > 0) {
2363 		dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2364 		return 0;
2365 	}
2366 	return min(result & 0xffff, result >> 16) + 1;
2367 }
2368 
2369 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2370 {
2371 	u64 szu, size, offset;
2372 	u32 cmbloc;
2373 	resource_size_t bar_size;
2374 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2375 	void __iomem *cmb;
2376 	dma_addr_t dma_addr;
2377 
2378 	if (!use_cmb_sqes)
2379 		return NULL;
2380 
2381 	dev->cmbsz = readl(&dev->bar->cmbsz);
2382 	if (!(NVME_CMB_SZ(dev->cmbsz)))
2383 		return NULL;
2384 
2385 	cmbloc = readl(&dev->bar->cmbloc);
2386 
2387 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2388 	size = szu * NVME_CMB_SZ(dev->cmbsz);
2389 	offset = szu * NVME_CMB_OFST(cmbloc);
2390 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2391 
2392 	if (offset > bar_size)
2393 		return NULL;
2394 
2395 	/*
2396 	 * Controllers may support a CMB size larger than their BAR,
2397 	 * for example, due to being behind a bridge. Reduce the CMB to
2398 	 * the reported size of the BAR
2399 	 */
2400 	if (size > bar_size - offset)
2401 		size = bar_size - offset;
2402 
2403 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2404 	cmb = ioremap_wc(dma_addr, size);
2405 	if (!cmb)
2406 		return NULL;
2407 
2408 	dev->cmb_dma_addr = dma_addr;
2409 	dev->cmb_size = size;
2410 	return cmb;
2411 }
2412 
2413 static inline void nvme_release_cmb(struct nvme_dev *dev)
2414 {
2415 	if (dev->cmb) {
2416 		iounmap(dev->cmb);
2417 		dev->cmb = NULL;
2418 	}
2419 }
2420 
2421 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2422 {
2423 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2424 }
2425 
2426 static int nvme_setup_io_queues(struct nvme_dev *dev)
2427 {
2428 	struct nvme_queue *adminq = dev->queues[0];
2429 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2430 	int result, i, vecs, nr_io_queues, size;
2431 
2432 	nr_io_queues = num_possible_cpus();
2433 	result = set_queue_count(dev, nr_io_queues);
2434 	if (result <= 0)
2435 		return result;
2436 	if (result < nr_io_queues)
2437 		nr_io_queues = result;
2438 
2439 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2440 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2441 				sizeof(struct nvme_command));
2442 		if (result > 0)
2443 			dev->q_depth = result;
2444 		else
2445 			nvme_release_cmb(dev);
2446 	}
2447 
2448 	size = db_bar_size(dev, nr_io_queues);
2449 	if (size > 8192) {
2450 		iounmap(dev->bar);
2451 		do {
2452 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2453 			if (dev->bar)
2454 				break;
2455 			if (!--nr_io_queues)
2456 				return -ENOMEM;
2457 			size = db_bar_size(dev, nr_io_queues);
2458 		} while (1);
2459 		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2460 		adminq->q_db = dev->dbs;
2461 	}
2462 
2463 	/* Deregister the admin queue's interrupt */
2464 	free_irq(dev->entry[0].vector, adminq);
2465 
2466 	/*
2467 	 * If we enable msix early due to not intx, disable it again before
2468 	 * setting up the full range we need.
2469 	 */
2470 	if (!pdev->irq)
2471 		pci_disable_msix(pdev);
2472 
2473 	for (i = 0; i < nr_io_queues; i++)
2474 		dev->entry[i].entry = i;
2475 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2476 	if (vecs < 0) {
2477 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2478 		if (vecs < 0) {
2479 			vecs = 1;
2480 		} else {
2481 			for (i = 0; i < vecs; i++)
2482 				dev->entry[i].vector = i + pdev->irq;
2483 		}
2484 	}
2485 
2486 	/*
2487 	 * Should investigate if there's a performance win from allocating
2488 	 * more queues than interrupt vectors; it might allow the submission
2489 	 * path to scale better, even if the receive path is limited by the
2490 	 * number of interrupts.
2491 	 */
2492 	nr_io_queues = vecs;
2493 	dev->max_qid = nr_io_queues;
2494 
2495 	result = queue_request_irq(dev, adminq, adminq->irqname);
2496 	if (result) {
2497 		adminq->cq_vector = -1;
2498 		goto free_queues;
2499 	}
2500 
2501 	/* Free previously allocated queues that are no longer usable */
2502 	nvme_free_queues(dev, nr_io_queues + 1);
2503 	nvme_create_io_queues(dev);
2504 
2505 	return 0;
2506 
2507  free_queues:
2508 	nvme_free_queues(dev, 1);
2509 	return result;
2510 }
2511 
2512 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2513 {
2514 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2515 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2516 
2517 	return nsa->ns_id - nsb->ns_id;
2518 }
2519 
2520 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2521 {
2522 	struct nvme_ns *ns;
2523 
2524 	list_for_each_entry(ns, &dev->namespaces, list) {
2525 		if (ns->ns_id == nsid)
2526 			return ns;
2527 		if (ns->ns_id > nsid)
2528 			break;
2529 	}
2530 	return NULL;
2531 }
2532 
2533 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2534 {
2535 	return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2536 							dev->online_queues < 2);
2537 }
2538 
2539 static void nvme_ns_remove(struct nvme_ns *ns)
2540 {
2541 	bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2542 
2543 	if (kill)
2544 		blk_set_queue_dying(ns->queue);
2545 	if (ns->disk->flags & GENHD_FL_UP)
2546 		del_gendisk(ns->disk);
2547 	if (kill || !blk_queue_dying(ns->queue)) {
2548 		blk_mq_abort_requeue_list(ns->queue);
2549 		blk_cleanup_queue(ns->queue);
2550 	}
2551 	list_del_init(&ns->list);
2552 	kref_put(&ns->kref, nvme_free_ns);
2553 }
2554 
2555 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2556 {
2557 	struct nvme_ns *ns, *next;
2558 	unsigned i;
2559 
2560 	for (i = 1; i <= nn; i++) {
2561 		ns = nvme_find_ns(dev, i);
2562 		if (ns) {
2563 			if (revalidate_disk(ns->disk))
2564 				nvme_ns_remove(ns);
2565 		} else
2566 			nvme_alloc_ns(dev, i);
2567 	}
2568 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2569 		if (ns->ns_id > nn)
2570 			nvme_ns_remove(ns);
2571 	}
2572 	list_sort(NULL, &dev->namespaces, ns_cmp);
2573 }
2574 
2575 static void nvme_set_irq_hints(struct nvme_dev *dev)
2576 {
2577 	struct nvme_queue *nvmeq;
2578 	int i;
2579 
2580 	for (i = 0; i < dev->online_queues; i++) {
2581 		nvmeq = dev->queues[i];
2582 
2583 		if (!nvmeq->tags || !(*nvmeq->tags))
2584 			continue;
2585 
2586 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2587 					blk_mq_tags_cpumask(*nvmeq->tags));
2588 	}
2589 }
2590 
2591 static void nvme_dev_scan(struct work_struct *work)
2592 {
2593 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2594 	struct nvme_id_ctrl *ctrl;
2595 
2596 	if (!dev->tagset.tags)
2597 		return;
2598 	if (nvme_identify_ctrl(dev, &ctrl))
2599 		return;
2600 	nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2601 	kfree(ctrl);
2602 	nvme_set_irq_hints(dev);
2603 }
2604 
2605 /*
2606  * Return: error value if an error occurred setting up the queues or calling
2607  * Identify Device.  0 if these succeeded, even if adding some of the
2608  * namespaces failed.  At the moment, these failures are silent.  TBD which
2609  * failures should be reported.
2610  */
2611 static int nvme_dev_add(struct nvme_dev *dev)
2612 {
2613 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2614 	int res;
2615 	struct nvme_id_ctrl *ctrl;
2616 	int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12;
2617 
2618 	res = nvme_identify_ctrl(dev, &ctrl);
2619 	if (res) {
2620 		dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2621 		return -EIO;
2622 	}
2623 
2624 	dev->oncs = le16_to_cpup(&ctrl->oncs);
2625 	dev->abort_limit = ctrl->acl + 1;
2626 	dev->vwc = ctrl->vwc;
2627 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2628 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2629 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2630 	if (ctrl->mdts)
2631 		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2632 	else
2633 		dev->max_hw_sectors = UINT_MAX;
2634 	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2635 			(pdev->device == 0x0953) && ctrl->vs[3]) {
2636 		unsigned int max_hw_sectors;
2637 
2638 		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2639 		max_hw_sectors = dev->stripe_size >> (shift - 9);
2640 		if (dev->max_hw_sectors) {
2641 			dev->max_hw_sectors = min(max_hw_sectors,
2642 							dev->max_hw_sectors);
2643 		} else
2644 			dev->max_hw_sectors = max_hw_sectors;
2645 	}
2646 	kfree(ctrl);
2647 
2648 	if (!dev->tagset.tags) {
2649 		dev->tagset.ops = &nvme_mq_ops;
2650 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2651 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2652 		dev->tagset.numa_node = dev_to_node(dev->dev);
2653 		dev->tagset.queue_depth =
2654 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2655 		dev->tagset.cmd_size = nvme_cmd_size(dev);
2656 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2657 		dev->tagset.driver_data = dev;
2658 
2659 		if (blk_mq_alloc_tag_set(&dev->tagset))
2660 			return 0;
2661 	}
2662 	schedule_work(&dev->scan_work);
2663 	return 0;
2664 }
2665 
2666 static int nvme_dev_map(struct nvme_dev *dev)
2667 {
2668 	u64 cap;
2669 	int bars, result = -ENOMEM;
2670 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2671 
2672 	if (pci_enable_device_mem(pdev))
2673 		return result;
2674 
2675 	dev->entry[0].vector = pdev->irq;
2676 	pci_set_master(pdev);
2677 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2678 	if (!bars)
2679 		goto disable_pci;
2680 
2681 	if (pci_request_selected_regions(pdev, bars, "nvme"))
2682 		goto disable_pci;
2683 
2684 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2685 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2686 		goto disable;
2687 
2688 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2689 	if (!dev->bar)
2690 		goto disable;
2691 
2692 	if (readl(&dev->bar->csts) == -1) {
2693 		result = -ENODEV;
2694 		goto unmap;
2695 	}
2696 
2697 	/*
2698 	 * Some devices don't advertse INTx interrupts, pre-enable a single
2699 	 * MSIX vec for setup. We'll adjust this later.
2700 	 */
2701 	if (!pdev->irq) {
2702 		result = pci_enable_msix(pdev, dev->entry, 1);
2703 		if (result < 0)
2704 			goto unmap;
2705 	}
2706 
2707 	cap = lo_hi_readq(&dev->bar->cap);
2708 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2709 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2710 	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2711 
2712 	/*
2713 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2714 	 * some MacBook7,1 to avoid controller resets and data loss.
2715 	 */
2716 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2717 		dev->q_depth = 2;
2718 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
2719 			"queue depth=%u to work around controller resets\n",
2720 			dev->q_depth);
2721 	}
2722 
2723 	if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2724 		dev->cmb = nvme_map_cmb(dev);
2725 
2726 	return 0;
2727 
2728  unmap:
2729 	iounmap(dev->bar);
2730 	dev->bar = NULL;
2731  disable:
2732 	pci_release_regions(pdev);
2733  disable_pci:
2734 	pci_disable_device(pdev);
2735 	return result;
2736 }
2737 
2738 static void nvme_dev_unmap(struct nvme_dev *dev)
2739 {
2740 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2741 
2742 	if (pdev->msi_enabled)
2743 		pci_disable_msi(pdev);
2744 	else if (pdev->msix_enabled)
2745 		pci_disable_msix(pdev);
2746 
2747 	if (dev->bar) {
2748 		iounmap(dev->bar);
2749 		dev->bar = NULL;
2750 		pci_release_regions(pdev);
2751 	}
2752 
2753 	if (pci_is_enabled(pdev))
2754 		pci_disable_device(pdev);
2755 }
2756 
2757 struct nvme_delq_ctx {
2758 	struct task_struct *waiter;
2759 	struct kthread_worker *worker;
2760 	atomic_t refcount;
2761 };
2762 
2763 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2764 {
2765 	dq->waiter = current;
2766 	mb();
2767 
2768 	for (;;) {
2769 		set_current_state(TASK_KILLABLE);
2770 		if (!atomic_read(&dq->refcount))
2771 			break;
2772 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2773 					fatal_signal_pending(current)) {
2774 			/*
2775 			 * Disable the controller first since we can't trust it
2776 			 * at this point, but leave the admin queue enabled
2777 			 * until all queue deletion requests are flushed.
2778 			 * FIXME: This may take a while if there are more h/w
2779 			 * queues than admin tags.
2780 			 */
2781 			set_current_state(TASK_RUNNING);
2782 			nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap));
2783 			nvme_clear_queue(dev->queues[0]);
2784 			flush_kthread_worker(dq->worker);
2785 			nvme_disable_queue(dev, 0);
2786 			return;
2787 		}
2788 	}
2789 	set_current_state(TASK_RUNNING);
2790 }
2791 
2792 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2793 {
2794 	atomic_dec(&dq->refcount);
2795 	if (dq->waiter)
2796 		wake_up_process(dq->waiter);
2797 }
2798 
2799 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2800 {
2801 	atomic_inc(&dq->refcount);
2802 	return dq;
2803 }
2804 
2805 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2806 {
2807 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2808 	nvme_put_dq(dq);
2809 
2810 	spin_lock_irq(&nvmeq->q_lock);
2811 	nvme_process_cq(nvmeq);
2812 	spin_unlock_irq(&nvmeq->q_lock);
2813 }
2814 
2815 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2816 						kthread_work_func_t fn)
2817 {
2818 	struct nvme_command c;
2819 
2820 	memset(&c, 0, sizeof(c));
2821 	c.delete_queue.opcode = opcode;
2822 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2823 
2824 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2825 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2826 								ADMIN_TIMEOUT);
2827 }
2828 
2829 static void nvme_del_cq_work_handler(struct kthread_work *work)
2830 {
2831 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2832 							cmdinfo.work);
2833 	nvme_del_queue_end(nvmeq);
2834 }
2835 
2836 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2837 {
2838 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2839 						nvme_del_cq_work_handler);
2840 }
2841 
2842 static void nvme_del_sq_work_handler(struct kthread_work *work)
2843 {
2844 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2845 							cmdinfo.work);
2846 	int status = nvmeq->cmdinfo.status;
2847 
2848 	if (!status)
2849 		status = nvme_delete_cq(nvmeq);
2850 	if (status)
2851 		nvme_del_queue_end(nvmeq);
2852 }
2853 
2854 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2855 {
2856 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2857 						nvme_del_sq_work_handler);
2858 }
2859 
2860 static void nvme_del_queue_start(struct kthread_work *work)
2861 {
2862 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2863 							cmdinfo.work);
2864 	if (nvme_delete_sq(nvmeq))
2865 		nvme_del_queue_end(nvmeq);
2866 }
2867 
2868 static void nvme_disable_io_queues(struct nvme_dev *dev)
2869 {
2870 	int i;
2871 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2872 	struct nvme_delq_ctx dq;
2873 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2874 					&worker, "nvme%d", dev->instance);
2875 
2876 	if (IS_ERR(kworker_task)) {
2877 		dev_err(dev->dev,
2878 			"Failed to create queue del task\n");
2879 		for (i = dev->queue_count - 1; i > 0; i--)
2880 			nvme_disable_queue(dev, i);
2881 		return;
2882 	}
2883 
2884 	dq.waiter = NULL;
2885 	atomic_set(&dq.refcount, 0);
2886 	dq.worker = &worker;
2887 	for (i = dev->queue_count - 1; i > 0; i--) {
2888 		struct nvme_queue *nvmeq = dev->queues[i];
2889 
2890 		if (nvme_suspend_queue(nvmeq))
2891 			continue;
2892 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2893 		nvmeq->cmdinfo.worker = dq.worker;
2894 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2895 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2896 	}
2897 	nvme_wait_dq(&dq, dev);
2898 	kthread_stop(kworker_task);
2899 }
2900 
2901 /*
2902 * Remove the node from the device list and check
2903 * for whether or not we need to stop the nvme_thread.
2904 */
2905 static void nvme_dev_list_remove(struct nvme_dev *dev)
2906 {
2907 	struct task_struct *tmp = NULL;
2908 
2909 	spin_lock(&dev_list_lock);
2910 	list_del_init(&dev->node);
2911 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2912 		tmp = nvme_thread;
2913 		nvme_thread = NULL;
2914 	}
2915 	spin_unlock(&dev_list_lock);
2916 
2917 	if (tmp)
2918 		kthread_stop(tmp);
2919 }
2920 
2921 static void nvme_freeze_queues(struct nvme_dev *dev)
2922 {
2923 	struct nvme_ns *ns;
2924 
2925 	list_for_each_entry(ns, &dev->namespaces, list) {
2926 		blk_mq_freeze_queue_start(ns->queue);
2927 
2928 		spin_lock_irq(ns->queue->queue_lock);
2929 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2930 		spin_unlock_irq(ns->queue->queue_lock);
2931 
2932 		blk_mq_cancel_requeue_work(ns->queue);
2933 		blk_mq_stop_hw_queues(ns->queue);
2934 	}
2935 }
2936 
2937 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2938 {
2939 	struct nvme_ns *ns;
2940 
2941 	list_for_each_entry(ns, &dev->namespaces, list) {
2942 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2943 		blk_mq_unfreeze_queue(ns->queue);
2944 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2945 		blk_mq_kick_requeue_list(ns->queue);
2946 	}
2947 }
2948 
2949 static void nvme_dev_shutdown(struct nvme_dev *dev)
2950 {
2951 	int i;
2952 	u32 csts = -1;
2953 
2954 	nvme_dev_list_remove(dev);
2955 
2956 	if (dev->bar) {
2957 		nvme_freeze_queues(dev);
2958 		csts = readl(&dev->bar->csts);
2959 	}
2960 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2961 		for (i = dev->queue_count - 1; i >= 0; i--) {
2962 			struct nvme_queue *nvmeq = dev->queues[i];
2963 			nvme_suspend_queue(nvmeq);
2964 		}
2965 	} else {
2966 		nvme_disable_io_queues(dev);
2967 		nvme_shutdown_ctrl(dev);
2968 		nvme_disable_queue(dev, 0);
2969 	}
2970 	nvme_dev_unmap(dev);
2971 
2972 	for (i = dev->queue_count - 1; i >= 0; i--)
2973 		nvme_clear_queue(dev->queues[i]);
2974 }
2975 
2976 static void nvme_dev_remove(struct nvme_dev *dev)
2977 {
2978 	struct nvme_ns *ns, *next;
2979 
2980 	list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2981 		nvme_ns_remove(ns);
2982 }
2983 
2984 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2985 {
2986 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2987 						PAGE_SIZE, PAGE_SIZE, 0);
2988 	if (!dev->prp_page_pool)
2989 		return -ENOMEM;
2990 
2991 	/* Optimisation for I/Os between 4k and 128k */
2992 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2993 						256, 256, 0);
2994 	if (!dev->prp_small_pool) {
2995 		dma_pool_destroy(dev->prp_page_pool);
2996 		return -ENOMEM;
2997 	}
2998 	return 0;
2999 }
3000 
3001 static void nvme_release_prp_pools(struct nvme_dev *dev)
3002 {
3003 	dma_pool_destroy(dev->prp_page_pool);
3004 	dma_pool_destroy(dev->prp_small_pool);
3005 }
3006 
3007 static DEFINE_IDA(nvme_instance_ida);
3008 
3009 static int nvme_set_instance(struct nvme_dev *dev)
3010 {
3011 	int instance, error;
3012 
3013 	do {
3014 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
3015 			return -ENODEV;
3016 
3017 		spin_lock(&dev_list_lock);
3018 		error = ida_get_new(&nvme_instance_ida, &instance);
3019 		spin_unlock(&dev_list_lock);
3020 	} while (error == -EAGAIN);
3021 
3022 	if (error)
3023 		return -ENODEV;
3024 
3025 	dev->instance = instance;
3026 	return 0;
3027 }
3028 
3029 static void nvme_release_instance(struct nvme_dev *dev)
3030 {
3031 	spin_lock(&dev_list_lock);
3032 	ida_remove(&nvme_instance_ida, dev->instance);
3033 	spin_unlock(&dev_list_lock);
3034 }
3035 
3036 static void nvme_free_dev(struct kref *kref)
3037 {
3038 	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
3039 
3040 	put_device(dev->dev);
3041 	put_device(dev->device);
3042 	nvme_release_instance(dev);
3043 	if (dev->tagset.tags)
3044 		blk_mq_free_tag_set(&dev->tagset);
3045 	if (dev->admin_q)
3046 		blk_put_queue(dev->admin_q);
3047 	kfree(dev->queues);
3048 	kfree(dev->entry);
3049 	kfree(dev);
3050 }
3051 
3052 static int nvme_dev_open(struct inode *inode, struct file *f)
3053 {
3054 	struct nvme_dev *dev;
3055 	int instance = iminor(inode);
3056 	int ret = -ENODEV;
3057 
3058 	spin_lock(&dev_list_lock);
3059 	list_for_each_entry(dev, &dev_list, node) {
3060 		if (dev->instance == instance) {
3061 			if (!dev->admin_q) {
3062 				ret = -EWOULDBLOCK;
3063 				break;
3064 			}
3065 			if (!kref_get_unless_zero(&dev->kref))
3066 				break;
3067 			f->private_data = dev;
3068 			ret = 0;
3069 			break;
3070 		}
3071 	}
3072 	spin_unlock(&dev_list_lock);
3073 
3074 	return ret;
3075 }
3076 
3077 static int nvme_dev_release(struct inode *inode, struct file *f)
3078 {
3079 	struct nvme_dev *dev = f->private_data;
3080 	kref_put(&dev->kref, nvme_free_dev);
3081 	return 0;
3082 }
3083 
3084 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3085 {
3086 	struct nvme_dev *dev = f->private_data;
3087 	struct nvme_ns *ns;
3088 
3089 	switch (cmd) {
3090 	case NVME_IOCTL_ADMIN_CMD:
3091 		return nvme_user_cmd(dev, NULL, (void __user *)arg);
3092 	case NVME_IOCTL_IO_CMD:
3093 		if (list_empty(&dev->namespaces))
3094 			return -ENOTTY;
3095 		ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
3096 		return nvme_user_cmd(dev, ns, (void __user *)arg);
3097 	case NVME_IOCTL_RESET:
3098 		dev_warn(dev->dev, "resetting controller\n");
3099 		return nvme_reset(dev);
3100 	case NVME_IOCTL_SUBSYS_RESET:
3101 		return nvme_subsys_reset(dev);
3102 	default:
3103 		return -ENOTTY;
3104 	}
3105 }
3106 
3107 static const struct file_operations nvme_dev_fops = {
3108 	.owner		= THIS_MODULE,
3109 	.open		= nvme_dev_open,
3110 	.release	= nvme_dev_release,
3111 	.unlocked_ioctl	= nvme_dev_ioctl,
3112 	.compat_ioctl	= nvme_dev_ioctl,
3113 };
3114 
3115 static void nvme_probe_work(struct work_struct *work)
3116 {
3117 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3118 	bool start_thread = false;
3119 	int result;
3120 
3121 	result = nvme_dev_map(dev);
3122 	if (result)
3123 		goto out;
3124 
3125 	result = nvme_configure_admin_queue(dev);
3126 	if (result)
3127 		goto unmap;
3128 
3129 	spin_lock(&dev_list_lock);
3130 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3131 		start_thread = true;
3132 		nvme_thread = NULL;
3133 	}
3134 	list_add(&dev->node, &dev_list);
3135 	spin_unlock(&dev_list_lock);
3136 
3137 	if (start_thread) {
3138 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
3139 		wake_up_all(&nvme_kthread_wait);
3140 	} else
3141 		wait_event_killable(nvme_kthread_wait, nvme_thread);
3142 
3143 	if (IS_ERR_OR_NULL(nvme_thread)) {
3144 		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3145 		goto disable;
3146 	}
3147 
3148 	nvme_init_queue(dev->queues[0], 0);
3149 	result = nvme_alloc_admin_tags(dev);
3150 	if (result)
3151 		goto disable;
3152 
3153 	result = nvme_setup_io_queues(dev);
3154 	if (result)
3155 		goto free_tags;
3156 
3157 	dev->event_limit = 1;
3158 
3159 	/*
3160 	 * Keep the controller around but remove all namespaces if we don't have
3161 	 * any working I/O queue.
3162 	 */
3163 	if (dev->online_queues < 2) {
3164 		dev_warn(dev->dev, "IO queues not created\n");
3165 		nvme_dev_remove(dev);
3166 	} else {
3167 		nvme_unfreeze_queues(dev);
3168 		nvme_dev_add(dev);
3169 	}
3170 
3171 	return;
3172 
3173  free_tags:
3174 	nvme_dev_remove_admin(dev);
3175 	blk_put_queue(dev->admin_q);
3176 	dev->admin_q = NULL;
3177 	dev->queues[0]->tags = NULL;
3178  disable:
3179 	nvme_disable_queue(dev, 0);
3180 	nvme_dev_list_remove(dev);
3181  unmap:
3182 	nvme_dev_unmap(dev);
3183  out:
3184 	if (!work_busy(&dev->reset_work))
3185 		nvme_dead_ctrl(dev);
3186 }
3187 
3188 static int nvme_remove_dead_ctrl(void *arg)
3189 {
3190 	struct nvme_dev *dev = (struct nvme_dev *)arg;
3191 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3192 
3193 	if (pci_get_drvdata(pdev))
3194 		pci_stop_and_remove_bus_device_locked(pdev);
3195 	kref_put(&dev->kref, nvme_free_dev);
3196 	return 0;
3197 }
3198 
3199 static void nvme_dead_ctrl(struct nvme_dev *dev)
3200 {
3201 	dev_warn(dev->dev, "Device failed to resume\n");
3202 	kref_get(&dev->kref);
3203 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3204 						dev->instance))) {
3205 		dev_err(dev->dev,
3206 			"Failed to start controller remove task\n");
3207 		kref_put(&dev->kref, nvme_free_dev);
3208 	}
3209 }
3210 
3211 static void nvme_reset_work(struct work_struct *ws)
3212 {
3213 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3214 	bool in_probe = work_busy(&dev->probe_work);
3215 
3216 	nvme_dev_shutdown(dev);
3217 
3218 	/* Synchronize with device probe so that work will see failure status
3219 	 * and exit gracefully without trying to schedule another reset */
3220 	flush_work(&dev->probe_work);
3221 
3222 	/* Fail this device if reset occured during probe to avoid
3223 	 * infinite initialization loops. */
3224 	if (in_probe) {
3225 		nvme_dead_ctrl(dev);
3226 		return;
3227 	}
3228 	/* Schedule device resume asynchronously so the reset work is available
3229 	 * to cleanup errors that may occur during reinitialization */
3230 	schedule_work(&dev->probe_work);
3231 }
3232 
3233 static int __nvme_reset(struct nvme_dev *dev)
3234 {
3235 	if (work_pending(&dev->reset_work))
3236 		return -EBUSY;
3237 	list_del_init(&dev->node);
3238 	queue_work(nvme_workq, &dev->reset_work);
3239 	return 0;
3240 }
3241 
3242 static int nvme_reset(struct nvme_dev *dev)
3243 {
3244 	int ret;
3245 
3246 	if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3247 		return -ENODEV;
3248 
3249 	spin_lock(&dev_list_lock);
3250 	ret = __nvme_reset(dev);
3251 	spin_unlock(&dev_list_lock);
3252 
3253 	if (!ret) {
3254 		flush_work(&dev->reset_work);
3255 		flush_work(&dev->probe_work);
3256 		return 0;
3257 	}
3258 
3259 	return ret;
3260 }
3261 
3262 static ssize_t nvme_sysfs_reset(struct device *dev,
3263 				struct device_attribute *attr, const char *buf,
3264 				size_t count)
3265 {
3266 	struct nvme_dev *ndev = dev_get_drvdata(dev);
3267 	int ret;
3268 
3269 	ret = nvme_reset(ndev);
3270 	if (ret < 0)
3271 		return ret;
3272 
3273 	return count;
3274 }
3275 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3276 
3277 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3278 {
3279 	int node, result = -ENOMEM;
3280 	struct nvme_dev *dev;
3281 
3282 	node = dev_to_node(&pdev->dev);
3283 	if (node == NUMA_NO_NODE)
3284 		set_dev_node(&pdev->dev, 0);
3285 
3286 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3287 	if (!dev)
3288 		return -ENOMEM;
3289 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3290 							GFP_KERNEL, node);
3291 	if (!dev->entry)
3292 		goto free;
3293 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3294 							GFP_KERNEL, node);
3295 	if (!dev->queues)
3296 		goto free;
3297 
3298 	INIT_LIST_HEAD(&dev->namespaces);
3299 	INIT_WORK(&dev->reset_work, nvme_reset_work);
3300 	dev->dev = get_device(&pdev->dev);
3301 	pci_set_drvdata(pdev, dev);
3302 	result = nvme_set_instance(dev);
3303 	if (result)
3304 		goto put_pci;
3305 
3306 	result = nvme_setup_prp_pools(dev);
3307 	if (result)
3308 		goto release;
3309 
3310 	kref_init(&dev->kref);
3311 	dev->device = device_create(nvme_class, &pdev->dev,
3312 				MKDEV(nvme_char_major, dev->instance),
3313 				dev, "nvme%d", dev->instance);
3314 	if (IS_ERR(dev->device)) {
3315 		result = PTR_ERR(dev->device);
3316 		goto release_pools;
3317 	}
3318 	get_device(dev->device);
3319 	dev_set_drvdata(dev->device, dev);
3320 
3321 	result = device_create_file(dev->device, &dev_attr_reset_controller);
3322 	if (result)
3323 		goto put_dev;
3324 
3325 	INIT_LIST_HEAD(&dev->node);
3326 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
3327 	INIT_WORK(&dev->probe_work, nvme_probe_work);
3328 	schedule_work(&dev->probe_work);
3329 	return 0;
3330 
3331  put_dev:
3332 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3333 	put_device(dev->device);
3334  release_pools:
3335 	nvme_release_prp_pools(dev);
3336  release:
3337 	nvme_release_instance(dev);
3338  put_pci:
3339 	put_device(dev->dev);
3340  free:
3341 	kfree(dev->queues);
3342 	kfree(dev->entry);
3343 	kfree(dev);
3344 	return result;
3345 }
3346 
3347 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3348 {
3349 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3350 
3351 	if (prepare)
3352 		nvme_dev_shutdown(dev);
3353 	else
3354 		schedule_work(&dev->probe_work);
3355 }
3356 
3357 static void nvme_shutdown(struct pci_dev *pdev)
3358 {
3359 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3360 	nvme_dev_shutdown(dev);
3361 }
3362 
3363 static void nvme_remove(struct pci_dev *pdev)
3364 {
3365 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3366 
3367 	spin_lock(&dev_list_lock);
3368 	list_del_init(&dev->node);
3369 	spin_unlock(&dev_list_lock);
3370 
3371 	pci_set_drvdata(pdev, NULL);
3372 	flush_work(&dev->probe_work);
3373 	flush_work(&dev->reset_work);
3374 	flush_work(&dev->scan_work);
3375 	device_remove_file(dev->device, &dev_attr_reset_controller);
3376 	nvme_dev_remove(dev);
3377 	nvme_dev_shutdown(dev);
3378 	nvme_dev_remove_admin(dev);
3379 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3380 	nvme_free_queues(dev, 0);
3381 	nvme_release_cmb(dev);
3382 	nvme_release_prp_pools(dev);
3383 	kref_put(&dev->kref, nvme_free_dev);
3384 }
3385 
3386 /* These functions are yet to be implemented */
3387 #define nvme_error_detected NULL
3388 #define nvme_dump_registers NULL
3389 #define nvme_link_reset NULL
3390 #define nvme_slot_reset NULL
3391 #define nvme_error_resume NULL
3392 
3393 #ifdef CONFIG_PM_SLEEP
3394 static int nvme_suspend(struct device *dev)
3395 {
3396 	struct pci_dev *pdev = to_pci_dev(dev);
3397 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3398 
3399 	nvme_dev_shutdown(ndev);
3400 	return 0;
3401 }
3402 
3403 static int nvme_resume(struct device *dev)
3404 {
3405 	struct pci_dev *pdev = to_pci_dev(dev);
3406 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3407 
3408 	schedule_work(&ndev->probe_work);
3409 	return 0;
3410 }
3411 #endif
3412 
3413 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3414 
3415 static const struct pci_error_handlers nvme_err_handler = {
3416 	.error_detected	= nvme_error_detected,
3417 	.mmio_enabled	= nvme_dump_registers,
3418 	.link_reset	= nvme_link_reset,
3419 	.slot_reset	= nvme_slot_reset,
3420 	.resume		= nvme_error_resume,
3421 	.reset_notify	= nvme_reset_notify,
3422 };
3423 
3424 /* Move to pci_ids.h later */
3425 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
3426 
3427 static const struct pci_device_id nvme_id_table[] = {
3428 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3429 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3430 	{ 0, }
3431 };
3432 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3433 
3434 static struct pci_driver nvme_driver = {
3435 	.name		= "nvme",
3436 	.id_table	= nvme_id_table,
3437 	.probe		= nvme_probe,
3438 	.remove		= nvme_remove,
3439 	.shutdown	= nvme_shutdown,
3440 	.driver		= {
3441 		.pm	= &nvme_dev_pm_ops,
3442 	},
3443 	.err_handler	= &nvme_err_handler,
3444 };
3445 
3446 static int __init nvme_init(void)
3447 {
3448 	int result;
3449 
3450 	init_waitqueue_head(&nvme_kthread_wait);
3451 
3452 	nvme_workq = create_singlethread_workqueue("nvme");
3453 	if (!nvme_workq)
3454 		return -ENOMEM;
3455 
3456 	result = register_blkdev(nvme_major, "nvme");
3457 	if (result < 0)
3458 		goto kill_workq;
3459 	else if (result > 0)
3460 		nvme_major = result;
3461 
3462 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3463 							&nvme_dev_fops);
3464 	if (result < 0)
3465 		goto unregister_blkdev;
3466 	else if (result > 0)
3467 		nvme_char_major = result;
3468 
3469 	nvme_class = class_create(THIS_MODULE, "nvme");
3470 	if (IS_ERR(nvme_class)) {
3471 		result = PTR_ERR(nvme_class);
3472 		goto unregister_chrdev;
3473 	}
3474 
3475 	result = pci_register_driver(&nvme_driver);
3476 	if (result)
3477 		goto destroy_class;
3478 	return 0;
3479 
3480  destroy_class:
3481 	class_destroy(nvme_class);
3482  unregister_chrdev:
3483 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3484  unregister_blkdev:
3485 	unregister_blkdev(nvme_major, "nvme");
3486  kill_workq:
3487 	destroy_workqueue(nvme_workq);
3488 	return result;
3489 }
3490 
3491 static void __exit nvme_exit(void)
3492 {
3493 	pci_unregister_driver(&nvme_driver);
3494 	unregister_blkdev(nvme_major, "nvme");
3495 	destroy_workqueue(nvme_workq);
3496 	class_destroy(nvme_class);
3497 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3498 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3499 	_nvme_check_size();
3500 }
3501 
3502 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3503 MODULE_LICENSE("GPL");
3504 MODULE_VERSION("1.0");
3505 module_init(nvme_init);
3506 module_exit(nvme_exit);
3507