xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 0317cd52)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45 
46 #include "nvme.h"
47 
48 #define NVME_Q_DEPTH		1024
49 #define NVME_AQ_DEPTH		256
50 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
52 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
58 
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61 
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65 
66 static struct workqueue_struct *nvme_workq;
67 
68 struct nvme_dev;
69 struct nvme_queue;
70 
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74 
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79 	struct nvme_queue **queues;
80 	struct blk_mq_tag_set tagset;
81 	struct blk_mq_tag_set admin_tagset;
82 	u32 __iomem *dbs;
83 	struct device *dev;
84 	struct dma_pool *prp_page_pool;
85 	struct dma_pool *prp_small_pool;
86 	unsigned queue_count;
87 	unsigned online_queues;
88 	unsigned max_qid;
89 	int q_depth;
90 	u32 db_stride;
91 	struct msix_entry *entry;
92 	void __iomem *bar;
93 	struct work_struct reset_work;
94 	struct work_struct remove_work;
95 	struct timer_list watchdog_timer;
96 	struct mutex shutdown_lock;
97 	bool subsystem;
98 	void __iomem *cmb;
99 	dma_addr_t cmb_dma_addr;
100 	u64 cmb_size;
101 	u32 cmbsz;
102 	struct nvme_ctrl ctrl;
103 	struct completion ioq_wait;
104 };
105 
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 	return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110 
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116 	struct device *q_dmadev;
117 	struct nvme_dev *dev;
118 	char irqname[24];	/* nvme4294967295-65535\0 */
119 	spinlock_t q_lock;
120 	struct nvme_command *sq_cmds;
121 	struct nvme_command __iomem *sq_cmds_io;
122 	volatile struct nvme_completion *cqes;
123 	struct blk_mq_tags **tags;
124 	dma_addr_t sq_dma_addr;
125 	dma_addr_t cq_dma_addr;
126 	u32 __iomem *q_db;
127 	u16 q_depth;
128 	s16 cq_vector;
129 	u16 sq_tail;
130 	u16 cq_head;
131 	u16 qid;
132 	u8 cq_phase;
133 	u8 cqe_seen;
134 };
135 
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143 	struct nvme_queue *nvmeq;
144 	int aborted;
145 	int npages;		/* In the PRP list. 0 means small pool in use */
146 	int nents;		/* Used in scatterlist */
147 	int length;		/* Of data, in bytes */
148 	dma_addr_t first_dma;
149 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 	struct scatterlist *sg;
151 	struct scatterlist inline_sg[0];
152 };
153 
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172 
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES		2
177 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
178 
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 				      dev->ctrl.page_size);
188 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190 
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 		unsigned int size, unsigned int nseg)
193 {
194 	return sizeof(__le64 *) * nvme_npages(size, dev) +
195 			sizeof(struct scatterlist) * nseg;
196 }
197 
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 	return sizeof(struct nvme_iod) +
201 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203 
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 				unsigned int hctx_idx)
206 {
207 	struct nvme_dev *dev = data;
208 	struct nvme_queue *nvmeq = dev->queues[0];
209 
210 	WARN_ON(hctx_idx != 0);
211 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 	WARN_ON(nvmeq->tags);
213 
214 	hctx->driver_data = nvmeq;
215 	nvmeq->tags = &dev->admin_tagset.tags[0];
216 	return 0;
217 }
218 
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221 	struct nvme_queue *nvmeq = hctx->driver_data;
222 
223 	nvmeq->tags = NULL;
224 }
225 
226 static int nvme_admin_init_request(void *data, struct request *req,
227 				unsigned int hctx_idx, unsigned int rq_idx,
228 				unsigned int numa_node)
229 {
230 	struct nvme_dev *dev = data;
231 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 	struct nvme_queue *nvmeq = dev->queues[0];
233 
234 	BUG_ON(!nvmeq);
235 	iod->nvmeq = nvmeq;
236 	return 0;
237 }
238 
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 			  unsigned int hctx_idx)
241 {
242 	struct nvme_dev *dev = data;
243 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244 
245 	if (!nvmeq->tags)
246 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
247 
248 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 	hctx->driver_data = nvmeq;
250 	return 0;
251 }
252 
253 static int nvme_init_request(void *data, struct request *req,
254 				unsigned int hctx_idx, unsigned int rq_idx,
255 				unsigned int numa_node)
256 {
257 	struct nvme_dev *dev = data;
258 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260 
261 	BUG_ON(!nvmeq);
262 	iod->nvmeq = nvmeq;
263 	return 0;
264 }
265 
266 /**
267  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268  * @nvmeq: The queue to use
269  * @cmd: The command to send
270  *
271  * Safe to use from interrupt context
272  */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 						struct nvme_command *cmd)
275 {
276 	u16 tail = nvmeq->sq_tail;
277 
278 	if (nvmeq->sq_cmds_io)
279 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 	else
281 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282 
283 	if (++tail == nvmeq->q_depth)
284 		tail = 0;
285 	writel(tail, nvmeq->q_db);
286 	nvmeq->sq_tail = tail;
287 }
288 
289 static __le64 **iod_list(struct request *req)
290 {
291 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 	return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294 
295 static int nvme_init_iod(struct request *rq, unsigned size,
296 		struct nvme_dev *dev)
297 {
298 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 	int nseg = rq->nr_phys_segments;
300 
301 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 		if (!iod->sg)
304 			return BLK_MQ_RQ_QUEUE_BUSY;
305 	} else {
306 		iod->sg = iod->inline_sg;
307 	}
308 
309 	iod->aborted = 0;
310 	iod->npages = -1;
311 	iod->nents = 0;
312 	iod->length = size;
313 
314 	if (!(rq->cmd_flags & REQ_DONTPREP)) {
315 		rq->retries = 0;
316 		rq->cmd_flags |= REQ_DONTPREP;
317 	}
318 	return 0;
319 }
320 
321 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
322 {
323 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
324 	const int last_prp = dev->ctrl.page_size / 8 - 1;
325 	int i;
326 	__le64 **list = iod_list(req);
327 	dma_addr_t prp_dma = iod->first_dma;
328 
329 	nvme_cleanup_cmd(req);
330 
331 	if (iod->npages == 0)
332 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
333 	for (i = 0; i < iod->npages; i++) {
334 		__le64 *prp_list = list[i];
335 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
336 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
337 		prp_dma = next_prp_dma;
338 	}
339 
340 	if (iod->sg != iod->inline_sg)
341 		kfree(iod->sg);
342 }
343 
344 #ifdef CONFIG_BLK_DEV_INTEGRITY
345 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
346 {
347 	if (be32_to_cpu(pi->ref_tag) == v)
348 		pi->ref_tag = cpu_to_be32(p);
349 }
350 
351 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
352 {
353 	if (be32_to_cpu(pi->ref_tag) == p)
354 		pi->ref_tag = cpu_to_be32(v);
355 }
356 
357 /**
358  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
359  *
360  * The virtual start sector is the one that was originally submitted by the
361  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
362  * start sector may be different. Remap protection information to match the
363  * physical LBA on writes, and back to the original seed on reads.
364  *
365  * Type 0 and 3 do not have a ref tag, so no remapping required.
366  */
367 static void nvme_dif_remap(struct request *req,
368 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
369 {
370 	struct nvme_ns *ns = req->rq_disk->private_data;
371 	struct bio_integrity_payload *bip;
372 	struct t10_pi_tuple *pi;
373 	void *p, *pmap;
374 	u32 i, nlb, ts, phys, virt;
375 
376 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
377 		return;
378 
379 	bip = bio_integrity(req->bio);
380 	if (!bip)
381 		return;
382 
383 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
384 
385 	p = pmap;
386 	virt = bip_get_seed(bip);
387 	phys = nvme_block_nr(ns, blk_rq_pos(req));
388 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
389 	ts = ns->disk->queue->integrity.tuple_size;
390 
391 	for (i = 0; i < nlb; i++, virt++, phys++) {
392 		pi = (struct t10_pi_tuple *)p;
393 		dif_swap(phys, virt, pi);
394 		p += ts;
395 	}
396 	kunmap_atomic(pmap);
397 }
398 #else /* CONFIG_BLK_DEV_INTEGRITY */
399 static void nvme_dif_remap(struct request *req,
400 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
401 {
402 }
403 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
404 {
405 }
406 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
407 {
408 }
409 #endif
410 
411 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
412 		int total_len)
413 {
414 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
415 	struct dma_pool *pool;
416 	int length = total_len;
417 	struct scatterlist *sg = iod->sg;
418 	int dma_len = sg_dma_len(sg);
419 	u64 dma_addr = sg_dma_address(sg);
420 	u32 page_size = dev->ctrl.page_size;
421 	int offset = dma_addr & (page_size - 1);
422 	__le64 *prp_list;
423 	__le64 **list = iod_list(req);
424 	dma_addr_t prp_dma;
425 	int nprps, i;
426 
427 	length -= (page_size - offset);
428 	if (length <= 0)
429 		return true;
430 
431 	dma_len -= (page_size - offset);
432 	if (dma_len) {
433 		dma_addr += (page_size - offset);
434 	} else {
435 		sg = sg_next(sg);
436 		dma_addr = sg_dma_address(sg);
437 		dma_len = sg_dma_len(sg);
438 	}
439 
440 	if (length <= page_size) {
441 		iod->first_dma = dma_addr;
442 		return true;
443 	}
444 
445 	nprps = DIV_ROUND_UP(length, page_size);
446 	if (nprps <= (256 / 8)) {
447 		pool = dev->prp_small_pool;
448 		iod->npages = 0;
449 	} else {
450 		pool = dev->prp_page_pool;
451 		iod->npages = 1;
452 	}
453 
454 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
455 	if (!prp_list) {
456 		iod->first_dma = dma_addr;
457 		iod->npages = -1;
458 		return false;
459 	}
460 	list[0] = prp_list;
461 	iod->first_dma = prp_dma;
462 	i = 0;
463 	for (;;) {
464 		if (i == page_size >> 3) {
465 			__le64 *old_prp_list = prp_list;
466 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 			if (!prp_list)
468 				return false;
469 			list[iod->npages++] = prp_list;
470 			prp_list[0] = old_prp_list[i - 1];
471 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
472 			i = 1;
473 		}
474 		prp_list[i++] = cpu_to_le64(dma_addr);
475 		dma_len -= page_size;
476 		dma_addr += page_size;
477 		length -= page_size;
478 		if (length <= 0)
479 			break;
480 		if (dma_len > 0)
481 			continue;
482 		BUG_ON(dma_len < 0);
483 		sg = sg_next(sg);
484 		dma_addr = sg_dma_address(sg);
485 		dma_len = sg_dma_len(sg);
486 	}
487 
488 	return true;
489 }
490 
491 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
492 		unsigned size, struct nvme_command *cmnd)
493 {
494 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
495 	struct request_queue *q = req->q;
496 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
497 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
498 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
499 
500 	sg_init_table(iod->sg, req->nr_phys_segments);
501 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
502 	if (!iod->nents)
503 		goto out;
504 
505 	ret = BLK_MQ_RQ_QUEUE_BUSY;
506 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
507 		goto out;
508 
509 	if (!nvme_setup_prps(dev, req, size))
510 		goto out_unmap;
511 
512 	ret = BLK_MQ_RQ_QUEUE_ERROR;
513 	if (blk_integrity_rq(req)) {
514 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
515 			goto out_unmap;
516 
517 		sg_init_table(&iod->meta_sg, 1);
518 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
519 			goto out_unmap;
520 
521 		if (rq_data_dir(req))
522 			nvme_dif_remap(req, nvme_dif_prep);
523 
524 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
525 			goto out_unmap;
526 	}
527 
528 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
529 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
530 	if (blk_integrity_rq(req))
531 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
532 	return BLK_MQ_RQ_QUEUE_OK;
533 
534 out_unmap:
535 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
536 out:
537 	return ret;
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
544 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
545 
546 	if (iod->nents) {
547 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 		if (blk_integrity_rq(req)) {
549 			if (!rq_data_dir(req))
550 				nvme_dif_remap(req, nvme_dif_complete);
551 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
552 		}
553 	}
554 
555 	nvme_free_iod(dev, req);
556 }
557 
558 /*
559  * NOTE: ns is NULL when called on the admin queue.
560  */
561 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
562 			 const struct blk_mq_queue_data *bd)
563 {
564 	struct nvme_ns *ns = hctx->queue->queuedata;
565 	struct nvme_queue *nvmeq = hctx->driver_data;
566 	struct nvme_dev *dev = nvmeq->dev;
567 	struct request *req = bd->rq;
568 	struct nvme_command cmnd;
569 	unsigned map_len;
570 	int ret = BLK_MQ_RQ_QUEUE_OK;
571 
572 	/*
573 	 * If formated with metadata, require the block layer provide a buffer
574 	 * unless this namespace is formated such that the metadata can be
575 	 * stripped/generated by the controller with PRACT=1.
576 	 */
577 	if (ns && ns->ms && !blk_integrity_rq(req)) {
578 		if (!(ns->pi_type && ns->ms == 8) &&
579 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
580 			blk_mq_end_request(req, -EFAULT);
581 			return BLK_MQ_RQ_QUEUE_OK;
582 		}
583 	}
584 
585 	map_len = nvme_map_len(req);
586 	ret = nvme_init_iod(req, map_len, dev);
587 	if (ret)
588 		return ret;
589 
590 	ret = nvme_setup_cmd(ns, req, &cmnd);
591 	if (ret)
592 		goto out;
593 
594 	if (req->nr_phys_segments)
595 		ret = nvme_map_data(dev, req, map_len, &cmnd);
596 
597 	if (ret)
598 		goto out;
599 
600 	cmnd.common.command_id = req->tag;
601 	blk_mq_start_request(req);
602 
603 	spin_lock_irq(&nvmeq->q_lock);
604 	if (unlikely(nvmeq->cq_vector < 0)) {
605 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
606 			ret = BLK_MQ_RQ_QUEUE_BUSY;
607 		else
608 			ret = BLK_MQ_RQ_QUEUE_ERROR;
609 		spin_unlock_irq(&nvmeq->q_lock);
610 		goto out;
611 	}
612 	__nvme_submit_cmd(nvmeq, &cmnd);
613 	nvme_process_cq(nvmeq);
614 	spin_unlock_irq(&nvmeq->q_lock);
615 	return BLK_MQ_RQ_QUEUE_OK;
616 out:
617 	nvme_free_iod(dev, req);
618 	return ret;
619 }
620 
621 static void nvme_complete_rq(struct request *req)
622 {
623 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
624 	struct nvme_dev *dev = iod->nvmeq->dev;
625 	int error = 0;
626 
627 	nvme_unmap_data(dev, req);
628 
629 	if (unlikely(req->errors)) {
630 		if (nvme_req_needs_retry(req, req->errors)) {
631 			req->retries++;
632 			nvme_requeue_req(req);
633 			return;
634 		}
635 
636 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
637 			error = req->errors;
638 		else
639 			error = nvme_error_status(req->errors);
640 	}
641 
642 	if (unlikely(iod->aborted)) {
643 		dev_warn(dev->ctrl.device,
644 			"completing aborted command with status: %04x\n",
645 			req->errors);
646 	}
647 
648 	blk_mq_end_request(req, error);
649 }
650 
651 /* We read the CQE phase first to check if the rest of the entry is valid */
652 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
653 		u16 phase)
654 {
655 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
656 }
657 
658 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
659 {
660 	u16 head, phase;
661 
662 	head = nvmeq->cq_head;
663 	phase = nvmeq->cq_phase;
664 
665 	while (nvme_cqe_valid(nvmeq, head, phase)) {
666 		struct nvme_completion cqe = nvmeq->cqes[head];
667 		struct request *req;
668 
669 		if (++head == nvmeq->q_depth) {
670 			head = 0;
671 			phase = !phase;
672 		}
673 
674 		if (tag && *tag == cqe.command_id)
675 			*tag = -1;
676 
677 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
678 			dev_warn(nvmeq->dev->ctrl.device,
679 				"invalid id %d completed on queue %d\n",
680 				cqe.command_id, le16_to_cpu(cqe.sq_id));
681 			continue;
682 		}
683 
684 		/*
685 		 * AEN requests are special as they don't time out and can
686 		 * survive any kind of queue freeze and often don't respond to
687 		 * aborts.  We don't even bother to allocate a struct request
688 		 * for them but rather special case them here.
689 		 */
690 		if (unlikely(nvmeq->qid == 0 &&
691 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
692 			nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
693 			continue;
694 		}
695 
696 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
697 		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
698 			memcpy(req->special, &cqe, sizeof(cqe));
699 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
700 
701 	}
702 
703 	/* If the controller ignores the cq head doorbell and continuously
704 	 * writes to the queue, it is theoretically possible to wrap around
705 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
706 	 * requires that 0.1% of your interrupts are handled, so this isn't
707 	 * a big problem.
708 	 */
709 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
710 		return;
711 
712 	if (likely(nvmeq->cq_vector >= 0))
713 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
714 	nvmeq->cq_head = head;
715 	nvmeq->cq_phase = phase;
716 
717 	nvmeq->cqe_seen = 1;
718 }
719 
720 static void nvme_process_cq(struct nvme_queue *nvmeq)
721 {
722 	__nvme_process_cq(nvmeq, NULL);
723 }
724 
725 static irqreturn_t nvme_irq(int irq, void *data)
726 {
727 	irqreturn_t result;
728 	struct nvme_queue *nvmeq = data;
729 	spin_lock(&nvmeq->q_lock);
730 	nvme_process_cq(nvmeq);
731 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
732 	nvmeq->cqe_seen = 0;
733 	spin_unlock(&nvmeq->q_lock);
734 	return result;
735 }
736 
737 static irqreturn_t nvme_irq_check(int irq, void *data)
738 {
739 	struct nvme_queue *nvmeq = data;
740 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
741 		return IRQ_WAKE_THREAD;
742 	return IRQ_NONE;
743 }
744 
745 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
746 {
747 	struct nvme_queue *nvmeq = hctx->driver_data;
748 
749 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
750 		spin_lock_irq(&nvmeq->q_lock);
751 		__nvme_process_cq(nvmeq, &tag);
752 		spin_unlock_irq(&nvmeq->q_lock);
753 
754 		if (tag == -1)
755 			return 1;
756 	}
757 
758 	return 0;
759 }
760 
761 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
762 {
763 	struct nvme_dev *dev = to_nvme_dev(ctrl);
764 	struct nvme_queue *nvmeq = dev->queues[0];
765 	struct nvme_command c;
766 
767 	memset(&c, 0, sizeof(c));
768 	c.common.opcode = nvme_admin_async_event;
769 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
770 
771 	spin_lock_irq(&nvmeq->q_lock);
772 	__nvme_submit_cmd(nvmeq, &c);
773 	spin_unlock_irq(&nvmeq->q_lock);
774 }
775 
776 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
777 {
778 	struct nvme_command c;
779 
780 	memset(&c, 0, sizeof(c));
781 	c.delete_queue.opcode = opcode;
782 	c.delete_queue.qid = cpu_to_le16(id);
783 
784 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
785 }
786 
787 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
788 						struct nvme_queue *nvmeq)
789 {
790 	struct nvme_command c;
791 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
792 
793 	/*
794 	 * Note: we (ab)use the fact the the prp fields survive if no data
795 	 * is attached to the request.
796 	 */
797 	memset(&c, 0, sizeof(c));
798 	c.create_cq.opcode = nvme_admin_create_cq;
799 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
800 	c.create_cq.cqid = cpu_to_le16(qid);
801 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802 	c.create_cq.cq_flags = cpu_to_le16(flags);
803 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
804 
805 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
806 }
807 
808 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
809 						struct nvme_queue *nvmeq)
810 {
811 	struct nvme_command c;
812 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
813 
814 	/*
815 	 * Note: we (ab)use the fact the the prp fields survive if no data
816 	 * is attached to the request.
817 	 */
818 	memset(&c, 0, sizeof(c));
819 	c.create_sq.opcode = nvme_admin_create_sq;
820 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
821 	c.create_sq.sqid = cpu_to_le16(qid);
822 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
823 	c.create_sq.sq_flags = cpu_to_le16(flags);
824 	c.create_sq.cqid = cpu_to_le16(qid);
825 
826 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
827 }
828 
829 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
830 {
831 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
832 }
833 
834 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
835 {
836 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
837 }
838 
839 static void abort_endio(struct request *req, int error)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	struct nvme_queue *nvmeq = iod->nvmeq;
843 	u16 status = req->errors;
844 
845 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
846 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
847 	blk_mq_free_request(req);
848 }
849 
850 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
851 {
852 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
853 	struct nvme_queue *nvmeq = iod->nvmeq;
854 	struct nvme_dev *dev = nvmeq->dev;
855 	struct request *abort_req;
856 	struct nvme_command cmd;
857 
858 	/*
859 	 * Shutdown immediately if controller times out while starting. The
860 	 * reset work will see the pci device disabled when it gets the forced
861 	 * cancellation error. All outstanding requests are completed on
862 	 * shutdown, so we return BLK_EH_HANDLED.
863 	 */
864 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
865 		dev_warn(dev->ctrl.device,
866 			 "I/O %d QID %d timeout, disable controller\n",
867 			 req->tag, nvmeq->qid);
868 		nvme_dev_disable(dev, false);
869 		req->errors = NVME_SC_CANCELLED;
870 		return BLK_EH_HANDLED;
871 	}
872 
873 	/*
874  	 * Shutdown the controller immediately and schedule a reset if the
875  	 * command was already aborted once before and still hasn't been
876  	 * returned to the driver, or if this is the admin queue.
877 	 */
878 	if (!nvmeq->qid || iod->aborted) {
879 		dev_warn(dev->ctrl.device,
880 			 "I/O %d QID %d timeout, reset controller\n",
881 			 req->tag, nvmeq->qid);
882 		nvme_dev_disable(dev, false);
883 		queue_work(nvme_workq, &dev->reset_work);
884 
885 		/*
886 		 * Mark the request as handled, since the inline shutdown
887 		 * forces all outstanding requests to complete.
888 		 */
889 		req->errors = NVME_SC_CANCELLED;
890 		return BLK_EH_HANDLED;
891 	}
892 
893 	iod->aborted = 1;
894 
895 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
896 		atomic_inc(&dev->ctrl.abort_limit);
897 		return BLK_EH_RESET_TIMER;
898 	}
899 
900 	memset(&cmd, 0, sizeof(cmd));
901 	cmd.abort.opcode = nvme_admin_abort_cmd;
902 	cmd.abort.cid = req->tag;
903 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
904 
905 	dev_warn(nvmeq->dev->ctrl.device,
906 		"I/O %d QID %d timeout, aborting\n",
907 		 req->tag, nvmeq->qid);
908 
909 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
910 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
911 	if (IS_ERR(abort_req)) {
912 		atomic_inc(&dev->ctrl.abort_limit);
913 		return BLK_EH_RESET_TIMER;
914 	}
915 
916 	abort_req->timeout = ADMIN_TIMEOUT;
917 	abort_req->end_io_data = NULL;
918 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
919 
920 	/*
921 	 * The aborted req will be completed on receiving the abort req.
922 	 * We enable the timer again. If hit twice, it'll cause a device reset,
923 	 * as the device then is in a faulty state.
924 	 */
925 	return BLK_EH_RESET_TIMER;
926 }
927 
928 static void nvme_free_queue(struct nvme_queue *nvmeq)
929 {
930 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
931 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
932 	if (nvmeq->sq_cmds)
933 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
934 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
935 	kfree(nvmeq);
936 }
937 
938 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
939 {
940 	int i;
941 
942 	for (i = dev->queue_count - 1; i >= lowest; i--) {
943 		struct nvme_queue *nvmeq = dev->queues[i];
944 		dev->queue_count--;
945 		dev->queues[i] = NULL;
946 		nvme_free_queue(nvmeq);
947 	}
948 }
949 
950 /**
951  * nvme_suspend_queue - put queue into suspended state
952  * @nvmeq - queue to suspend
953  */
954 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
955 {
956 	int vector;
957 
958 	spin_lock_irq(&nvmeq->q_lock);
959 	if (nvmeq->cq_vector == -1) {
960 		spin_unlock_irq(&nvmeq->q_lock);
961 		return 1;
962 	}
963 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
964 	nvmeq->dev->online_queues--;
965 	nvmeq->cq_vector = -1;
966 	spin_unlock_irq(&nvmeq->q_lock);
967 
968 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
969 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
970 
971 	irq_set_affinity_hint(vector, NULL);
972 	free_irq(vector, nvmeq);
973 
974 	return 0;
975 }
976 
977 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
978 {
979 	struct nvme_queue *nvmeq = dev->queues[0];
980 
981 	if (!nvmeq)
982 		return;
983 	if (nvme_suspend_queue(nvmeq))
984 		return;
985 
986 	if (shutdown)
987 		nvme_shutdown_ctrl(&dev->ctrl);
988 	else
989 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
990 						dev->bar + NVME_REG_CAP));
991 
992 	spin_lock_irq(&nvmeq->q_lock);
993 	nvme_process_cq(nvmeq);
994 	spin_unlock_irq(&nvmeq->q_lock);
995 }
996 
997 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
998 				int entry_size)
999 {
1000 	int q_depth = dev->q_depth;
1001 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1002 					  dev->ctrl.page_size);
1003 
1004 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1005 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1006 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1007 		q_depth = div_u64(mem_per_q, entry_size);
1008 
1009 		/*
1010 		 * Ensure the reduced q_depth is above some threshold where it
1011 		 * would be better to map queues in system memory with the
1012 		 * original depth
1013 		 */
1014 		if (q_depth < 64)
1015 			return -ENOMEM;
1016 	}
1017 
1018 	return q_depth;
1019 }
1020 
1021 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1022 				int qid, int depth)
1023 {
1024 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1025 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1026 						      dev->ctrl.page_size);
1027 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1028 		nvmeq->sq_cmds_io = dev->cmb + offset;
1029 	} else {
1030 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1031 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1032 		if (!nvmeq->sq_cmds)
1033 			return -ENOMEM;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1040 							int depth)
1041 {
1042 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1043 	if (!nvmeq)
1044 		return NULL;
1045 
1046 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1047 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1048 	if (!nvmeq->cqes)
1049 		goto free_nvmeq;
1050 
1051 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1052 		goto free_cqdma;
1053 
1054 	nvmeq->q_dmadev = dev->dev;
1055 	nvmeq->dev = dev;
1056 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1057 			dev->ctrl.instance, qid);
1058 	spin_lock_init(&nvmeq->q_lock);
1059 	nvmeq->cq_head = 0;
1060 	nvmeq->cq_phase = 1;
1061 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1062 	nvmeq->q_depth = depth;
1063 	nvmeq->qid = qid;
1064 	nvmeq->cq_vector = -1;
1065 	dev->queues[qid] = nvmeq;
1066 	dev->queue_count++;
1067 
1068 	return nvmeq;
1069 
1070  free_cqdma:
1071 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1072 							nvmeq->cq_dma_addr);
1073  free_nvmeq:
1074 	kfree(nvmeq);
1075 	return NULL;
1076 }
1077 
1078 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1079 							const char *name)
1080 {
1081 	if (use_threaded_interrupts)
1082 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1083 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1084 					name, nvmeq);
1085 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1086 				IRQF_SHARED, name, nvmeq);
1087 }
1088 
1089 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1090 {
1091 	struct nvme_dev *dev = nvmeq->dev;
1092 
1093 	spin_lock_irq(&nvmeq->q_lock);
1094 	nvmeq->sq_tail = 0;
1095 	nvmeq->cq_head = 0;
1096 	nvmeq->cq_phase = 1;
1097 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1098 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1099 	dev->online_queues++;
1100 	spin_unlock_irq(&nvmeq->q_lock);
1101 }
1102 
1103 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1104 {
1105 	struct nvme_dev *dev = nvmeq->dev;
1106 	int result;
1107 
1108 	nvmeq->cq_vector = qid - 1;
1109 	result = adapter_alloc_cq(dev, qid, nvmeq);
1110 	if (result < 0)
1111 		return result;
1112 
1113 	result = adapter_alloc_sq(dev, qid, nvmeq);
1114 	if (result < 0)
1115 		goto release_cq;
1116 
1117 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1118 	if (result < 0)
1119 		goto release_sq;
1120 
1121 	nvme_init_queue(nvmeq, qid);
1122 	return result;
1123 
1124  release_sq:
1125 	adapter_delete_sq(dev, qid);
1126  release_cq:
1127 	adapter_delete_cq(dev, qid);
1128 	return result;
1129 }
1130 
1131 static struct blk_mq_ops nvme_mq_admin_ops = {
1132 	.queue_rq	= nvme_queue_rq,
1133 	.complete	= nvme_complete_rq,
1134 	.map_queue	= blk_mq_map_queue,
1135 	.init_hctx	= nvme_admin_init_hctx,
1136 	.exit_hctx      = nvme_admin_exit_hctx,
1137 	.init_request	= nvme_admin_init_request,
1138 	.timeout	= nvme_timeout,
1139 };
1140 
1141 static struct blk_mq_ops nvme_mq_ops = {
1142 	.queue_rq	= nvme_queue_rq,
1143 	.complete	= nvme_complete_rq,
1144 	.map_queue	= blk_mq_map_queue,
1145 	.init_hctx	= nvme_init_hctx,
1146 	.init_request	= nvme_init_request,
1147 	.timeout	= nvme_timeout,
1148 	.poll		= nvme_poll,
1149 };
1150 
1151 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1152 {
1153 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1154 		/*
1155 		 * If the controller was reset during removal, it's possible
1156 		 * user requests may be waiting on a stopped queue. Start the
1157 		 * queue to flush these to completion.
1158 		 */
1159 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1160 		blk_cleanup_queue(dev->ctrl.admin_q);
1161 		blk_mq_free_tag_set(&dev->admin_tagset);
1162 	}
1163 }
1164 
1165 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1166 {
1167 	if (!dev->ctrl.admin_q) {
1168 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1169 		dev->admin_tagset.nr_hw_queues = 1;
1170 
1171 		/*
1172 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1173 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1174 		 */
1175 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1176 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1177 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1178 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1179 		dev->admin_tagset.driver_data = dev;
1180 
1181 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1182 			return -ENOMEM;
1183 
1184 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1185 		if (IS_ERR(dev->ctrl.admin_q)) {
1186 			blk_mq_free_tag_set(&dev->admin_tagset);
1187 			return -ENOMEM;
1188 		}
1189 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1190 			nvme_dev_remove_admin(dev);
1191 			dev->ctrl.admin_q = NULL;
1192 			return -ENODEV;
1193 		}
1194 	} else
1195 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1196 
1197 	return 0;
1198 }
1199 
1200 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1201 {
1202 	int result;
1203 	u32 aqa;
1204 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1205 	struct nvme_queue *nvmeq;
1206 
1207 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1208 						NVME_CAP_NSSRC(cap) : 0;
1209 
1210 	if (dev->subsystem &&
1211 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1212 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1213 
1214 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1215 	if (result < 0)
1216 		return result;
1217 
1218 	nvmeq = dev->queues[0];
1219 	if (!nvmeq) {
1220 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1221 		if (!nvmeq)
1222 			return -ENOMEM;
1223 	}
1224 
1225 	aqa = nvmeq->q_depth - 1;
1226 	aqa |= aqa << 16;
1227 
1228 	writel(aqa, dev->bar + NVME_REG_AQA);
1229 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1230 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1231 
1232 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1233 	if (result)
1234 		goto free_nvmeq;
1235 
1236 	nvmeq->cq_vector = 0;
1237 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1238 	if (result) {
1239 		nvmeq->cq_vector = -1;
1240 		goto free_nvmeq;
1241 	}
1242 
1243 	return result;
1244 
1245  free_nvmeq:
1246 	nvme_free_queues(dev, 0);
1247 	return result;
1248 }
1249 
1250 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1251 {
1252 
1253 	/* If true, indicates loss of adapter communication, possibly by a
1254 	 * NVMe Subsystem reset.
1255 	 */
1256 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1257 
1258 	/* If there is a reset ongoing, we shouldn't reset again. */
1259 	if (work_busy(&dev->reset_work))
1260 		return false;
1261 
1262 	/* We shouldn't reset unless the controller is on fatal error state
1263 	 * _or_ if we lost the communication with it.
1264 	 */
1265 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1266 		return false;
1267 
1268 	/* If PCI error recovery process is happening, we cannot reset or
1269 	 * the recovery mechanism will surely fail.
1270 	 */
1271 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1272 		return false;
1273 
1274 	return true;
1275 }
1276 
1277 static void nvme_watchdog_timer(unsigned long data)
1278 {
1279 	struct nvme_dev *dev = (struct nvme_dev *)data;
1280 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1281 
1282 	/* Skip controllers under certain specific conditions. */
1283 	if (nvme_should_reset(dev, csts)) {
1284 		if (queue_work(nvme_workq, &dev->reset_work))
1285 			dev_warn(dev->dev,
1286 				"Failed status: 0x%x, reset controller.\n",
1287 				csts);
1288 		return;
1289 	}
1290 
1291 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1292 }
1293 
1294 static int nvme_create_io_queues(struct nvme_dev *dev)
1295 {
1296 	unsigned i, max;
1297 	int ret = 0;
1298 
1299 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1300 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1301 			ret = -ENOMEM;
1302 			break;
1303 		}
1304 	}
1305 
1306 	max = min(dev->max_qid, dev->queue_count - 1);
1307 	for (i = dev->online_queues; i <= max; i++) {
1308 		ret = nvme_create_queue(dev->queues[i], i);
1309 		if (ret) {
1310 			nvme_free_queues(dev, i);
1311 			break;
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1317 	 * than the desired aount of queues, and even a controller without
1318 	 * I/O queues an still be used to issue admin commands.  This might
1319 	 * be useful to upgrade a buggy firmware for example.
1320 	 */
1321 	return ret >= 0 ? 0 : ret;
1322 }
1323 
1324 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1325 {
1326 	u64 szu, size, offset;
1327 	u32 cmbloc;
1328 	resource_size_t bar_size;
1329 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1330 	void __iomem *cmb;
1331 	dma_addr_t dma_addr;
1332 
1333 	if (!use_cmb_sqes)
1334 		return NULL;
1335 
1336 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1337 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1338 		return NULL;
1339 
1340 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1341 
1342 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1343 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1344 	offset = szu * NVME_CMB_OFST(cmbloc);
1345 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1346 
1347 	if (offset > bar_size)
1348 		return NULL;
1349 
1350 	/*
1351 	 * Controllers may support a CMB size larger than their BAR,
1352 	 * for example, due to being behind a bridge. Reduce the CMB to
1353 	 * the reported size of the BAR
1354 	 */
1355 	if (size > bar_size - offset)
1356 		size = bar_size - offset;
1357 
1358 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1359 	cmb = ioremap_wc(dma_addr, size);
1360 	if (!cmb)
1361 		return NULL;
1362 
1363 	dev->cmb_dma_addr = dma_addr;
1364 	dev->cmb_size = size;
1365 	return cmb;
1366 }
1367 
1368 static inline void nvme_release_cmb(struct nvme_dev *dev)
1369 {
1370 	if (dev->cmb) {
1371 		iounmap(dev->cmb);
1372 		dev->cmb = NULL;
1373 	}
1374 }
1375 
1376 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1377 {
1378 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1379 }
1380 
1381 static int nvme_setup_io_queues(struct nvme_dev *dev)
1382 {
1383 	struct nvme_queue *adminq = dev->queues[0];
1384 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1385 	int result, i, vecs, nr_io_queues, size;
1386 
1387 	nr_io_queues = num_online_cpus();
1388 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1389 	if (result < 0)
1390 		return result;
1391 
1392 	if (nr_io_queues == 0)
1393 		return 0;
1394 
1395 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1396 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1397 				sizeof(struct nvme_command));
1398 		if (result > 0)
1399 			dev->q_depth = result;
1400 		else
1401 			nvme_release_cmb(dev);
1402 	}
1403 
1404 	size = db_bar_size(dev, nr_io_queues);
1405 	if (size > 8192) {
1406 		iounmap(dev->bar);
1407 		do {
1408 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1409 			if (dev->bar)
1410 				break;
1411 			if (!--nr_io_queues)
1412 				return -ENOMEM;
1413 			size = db_bar_size(dev, nr_io_queues);
1414 		} while (1);
1415 		dev->dbs = dev->bar + 4096;
1416 		adminq->q_db = dev->dbs;
1417 	}
1418 
1419 	/* Deregister the admin queue's interrupt */
1420 	free_irq(dev->entry[0].vector, adminq);
1421 
1422 	/*
1423 	 * If we enable msix early due to not intx, disable it again before
1424 	 * setting up the full range we need.
1425 	 */
1426 	if (pdev->msi_enabled)
1427 		pci_disable_msi(pdev);
1428 	else if (pdev->msix_enabled)
1429 		pci_disable_msix(pdev);
1430 
1431 	for (i = 0; i < nr_io_queues; i++)
1432 		dev->entry[i].entry = i;
1433 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1434 	if (vecs < 0) {
1435 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1436 		if (vecs < 0) {
1437 			vecs = 1;
1438 		} else {
1439 			for (i = 0; i < vecs; i++)
1440 				dev->entry[i].vector = i + pdev->irq;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * Should investigate if there's a performance win from allocating
1446 	 * more queues than interrupt vectors; it might allow the submission
1447 	 * path to scale better, even if the receive path is limited by the
1448 	 * number of interrupts.
1449 	 */
1450 	nr_io_queues = vecs;
1451 	dev->max_qid = nr_io_queues;
1452 
1453 	result = queue_request_irq(dev, adminq, adminq->irqname);
1454 	if (result) {
1455 		adminq->cq_vector = -1;
1456 		goto free_queues;
1457 	}
1458 	return nvme_create_io_queues(dev);
1459 
1460  free_queues:
1461 	nvme_free_queues(dev, 1);
1462 	return result;
1463 }
1464 
1465 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1466 {
1467 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1468 	struct nvme_queue *nvmeq;
1469 	int i;
1470 
1471 	for (i = 0; i < dev->online_queues; i++) {
1472 		nvmeq = dev->queues[i];
1473 
1474 		if (!nvmeq->tags || !(*nvmeq->tags))
1475 			continue;
1476 
1477 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1478 					blk_mq_tags_cpumask(*nvmeq->tags));
1479 	}
1480 }
1481 
1482 static void nvme_del_queue_end(struct request *req, int error)
1483 {
1484 	struct nvme_queue *nvmeq = req->end_io_data;
1485 
1486 	blk_mq_free_request(req);
1487 	complete(&nvmeq->dev->ioq_wait);
1488 }
1489 
1490 static void nvme_del_cq_end(struct request *req, int error)
1491 {
1492 	struct nvme_queue *nvmeq = req->end_io_data;
1493 
1494 	if (!error) {
1495 		unsigned long flags;
1496 
1497 		/*
1498 		 * We might be called with the AQ q_lock held
1499 		 * and the I/O queue q_lock should always
1500 		 * nest inside the AQ one.
1501 		 */
1502 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1503 					SINGLE_DEPTH_NESTING);
1504 		nvme_process_cq(nvmeq);
1505 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1506 	}
1507 
1508 	nvme_del_queue_end(req, error);
1509 }
1510 
1511 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1512 {
1513 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1514 	struct request *req;
1515 	struct nvme_command cmd;
1516 
1517 	memset(&cmd, 0, sizeof(cmd));
1518 	cmd.delete_queue.opcode = opcode;
1519 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1520 
1521 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1522 	if (IS_ERR(req))
1523 		return PTR_ERR(req);
1524 
1525 	req->timeout = ADMIN_TIMEOUT;
1526 	req->end_io_data = nvmeq;
1527 
1528 	blk_execute_rq_nowait(q, NULL, req, false,
1529 			opcode == nvme_admin_delete_cq ?
1530 				nvme_del_cq_end : nvme_del_queue_end);
1531 	return 0;
1532 }
1533 
1534 static void nvme_disable_io_queues(struct nvme_dev *dev)
1535 {
1536 	int pass, queues = dev->online_queues - 1;
1537 	unsigned long timeout;
1538 	u8 opcode = nvme_admin_delete_sq;
1539 
1540 	for (pass = 0; pass < 2; pass++) {
1541 		int sent = 0, i = queues;
1542 
1543 		reinit_completion(&dev->ioq_wait);
1544  retry:
1545 		timeout = ADMIN_TIMEOUT;
1546 		for (; i > 0; i--) {
1547 			struct nvme_queue *nvmeq = dev->queues[i];
1548 
1549 			if (!pass)
1550 				nvme_suspend_queue(nvmeq);
1551 			if (nvme_delete_queue(nvmeq, opcode))
1552 				break;
1553 			++sent;
1554 		}
1555 		while (sent--) {
1556 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1557 			if (timeout == 0)
1558 				return;
1559 			if (i)
1560 				goto retry;
1561 		}
1562 		opcode = nvme_admin_delete_cq;
1563 	}
1564 }
1565 
1566 /*
1567  * Return: error value if an error occurred setting up the queues or calling
1568  * Identify Device.  0 if these succeeded, even if adding some of the
1569  * namespaces failed.  At the moment, these failures are silent.  TBD which
1570  * failures should be reported.
1571  */
1572 static int nvme_dev_add(struct nvme_dev *dev)
1573 {
1574 	if (!dev->ctrl.tagset) {
1575 		dev->tagset.ops = &nvme_mq_ops;
1576 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1577 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1578 		dev->tagset.numa_node = dev_to_node(dev->dev);
1579 		dev->tagset.queue_depth =
1580 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1581 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1582 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1583 		dev->tagset.driver_data = dev;
1584 
1585 		if (blk_mq_alloc_tag_set(&dev->tagset))
1586 			return 0;
1587 		dev->ctrl.tagset = &dev->tagset;
1588 	} else {
1589 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1590 
1591 		/* Free previously allocated queues that are no longer usable */
1592 		nvme_free_queues(dev, dev->online_queues);
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static int nvme_pci_enable(struct nvme_dev *dev)
1599 {
1600 	u64 cap;
1601 	int result = -ENOMEM;
1602 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1603 
1604 	if (pci_enable_device_mem(pdev))
1605 		return result;
1606 
1607 	pci_set_master(pdev);
1608 
1609 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1610 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1611 		goto disable;
1612 
1613 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1614 		result = -ENODEV;
1615 		goto disable;
1616 	}
1617 
1618 	/*
1619 	 * Some devices and/or platforms don't advertise or work with INTx
1620 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1621 	 * adjust this later.
1622 	 */
1623 	if (pci_enable_msix(pdev, dev->entry, 1)) {
1624 		pci_enable_msi(pdev);
1625 		dev->entry[0].vector = pdev->irq;
1626 	}
1627 
1628 	if (!dev->entry[0].vector) {
1629 		result = -ENODEV;
1630 		goto disable;
1631 	}
1632 
1633 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1634 
1635 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1636 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1637 	dev->dbs = dev->bar + 4096;
1638 
1639 	/*
1640 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1641 	 * some MacBook7,1 to avoid controller resets and data loss.
1642 	 */
1643 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1644 		dev->q_depth = 2;
1645 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1646 			"queue depth=%u to work around controller resets\n",
1647 			dev->q_depth);
1648 	}
1649 
1650 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1651 		dev->cmb = nvme_map_cmb(dev);
1652 
1653 	pci_enable_pcie_error_reporting(pdev);
1654 	pci_save_state(pdev);
1655 	return 0;
1656 
1657  disable:
1658 	pci_disable_device(pdev);
1659 	return result;
1660 }
1661 
1662 static void nvme_dev_unmap(struct nvme_dev *dev)
1663 {
1664 	if (dev->bar)
1665 		iounmap(dev->bar);
1666 	pci_release_mem_regions(to_pci_dev(dev->dev));
1667 }
1668 
1669 static void nvme_pci_disable(struct nvme_dev *dev)
1670 {
1671 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1672 
1673 	if (pdev->msi_enabled)
1674 		pci_disable_msi(pdev);
1675 	else if (pdev->msix_enabled)
1676 		pci_disable_msix(pdev);
1677 
1678 	if (pci_is_enabled(pdev)) {
1679 		pci_disable_pcie_error_reporting(pdev);
1680 		pci_disable_device(pdev);
1681 	}
1682 }
1683 
1684 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1685 {
1686 	int i;
1687 	u32 csts = -1;
1688 
1689 	del_timer_sync(&dev->watchdog_timer);
1690 
1691 	mutex_lock(&dev->shutdown_lock);
1692 	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1693 		nvme_stop_queues(&dev->ctrl);
1694 		csts = readl(dev->bar + NVME_REG_CSTS);
1695 	}
1696 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1697 		for (i = dev->queue_count - 1; i >= 0; i--) {
1698 			struct nvme_queue *nvmeq = dev->queues[i];
1699 			nvme_suspend_queue(nvmeq);
1700 		}
1701 	} else {
1702 		nvme_disable_io_queues(dev);
1703 		nvme_disable_admin_queue(dev, shutdown);
1704 	}
1705 	nvme_pci_disable(dev);
1706 
1707 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1708 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1709 	mutex_unlock(&dev->shutdown_lock);
1710 }
1711 
1712 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1713 {
1714 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1715 						PAGE_SIZE, PAGE_SIZE, 0);
1716 	if (!dev->prp_page_pool)
1717 		return -ENOMEM;
1718 
1719 	/* Optimisation for I/Os between 4k and 128k */
1720 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1721 						256, 256, 0);
1722 	if (!dev->prp_small_pool) {
1723 		dma_pool_destroy(dev->prp_page_pool);
1724 		return -ENOMEM;
1725 	}
1726 	return 0;
1727 }
1728 
1729 static void nvme_release_prp_pools(struct nvme_dev *dev)
1730 {
1731 	dma_pool_destroy(dev->prp_page_pool);
1732 	dma_pool_destroy(dev->prp_small_pool);
1733 }
1734 
1735 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1736 {
1737 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1738 
1739 	put_device(dev->dev);
1740 	if (dev->tagset.tags)
1741 		blk_mq_free_tag_set(&dev->tagset);
1742 	if (dev->ctrl.admin_q)
1743 		blk_put_queue(dev->ctrl.admin_q);
1744 	kfree(dev->queues);
1745 	kfree(dev->entry);
1746 	kfree(dev);
1747 }
1748 
1749 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1750 {
1751 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1752 
1753 	kref_get(&dev->ctrl.kref);
1754 	nvme_dev_disable(dev, false);
1755 	if (!schedule_work(&dev->remove_work))
1756 		nvme_put_ctrl(&dev->ctrl);
1757 }
1758 
1759 static void nvme_reset_work(struct work_struct *work)
1760 {
1761 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1762 	int result = -ENODEV;
1763 
1764 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1765 		goto out;
1766 
1767 	/*
1768 	 * If we're called to reset a live controller first shut it down before
1769 	 * moving on.
1770 	 */
1771 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1772 		nvme_dev_disable(dev, false);
1773 
1774 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1775 		goto out;
1776 
1777 	result = nvme_pci_enable(dev);
1778 	if (result)
1779 		goto out;
1780 
1781 	result = nvme_configure_admin_queue(dev);
1782 	if (result)
1783 		goto out;
1784 
1785 	nvme_init_queue(dev->queues[0], 0);
1786 	result = nvme_alloc_admin_tags(dev);
1787 	if (result)
1788 		goto out;
1789 
1790 	result = nvme_init_identify(&dev->ctrl);
1791 	if (result)
1792 		goto out;
1793 
1794 	result = nvme_setup_io_queues(dev);
1795 	if (result)
1796 		goto out;
1797 
1798 	/*
1799 	 * A controller that can not execute IO typically requires user
1800 	 * intervention to correct. For such degraded controllers, the driver
1801 	 * should not submit commands the user did not request, so skip
1802 	 * registering for asynchronous event notification on this condition.
1803 	 */
1804 	if (dev->online_queues > 1)
1805 		nvme_queue_async_events(&dev->ctrl);
1806 
1807 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1808 
1809 	/*
1810 	 * Keep the controller around but remove all namespaces if we don't have
1811 	 * any working I/O queue.
1812 	 */
1813 	if (dev->online_queues < 2) {
1814 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1815 		nvme_kill_queues(&dev->ctrl);
1816 		nvme_remove_namespaces(&dev->ctrl);
1817 	} else {
1818 		nvme_start_queues(&dev->ctrl);
1819 		nvme_dev_add(dev);
1820 	}
1821 
1822 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1823 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1824 		goto out;
1825 	}
1826 
1827 	if (dev->online_queues > 1)
1828 		nvme_queue_scan(&dev->ctrl);
1829 	return;
1830 
1831  out:
1832 	nvme_remove_dead_ctrl(dev, result);
1833 }
1834 
1835 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1836 {
1837 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1838 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1839 
1840 	nvme_kill_queues(&dev->ctrl);
1841 	if (pci_get_drvdata(pdev))
1842 		device_release_driver(&pdev->dev);
1843 	nvme_put_ctrl(&dev->ctrl);
1844 }
1845 
1846 static int nvme_reset(struct nvme_dev *dev)
1847 {
1848 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1849 		return -ENODEV;
1850 
1851 	if (!queue_work(nvme_workq, &dev->reset_work))
1852 		return -EBUSY;
1853 
1854 	flush_work(&dev->reset_work);
1855 	return 0;
1856 }
1857 
1858 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1859 {
1860 	*val = readl(to_nvme_dev(ctrl)->bar + off);
1861 	return 0;
1862 }
1863 
1864 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1865 {
1866 	writel(val, to_nvme_dev(ctrl)->bar + off);
1867 	return 0;
1868 }
1869 
1870 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1871 {
1872 	*val = readq(to_nvme_dev(ctrl)->bar + off);
1873 	return 0;
1874 }
1875 
1876 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1877 {
1878 	return nvme_reset(to_nvme_dev(ctrl));
1879 }
1880 
1881 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1882 	.name			= "pcie",
1883 	.module			= THIS_MODULE,
1884 	.reg_read32		= nvme_pci_reg_read32,
1885 	.reg_write32		= nvme_pci_reg_write32,
1886 	.reg_read64		= nvme_pci_reg_read64,
1887 	.reset_ctrl		= nvme_pci_reset_ctrl,
1888 	.free_ctrl		= nvme_pci_free_ctrl,
1889 	.post_scan		= nvme_pci_post_scan,
1890 	.submit_async_event	= nvme_pci_submit_async_event,
1891 };
1892 
1893 static int nvme_dev_map(struct nvme_dev *dev)
1894 {
1895 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1896 
1897 	if (pci_request_mem_regions(pdev, "nvme"))
1898 		return -ENODEV;
1899 
1900 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1901 	if (!dev->bar)
1902 		goto release;
1903 
1904        return 0;
1905   release:
1906        pci_release_mem_regions(pdev);
1907        return -ENODEV;
1908 }
1909 
1910 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1911 {
1912 	int node, result = -ENOMEM;
1913 	struct nvme_dev *dev;
1914 
1915 	node = dev_to_node(&pdev->dev);
1916 	if (node == NUMA_NO_NODE)
1917 		set_dev_node(&pdev->dev, first_memory_node);
1918 
1919 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1920 	if (!dev)
1921 		return -ENOMEM;
1922 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1923 							GFP_KERNEL, node);
1924 	if (!dev->entry)
1925 		goto free;
1926 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1927 							GFP_KERNEL, node);
1928 	if (!dev->queues)
1929 		goto free;
1930 
1931 	dev->dev = get_device(&pdev->dev);
1932 	pci_set_drvdata(pdev, dev);
1933 
1934 	result = nvme_dev_map(dev);
1935 	if (result)
1936 		goto free;
1937 
1938 	INIT_WORK(&dev->reset_work, nvme_reset_work);
1939 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1940 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1941 		(unsigned long)dev);
1942 	mutex_init(&dev->shutdown_lock);
1943 	init_completion(&dev->ioq_wait);
1944 
1945 	result = nvme_setup_prp_pools(dev);
1946 	if (result)
1947 		goto put_pci;
1948 
1949 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1950 			id->driver_data);
1951 	if (result)
1952 		goto release_pools;
1953 
1954 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1955 
1956 	queue_work(nvme_workq, &dev->reset_work);
1957 	return 0;
1958 
1959  release_pools:
1960 	nvme_release_prp_pools(dev);
1961  put_pci:
1962 	put_device(dev->dev);
1963 	nvme_dev_unmap(dev);
1964  free:
1965 	kfree(dev->queues);
1966 	kfree(dev->entry);
1967 	kfree(dev);
1968 	return result;
1969 }
1970 
1971 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1972 {
1973 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1974 
1975 	if (prepare)
1976 		nvme_dev_disable(dev, false);
1977 	else
1978 		queue_work(nvme_workq, &dev->reset_work);
1979 }
1980 
1981 static void nvme_shutdown(struct pci_dev *pdev)
1982 {
1983 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1984 	nvme_dev_disable(dev, true);
1985 }
1986 
1987 /*
1988  * The driver's remove may be called on a device in a partially initialized
1989  * state. This function must not have any dependencies on the device state in
1990  * order to proceed.
1991  */
1992 static void nvme_remove(struct pci_dev *pdev)
1993 {
1994 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1995 
1996 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1997 
1998 	pci_set_drvdata(pdev, NULL);
1999 
2000 	if (!pci_device_is_present(pdev))
2001 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2002 
2003 	flush_work(&dev->reset_work);
2004 	nvme_uninit_ctrl(&dev->ctrl);
2005 	nvme_dev_disable(dev, true);
2006 	nvme_dev_remove_admin(dev);
2007 	nvme_free_queues(dev, 0);
2008 	nvme_release_cmb(dev);
2009 	nvme_release_prp_pools(dev);
2010 	nvme_dev_unmap(dev);
2011 	nvme_put_ctrl(&dev->ctrl);
2012 }
2013 
2014 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2015 {
2016 	int ret = 0;
2017 
2018 	if (numvfs == 0) {
2019 		if (pci_vfs_assigned(pdev)) {
2020 			dev_warn(&pdev->dev,
2021 				"Cannot disable SR-IOV VFs while assigned\n");
2022 			return -EPERM;
2023 		}
2024 		pci_disable_sriov(pdev);
2025 		return 0;
2026 	}
2027 
2028 	ret = pci_enable_sriov(pdev, numvfs);
2029 	return ret ? ret : numvfs;
2030 }
2031 
2032 #ifdef CONFIG_PM_SLEEP
2033 static int nvme_suspend(struct device *dev)
2034 {
2035 	struct pci_dev *pdev = to_pci_dev(dev);
2036 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2037 
2038 	nvme_dev_disable(ndev, true);
2039 	return 0;
2040 }
2041 
2042 static int nvme_resume(struct device *dev)
2043 {
2044 	struct pci_dev *pdev = to_pci_dev(dev);
2045 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2046 
2047 	queue_work(nvme_workq, &ndev->reset_work);
2048 	return 0;
2049 }
2050 #endif
2051 
2052 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2053 
2054 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2055 						pci_channel_state_t state)
2056 {
2057 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2058 
2059 	/*
2060 	 * A frozen channel requires a reset. When detected, this method will
2061 	 * shutdown the controller to quiesce. The controller will be restarted
2062 	 * after the slot reset through driver's slot_reset callback.
2063 	 */
2064 	switch (state) {
2065 	case pci_channel_io_normal:
2066 		return PCI_ERS_RESULT_CAN_RECOVER;
2067 	case pci_channel_io_frozen:
2068 		dev_warn(dev->ctrl.device,
2069 			"frozen state error detected, reset controller\n");
2070 		nvme_dev_disable(dev, false);
2071 		return PCI_ERS_RESULT_NEED_RESET;
2072 	case pci_channel_io_perm_failure:
2073 		dev_warn(dev->ctrl.device,
2074 			"failure state error detected, request disconnect\n");
2075 		return PCI_ERS_RESULT_DISCONNECT;
2076 	}
2077 	return PCI_ERS_RESULT_NEED_RESET;
2078 }
2079 
2080 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2081 {
2082 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2083 
2084 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2085 	pci_restore_state(pdev);
2086 	queue_work(nvme_workq, &dev->reset_work);
2087 	return PCI_ERS_RESULT_RECOVERED;
2088 }
2089 
2090 static void nvme_error_resume(struct pci_dev *pdev)
2091 {
2092 	pci_cleanup_aer_uncorrect_error_status(pdev);
2093 }
2094 
2095 static const struct pci_error_handlers nvme_err_handler = {
2096 	.error_detected	= nvme_error_detected,
2097 	.slot_reset	= nvme_slot_reset,
2098 	.resume		= nvme_error_resume,
2099 	.reset_notify	= nvme_reset_notify,
2100 };
2101 
2102 /* Move to pci_ids.h later */
2103 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2104 
2105 static const struct pci_device_id nvme_id_table[] = {
2106 	{ PCI_VDEVICE(INTEL, 0x0953),
2107 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 				NVME_QUIRK_DISCARD_ZEROES, },
2109 	{ PCI_VDEVICE(INTEL, 0x0a53),
2110 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 				NVME_QUIRK_DISCARD_ZEROES, },
2112 	{ PCI_VDEVICE(INTEL, 0x0a54),
2113 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 				NVME_QUIRK_DISCARD_ZEROES, },
2115 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2116 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2117 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2118 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2119 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2120 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2121 	{ 0, }
2122 };
2123 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2124 
2125 static struct pci_driver nvme_driver = {
2126 	.name		= "nvme",
2127 	.id_table	= nvme_id_table,
2128 	.probe		= nvme_probe,
2129 	.remove		= nvme_remove,
2130 	.shutdown	= nvme_shutdown,
2131 	.driver		= {
2132 		.pm	= &nvme_dev_pm_ops,
2133 	},
2134 	.sriov_configure = nvme_pci_sriov_configure,
2135 	.err_handler	= &nvme_err_handler,
2136 };
2137 
2138 static int __init nvme_init(void)
2139 {
2140 	int result;
2141 
2142 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2143 	if (!nvme_workq)
2144 		return -ENOMEM;
2145 
2146 	result = pci_register_driver(&nvme_driver);
2147 	if (result)
2148 		destroy_workqueue(nvme_workq);
2149 	return result;
2150 }
2151 
2152 static void __exit nvme_exit(void)
2153 {
2154 	pci_unregister_driver(&nvme_driver);
2155 	destroy_workqueue(nvme_workq);
2156 	_nvme_check_size();
2157 }
2158 
2159 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2160 MODULE_LICENSE("GPL");
2161 MODULE_VERSION("1.0");
2162 module_init(nvme_init);
2163 module_exit(nvme_exit);
2164