1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/moduleparam.h> 7 #include <trace/events/block.h> 8 #include "nvme.h" 9 10 static bool multipath = true; 11 module_param(multipath, bool, 0444); 12 MODULE_PARM_DESC(multipath, 13 "turn on native support for multiple controllers per subsystem"); 14 15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 16 { 17 struct nvme_ns_head *h; 18 19 lockdep_assert_held(&subsys->lock); 20 list_for_each_entry(h, &subsys->nsheads, entry) 21 if (h->disk) 22 blk_mq_unfreeze_queue(h->disk->queue); 23 } 24 25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 26 { 27 struct nvme_ns_head *h; 28 29 lockdep_assert_held(&subsys->lock); 30 list_for_each_entry(h, &subsys->nsheads, entry) 31 if (h->disk) 32 blk_mq_freeze_queue_wait(h->disk->queue); 33 } 34 35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 36 { 37 struct nvme_ns_head *h; 38 39 lockdep_assert_held(&subsys->lock); 40 list_for_each_entry(h, &subsys->nsheads, entry) 41 if (h->disk) 42 blk_freeze_queue_start(h->disk->queue); 43 } 44 45 /* 46 * If multipathing is enabled we need to always use the subsystem instance 47 * number for numbering our devices to avoid conflicts between subsystems that 48 * have multiple controllers and thus use the multipath-aware subsystem node 49 * and those that have a single controller and use the controller node 50 * directly. 51 */ 52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 53 struct nvme_ctrl *ctrl, int *flags) 54 { 55 if (!multipath) { 56 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 57 } else if (ns->head->disk) { 58 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 59 ctrl->instance, ns->head->instance); 60 *flags = GENHD_FL_HIDDEN; 61 } else { 62 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 63 ns->head->instance); 64 } 65 } 66 67 void nvme_failover_req(struct request *req) 68 { 69 struct nvme_ns *ns = req->q->queuedata; 70 u16 status = nvme_req(req)->status; 71 unsigned long flags; 72 73 spin_lock_irqsave(&ns->head->requeue_lock, flags); 74 blk_steal_bios(&ns->head->requeue_list, req); 75 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 76 blk_mq_end_request(req, 0); 77 78 switch (status & 0x7ff) { 79 case NVME_SC_ANA_TRANSITION: 80 case NVME_SC_ANA_INACCESSIBLE: 81 case NVME_SC_ANA_PERSISTENT_LOSS: 82 /* 83 * If we got back an ANA error we know the controller is alive, 84 * but not ready to serve this namespaces. The spec suggests 85 * we should update our general state here, but due to the fact 86 * that the admin and I/O queues are not serialized that is 87 * fundamentally racy. So instead just clear the current path, 88 * mark the the path as pending and kick of a re-read of the ANA 89 * log page ASAP. 90 */ 91 nvme_mpath_clear_current_path(ns); 92 if (ns->ctrl->ana_log_buf) { 93 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 94 queue_work(nvme_wq, &ns->ctrl->ana_work); 95 } 96 break; 97 case NVME_SC_HOST_PATH_ERROR: 98 case NVME_SC_HOST_ABORTED_CMD: 99 /* 100 * Temporary transport disruption in talking to the controller. 101 * Try to send on a new path. 102 */ 103 nvme_mpath_clear_current_path(ns); 104 break; 105 default: 106 /* 107 * Reset the controller for any non-ANA error as we don't know 108 * what caused the error. 109 */ 110 nvme_reset_ctrl(ns->ctrl); 111 break; 112 } 113 114 kblockd_schedule_work(&ns->head->requeue_work); 115 } 116 117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 118 { 119 struct nvme_ns *ns; 120 121 down_read(&ctrl->namespaces_rwsem); 122 list_for_each_entry(ns, &ctrl->namespaces, list) { 123 if (ns->head->disk) 124 kblockd_schedule_work(&ns->head->requeue_work); 125 } 126 up_read(&ctrl->namespaces_rwsem); 127 } 128 129 static const char *nvme_ana_state_names[] = { 130 [0] = "invalid state", 131 [NVME_ANA_OPTIMIZED] = "optimized", 132 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 133 [NVME_ANA_INACCESSIBLE] = "inaccessible", 134 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 135 [NVME_ANA_CHANGE] = "change", 136 }; 137 138 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 139 { 140 struct nvme_ns_head *head = ns->head; 141 bool changed = false; 142 int node; 143 144 if (!head) 145 goto out; 146 147 for_each_node(node) { 148 if (ns == rcu_access_pointer(head->current_path[node])) { 149 rcu_assign_pointer(head->current_path[node], NULL); 150 changed = true; 151 } 152 } 153 out: 154 return changed; 155 } 156 157 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 158 { 159 struct nvme_ns *ns; 160 161 mutex_lock(&ctrl->scan_lock); 162 down_read(&ctrl->namespaces_rwsem); 163 list_for_each_entry(ns, &ctrl->namespaces, list) 164 if (nvme_mpath_clear_current_path(ns)) 165 kblockd_schedule_work(&ns->head->requeue_work); 166 up_read(&ctrl->namespaces_rwsem); 167 mutex_unlock(&ctrl->scan_lock); 168 } 169 170 static bool nvme_path_is_disabled(struct nvme_ns *ns) 171 { 172 return ns->ctrl->state != NVME_CTRL_LIVE || 173 test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 174 test_bit(NVME_NS_REMOVING, &ns->flags); 175 } 176 177 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 178 { 179 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 180 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 181 182 list_for_each_entry_rcu(ns, &head->list, siblings) { 183 if (nvme_path_is_disabled(ns)) 184 continue; 185 186 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 187 distance = node_distance(node, ns->ctrl->numa_node); 188 else 189 distance = LOCAL_DISTANCE; 190 191 switch (ns->ana_state) { 192 case NVME_ANA_OPTIMIZED: 193 if (distance < found_distance) { 194 found_distance = distance; 195 found = ns; 196 } 197 break; 198 case NVME_ANA_NONOPTIMIZED: 199 if (distance < fallback_distance) { 200 fallback_distance = distance; 201 fallback = ns; 202 } 203 break; 204 default: 205 break; 206 } 207 } 208 209 if (!found) 210 found = fallback; 211 if (found) 212 rcu_assign_pointer(head->current_path[node], found); 213 return found; 214 } 215 216 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 217 struct nvme_ns *ns) 218 { 219 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 220 siblings); 221 if (ns) 222 return ns; 223 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 224 } 225 226 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 227 int node, struct nvme_ns *old) 228 { 229 struct nvme_ns *ns, *found, *fallback = NULL; 230 231 if (list_is_singular(&head->list)) { 232 if (nvme_path_is_disabled(old)) 233 return NULL; 234 return old; 235 } 236 237 for (ns = nvme_next_ns(head, old); 238 ns != old; 239 ns = nvme_next_ns(head, ns)) { 240 if (nvme_path_is_disabled(ns)) 241 continue; 242 243 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 244 found = ns; 245 goto out; 246 } 247 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 248 fallback = ns; 249 } 250 251 if (!fallback) 252 return NULL; 253 found = fallback; 254 out: 255 rcu_assign_pointer(head->current_path[node], found); 256 return found; 257 } 258 259 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 260 { 261 return ns->ctrl->state == NVME_CTRL_LIVE && 262 ns->ana_state == NVME_ANA_OPTIMIZED; 263 } 264 265 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 266 { 267 int node = numa_node_id(); 268 struct nvme_ns *ns; 269 270 ns = srcu_dereference(head->current_path[node], &head->srcu); 271 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns) 272 ns = nvme_round_robin_path(head, node, ns); 273 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 274 ns = __nvme_find_path(head, node); 275 return ns; 276 } 277 278 static bool nvme_available_path(struct nvme_ns_head *head) 279 { 280 struct nvme_ns *ns; 281 282 list_for_each_entry_rcu(ns, &head->list, siblings) { 283 switch (ns->ctrl->state) { 284 case NVME_CTRL_LIVE: 285 case NVME_CTRL_RESETTING: 286 case NVME_CTRL_CONNECTING: 287 /* fallthru */ 288 return true; 289 default: 290 break; 291 } 292 } 293 return false; 294 } 295 296 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 297 struct bio *bio) 298 { 299 struct nvme_ns_head *head = q->queuedata; 300 struct device *dev = disk_to_dev(head->disk); 301 struct nvme_ns *ns; 302 blk_qc_t ret = BLK_QC_T_NONE; 303 int srcu_idx; 304 305 /* 306 * The namespace might be going away and the bio might 307 * be moved to a different queue via blk_steal_bios(), 308 * so we need to use the bio_split pool from the original 309 * queue to allocate the bvecs from. 310 */ 311 blk_queue_split(q, &bio); 312 313 srcu_idx = srcu_read_lock(&head->srcu); 314 ns = nvme_find_path(head); 315 if (likely(ns)) { 316 bio->bi_disk = ns->disk; 317 bio->bi_opf |= REQ_NVME_MPATH; 318 trace_block_bio_remap(bio->bi_disk->queue, bio, 319 disk_devt(ns->head->disk), 320 bio->bi_iter.bi_sector); 321 ret = direct_make_request(bio); 322 } else if (nvme_available_path(head)) { 323 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 324 325 spin_lock_irq(&head->requeue_lock); 326 bio_list_add(&head->requeue_list, bio); 327 spin_unlock_irq(&head->requeue_lock); 328 } else { 329 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 330 331 bio->bi_status = BLK_STS_IOERR; 332 bio_endio(bio); 333 } 334 335 srcu_read_unlock(&head->srcu, srcu_idx); 336 return ret; 337 } 338 339 static void nvme_requeue_work(struct work_struct *work) 340 { 341 struct nvme_ns_head *head = 342 container_of(work, struct nvme_ns_head, requeue_work); 343 struct bio *bio, *next; 344 345 spin_lock_irq(&head->requeue_lock); 346 next = bio_list_get(&head->requeue_list); 347 spin_unlock_irq(&head->requeue_lock); 348 349 while ((bio = next) != NULL) { 350 next = bio->bi_next; 351 bio->bi_next = NULL; 352 353 /* 354 * Reset disk to the mpath node and resubmit to select a new 355 * path. 356 */ 357 bio->bi_disk = head->disk; 358 generic_make_request(bio); 359 } 360 } 361 362 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 363 { 364 struct request_queue *q; 365 bool vwc = false; 366 367 mutex_init(&head->lock); 368 bio_list_init(&head->requeue_list); 369 spin_lock_init(&head->requeue_lock); 370 INIT_WORK(&head->requeue_work, nvme_requeue_work); 371 372 /* 373 * Add a multipath node if the subsystems supports multiple controllers. 374 * We also do this for private namespaces as the namespace sharing data could 375 * change after a rescan. 376 */ 377 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 378 return 0; 379 380 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node); 381 if (!q) 382 goto out; 383 q->queuedata = head; 384 blk_queue_make_request(q, nvme_ns_head_make_request); 385 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 386 /* set to a default value for 512 until disk is validated */ 387 blk_queue_logical_block_size(q, 512); 388 blk_set_stacking_limits(&q->limits); 389 390 /* we need to propagate up the VMC settings */ 391 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 392 vwc = true; 393 blk_queue_write_cache(q, vwc, vwc); 394 395 head->disk = alloc_disk(0); 396 if (!head->disk) 397 goto out_cleanup_queue; 398 head->disk->fops = &nvme_ns_head_ops; 399 head->disk->private_data = head; 400 head->disk->queue = q; 401 head->disk->flags = GENHD_FL_EXT_DEVT; 402 sprintf(head->disk->disk_name, "nvme%dn%d", 403 ctrl->subsys->instance, head->instance); 404 return 0; 405 406 out_cleanup_queue: 407 blk_cleanup_queue(q); 408 out: 409 return -ENOMEM; 410 } 411 412 static void nvme_mpath_set_live(struct nvme_ns *ns) 413 { 414 struct nvme_ns_head *head = ns->head; 415 416 lockdep_assert_held(&ns->head->lock); 417 418 if (!head->disk) 419 return; 420 421 if (!(head->disk->flags & GENHD_FL_UP)) 422 device_add_disk(&head->subsys->dev, head->disk, 423 nvme_ns_id_attr_groups); 424 425 if (nvme_path_is_optimized(ns)) { 426 int node, srcu_idx; 427 428 srcu_idx = srcu_read_lock(&head->srcu); 429 for_each_node(node) 430 __nvme_find_path(head, node); 431 srcu_read_unlock(&head->srcu, srcu_idx); 432 } 433 434 synchronize_srcu(&ns->head->srcu); 435 kblockd_schedule_work(&ns->head->requeue_work); 436 } 437 438 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 439 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 440 void *)) 441 { 442 void *base = ctrl->ana_log_buf; 443 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 444 int error, i; 445 446 lockdep_assert_held(&ctrl->ana_lock); 447 448 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 449 struct nvme_ana_group_desc *desc = base + offset; 450 u32 nr_nsids; 451 size_t nsid_buf_size; 452 453 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 454 return -EINVAL; 455 456 nr_nsids = le32_to_cpu(desc->nnsids); 457 nsid_buf_size = nr_nsids * sizeof(__le32); 458 459 if (WARN_ON_ONCE(desc->grpid == 0)) 460 return -EINVAL; 461 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 462 return -EINVAL; 463 if (WARN_ON_ONCE(desc->state == 0)) 464 return -EINVAL; 465 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 466 return -EINVAL; 467 468 offset += sizeof(*desc); 469 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 470 return -EINVAL; 471 472 error = cb(ctrl, desc, data); 473 if (error) 474 return error; 475 476 offset += nsid_buf_size; 477 } 478 479 return 0; 480 } 481 482 static inline bool nvme_state_is_live(enum nvme_ana_state state) 483 { 484 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 485 } 486 487 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 488 struct nvme_ns *ns) 489 { 490 mutex_lock(&ns->head->lock); 491 ns->ana_grpid = le32_to_cpu(desc->grpid); 492 ns->ana_state = desc->state; 493 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 494 495 if (nvme_state_is_live(ns->ana_state)) 496 nvme_mpath_set_live(ns); 497 mutex_unlock(&ns->head->lock); 498 } 499 500 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 501 struct nvme_ana_group_desc *desc, void *data) 502 { 503 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 504 unsigned *nr_change_groups = data; 505 struct nvme_ns *ns; 506 507 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 508 le32_to_cpu(desc->grpid), 509 nvme_ana_state_names[desc->state]); 510 511 if (desc->state == NVME_ANA_CHANGE) 512 (*nr_change_groups)++; 513 514 if (!nr_nsids) 515 return 0; 516 517 down_write(&ctrl->namespaces_rwsem); 518 list_for_each_entry(ns, &ctrl->namespaces, list) { 519 unsigned nsid = le32_to_cpu(desc->nsids[n]); 520 521 if (ns->head->ns_id < nsid) 522 continue; 523 if (ns->head->ns_id == nsid) 524 nvme_update_ns_ana_state(desc, ns); 525 if (++n == nr_nsids) 526 break; 527 } 528 up_write(&ctrl->namespaces_rwsem); 529 return 0; 530 } 531 532 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 533 { 534 u32 nr_change_groups = 0; 535 int error; 536 537 mutex_lock(&ctrl->ana_lock); 538 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, 539 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 540 if (error) { 541 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 542 goto out_unlock; 543 } 544 545 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 546 nvme_update_ana_state); 547 if (error) 548 goto out_unlock; 549 550 /* 551 * In theory we should have an ANATT timer per group as they might enter 552 * the change state at different times. But that is a lot of overhead 553 * just to protect against a target that keeps entering new changes 554 * states while never finishing previous ones. But we'll still 555 * eventually time out once all groups are in change state, so this 556 * isn't a big deal. 557 * 558 * We also double the ANATT value to provide some slack for transports 559 * or AEN processing overhead. 560 */ 561 if (nr_change_groups) 562 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 563 else 564 del_timer_sync(&ctrl->anatt_timer); 565 out_unlock: 566 mutex_unlock(&ctrl->ana_lock); 567 return error; 568 } 569 570 static void nvme_ana_work(struct work_struct *work) 571 { 572 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 573 574 nvme_read_ana_log(ctrl); 575 } 576 577 static void nvme_anatt_timeout(struct timer_list *t) 578 { 579 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 580 581 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 582 nvme_reset_ctrl(ctrl); 583 } 584 585 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 586 { 587 if (!nvme_ctrl_use_ana(ctrl)) 588 return; 589 del_timer_sync(&ctrl->anatt_timer); 590 cancel_work_sync(&ctrl->ana_work); 591 } 592 593 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 594 struct device_attribute subsys_attr_##_name = \ 595 __ATTR(_name, _mode, _show, _store) 596 597 static const char *nvme_iopolicy_names[] = { 598 [NVME_IOPOLICY_NUMA] = "numa", 599 [NVME_IOPOLICY_RR] = "round-robin", 600 }; 601 602 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct nvme_subsystem *subsys = 606 container_of(dev, struct nvme_subsystem, dev); 607 608 return sprintf(buf, "%s\n", 609 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 610 } 611 612 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 613 struct device_attribute *attr, const char *buf, size_t count) 614 { 615 struct nvme_subsystem *subsys = 616 container_of(dev, struct nvme_subsystem, dev); 617 int i; 618 619 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 620 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 621 WRITE_ONCE(subsys->iopolicy, i); 622 return count; 623 } 624 } 625 626 return -EINVAL; 627 } 628 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 629 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 630 631 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 632 char *buf) 633 { 634 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 635 } 636 DEVICE_ATTR_RO(ana_grpid); 637 638 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 639 char *buf) 640 { 641 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 642 643 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 644 } 645 DEVICE_ATTR_RO(ana_state); 646 647 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 648 struct nvme_ana_group_desc *desc, void *data) 649 { 650 struct nvme_ns *ns = data; 651 652 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 653 nvme_update_ns_ana_state(desc, ns); 654 return -ENXIO; /* just break out of the loop */ 655 } 656 657 return 0; 658 } 659 660 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 661 { 662 if (nvme_ctrl_use_ana(ns->ctrl)) { 663 mutex_lock(&ns->ctrl->ana_lock); 664 ns->ana_grpid = le32_to_cpu(id->anagrpid); 665 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 666 mutex_unlock(&ns->ctrl->ana_lock); 667 } else { 668 mutex_lock(&ns->head->lock); 669 ns->ana_state = NVME_ANA_OPTIMIZED; 670 nvme_mpath_set_live(ns); 671 mutex_unlock(&ns->head->lock); 672 } 673 } 674 675 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 676 { 677 if (!head->disk) 678 return; 679 if (head->disk->flags & GENHD_FL_UP) 680 del_gendisk(head->disk); 681 blk_set_queue_dying(head->disk->queue); 682 /* make sure all pending bios are cleaned up */ 683 kblockd_schedule_work(&head->requeue_work); 684 flush_work(&head->requeue_work); 685 blk_cleanup_queue(head->disk->queue); 686 put_disk(head->disk); 687 } 688 689 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 690 { 691 int error; 692 693 /* check if multipath is enabled and we have the capability */ 694 if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3))) 695 return 0; 696 697 ctrl->anacap = id->anacap; 698 ctrl->anatt = id->anatt; 699 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 700 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 701 702 mutex_init(&ctrl->ana_lock); 703 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 704 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 705 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 706 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 707 708 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 709 dev_err(ctrl->device, 710 "ANA log page size (%zd) larger than MDTS (%d).\n", 711 ctrl->ana_log_size, 712 ctrl->max_hw_sectors << SECTOR_SHIFT); 713 dev_err(ctrl->device, "disabling ANA support.\n"); 714 return 0; 715 } 716 717 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 718 kfree(ctrl->ana_log_buf); 719 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 720 if (!ctrl->ana_log_buf) { 721 error = -ENOMEM; 722 goto out; 723 } 724 725 error = nvme_read_ana_log(ctrl); 726 if (error) 727 goto out_free_ana_log_buf; 728 return 0; 729 out_free_ana_log_buf: 730 kfree(ctrl->ana_log_buf); 731 ctrl->ana_log_buf = NULL; 732 out: 733 return error; 734 } 735 736 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 737 { 738 kfree(ctrl->ana_log_buf); 739 ctrl->ana_log_buf = NULL; 740 } 741 742