1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 782 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 783 return nvme_setup_prp_simple(dev, req, 784 &cmnd->rw, &bv); 785 786 if (nvmeq->qid && sgl_threshold && 787 nvme_ctrl_sgl_supported(&dev->ctrl)) 788 return nvme_setup_sgl_simple(dev, req, 789 &cmnd->rw, &bv); 790 } 791 } 792 793 iod->dma_len = 0; 794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 795 if (!iod->sgt.sgl) 796 return BLK_STS_RESOURCE; 797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 799 if (!iod->sgt.orig_nents) 800 goto out_free_sg; 801 802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 803 DMA_ATTR_NO_WARN); 804 if (rc) { 805 if (rc == -EREMOTEIO) 806 ret = BLK_STS_TARGET; 807 goto out_free_sg; 808 } 809 810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 812 else 813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 814 if (ret != BLK_STS_OK) 815 goto out_unmap_sg; 816 return BLK_STS_OK; 817 818 out_unmap_sg: 819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 820 out_free_sg: 821 mempool_free(iod->sgt.sgl, dev->iod_mempool); 822 return ret; 823 } 824 825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 826 struct nvme_command *cmnd) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 struct bio_vec bv = rq_integrity_vec(req); 830 831 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 832 if (dma_mapping_error(dev->dev, iod->meta_dma)) 833 return BLK_STS_IOERR; 834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 blk_status_t ret; 842 843 iod->aborted = false; 844 iod->nr_allocations = -1; 845 iod->sgt.nents = 0; 846 847 ret = nvme_setup_cmd(req->q->queuedata, req); 848 if (ret) 849 return ret; 850 851 if (blk_rq_nr_phys_segments(req)) { 852 ret = nvme_map_data(dev, req, &iod->cmd); 853 if (ret) 854 goto out_free_cmd; 855 } 856 857 if (blk_integrity_rq(req)) { 858 ret = nvme_map_metadata(dev, req, &iod->cmd); 859 if (ret) 860 goto out_unmap_data; 861 } 862 863 nvme_start_request(req); 864 return BLK_STS_OK; 865 out_unmap_data: 866 if (blk_rq_nr_phys_segments(req)) 867 nvme_unmap_data(dev, req); 868 out_free_cmd: 869 nvme_cleanup_cmd(req); 870 return ret; 871 } 872 873 /* 874 * NOTE: ns is NULL when called on the admin queue. 875 */ 876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 877 const struct blk_mq_queue_data *bd) 878 { 879 struct nvme_queue *nvmeq = hctx->driver_data; 880 struct nvme_dev *dev = nvmeq->dev; 881 struct request *req = bd->rq; 882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 883 blk_status_t ret; 884 885 /* 886 * We should not need to do this, but we're still using this to 887 * ensure we can drain requests on a dying queue. 888 */ 889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 890 return BLK_STS_IOERR; 891 892 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 893 return nvme_fail_nonready_command(&dev->ctrl, req); 894 895 ret = nvme_prep_rq(dev, req); 896 if (unlikely(ret)) 897 return ret; 898 spin_lock(&nvmeq->sq_lock); 899 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 900 nvme_write_sq_db(nvmeq, bd->last); 901 spin_unlock(&nvmeq->sq_lock); 902 return BLK_STS_OK; 903 } 904 905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 906 { 907 spin_lock(&nvmeq->sq_lock); 908 while (!rq_list_empty(*rqlist)) { 909 struct request *req = rq_list_pop(rqlist); 910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 911 912 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 913 } 914 nvme_write_sq_db(nvmeq, true); 915 spin_unlock(&nvmeq->sq_lock); 916 } 917 918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 919 { 920 /* 921 * We should not need to do this, but we're still using this to 922 * ensure we can drain requests on a dying queue. 923 */ 924 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 925 return false; 926 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 927 return false; 928 929 req->mq_hctx->tags->rqs[req->tag] = req; 930 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 931 } 932 933 static void nvme_queue_rqs(struct request **rqlist) 934 { 935 struct request *req, *next, *prev = NULL; 936 struct request *requeue_list = NULL; 937 938 rq_list_for_each_safe(rqlist, req, next) { 939 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 940 941 if (!nvme_prep_rq_batch(nvmeq, req)) { 942 /* detach 'req' and add to remainder list */ 943 rq_list_move(rqlist, &requeue_list, req, prev); 944 945 req = prev; 946 if (!req) 947 continue; 948 } 949 950 if (!next || req->mq_hctx != next->mq_hctx) { 951 /* detach rest of list, and submit */ 952 req->rq_next = NULL; 953 nvme_submit_cmds(nvmeq, rqlist); 954 *rqlist = next; 955 prev = NULL; 956 } else 957 prev = req; 958 } 959 960 *rqlist = requeue_list; 961 } 962 963 static __always_inline void nvme_pci_unmap_rq(struct request *req) 964 { 965 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 966 struct nvme_dev *dev = nvmeq->dev; 967 968 if (blk_integrity_rq(req)) { 969 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 970 971 dma_unmap_page(dev->dev, iod->meta_dma, 972 rq_integrity_vec(req).bv_len, rq_dma_dir(req)); 973 } 974 975 if (blk_rq_nr_phys_segments(req)) 976 nvme_unmap_data(dev, req); 977 } 978 979 static void nvme_pci_complete_rq(struct request *req) 980 { 981 nvme_pci_unmap_rq(req); 982 nvme_complete_rq(req); 983 } 984 985 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 986 { 987 nvme_complete_batch(iob, nvme_pci_unmap_rq); 988 } 989 990 /* We read the CQE phase first to check if the rest of the entry is valid */ 991 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 992 { 993 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 994 995 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 996 } 997 998 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 999 { 1000 u16 head = nvmeq->cq_head; 1001 1002 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1003 nvmeq->dbbuf_cq_ei)) 1004 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1005 } 1006 1007 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1008 { 1009 if (!nvmeq->qid) 1010 return nvmeq->dev->admin_tagset.tags[0]; 1011 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1012 } 1013 1014 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1015 struct io_comp_batch *iob, u16 idx) 1016 { 1017 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1018 __u16 command_id = READ_ONCE(cqe->command_id); 1019 struct request *req; 1020 1021 /* 1022 * AEN requests are special as they don't time out and can 1023 * survive any kind of queue freeze and often don't respond to 1024 * aborts. We don't even bother to allocate a struct request 1025 * for them but rather special case them here. 1026 */ 1027 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1028 nvme_complete_async_event(&nvmeq->dev->ctrl, 1029 cqe->status, &cqe->result); 1030 return; 1031 } 1032 1033 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1034 if (unlikely(!req)) { 1035 dev_warn(nvmeq->dev->ctrl.device, 1036 "invalid id %d completed on queue %d\n", 1037 command_id, le16_to_cpu(cqe->sq_id)); 1038 return; 1039 } 1040 1041 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1042 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1043 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1044 nvme_pci_complete_batch)) 1045 nvme_pci_complete_rq(req); 1046 } 1047 1048 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1049 { 1050 u32 tmp = nvmeq->cq_head + 1; 1051 1052 if (tmp == nvmeq->q_depth) { 1053 nvmeq->cq_head = 0; 1054 nvmeq->cq_phase ^= 1; 1055 } else { 1056 nvmeq->cq_head = tmp; 1057 } 1058 } 1059 1060 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1061 struct io_comp_batch *iob) 1062 { 1063 int found = 0; 1064 1065 while (nvme_cqe_pending(nvmeq)) { 1066 found++; 1067 /* 1068 * load-load control dependency between phase and the rest of 1069 * the cqe requires a full read memory barrier 1070 */ 1071 dma_rmb(); 1072 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1073 nvme_update_cq_head(nvmeq); 1074 } 1075 1076 if (found) 1077 nvme_ring_cq_doorbell(nvmeq); 1078 return found; 1079 } 1080 1081 static irqreturn_t nvme_irq(int irq, void *data) 1082 { 1083 struct nvme_queue *nvmeq = data; 1084 DEFINE_IO_COMP_BATCH(iob); 1085 1086 if (nvme_poll_cq(nvmeq, &iob)) { 1087 if (!rq_list_empty(iob.req_list)) 1088 nvme_pci_complete_batch(&iob); 1089 return IRQ_HANDLED; 1090 } 1091 return IRQ_NONE; 1092 } 1093 1094 static irqreturn_t nvme_irq_check(int irq, void *data) 1095 { 1096 struct nvme_queue *nvmeq = data; 1097 1098 if (nvme_cqe_pending(nvmeq)) 1099 return IRQ_WAKE_THREAD; 1100 return IRQ_NONE; 1101 } 1102 1103 /* 1104 * Poll for completions for any interrupt driven queue 1105 * Can be called from any context. 1106 */ 1107 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1108 { 1109 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1110 1111 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1112 1113 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1114 nvme_poll_cq(nvmeq, NULL); 1115 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1116 } 1117 1118 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1119 { 1120 struct nvme_queue *nvmeq = hctx->driver_data; 1121 bool found; 1122 1123 if (!nvme_cqe_pending(nvmeq)) 1124 return 0; 1125 1126 spin_lock(&nvmeq->cq_poll_lock); 1127 found = nvme_poll_cq(nvmeq, iob); 1128 spin_unlock(&nvmeq->cq_poll_lock); 1129 1130 return found; 1131 } 1132 1133 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1134 { 1135 struct nvme_dev *dev = to_nvme_dev(ctrl); 1136 struct nvme_queue *nvmeq = &dev->queues[0]; 1137 struct nvme_command c = { }; 1138 1139 c.common.opcode = nvme_admin_async_event; 1140 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1141 1142 spin_lock(&nvmeq->sq_lock); 1143 nvme_sq_copy_cmd(nvmeq, &c); 1144 nvme_write_sq_db(nvmeq, true); 1145 spin_unlock(&nvmeq->sq_lock); 1146 } 1147 1148 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1149 { 1150 struct nvme_command c = { }; 1151 1152 c.delete_queue.opcode = opcode; 1153 c.delete_queue.qid = cpu_to_le16(id); 1154 1155 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1156 } 1157 1158 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1159 struct nvme_queue *nvmeq, s16 vector) 1160 { 1161 struct nvme_command c = { }; 1162 int flags = NVME_QUEUE_PHYS_CONTIG; 1163 1164 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1165 flags |= NVME_CQ_IRQ_ENABLED; 1166 1167 /* 1168 * Note: we (ab)use the fact that the prp fields survive if no data 1169 * is attached to the request. 1170 */ 1171 c.create_cq.opcode = nvme_admin_create_cq; 1172 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1173 c.create_cq.cqid = cpu_to_le16(qid); 1174 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1175 c.create_cq.cq_flags = cpu_to_le16(flags); 1176 c.create_cq.irq_vector = cpu_to_le16(vector); 1177 1178 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1179 } 1180 1181 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1182 struct nvme_queue *nvmeq) 1183 { 1184 struct nvme_ctrl *ctrl = &dev->ctrl; 1185 struct nvme_command c = { }; 1186 int flags = NVME_QUEUE_PHYS_CONTIG; 1187 1188 /* 1189 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1190 * set. Since URGENT priority is zeroes, it makes all queues 1191 * URGENT. 1192 */ 1193 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1194 flags |= NVME_SQ_PRIO_MEDIUM; 1195 1196 /* 1197 * Note: we (ab)use the fact that the prp fields survive if no data 1198 * is attached to the request. 1199 */ 1200 c.create_sq.opcode = nvme_admin_create_sq; 1201 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1202 c.create_sq.sqid = cpu_to_le16(qid); 1203 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1204 c.create_sq.sq_flags = cpu_to_le16(flags); 1205 c.create_sq.cqid = cpu_to_le16(qid); 1206 1207 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1208 } 1209 1210 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1211 { 1212 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1213 } 1214 1215 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1216 { 1217 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1218 } 1219 1220 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1221 { 1222 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1223 1224 dev_warn(nvmeq->dev->ctrl.device, 1225 "Abort status: 0x%x", nvme_req(req)->status); 1226 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1227 blk_mq_free_request(req); 1228 return RQ_END_IO_NONE; 1229 } 1230 1231 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1232 { 1233 /* If true, indicates loss of adapter communication, possibly by a 1234 * NVMe Subsystem reset. 1235 */ 1236 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1237 1238 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1239 switch (nvme_ctrl_state(&dev->ctrl)) { 1240 case NVME_CTRL_RESETTING: 1241 case NVME_CTRL_CONNECTING: 1242 return false; 1243 default: 1244 break; 1245 } 1246 1247 /* We shouldn't reset unless the controller is on fatal error state 1248 * _or_ if we lost the communication with it. 1249 */ 1250 if (!(csts & NVME_CSTS_CFS) && !nssro) 1251 return false; 1252 1253 return true; 1254 } 1255 1256 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1257 { 1258 /* Read a config register to help see what died. */ 1259 u16 pci_status; 1260 int result; 1261 1262 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1263 &pci_status); 1264 if (result == PCIBIOS_SUCCESSFUL) 1265 dev_warn(dev->ctrl.device, 1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1267 csts, pci_status); 1268 else 1269 dev_warn(dev->ctrl.device, 1270 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1271 csts, result); 1272 1273 if (csts != ~0) 1274 return; 1275 1276 dev_warn(dev->ctrl.device, 1277 "Does your device have a faulty power saving mode enabled?\n"); 1278 dev_warn(dev->ctrl.device, 1279 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1280 } 1281 1282 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1283 { 1284 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1285 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1286 struct nvme_dev *dev = nvmeq->dev; 1287 struct request *abort_req; 1288 struct nvme_command cmd = { }; 1289 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1290 1291 if (nvme_state_terminal(&dev->ctrl)) 1292 goto disable; 1293 1294 /* If PCI error recovery process is happening, we cannot reset or 1295 * the recovery mechanism will surely fail. 1296 */ 1297 mb(); 1298 if (pci_channel_offline(to_pci_dev(dev->dev))) 1299 return BLK_EH_RESET_TIMER; 1300 1301 /* 1302 * Reset immediately if the controller is failed 1303 */ 1304 if (nvme_should_reset(dev, csts)) { 1305 nvme_warn_reset(dev, csts); 1306 goto disable; 1307 } 1308 1309 /* 1310 * Did we miss an interrupt? 1311 */ 1312 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1313 nvme_poll(req->mq_hctx, NULL); 1314 else 1315 nvme_poll_irqdisable(nvmeq); 1316 1317 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1318 dev_warn(dev->ctrl.device, 1319 "I/O %d QID %d timeout, completion polled\n", 1320 req->tag, nvmeq->qid); 1321 return BLK_EH_DONE; 1322 } 1323 1324 /* 1325 * Shutdown immediately if controller times out while starting. The 1326 * reset work will see the pci device disabled when it gets the forced 1327 * cancellation error. All outstanding requests are completed on 1328 * shutdown, so we return BLK_EH_DONE. 1329 */ 1330 switch (nvme_ctrl_state(&dev->ctrl)) { 1331 case NVME_CTRL_CONNECTING: 1332 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1333 fallthrough; 1334 case NVME_CTRL_DELETING: 1335 dev_warn_ratelimited(dev->ctrl.device, 1336 "I/O %d QID %d timeout, disable controller\n", 1337 req->tag, nvmeq->qid); 1338 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1339 nvme_dev_disable(dev, true); 1340 return BLK_EH_DONE; 1341 case NVME_CTRL_RESETTING: 1342 return BLK_EH_RESET_TIMER; 1343 default: 1344 break; 1345 } 1346 1347 /* 1348 * Shutdown the controller immediately and schedule a reset if the 1349 * command was already aborted once before and still hasn't been 1350 * returned to the driver, or if this is the admin queue. 1351 */ 1352 if (!nvmeq->qid || iod->aborted) { 1353 dev_warn(dev->ctrl.device, 1354 "I/O %d QID %d timeout, reset controller\n", 1355 req->tag, nvmeq->qid); 1356 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1357 goto disable; 1358 } 1359 1360 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1361 atomic_inc(&dev->ctrl.abort_limit); 1362 return BLK_EH_RESET_TIMER; 1363 } 1364 iod->aborted = true; 1365 1366 cmd.abort.opcode = nvme_admin_abort_cmd; 1367 cmd.abort.cid = nvme_cid(req); 1368 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1369 1370 dev_warn(nvmeq->dev->ctrl.device, 1371 "I/O %d (%s) QID %d timeout, aborting\n", 1372 req->tag, 1373 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1374 nvmeq->qid); 1375 1376 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1377 BLK_MQ_REQ_NOWAIT); 1378 if (IS_ERR(abort_req)) { 1379 atomic_inc(&dev->ctrl.abort_limit); 1380 return BLK_EH_RESET_TIMER; 1381 } 1382 nvme_init_request(abort_req, &cmd); 1383 1384 abort_req->end_io = abort_endio; 1385 abort_req->end_io_data = NULL; 1386 blk_execute_rq_nowait(abort_req, false); 1387 1388 /* 1389 * The aborted req will be completed on receiving the abort req. 1390 * We enable the timer again. If hit twice, it'll cause a device reset, 1391 * as the device then is in a faulty state. 1392 */ 1393 return BLK_EH_RESET_TIMER; 1394 1395 disable: 1396 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1397 if (nvme_state_terminal(&dev->ctrl)) 1398 nvme_dev_disable(dev, true); 1399 return BLK_EH_DONE; 1400 } 1401 1402 nvme_dev_disable(dev, false); 1403 if (nvme_try_sched_reset(&dev->ctrl)) 1404 nvme_unquiesce_io_queues(&dev->ctrl); 1405 return BLK_EH_DONE; 1406 } 1407 1408 static void nvme_free_queue(struct nvme_queue *nvmeq) 1409 { 1410 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1411 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1412 if (!nvmeq->sq_cmds) 1413 return; 1414 1415 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1416 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1417 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1418 } else { 1419 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1420 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1421 } 1422 } 1423 1424 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1425 { 1426 int i; 1427 1428 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1429 dev->ctrl.queue_count--; 1430 nvme_free_queue(&dev->queues[i]); 1431 } 1432 } 1433 1434 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1435 { 1436 struct nvme_queue *nvmeq = &dev->queues[qid]; 1437 1438 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1439 return; 1440 1441 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1442 mb(); 1443 1444 nvmeq->dev->online_queues--; 1445 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1446 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1447 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1448 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1449 } 1450 1451 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1452 { 1453 int i; 1454 1455 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1456 nvme_suspend_queue(dev, i); 1457 } 1458 1459 /* 1460 * Called only on a device that has been disabled and after all other threads 1461 * that can check this device's completion queues have synced, except 1462 * nvme_poll(). This is the last chance for the driver to see a natural 1463 * completion before nvme_cancel_request() terminates all incomplete requests. 1464 */ 1465 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1466 { 1467 int i; 1468 1469 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1470 spin_lock(&dev->queues[i].cq_poll_lock); 1471 nvme_poll_cq(&dev->queues[i], NULL); 1472 spin_unlock(&dev->queues[i].cq_poll_lock); 1473 } 1474 } 1475 1476 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1477 int entry_size) 1478 { 1479 int q_depth = dev->q_depth; 1480 unsigned q_size_aligned = roundup(q_depth * entry_size, 1481 NVME_CTRL_PAGE_SIZE); 1482 1483 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1484 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1485 1486 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1487 q_depth = div_u64(mem_per_q, entry_size); 1488 1489 /* 1490 * Ensure the reduced q_depth is above some threshold where it 1491 * would be better to map queues in system memory with the 1492 * original depth 1493 */ 1494 if (q_depth < 64) 1495 return -ENOMEM; 1496 } 1497 1498 return q_depth; 1499 } 1500 1501 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1502 int qid) 1503 { 1504 struct pci_dev *pdev = to_pci_dev(dev->dev); 1505 1506 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1507 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1508 if (nvmeq->sq_cmds) { 1509 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1510 nvmeq->sq_cmds); 1511 if (nvmeq->sq_dma_addr) { 1512 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1513 return 0; 1514 } 1515 1516 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1517 } 1518 } 1519 1520 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1521 &nvmeq->sq_dma_addr, GFP_KERNEL); 1522 if (!nvmeq->sq_cmds) 1523 return -ENOMEM; 1524 return 0; 1525 } 1526 1527 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1528 { 1529 struct nvme_queue *nvmeq = &dev->queues[qid]; 1530 1531 if (dev->ctrl.queue_count > qid) 1532 return 0; 1533 1534 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1535 nvmeq->q_depth = depth; 1536 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1537 &nvmeq->cq_dma_addr, GFP_KERNEL); 1538 if (!nvmeq->cqes) 1539 goto free_nvmeq; 1540 1541 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1542 goto free_cqdma; 1543 1544 nvmeq->dev = dev; 1545 spin_lock_init(&nvmeq->sq_lock); 1546 spin_lock_init(&nvmeq->cq_poll_lock); 1547 nvmeq->cq_head = 0; 1548 nvmeq->cq_phase = 1; 1549 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1550 nvmeq->qid = qid; 1551 dev->ctrl.queue_count++; 1552 1553 return 0; 1554 1555 free_cqdma: 1556 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1557 nvmeq->cq_dma_addr); 1558 free_nvmeq: 1559 return -ENOMEM; 1560 } 1561 1562 static int queue_request_irq(struct nvme_queue *nvmeq) 1563 { 1564 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1565 int nr = nvmeq->dev->ctrl.instance; 1566 1567 if (use_threaded_interrupts) { 1568 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1569 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1570 } else { 1571 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1572 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1573 } 1574 } 1575 1576 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1577 { 1578 struct nvme_dev *dev = nvmeq->dev; 1579 1580 nvmeq->sq_tail = 0; 1581 nvmeq->last_sq_tail = 0; 1582 nvmeq->cq_head = 0; 1583 nvmeq->cq_phase = 1; 1584 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1585 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1586 nvme_dbbuf_init(dev, nvmeq, qid); 1587 dev->online_queues++; 1588 wmb(); /* ensure the first interrupt sees the initialization */ 1589 } 1590 1591 /* 1592 * Try getting shutdown_lock while setting up IO queues. 1593 */ 1594 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1595 { 1596 /* 1597 * Give up if the lock is being held by nvme_dev_disable. 1598 */ 1599 if (!mutex_trylock(&dev->shutdown_lock)) 1600 return -ENODEV; 1601 1602 /* 1603 * Controller is in wrong state, fail early. 1604 */ 1605 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1606 mutex_unlock(&dev->shutdown_lock); 1607 return -ENODEV; 1608 } 1609 1610 return 0; 1611 } 1612 1613 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1614 { 1615 struct nvme_dev *dev = nvmeq->dev; 1616 int result; 1617 u16 vector = 0; 1618 1619 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1620 1621 /* 1622 * A queue's vector matches the queue identifier unless the controller 1623 * has only one vector available. 1624 */ 1625 if (!polled) 1626 vector = dev->num_vecs == 1 ? 0 : qid; 1627 else 1628 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1629 1630 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1631 if (result) 1632 return result; 1633 1634 result = adapter_alloc_sq(dev, qid, nvmeq); 1635 if (result < 0) 1636 return result; 1637 if (result) 1638 goto release_cq; 1639 1640 nvmeq->cq_vector = vector; 1641 1642 result = nvme_setup_io_queues_trylock(dev); 1643 if (result) 1644 return result; 1645 nvme_init_queue(nvmeq, qid); 1646 if (!polled) { 1647 result = queue_request_irq(nvmeq); 1648 if (result < 0) 1649 goto release_sq; 1650 } 1651 1652 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1653 mutex_unlock(&dev->shutdown_lock); 1654 return result; 1655 1656 release_sq: 1657 dev->online_queues--; 1658 mutex_unlock(&dev->shutdown_lock); 1659 adapter_delete_sq(dev, qid); 1660 release_cq: 1661 adapter_delete_cq(dev, qid); 1662 return result; 1663 } 1664 1665 static const struct blk_mq_ops nvme_mq_admin_ops = { 1666 .queue_rq = nvme_queue_rq, 1667 .complete = nvme_pci_complete_rq, 1668 .init_hctx = nvme_admin_init_hctx, 1669 .init_request = nvme_pci_init_request, 1670 .timeout = nvme_timeout, 1671 }; 1672 1673 static const struct blk_mq_ops nvme_mq_ops = { 1674 .queue_rq = nvme_queue_rq, 1675 .queue_rqs = nvme_queue_rqs, 1676 .complete = nvme_pci_complete_rq, 1677 .commit_rqs = nvme_commit_rqs, 1678 .init_hctx = nvme_init_hctx, 1679 .init_request = nvme_pci_init_request, 1680 .map_queues = nvme_pci_map_queues, 1681 .timeout = nvme_timeout, 1682 .poll = nvme_poll, 1683 }; 1684 1685 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1686 { 1687 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1688 /* 1689 * If the controller was reset during removal, it's possible 1690 * user requests may be waiting on a stopped queue. Start the 1691 * queue to flush these to completion. 1692 */ 1693 nvme_unquiesce_admin_queue(&dev->ctrl); 1694 nvme_remove_admin_tag_set(&dev->ctrl); 1695 } 1696 } 1697 1698 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1699 { 1700 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1701 } 1702 1703 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1704 { 1705 struct pci_dev *pdev = to_pci_dev(dev->dev); 1706 1707 if (size <= dev->bar_mapped_size) 1708 return 0; 1709 if (size > pci_resource_len(pdev, 0)) 1710 return -ENOMEM; 1711 if (dev->bar) 1712 iounmap(dev->bar); 1713 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1714 if (!dev->bar) { 1715 dev->bar_mapped_size = 0; 1716 return -ENOMEM; 1717 } 1718 dev->bar_mapped_size = size; 1719 dev->dbs = dev->bar + NVME_REG_DBS; 1720 1721 return 0; 1722 } 1723 1724 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1725 { 1726 int result; 1727 u32 aqa; 1728 struct nvme_queue *nvmeq; 1729 1730 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1731 if (result < 0) 1732 return result; 1733 1734 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1735 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1736 1737 if (dev->subsystem && 1738 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1739 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1740 1741 /* 1742 * If the device has been passed off to us in an enabled state, just 1743 * clear the enabled bit. The spec says we should set the 'shutdown 1744 * notification bits', but doing so may cause the device to complete 1745 * commands to the admin queue ... and we don't know what memory that 1746 * might be pointing at! 1747 */ 1748 result = nvme_disable_ctrl(&dev->ctrl, false); 1749 if (result < 0) 1750 return result; 1751 1752 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1753 if (result) 1754 return result; 1755 1756 dev->ctrl.numa_node = dev_to_node(dev->dev); 1757 1758 nvmeq = &dev->queues[0]; 1759 aqa = nvmeq->q_depth - 1; 1760 aqa |= aqa << 16; 1761 1762 writel(aqa, dev->bar + NVME_REG_AQA); 1763 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1764 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1765 1766 result = nvme_enable_ctrl(&dev->ctrl); 1767 if (result) 1768 return result; 1769 1770 nvmeq->cq_vector = 0; 1771 nvme_init_queue(nvmeq, 0); 1772 result = queue_request_irq(nvmeq); 1773 if (result) { 1774 dev->online_queues--; 1775 return result; 1776 } 1777 1778 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1779 return result; 1780 } 1781 1782 static int nvme_create_io_queues(struct nvme_dev *dev) 1783 { 1784 unsigned i, max, rw_queues; 1785 int ret = 0; 1786 1787 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1788 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1789 ret = -ENOMEM; 1790 break; 1791 } 1792 } 1793 1794 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1795 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1796 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1797 dev->io_queues[HCTX_TYPE_READ]; 1798 } else { 1799 rw_queues = max; 1800 } 1801 1802 for (i = dev->online_queues; i <= max; i++) { 1803 bool polled = i > rw_queues; 1804 1805 ret = nvme_create_queue(&dev->queues[i], i, polled); 1806 if (ret) 1807 break; 1808 } 1809 1810 /* 1811 * Ignore failing Create SQ/CQ commands, we can continue with less 1812 * than the desired amount of queues, and even a controller without 1813 * I/O queues can still be used to issue admin commands. This might 1814 * be useful to upgrade a buggy firmware for example. 1815 */ 1816 return ret >= 0 ? 0 : ret; 1817 } 1818 1819 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1820 { 1821 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1822 1823 return 1ULL << (12 + 4 * szu); 1824 } 1825 1826 static u32 nvme_cmb_size(struct nvme_dev *dev) 1827 { 1828 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1829 } 1830 1831 static void nvme_map_cmb(struct nvme_dev *dev) 1832 { 1833 u64 size, offset; 1834 resource_size_t bar_size; 1835 struct pci_dev *pdev = to_pci_dev(dev->dev); 1836 int bar; 1837 1838 if (dev->cmb_size) 1839 return; 1840 1841 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1842 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1843 1844 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1845 if (!dev->cmbsz) 1846 return; 1847 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1848 1849 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1850 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1851 bar = NVME_CMB_BIR(dev->cmbloc); 1852 bar_size = pci_resource_len(pdev, bar); 1853 1854 if (offset > bar_size) 1855 return; 1856 1857 /* 1858 * Tell the controller about the host side address mapping the CMB, 1859 * and enable CMB decoding for the NVMe 1.4+ scheme: 1860 */ 1861 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1862 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1863 (pci_bus_address(pdev, bar) + offset), 1864 dev->bar + NVME_REG_CMBMSC); 1865 } 1866 1867 /* 1868 * Controllers may support a CMB size larger than their BAR, 1869 * for example, due to being behind a bridge. Reduce the CMB to 1870 * the reported size of the BAR 1871 */ 1872 if (size > bar_size - offset) 1873 size = bar_size - offset; 1874 1875 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1876 dev_warn(dev->ctrl.device, 1877 "failed to register the CMB\n"); 1878 return; 1879 } 1880 1881 dev->cmb_size = size; 1882 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1883 1884 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1885 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1886 pci_p2pmem_publish(pdev, true); 1887 1888 nvme_update_attrs(dev); 1889 } 1890 1891 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1892 { 1893 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1894 u64 dma_addr = dev->host_mem_descs_dma; 1895 struct nvme_command c = { }; 1896 int ret; 1897 1898 c.features.opcode = nvme_admin_set_features; 1899 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1900 c.features.dword11 = cpu_to_le32(bits); 1901 c.features.dword12 = cpu_to_le32(host_mem_size); 1902 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1903 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1904 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1905 1906 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1907 if (ret) { 1908 dev_warn(dev->ctrl.device, 1909 "failed to set host mem (err %d, flags %#x).\n", 1910 ret, bits); 1911 } else 1912 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1913 1914 return ret; 1915 } 1916 1917 static void nvme_free_host_mem(struct nvme_dev *dev) 1918 { 1919 int i; 1920 1921 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1922 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1923 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1924 1925 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1926 le64_to_cpu(desc->addr), 1927 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1928 } 1929 1930 kfree(dev->host_mem_desc_bufs); 1931 dev->host_mem_desc_bufs = NULL; 1932 dma_free_coherent(dev->dev, 1933 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1934 dev->host_mem_descs, dev->host_mem_descs_dma); 1935 dev->host_mem_descs = NULL; 1936 dev->nr_host_mem_descs = 0; 1937 } 1938 1939 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1940 u32 chunk_size) 1941 { 1942 struct nvme_host_mem_buf_desc *descs; 1943 u32 max_entries, len; 1944 dma_addr_t descs_dma; 1945 int i = 0; 1946 void **bufs; 1947 u64 size, tmp; 1948 1949 tmp = (preferred + chunk_size - 1); 1950 do_div(tmp, chunk_size); 1951 max_entries = tmp; 1952 1953 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1954 max_entries = dev->ctrl.hmmaxd; 1955 1956 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1957 &descs_dma, GFP_KERNEL); 1958 if (!descs) 1959 goto out; 1960 1961 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1962 if (!bufs) 1963 goto out_free_descs; 1964 1965 for (size = 0; size < preferred && i < max_entries; size += len) { 1966 dma_addr_t dma_addr; 1967 1968 len = min_t(u64, chunk_size, preferred - size); 1969 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1970 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1971 if (!bufs[i]) 1972 break; 1973 1974 descs[i].addr = cpu_to_le64(dma_addr); 1975 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1976 i++; 1977 } 1978 1979 if (!size) 1980 goto out_free_bufs; 1981 1982 dev->nr_host_mem_descs = i; 1983 dev->host_mem_size = size; 1984 dev->host_mem_descs = descs; 1985 dev->host_mem_descs_dma = descs_dma; 1986 dev->host_mem_desc_bufs = bufs; 1987 return 0; 1988 1989 out_free_bufs: 1990 while (--i >= 0) { 1991 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1992 1993 dma_free_attrs(dev->dev, size, bufs[i], 1994 le64_to_cpu(descs[i].addr), 1995 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1996 } 1997 1998 kfree(bufs); 1999 out_free_descs: 2000 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2001 descs_dma); 2002 out: 2003 dev->host_mem_descs = NULL; 2004 return -ENOMEM; 2005 } 2006 2007 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2008 { 2009 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2010 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2011 u64 chunk_size; 2012 2013 /* start big and work our way down */ 2014 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2015 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2016 if (!min || dev->host_mem_size >= min) 2017 return 0; 2018 nvme_free_host_mem(dev); 2019 } 2020 } 2021 2022 return -ENOMEM; 2023 } 2024 2025 static int nvme_setup_host_mem(struct nvme_dev *dev) 2026 { 2027 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2028 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2029 u64 min = (u64)dev->ctrl.hmmin * 4096; 2030 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2031 int ret; 2032 2033 if (!dev->ctrl.hmpre) 2034 return 0; 2035 2036 preferred = min(preferred, max); 2037 if (min > max) { 2038 dev_warn(dev->ctrl.device, 2039 "min host memory (%lld MiB) above limit (%d MiB).\n", 2040 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2041 nvme_free_host_mem(dev); 2042 return 0; 2043 } 2044 2045 /* 2046 * If we already have a buffer allocated check if we can reuse it. 2047 */ 2048 if (dev->host_mem_descs) { 2049 if (dev->host_mem_size >= min) 2050 enable_bits |= NVME_HOST_MEM_RETURN; 2051 else 2052 nvme_free_host_mem(dev); 2053 } 2054 2055 if (!dev->host_mem_descs) { 2056 if (nvme_alloc_host_mem(dev, min, preferred)) { 2057 dev_warn(dev->ctrl.device, 2058 "failed to allocate host memory buffer.\n"); 2059 return 0; /* controller must work without HMB */ 2060 } 2061 2062 dev_info(dev->ctrl.device, 2063 "allocated %lld MiB host memory buffer.\n", 2064 dev->host_mem_size >> ilog2(SZ_1M)); 2065 } 2066 2067 ret = nvme_set_host_mem(dev, enable_bits); 2068 if (ret) 2069 nvme_free_host_mem(dev); 2070 return ret; 2071 } 2072 2073 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2074 char *buf) 2075 { 2076 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2077 2078 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2079 ndev->cmbloc, ndev->cmbsz); 2080 } 2081 static DEVICE_ATTR_RO(cmb); 2082 2083 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2084 char *buf) 2085 { 2086 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2087 2088 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2089 } 2090 static DEVICE_ATTR_RO(cmbloc); 2091 2092 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2093 char *buf) 2094 { 2095 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2096 2097 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2098 } 2099 static DEVICE_ATTR_RO(cmbsz); 2100 2101 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2102 char *buf) 2103 { 2104 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2105 2106 return sysfs_emit(buf, "%d\n", ndev->hmb); 2107 } 2108 2109 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2110 const char *buf, size_t count) 2111 { 2112 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2113 bool new; 2114 int ret; 2115 2116 if (kstrtobool(buf, &new) < 0) 2117 return -EINVAL; 2118 2119 if (new == ndev->hmb) 2120 return count; 2121 2122 if (new) { 2123 ret = nvme_setup_host_mem(ndev); 2124 } else { 2125 ret = nvme_set_host_mem(ndev, 0); 2126 if (!ret) 2127 nvme_free_host_mem(ndev); 2128 } 2129 2130 if (ret < 0) 2131 return ret; 2132 2133 return count; 2134 } 2135 static DEVICE_ATTR_RW(hmb); 2136 2137 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2138 struct attribute *a, int n) 2139 { 2140 struct nvme_ctrl *ctrl = 2141 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2142 struct nvme_dev *dev = to_nvme_dev(ctrl); 2143 2144 if (a == &dev_attr_cmb.attr || 2145 a == &dev_attr_cmbloc.attr || 2146 a == &dev_attr_cmbsz.attr) { 2147 if (!dev->cmbsz) 2148 return 0; 2149 } 2150 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2151 return 0; 2152 2153 return a->mode; 2154 } 2155 2156 static struct attribute *nvme_pci_attrs[] = { 2157 &dev_attr_cmb.attr, 2158 &dev_attr_cmbloc.attr, 2159 &dev_attr_cmbsz.attr, 2160 &dev_attr_hmb.attr, 2161 NULL, 2162 }; 2163 2164 static const struct attribute_group nvme_pci_dev_attrs_group = { 2165 .attrs = nvme_pci_attrs, 2166 .is_visible = nvme_pci_attrs_are_visible, 2167 }; 2168 2169 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2170 &nvme_dev_attrs_group, 2171 &nvme_pci_dev_attrs_group, 2172 NULL, 2173 }; 2174 2175 static void nvme_update_attrs(struct nvme_dev *dev) 2176 { 2177 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2178 } 2179 2180 /* 2181 * nirqs is the number of interrupts available for write and read 2182 * queues. The core already reserved an interrupt for the admin queue. 2183 */ 2184 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2185 { 2186 struct nvme_dev *dev = affd->priv; 2187 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2188 2189 /* 2190 * If there is no interrupt available for queues, ensure that 2191 * the default queue is set to 1. The affinity set size is 2192 * also set to one, but the irq core ignores it for this case. 2193 * 2194 * If only one interrupt is available or 'write_queue' == 0, combine 2195 * write and read queues. 2196 * 2197 * If 'write_queues' > 0, ensure it leaves room for at least one read 2198 * queue. 2199 */ 2200 if (!nrirqs) { 2201 nrirqs = 1; 2202 nr_read_queues = 0; 2203 } else if (nrirqs == 1 || !nr_write_queues) { 2204 nr_read_queues = 0; 2205 } else if (nr_write_queues >= nrirqs) { 2206 nr_read_queues = 1; 2207 } else { 2208 nr_read_queues = nrirqs - nr_write_queues; 2209 } 2210 2211 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2212 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2213 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2214 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2215 affd->nr_sets = nr_read_queues ? 2 : 1; 2216 } 2217 2218 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2219 { 2220 struct pci_dev *pdev = to_pci_dev(dev->dev); 2221 struct irq_affinity affd = { 2222 .pre_vectors = 1, 2223 .calc_sets = nvme_calc_irq_sets, 2224 .priv = dev, 2225 }; 2226 unsigned int irq_queues, poll_queues; 2227 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2228 2229 /* 2230 * Poll queues don't need interrupts, but we need at least one I/O queue 2231 * left over for non-polled I/O. 2232 */ 2233 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2234 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2235 2236 /* 2237 * Initialize for the single interrupt case, will be updated in 2238 * nvme_calc_irq_sets(). 2239 */ 2240 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2241 dev->io_queues[HCTX_TYPE_READ] = 0; 2242 2243 /* 2244 * We need interrupts for the admin queue and each non-polled I/O queue, 2245 * but some Apple controllers require all queues to use the first 2246 * vector. 2247 */ 2248 irq_queues = 1; 2249 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2250 irq_queues += (nr_io_queues - poll_queues); 2251 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2252 flags &= ~PCI_IRQ_MSI; 2253 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2254 &affd); 2255 } 2256 2257 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2258 { 2259 /* 2260 * If tags are shared with admin queue (Apple bug), then 2261 * make sure we only use one IO queue. 2262 */ 2263 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2264 return 1; 2265 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2266 } 2267 2268 static int nvme_setup_io_queues(struct nvme_dev *dev) 2269 { 2270 struct nvme_queue *adminq = &dev->queues[0]; 2271 struct pci_dev *pdev = to_pci_dev(dev->dev); 2272 unsigned int nr_io_queues; 2273 unsigned long size; 2274 int result; 2275 2276 /* 2277 * Sample the module parameters once at reset time so that we have 2278 * stable values to work with. 2279 */ 2280 dev->nr_write_queues = write_queues; 2281 dev->nr_poll_queues = poll_queues; 2282 2283 nr_io_queues = dev->nr_allocated_queues - 1; 2284 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2285 if (result < 0) 2286 return result; 2287 2288 if (nr_io_queues == 0) 2289 return 0; 2290 2291 /* 2292 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2293 * from set to unset. If there is a window to it is truely freed, 2294 * pci_free_irq_vectors() jumping into this window will crash. 2295 * And take lock to avoid racing with pci_free_irq_vectors() in 2296 * nvme_dev_disable() path. 2297 */ 2298 result = nvme_setup_io_queues_trylock(dev); 2299 if (result) 2300 return result; 2301 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2302 pci_free_irq(pdev, 0, adminq); 2303 2304 if (dev->cmb_use_sqes) { 2305 result = nvme_cmb_qdepth(dev, nr_io_queues, 2306 sizeof(struct nvme_command)); 2307 if (result > 0) { 2308 dev->q_depth = result; 2309 dev->ctrl.sqsize = result - 1; 2310 } else { 2311 dev->cmb_use_sqes = false; 2312 } 2313 } 2314 2315 do { 2316 size = db_bar_size(dev, nr_io_queues); 2317 result = nvme_remap_bar(dev, size); 2318 if (!result) 2319 break; 2320 if (!--nr_io_queues) { 2321 result = -ENOMEM; 2322 goto out_unlock; 2323 } 2324 } while (1); 2325 adminq->q_db = dev->dbs; 2326 2327 retry: 2328 /* Deregister the admin queue's interrupt */ 2329 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2330 pci_free_irq(pdev, 0, adminq); 2331 2332 /* 2333 * If we enable msix early due to not intx, disable it again before 2334 * setting up the full range we need. 2335 */ 2336 pci_free_irq_vectors(pdev); 2337 2338 result = nvme_setup_irqs(dev, nr_io_queues); 2339 if (result <= 0) { 2340 result = -EIO; 2341 goto out_unlock; 2342 } 2343 2344 dev->num_vecs = result; 2345 result = max(result - 1, 1); 2346 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2347 2348 /* 2349 * Should investigate if there's a performance win from allocating 2350 * more queues than interrupt vectors; it might allow the submission 2351 * path to scale better, even if the receive path is limited by the 2352 * number of interrupts. 2353 */ 2354 result = queue_request_irq(adminq); 2355 if (result) 2356 goto out_unlock; 2357 set_bit(NVMEQ_ENABLED, &adminq->flags); 2358 mutex_unlock(&dev->shutdown_lock); 2359 2360 result = nvme_create_io_queues(dev); 2361 if (result || dev->online_queues < 2) 2362 return result; 2363 2364 if (dev->online_queues - 1 < dev->max_qid) { 2365 nr_io_queues = dev->online_queues - 1; 2366 nvme_delete_io_queues(dev); 2367 result = nvme_setup_io_queues_trylock(dev); 2368 if (result) 2369 return result; 2370 nvme_suspend_io_queues(dev); 2371 goto retry; 2372 } 2373 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2374 dev->io_queues[HCTX_TYPE_DEFAULT], 2375 dev->io_queues[HCTX_TYPE_READ], 2376 dev->io_queues[HCTX_TYPE_POLL]); 2377 return 0; 2378 out_unlock: 2379 mutex_unlock(&dev->shutdown_lock); 2380 return result; 2381 } 2382 2383 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2384 blk_status_t error) 2385 { 2386 struct nvme_queue *nvmeq = req->end_io_data; 2387 2388 blk_mq_free_request(req); 2389 complete(&nvmeq->delete_done); 2390 return RQ_END_IO_NONE; 2391 } 2392 2393 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2394 blk_status_t error) 2395 { 2396 struct nvme_queue *nvmeq = req->end_io_data; 2397 2398 if (error) 2399 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2400 2401 return nvme_del_queue_end(req, error); 2402 } 2403 2404 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2405 { 2406 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2407 struct request *req; 2408 struct nvme_command cmd = { }; 2409 2410 cmd.delete_queue.opcode = opcode; 2411 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2412 2413 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2414 if (IS_ERR(req)) 2415 return PTR_ERR(req); 2416 nvme_init_request(req, &cmd); 2417 2418 if (opcode == nvme_admin_delete_cq) 2419 req->end_io = nvme_del_cq_end; 2420 else 2421 req->end_io = nvme_del_queue_end; 2422 req->end_io_data = nvmeq; 2423 2424 init_completion(&nvmeq->delete_done); 2425 blk_execute_rq_nowait(req, false); 2426 return 0; 2427 } 2428 2429 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2430 { 2431 int nr_queues = dev->online_queues - 1, sent = 0; 2432 unsigned long timeout; 2433 2434 retry: 2435 timeout = NVME_ADMIN_TIMEOUT; 2436 while (nr_queues > 0) { 2437 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2438 break; 2439 nr_queues--; 2440 sent++; 2441 } 2442 while (sent) { 2443 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2444 2445 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2446 timeout); 2447 if (timeout == 0) 2448 return false; 2449 2450 sent--; 2451 if (nr_queues) 2452 goto retry; 2453 } 2454 return true; 2455 } 2456 2457 static void nvme_delete_io_queues(struct nvme_dev *dev) 2458 { 2459 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2460 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2461 } 2462 2463 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2464 { 2465 if (dev->io_queues[HCTX_TYPE_POLL]) 2466 return 3; 2467 if (dev->io_queues[HCTX_TYPE_READ]) 2468 return 2; 2469 return 1; 2470 } 2471 2472 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2473 { 2474 if (!dev->ctrl.tagset) { 2475 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2476 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2477 return; 2478 } 2479 2480 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2481 /* free previously allocated queues that are no longer usable */ 2482 nvme_free_queues(dev, dev->online_queues); 2483 } 2484 2485 static int nvme_pci_enable(struct nvme_dev *dev) 2486 { 2487 int result = -ENOMEM; 2488 struct pci_dev *pdev = to_pci_dev(dev->dev); 2489 unsigned int flags = PCI_IRQ_ALL_TYPES; 2490 2491 if (pci_enable_device_mem(pdev)) 2492 return result; 2493 2494 pci_set_master(pdev); 2495 2496 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2497 result = -ENODEV; 2498 goto disable; 2499 } 2500 2501 /* 2502 * Some devices and/or platforms don't advertise or work with INTx 2503 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2504 * adjust this later. 2505 */ 2506 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2507 flags &= ~PCI_IRQ_MSI; 2508 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2509 if (result < 0) 2510 goto disable; 2511 2512 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2513 2514 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2515 io_queue_depth); 2516 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2517 dev->dbs = dev->bar + 4096; 2518 2519 /* 2520 * Some Apple controllers require a non-standard SQE size. 2521 * Interestingly they also seem to ignore the CC:IOSQES register 2522 * so we don't bother updating it here. 2523 */ 2524 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2525 dev->io_sqes = 7; 2526 else 2527 dev->io_sqes = NVME_NVM_IOSQES; 2528 2529 /* 2530 * Temporary fix for the Apple controller found in the MacBook8,1 and 2531 * some MacBook7,1 to avoid controller resets and data loss. 2532 */ 2533 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2534 dev->q_depth = 2; 2535 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2536 "set queue depth=%u to work around controller resets\n", 2537 dev->q_depth); 2538 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2539 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2540 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2541 dev->q_depth = 64; 2542 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2543 "set queue depth=%u\n", dev->q_depth); 2544 } 2545 2546 /* 2547 * Controllers with the shared tags quirk need the IO queue to be 2548 * big enough so that we get 32 tags for the admin queue 2549 */ 2550 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2551 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2552 dev->q_depth = NVME_AQ_DEPTH + 2; 2553 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2554 dev->q_depth); 2555 } 2556 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2557 2558 nvme_map_cmb(dev); 2559 2560 pci_save_state(pdev); 2561 2562 result = nvme_pci_configure_admin_queue(dev); 2563 if (result) 2564 goto free_irq; 2565 return result; 2566 2567 free_irq: 2568 pci_free_irq_vectors(pdev); 2569 disable: 2570 pci_disable_device(pdev); 2571 return result; 2572 } 2573 2574 static void nvme_dev_unmap(struct nvme_dev *dev) 2575 { 2576 if (dev->bar) 2577 iounmap(dev->bar); 2578 pci_release_mem_regions(to_pci_dev(dev->dev)); 2579 } 2580 2581 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2582 { 2583 struct pci_dev *pdev = to_pci_dev(dev->dev); 2584 u32 csts; 2585 2586 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2587 return true; 2588 if (pdev->error_state != pci_channel_io_normal) 2589 return true; 2590 2591 csts = readl(dev->bar + NVME_REG_CSTS); 2592 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2593 } 2594 2595 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2596 { 2597 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2598 struct pci_dev *pdev = to_pci_dev(dev->dev); 2599 bool dead; 2600 2601 mutex_lock(&dev->shutdown_lock); 2602 dead = nvme_pci_ctrl_is_dead(dev); 2603 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2604 if (pci_is_enabled(pdev)) 2605 nvme_start_freeze(&dev->ctrl); 2606 /* 2607 * Give the controller a chance to complete all entered requests 2608 * if doing a safe shutdown. 2609 */ 2610 if (!dead && shutdown) 2611 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2612 } 2613 2614 nvme_quiesce_io_queues(&dev->ctrl); 2615 2616 if (!dead && dev->ctrl.queue_count > 0) { 2617 nvme_delete_io_queues(dev); 2618 nvme_disable_ctrl(&dev->ctrl, shutdown); 2619 nvme_poll_irqdisable(&dev->queues[0]); 2620 } 2621 nvme_suspend_io_queues(dev); 2622 nvme_suspend_queue(dev, 0); 2623 pci_free_irq_vectors(pdev); 2624 if (pci_is_enabled(pdev)) 2625 pci_disable_device(pdev); 2626 nvme_reap_pending_cqes(dev); 2627 2628 nvme_cancel_tagset(&dev->ctrl); 2629 nvme_cancel_admin_tagset(&dev->ctrl); 2630 2631 /* 2632 * The driver will not be starting up queues again if shutting down so 2633 * must flush all entered requests to their failed completion to avoid 2634 * deadlocking blk-mq hot-cpu notifier. 2635 */ 2636 if (shutdown) { 2637 nvme_unquiesce_io_queues(&dev->ctrl); 2638 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2639 nvme_unquiesce_admin_queue(&dev->ctrl); 2640 } 2641 mutex_unlock(&dev->shutdown_lock); 2642 } 2643 2644 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2645 { 2646 if (!nvme_wait_reset(&dev->ctrl)) 2647 return -EBUSY; 2648 nvme_dev_disable(dev, shutdown); 2649 return 0; 2650 } 2651 2652 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2653 { 2654 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2655 NVME_CTRL_PAGE_SIZE, 2656 NVME_CTRL_PAGE_SIZE, 0); 2657 if (!dev->prp_page_pool) 2658 return -ENOMEM; 2659 2660 /* Optimisation for I/Os between 4k and 128k */ 2661 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2662 256, 256, 0); 2663 if (!dev->prp_small_pool) { 2664 dma_pool_destroy(dev->prp_page_pool); 2665 return -ENOMEM; 2666 } 2667 return 0; 2668 } 2669 2670 static void nvme_release_prp_pools(struct nvme_dev *dev) 2671 { 2672 dma_pool_destroy(dev->prp_page_pool); 2673 dma_pool_destroy(dev->prp_small_pool); 2674 } 2675 2676 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2677 { 2678 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2679 2680 dev->iod_mempool = mempool_create_node(1, 2681 mempool_kmalloc, mempool_kfree, 2682 (void *)alloc_size, GFP_KERNEL, 2683 dev_to_node(dev->dev)); 2684 if (!dev->iod_mempool) 2685 return -ENOMEM; 2686 return 0; 2687 } 2688 2689 static void nvme_free_tagset(struct nvme_dev *dev) 2690 { 2691 if (dev->tagset.tags) 2692 nvme_remove_io_tag_set(&dev->ctrl); 2693 dev->ctrl.tagset = NULL; 2694 } 2695 2696 /* pairs with nvme_pci_alloc_dev */ 2697 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2698 { 2699 struct nvme_dev *dev = to_nvme_dev(ctrl); 2700 2701 nvme_free_tagset(dev); 2702 put_device(dev->dev); 2703 kfree(dev->queues); 2704 kfree(dev); 2705 } 2706 2707 static void nvme_reset_work(struct work_struct *work) 2708 { 2709 struct nvme_dev *dev = 2710 container_of(work, struct nvme_dev, ctrl.reset_work); 2711 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2712 int result; 2713 2714 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2715 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2716 dev->ctrl.state); 2717 result = -ENODEV; 2718 goto out; 2719 } 2720 2721 /* 2722 * If we're called to reset a live controller first shut it down before 2723 * moving on. 2724 */ 2725 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2726 nvme_dev_disable(dev, false); 2727 nvme_sync_queues(&dev->ctrl); 2728 2729 mutex_lock(&dev->shutdown_lock); 2730 result = nvme_pci_enable(dev); 2731 if (result) 2732 goto out_unlock; 2733 nvme_unquiesce_admin_queue(&dev->ctrl); 2734 mutex_unlock(&dev->shutdown_lock); 2735 2736 /* 2737 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2738 * initializing procedure here. 2739 */ 2740 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2741 dev_warn(dev->ctrl.device, 2742 "failed to mark controller CONNECTING\n"); 2743 result = -EBUSY; 2744 goto out; 2745 } 2746 2747 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2748 if (result) 2749 goto out; 2750 2751 nvme_dbbuf_dma_alloc(dev); 2752 2753 result = nvme_setup_host_mem(dev); 2754 if (result < 0) 2755 goto out; 2756 2757 result = nvme_setup_io_queues(dev); 2758 if (result) 2759 goto out; 2760 2761 /* 2762 * Freeze and update the number of I/O queues as thos might have 2763 * changed. If there are no I/O queues left after this reset, keep the 2764 * controller around but remove all namespaces. 2765 */ 2766 if (dev->online_queues > 1) { 2767 nvme_unquiesce_io_queues(&dev->ctrl); 2768 nvme_wait_freeze(&dev->ctrl); 2769 nvme_pci_update_nr_queues(dev); 2770 nvme_dbbuf_set(dev); 2771 nvme_unfreeze(&dev->ctrl); 2772 } else { 2773 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2774 nvme_mark_namespaces_dead(&dev->ctrl); 2775 nvme_unquiesce_io_queues(&dev->ctrl); 2776 nvme_remove_namespaces(&dev->ctrl); 2777 nvme_free_tagset(dev); 2778 } 2779 2780 /* 2781 * If only admin queue live, keep it to do further investigation or 2782 * recovery. 2783 */ 2784 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2785 dev_warn(dev->ctrl.device, 2786 "failed to mark controller live state\n"); 2787 result = -ENODEV; 2788 goto out; 2789 } 2790 2791 nvme_start_ctrl(&dev->ctrl); 2792 return; 2793 2794 out_unlock: 2795 mutex_unlock(&dev->shutdown_lock); 2796 out: 2797 /* 2798 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2799 * may be holding this pci_dev's device lock. 2800 */ 2801 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2802 result); 2803 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2804 nvme_dev_disable(dev, true); 2805 nvme_sync_queues(&dev->ctrl); 2806 nvme_mark_namespaces_dead(&dev->ctrl); 2807 nvme_unquiesce_io_queues(&dev->ctrl); 2808 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2809 } 2810 2811 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2812 { 2813 *val = readl(to_nvme_dev(ctrl)->bar + off); 2814 return 0; 2815 } 2816 2817 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2818 { 2819 writel(val, to_nvme_dev(ctrl)->bar + off); 2820 return 0; 2821 } 2822 2823 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2824 { 2825 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2826 return 0; 2827 } 2828 2829 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2830 { 2831 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2832 2833 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2834 } 2835 2836 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2837 { 2838 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2839 struct nvme_subsystem *subsys = ctrl->subsys; 2840 2841 dev_err(ctrl->device, 2842 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2843 pdev->vendor, pdev->device, 2844 nvme_strlen(subsys->model, sizeof(subsys->model)), 2845 subsys->model, nvme_strlen(subsys->firmware_rev, 2846 sizeof(subsys->firmware_rev)), 2847 subsys->firmware_rev); 2848 } 2849 2850 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2851 { 2852 struct nvme_dev *dev = to_nvme_dev(ctrl); 2853 2854 return dma_pci_p2pdma_supported(dev->dev); 2855 } 2856 2857 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2858 .name = "pcie", 2859 .module = THIS_MODULE, 2860 .flags = NVME_F_METADATA_SUPPORTED, 2861 .dev_attr_groups = nvme_pci_dev_attr_groups, 2862 .reg_read32 = nvme_pci_reg_read32, 2863 .reg_write32 = nvme_pci_reg_write32, 2864 .reg_read64 = nvme_pci_reg_read64, 2865 .free_ctrl = nvme_pci_free_ctrl, 2866 .submit_async_event = nvme_pci_submit_async_event, 2867 .get_address = nvme_pci_get_address, 2868 .print_device_info = nvme_pci_print_device_info, 2869 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2870 }; 2871 2872 static int nvme_dev_map(struct nvme_dev *dev) 2873 { 2874 struct pci_dev *pdev = to_pci_dev(dev->dev); 2875 2876 if (pci_request_mem_regions(pdev, "nvme")) 2877 return -ENODEV; 2878 2879 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2880 goto release; 2881 2882 return 0; 2883 release: 2884 pci_release_mem_regions(pdev); 2885 return -ENODEV; 2886 } 2887 2888 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2889 { 2890 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2891 /* 2892 * Several Samsung devices seem to drop off the PCIe bus 2893 * randomly when APST is on and uses the deepest sleep state. 2894 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2895 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2896 * 950 PRO 256GB", but it seems to be restricted to two Dell 2897 * laptops. 2898 */ 2899 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2900 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2901 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2902 return NVME_QUIRK_NO_DEEPEST_PS; 2903 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2904 /* 2905 * Samsung SSD 960 EVO drops off the PCIe bus after system 2906 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2907 * within few minutes after bootup on a Coffee Lake board - 2908 * ASUS PRIME Z370-A 2909 */ 2910 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2911 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2912 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2913 return NVME_QUIRK_NO_APST; 2914 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2915 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2916 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2917 /* 2918 * Forcing to use host managed nvme power settings for 2919 * lowest idle power with quick resume latency on 2920 * Samsung and Toshiba SSDs based on suspend behavior 2921 * on Coffee Lake board for LENOVO C640 2922 */ 2923 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2924 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2925 return NVME_QUIRK_SIMPLE_SUSPEND; 2926 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2927 pdev->device == 0x500f)) { 2928 /* 2929 * Exclude some Kingston NV1 and A2000 devices from 2930 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2931 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2932 */ 2933 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2934 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2935 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2936 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2937 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2938 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 2939 /* 2940 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 2941 * because of high power consumption (> 2 Watt) in s2idle 2942 * sleep. Only some boards with Intel CPU are affected. 2943 */ 2944 if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 2945 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 2946 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 2947 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 2948 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2949 } 2950 2951 /* 2952 * NVMe SSD drops off the PCIe bus after system idle 2953 * for 10 hours on a Lenovo N60z board. 2954 */ 2955 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 2956 return NVME_QUIRK_NO_APST; 2957 2958 return 0; 2959 } 2960 2961 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2962 const struct pci_device_id *id) 2963 { 2964 unsigned long quirks = id->driver_data; 2965 int node = dev_to_node(&pdev->dev); 2966 struct nvme_dev *dev; 2967 int ret = -ENOMEM; 2968 2969 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2970 if (!dev) 2971 return ERR_PTR(-ENOMEM); 2972 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2973 mutex_init(&dev->shutdown_lock); 2974 2975 dev->nr_write_queues = write_queues; 2976 dev->nr_poll_queues = poll_queues; 2977 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2978 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2979 sizeof(struct nvme_queue), GFP_KERNEL, node); 2980 if (!dev->queues) 2981 goto out_free_dev; 2982 2983 dev->dev = get_device(&pdev->dev); 2984 2985 quirks |= check_vendor_combination_bug(pdev); 2986 if (!noacpi && 2987 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 2988 acpi_storage_d3(&pdev->dev)) { 2989 /* 2990 * Some systems use a bios work around to ask for D3 on 2991 * platforms that support kernel managed suspend. 2992 */ 2993 dev_info(&pdev->dev, 2994 "platform quirk: setting simple suspend\n"); 2995 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2996 } 2997 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2998 quirks); 2999 if (ret) 3000 goto out_put_device; 3001 3002 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3003 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3004 else 3005 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3006 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3007 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3008 3009 /* 3010 * Limit the max command size to prevent iod->sg allocations going 3011 * over a single page. 3012 */ 3013 dev->ctrl.max_hw_sectors = min_t(u32, 3014 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3015 dev->ctrl.max_segments = NVME_MAX_SEGS; 3016 3017 /* 3018 * There is no support for SGLs for metadata (yet), so we are limited to 3019 * a single integrity segment for the separate metadata pointer. 3020 */ 3021 dev->ctrl.max_integrity_segments = 1; 3022 return dev; 3023 3024 out_put_device: 3025 put_device(dev->dev); 3026 kfree(dev->queues); 3027 out_free_dev: 3028 kfree(dev); 3029 return ERR_PTR(ret); 3030 } 3031 3032 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3033 { 3034 struct nvme_dev *dev; 3035 int result = -ENOMEM; 3036 3037 dev = nvme_pci_alloc_dev(pdev, id); 3038 if (IS_ERR(dev)) 3039 return PTR_ERR(dev); 3040 3041 result = nvme_dev_map(dev); 3042 if (result) 3043 goto out_uninit_ctrl; 3044 3045 result = nvme_setup_prp_pools(dev); 3046 if (result) 3047 goto out_dev_unmap; 3048 3049 result = nvme_pci_alloc_iod_mempool(dev); 3050 if (result) 3051 goto out_release_prp_pools; 3052 3053 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3054 3055 result = nvme_pci_enable(dev); 3056 if (result) 3057 goto out_release_iod_mempool; 3058 3059 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3060 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3061 if (result) 3062 goto out_disable; 3063 3064 /* 3065 * Mark the controller as connecting before sending admin commands to 3066 * allow the timeout handler to do the right thing. 3067 */ 3068 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3069 dev_warn(dev->ctrl.device, 3070 "failed to mark controller CONNECTING\n"); 3071 result = -EBUSY; 3072 goto out_disable; 3073 } 3074 3075 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3076 if (result) 3077 goto out_disable; 3078 3079 nvme_dbbuf_dma_alloc(dev); 3080 3081 result = nvme_setup_host_mem(dev); 3082 if (result < 0) 3083 goto out_disable; 3084 3085 result = nvme_setup_io_queues(dev); 3086 if (result) 3087 goto out_disable; 3088 3089 if (dev->online_queues > 1) { 3090 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3091 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3092 nvme_dbbuf_set(dev); 3093 } 3094 3095 if (!dev->ctrl.tagset) 3096 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3097 3098 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3099 dev_warn(dev->ctrl.device, 3100 "failed to mark controller live state\n"); 3101 result = -ENODEV; 3102 goto out_disable; 3103 } 3104 3105 pci_set_drvdata(pdev, dev); 3106 3107 nvme_start_ctrl(&dev->ctrl); 3108 nvme_put_ctrl(&dev->ctrl); 3109 flush_work(&dev->ctrl.scan_work); 3110 return 0; 3111 3112 out_disable: 3113 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3114 nvme_dev_disable(dev, true); 3115 nvme_free_host_mem(dev); 3116 nvme_dev_remove_admin(dev); 3117 nvme_dbbuf_dma_free(dev); 3118 nvme_free_queues(dev, 0); 3119 out_release_iod_mempool: 3120 mempool_destroy(dev->iod_mempool); 3121 out_release_prp_pools: 3122 nvme_release_prp_pools(dev); 3123 out_dev_unmap: 3124 nvme_dev_unmap(dev); 3125 out_uninit_ctrl: 3126 nvme_uninit_ctrl(&dev->ctrl); 3127 nvme_put_ctrl(&dev->ctrl); 3128 return result; 3129 } 3130 3131 static void nvme_reset_prepare(struct pci_dev *pdev) 3132 { 3133 struct nvme_dev *dev = pci_get_drvdata(pdev); 3134 3135 /* 3136 * We don't need to check the return value from waiting for the reset 3137 * state as pci_dev device lock is held, making it impossible to race 3138 * with ->remove(). 3139 */ 3140 nvme_disable_prepare_reset(dev, false); 3141 nvme_sync_queues(&dev->ctrl); 3142 } 3143 3144 static void nvme_reset_done(struct pci_dev *pdev) 3145 { 3146 struct nvme_dev *dev = pci_get_drvdata(pdev); 3147 3148 if (!nvme_try_sched_reset(&dev->ctrl)) 3149 flush_work(&dev->ctrl.reset_work); 3150 } 3151 3152 static void nvme_shutdown(struct pci_dev *pdev) 3153 { 3154 struct nvme_dev *dev = pci_get_drvdata(pdev); 3155 3156 nvme_disable_prepare_reset(dev, true); 3157 } 3158 3159 /* 3160 * The driver's remove may be called on a device in a partially initialized 3161 * state. This function must not have any dependencies on the device state in 3162 * order to proceed. 3163 */ 3164 static void nvme_remove(struct pci_dev *pdev) 3165 { 3166 struct nvme_dev *dev = pci_get_drvdata(pdev); 3167 3168 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3169 pci_set_drvdata(pdev, NULL); 3170 3171 if (!pci_device_is_present(pdev)) { 3172 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3173 nvme_dev_disable(dev, true); 3174 } 3175 3176 flush_work(&dev->ctrl.reset_work); 3177 nvme_stop_ctrl(&dev->ctrl); 3178 nvme_remove_namespaces(&dev->ctrl); 3179 nvme_dev_disable(dev, true); 3180 nvme_free_host_mem(dev); 3181 nvme_dev_remove_admin(dev); 3182 nvme_dbbuf_dma_free(dev); 3183 nvme_free_queues(dev, 0); 3184 mempool_destroy(dev->iod_mempool); 3185 nvme_release_prp_pools(dev); 3186 nvme_dev_unmap(dev); 3187 nvme_uninit_ctrl(&dev->ctrl); 3188 } 3189 3190 #ifdef CONFIG_PM_SLEEP 3191 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3192 { 3193 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3194 } 3195 3196 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3197 { 3198 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3199 } 3200 3201 static int nvme_resume(struct device *dev) 3202 { 3203 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3204 struct nvme_ctrl *ctrl = &ndev->ctrl; 3205 3206 if (ndev->last_ps == U32_MAX || 3207 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3208 goto reset; 3209 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3210 goto reset; 3211 3212 return 0; 3213 reset: 3214 return nvme_try_sched_reset(ctrl); 3215 } 3216 3217 static int nvme_suspend(struct device *dev) 3218 { 3219 struct pci_dev *pdev = to_pci_dev(dev); 3220 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3221 struct nvme_ctrl *ctrl = &ndev->ctrl; 3222 int ret = -EBUSY; 3223 3224 ndev->last_ps = U32_MAX; 3225 3226 /* 3227 * The platform does not remove power for a kernel managed suspend so 3228 * use host managed nvme power settings for lowest idle power if 3229 * possible. This should have quicker resume latency than a full device 3230 * shutdown. But if the firmware is involved after the suspend or the 3231 * device does not support any non-default power states, shut down the 3232 * device fully. 3233 * 3234 * If ASPM is not enabled for the device, shut down the device and allow 3235 * the PCI bus layer to put it into D3 in order to take the PCIe link 3236 * down, so as to allow the platform to achieve its minimum low-power 3237 * state (which may not be possible if the link is up). 3238 */ 3239 if (pm_suspend_via_firmware() || !ctrl->npss || 3240 !pcie_aspm_enabled(pdev) || 3241 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3242 return nvme_disable_prepare_reset(ndev, true); 3243 3244 nvme_start_freeze(ctrl); 3245 nvme_wait_freeze(ctrl); 3246 nvme_sync_queues(ctrl); 3247 3248 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3249 goto unfreeze; 3250 3251 /* 3252 * Host memory access may not be successful in a system suspend state, 3253 * but the specification allows the controller to access memory in a 3254 * non-operational power state. 3255 */ 3256 if (ndev->hmb) { 3257 ret = nvme_set_host_mem(ndev, 0); 3258 if (ret < 0) 3259 goto unfreeze; 3260 } 3261 3262 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3263 if (ret < 0) 3264 goto unfreeze; 3265 3266 /* 3267 * A saved state prevents pci pm from generically controlling the 3268 * device's power. If we're using protocol specific settings, we don't 3269 * want pci interfering. 3270 */ 3271 pci_save_state(pdev); 3272 3273 ret = nvme_set_power_state(ctrl, ctrl->npss); 3274 if (ret < 0) 3275 goto unfreeze; 3276 3277 if (ret) { 3278 /* discard the saved state */ 3279 pci_load_saved_state(pdev, NULL); 3280 3281 /* 3282 * Clearing npss forces a controller reset on resume. The 3283 * correct value will be rediscovered then. 3284 */ 3285 ret = nvme_disable_prepare_reset(ndev, true); 3286 ctrl->npss = 0; 3287 } 3288 unfreeze: 3289 nvme_unfreeze(ctrl); 3290 return ret; 3291 } 3292 3293 static int nvme_simple_suspend(struct device *dev) 3294 { 3295 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3296 3297 return nvme_disable_prepare_reset(ndev, true); 3298 } 3299 3300 static int nvme_simple_resume(struct device *dev) 3301 { 3302 struct pci_dev *pdev = to_pci_dev(dev); 3303 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3304 3305 return nvme_try_sched_reset(&ndev->ctrl); 3306 } 3307 3308 static const struct dev_pm_ops nvme_dev_pm_ops = { 3309 .suspend = nvme_suspend, 3310 .resume = nvme_resume, 3311 .freeze = nvme_simple_suspend, 3312 .thaw = nvme_simple_resume, 3313 .poweroff = nvme_simple_suspend, 3314 .restore = nvme_simple_resume, 3315 }; 3316 #endif /* CONFIG_PM_SLEEP */ 3317 3318 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3319 pci_channel_state_t state) 3320 { 3321 struct nvme_dev *dev = pci_get_drvdata(pdev); 3322 3323 /* 3324 * A frozen channel requires a reset. When detected, this method will 3325 * shutdown the controller to quiesce. The controller will be restarted 3326 * after the slot reset through driver's slot_reset callback. 3327 */ 3328 switch (state) { 3329 case pci_channel_io_normal: 3330 return PCI_ERS_RESULT_CAN_RECOVER; 3331 case pci_channel_io_frozen: 3332 dev_warn(dev->ctrl.device, 3333 "frozen state error detected, reset controller\n"); 3334 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3335 nvme_dev_disable(dev, true); 3336 return PCI_ERS_RESULT_DISCONNECT; 3337 } 3338 nvme_dev_disable(dev, false); 3339 return PCI_ERS_RESULT_NEED_RESET; 3340 case pci_channel_io_perm_failure: 3341 dev_warn(dev->ctrl.device, 3342 "failure state error detected, request disconnect\n"); 3343 return PCI_ERS_RESULT_DISCONNECT; 3344 } 3345 return PCI_ERS_RESULT_NEED_RESET; 3346 } 3347 3348 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3349 { 3350 struct nvme_dev *dev = pci_get_drvdata(pdev); 3351 3352 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3353 pci_restore_state(pdev); 3354 if (!nvme_try_sched_reset(&dev->ctrl)) 3355 nvme_unquiesce_io_queues(&dev->ctrl); 3356 return PCI_ERS_RESULT_RECOVERED; 3357 } 3358 3359 static void nvme_error_resume(struct pci_dev *pdev) 3360 { 3361 struct nvme_dev *dev = pci_get_drvdata(pdev); 3362 3363 flush_work(&dev->ctrl.reset_work); 3364 } 3365 3366 static const struct pci_error_handlers nvme_err_handler = { 3367 .error_detected = nvme_error_detected, 3368 .slot_reset = nvme_slot_reset, 3369 .resume = nvme_error_resume, 3370 .reset_prepare = nvme_reset_prepare, 3371 .reset_done = nvme_reset_done, 3372 }; 3373 3374 static const struct pci_device_id nvme_id_table[] = { 3375 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3376 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3377 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3378 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3379 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3380 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3381 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3382 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3383 NVME_QUIRK_DEALLOCATE_ZEROES | 3384 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3385 NVME_QUIRK_BOGUS_NID, }, 3386 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3387 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3388 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3389 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3390 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3391 NVME_QUIRK_MEDIUM_PRIO_SQ | 3392 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3393 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3394 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3395 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3396 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3397 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3398 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3399 NVME_QUIRK_BOGUS_NID, }, 3400 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3401 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3402 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3403 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3404 NVME_QUIRK_BOGUS_NID, }, 3405 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3406 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3407 NVME_QUIRK_BOGUS_NID, }, 3408 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3409 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3410 NVME_QUIRK_NO_NS_DESC_LIST, }, 3411 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3412 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3413 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3414 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3415 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3416 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3417 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3418 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3419 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3420 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3421 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3422 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3423 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3424 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3425 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3426 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3427 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3428 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3429 NVME_QUIRK_BOGUS_NID, }, 3430 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3431 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3432 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3433 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3434 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3435 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3436 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3437 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3438 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3439 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3440 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3441 NVME_QUIRK_BOGUS_NID, }, 3442 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3443 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3444 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3445 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3446 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3447 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3448 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3449 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3450 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3451 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3452 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3453 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3454 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3455 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3456 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3457 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3458 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3459 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3460 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3461 NVME_QUIRK_BOGUS_NID, }, 3462 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3463 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3464 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3465 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3466 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3467 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3468 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3469 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3470 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3471 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3472 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3473 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3474 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3475 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3476 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3477 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3478 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3479 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3480 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3481 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3482 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3483 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3484 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3485 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3486 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3487 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3488 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3489 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3490 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3491 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3492 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3493 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3494 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3495 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3496 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3497 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3498 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3499 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3500 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3501 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3502 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3503 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3504 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3505 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3506 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3507 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3508 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3509 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3510 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3511 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3512 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3513 .driver_data = NVME_QUIRK_BOGUS_NID | 3514 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3515 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3516 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3517 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3518 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3519 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3520 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3521 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3522 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3523 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3524 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3525 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3526 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3527 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3528 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3529 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3530 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3531 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3532 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3533 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3534 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3535 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3536 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3537 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3538 NVME_QUIRK_128_BYTES_SQES | 3539 NVME_QUIRK_SHARED_TAGS | 3540 NVME_QUIRK_SKIP_CID_GEN | 3541 NVME_QUIRK_IDENTIFY_CNS }, 3542 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3543 { 0, } 3544 }; 3545 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3546 3547 static struct pci_driver nvme_driver = { 3548 .name = "nvme", 3549 .id_table = nvme_id_table, 3550 .probe = nvme_probe, 3551 .remove = nvme_remove, 3552 .shutdown = nvme_shutdown, 3553 .driver = { 3554 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3555 #ifdef CONFIG_PM_SLEEP 3556 .pm = &nvme_dev_pm_ops, 3557 #endif 3558 }, 3559 .sriov_configure = pci_sriov_configure_simple, 3560 .err_handler = &nvme_err_handler, 3561 }; 3562 3563 static int __init nvme_init(void) 3564 { 3565 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3566 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3567 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3568 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3569 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3570 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3571 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3572 3573 return pci_register_driver(&nvme_driver); 3574 } 3575 3576 static void __exit nvme_exit(void) 3577 { 3578 pci_unregister_driver(&nvme_driver); 3579 flush_workqueue(nvme_wq); 3580 } 3581 3582 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3583 MODULE_LICENSE("GPL"); 3584 MODULE_VERSION("1.0"); 3585 module_init(nvme_init); 3586 module_exit(nvme_exit); 3587