xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision d58f75de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 	if (!multipath)
56 		return false;
57 	if (!ns->head->disk) {
58 		sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 			ns->head->instance);
60 		return true;
61 	}
62 	sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 		ns->ctrl->instance, ns->head->instance);
64 	*flags = GENHD_FL_HIDDEN;
65 	return true;
66 }
67 
68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 	struct bio *bio;
74 
75 	nvme_mpath_clear_current_path(ns);
76 
77 	/*
78 	 * If we got back an ANA error, we know the controller is alive but not
79 	 * ready to serve this namespace.  Kick of a re-read of the ANA
80 	 * information page, and just try any other available path for now.
81 	 */
82 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 		queue_work(nvme_wq, &ns->ctrl->ana_work);
85 	}
86 
87 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 	for (bio = req->bio; bio; bio = bio->bi_next)
89 		bio_set_dev(bio, ns->head->disk->part0);
90 	blk_steal_bios(&ns->head->requeue_list, req);
91 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92 
93 	blk_mq_end_request(req, 0);
94 	kblockd_schedule_work(&ns->head->requeue_work);
95 }
96 
97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99 	struct nvme_ns *ns;
100 
101 	down_read(&ctrl->namespaces_rwsem);
102 	list_for_each_entry(ns, &ctrl->namespaces, list) {
103 		if (ns->head->disk)
104 			kblockd_schedule_work(&ns->head->requeue_work);
105 	}
106 	up_read(&ctrl->namespaces_rwsem);
107 }
108 
109 static const char *nvme_ana_state_names[] = {
110 	[0]				= "invalid state",
111 	[NVME_ANA_OPTIMIZED]		= "optimized",
112 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
113 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
114 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
115 	[NVME_ANA_CHANGE]		= "change",
116 };
117 
118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120 	struct nvme_ns_head *head = ns->head;
121 	bool changed = false;
122 	int node;
123 
124 	if (!head)
125 		goto out;
126 
127 	for_each_node(node) {
128 		if (ns == rcu_access_pointer(head->current_path[node])) {
129 			rcu_assign_pointer(head->current_path[node], NULL);
130 			changed = true;
131 		}
132 	}
133 out:
134 	return changed;
135 }
136 
137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139 	struct nvme_ns *ns;
140 
141 	mutex_lock(&ctrl->scan_lock);
142 	down_read(&ctrl->namespaces_rwsem);
143 	list_for_each_entry(ns, &ctrl->namespaces, list)
144 		if (nvme_mpath_clear_current_path(ns))
145 			kblockd_schedule_work(&ns->head->requeue_work);
146 	up_read(&ctrl->namespaces_rwsem);
147 	mutex_unlock(&ctrl->scan_lock);
148 }
149 
150 static bool nvme_path_is_disabled(struct nvme_ns *ns)
151 {
152 	/*
153 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
154 	 * still be able to complete assuming that the controller is connected.
155 	 * Otherwise it will fail immediately and return to the requeue list.
156 	 */
157 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
158 	    ns->ctrl->state != NVME_CTRL_DELETING)
159 		return true;
160 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
161 	    test_bit(NVME_NS_REMOVING, &ns->flags))
162 		return true;
163 	return false;
164 }
165 
166 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
167 {
168 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
169 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
170 
171 	list_for_each_entry_rcu(ns, &head->list, siblings) {
172 		if (nvme_path_is_disabled(ns))
173 			continue;
174 
175 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
176 			distance = node_distance(node, ns->ctrl->numa_node);
177 		else
178 			distance = LOCAL_DISTANCE;
179 
180 		switch (ns->ana_state) {
181 		case NVME_ANA_OPTIMIZED:
182 			if (distance < found_distance) {
183 				found_distance = distance;
184 				found = ns;
185 			}
186 			break;
187 		case NVME_ANA_NONOPTIMIZED:
188 			if (distance < fallback_distance) {
189 				fallback_distance = distance;
190 				fallback = ns;
191 			}
192 			break;
193 		default:
194 			break;
195 		}
196 	}
197 
198 	if (!found)
199 		found = fallback;
200 	if (found)
201 		rcu_assign_pointer(head->current_path[node], found);
202 	return found;
203 }
204 
205 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
206 		struct nvme_ns *ns)
207 {
208 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
209 			siblings);
210 	if (ns)
211 		return ns;
212 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
213 }
214 
215 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
216 		int node, struct nvme_ns *old)
217 {
218 	struct nvme_ns *ns, *found = NULL;
219 
220 	if (list_is_singular(&head->list)) {
221 		if (nvme_path_is_disabled(old))
222 			return NULL;
223 		return old;
224 	}
225 
226 	for (ns = nvme_next_ns(head, old);
227 	     ns && ns != old;
228 	     ns = nvme_next_ns(head, ns)) {
229 		if (nvme_path_is_disabled(ns))
230 			continue;
231 
232 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
233 			found = ns;
234 			goto out;
235 		}
236 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
237 			found = ns;
238 	}
239 
240 	/*
241 	 * The loop above skips the current path for round-robin semantics.
242 	 * Fall back to the current path if either:
243 	 *  - no other optimized path found and current is optimized,
244 	 *  - no other usable path found and current is usable.
245 	 */
246 	if (!nvme_path_is_disabled(old) &&
247 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
248 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
249 		return old;
250 
251 	if (!found)
252 		return NULL;
253 out:
254 	rcu_assign_pointer(head->current_path[node], found);
255 	return found;
256 }
257 
258 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
259 {
260 	return ns->ctrl->state == NVME_CTRL_LIVE &&
261 		ns->ana_state == NVME_ANA_OPTIMIZED;
262 }
263 
264 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
265 {
266 	int node = numa_node_id();
267 	struct nvme_ns *ns;
268 
269 	ns = srcu_dereference(head->current_path[node], &head->srcu);
270 	if (unlikely(!ns))
271 		return __nvme_find_path(head, node);
272 
273 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
274 		return nvme_round_robin_path(head, node, ns);
275 	if (unlikely(!nvme_path_is_optimized(ns)))
276 		return __nvme_find_path(head, node);
277 	return ns;
278 }
279 
280 static bool nvme_available_path(struct nvme_ns_head *head)
281 {
282 	struct nvme_ns *ns;
283 
284 	list_for_each_entry_rcu(ns, &head->list, siblings) {
285 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
286 			continue;
287 		switch (ns->ctrl->state) {
288 		case NVME_CTRL_LIVE:
289 		case NVME_CTRL_RESETTING:
290 		case NVME_CTRL_CONNECTING:
291 			/* fallthru */
292 			return true;
293 		default:
294 			break;
295 		}
296 	}
297 	return false;
298 }
299 
300 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
301 {
302 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
303 	struct device *dev = disk_to_dev(head->disk);
304 	struct nvme_ns *ns;
305 	blk_qc_t ret = BLK_QC_T_NONE;
306 	int srcu_idx;
307 
308 	/*
309 	 * The namespace might be going away and the bio might be moved to a
310 	 * different queue via blk_steal_bios(), so we need to use the bio_split
311 	 * pool from the original queue to allocate the bvecs from.
312 	 */
313 	blk_queue_split(&bio);
314 
315 	srcu_idx = srcu_read_lock(&head->srcu);
316 	ns = nvme_find_path(head);
317 	if (likely(ns)) {
318 		bio_set_dev(bio, ns->disk->part0);
319 		bio->bi_opf |= REQ_NVME_MPATH;
320 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
321 				      bio->bi_iter.bi_sector);
322 		ret = submit_bio_noacct(bio);
323 	} else if (nvme_available_path(head)) {
324 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
325 
326 		spin_lock_irq(&head->requeue_lock);
327 		bio_list_add(&head->requeue_list, bio);
328 		spin_unlock_irq(&head->requeue_lock);
329 	} else {
330 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
331 
332 		bio->bi_status = BLK_STS_IOERR;
333 		bio_endio(bio);
334 	}
335 
336 	srcu_read_unlock(&head->srcu, srcu_idx);
337 	return ret;
338 }
339 
340 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
341 {
342 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
343 		return -ENXIO;
344 	return 0;
345 }
346 
347 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
348 {
349 	nvme_put_ns_head(disk->private_data);
350 }
351 
352 const struct block_device_operations nvme_ns_head_ops = {
353 	.owner		= THIS_MODULE,
354 	.submit_bio	= nvme_ns_head_submit_bio,
355 	.open		= nvme_ns_head_open,
356 	.release	= nvme_ns_head_release,
357 	.ioctl		= nvme_ns_head_ioctl,
358 	.getgeo		= nvme_getgeo,
359 	.report_zones	= nvme_report_zones,
360 	.pr_ops		= &nvme_pr_ops,
361 };
362 
363 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
364 {
365 	return container_of(cdev, struct nvme_ns_head, cdev);
366 }
367 
368 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
369 {
370 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
371 		return -ENXIO;
372 	return 0;
373 }
374 
375 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
376 {
377 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
378 	return 0;
379 }
380 
381 static const struct file_operations nvme_ns_head_chr_fops = {
382 	.owner		= THIS_MODULE,
383 	.open		= nvme_ns_head_chr_open,
384 	.release	= nvme_ns_head_chr_release,
385 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
386 	.compat_ioctl	= compat_ptr_ioctl,
387 };
388 
389 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
390 {
391 	int ret;
392 
393 	head->cdev_device.parent = &head->subsys->dev;
394 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
395 			   head->subsys->instance, head->instance);
396 	if (ret)
397 		return ret;
398 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
399 			    &nvme_ns_head_chr_fops, THIS_MODULE);
400 	if (ret)
401 		kfree_const(head->cdev_device.kobj.name);
402 	return ret;
403 }
404 
405 static void nvme_requeue_work(struct work_struct *work)
406 {
407 	struct nvme_ns_head *head =
408 		container_of(work, struct nvme_ns_head, requeue_work);
409 	struct bio *bio, *next;
410 
411 	spin_lock_irq(&head->requeue_lock);
412 	next = bio_list_get(&head->requeue_list);
413 	spin_unlock_irq(&head->requeue_lock);
414 
415 	while ((bio = next) != NULL) {
416 		next = bio->bi_next;
417 		bio->bi_next = NULL;
418 
419 		/*
420 		 * Reset disk to the mpath node and resubmit to select a new
421 		 * path.
422 		 */
423 		bio_set_dev(bio, head->disk->part0);
424 		submit_bio_noacct(bio);
425 	}
426 }
427 
428 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
429 {
430 	struct request_queue *q;
431 	bool vwc = false;
432 
433 	mutex_init(&head->lock);
434 	bio_list_init(&head->requeue_list);
435 	spin_lock_init(&head->requeue_lock);
436 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
437 
438 	/*
439 	 * Add a multipath node if the subsystems supports multiple controllers.
440 	 * We also do this for private namespaces as the namespace sharing data could
441 	 * change after a rescan.
442 	 */
443 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
444 		return 0;
445 
446 	q = blk_alloc_queue(ctrl->numa_node);
447 	if (!q)
448 		goto out;
449 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
450 	/* set to a default value for 512 until disk is validated */
451 	blk_queue_logical_block_size(q, 512);
452 	blk_set_stacking_limits(&q->limits);
453 
454 	/* we need to propagate up the VMC settings */
455 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
456 		vwc = true;
457 	blk_queue_write_cache(q, vwc, vwc);
458 
459 	head->disk = alloc_disk(0);
460 	if (!head->disk)
461 		goto out_cleanup_queue;
462 	head->disk->fops = &nvme_ns_head_ops;
463 	head->disk->private_data = head;
464 	head->disk->queue = q;
465 	head->disk->flags = GENHD_FL_EXT_DEVT;
466 	sprintf(head->disk->disk_name, "nvme%dn%d",
467 			ctrl->subsys->instance, head->instance);
468 	return 0;
469 
470 out_cleanup_queue:
471 	blk_cleanup_queue(q);
472 out:
473 	return -ENOMEM;
474 }
475 
476 static void nvme_mpath_set_live(struct nvme_ns *ns)
477 {
478 	struct nvme_ns_head *head = ns->head;
479 
480 	if (!head->disk)
481 		return;
482 
483 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
484 		device_add_disk(&head->subsys->dev, head->disk,
485 				nvme_ns_id_attr_groups);
486 		nvme_add_ns_head_cdev(head);
487 	}
488 
489 	mutex_lock(&head->lock);
490 	if (nvme_path_is_optimized(ns)) {
491 		int node, srcu_idx;
492 
493 		srcu_idx = srcu_read_lock(&head->srcu);
494 		for_each_node(node)
495 			__nvme_find_path(head, node);
496 		srcu_read_unlock(&head->srcu, srcu_idx);
497 	}
498 	mutex_unlock(&head->lock);
499 
500 	synchronize_srcu(&head->srcu);
501 	kblockd_schedule_work(&head->requeue_work);
502 }
503 
504 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
505 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
506 			void *))
507 {
508 	void *base = ctrl->ana_log_buf;
509 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
510 	int error, i;
511 
512 	lockdep_assert_held(&ctrl->ana_lock);
513 
514 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
515 		struct nvme_ana_group_desc *desc = base + offset;
516 		u32 nr_nsids;
517 		size_t nsid_buf_size;
518 
519 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
520 			return -EINVAL;
521 
522 		nr_nsids = le32_to_cpu(desc->nnsids);
523 		nsid_buf_size = nr_nsids * sizeof(__le32);
524 
525 		if (WARN_ON_ONCE(desc->grpid == 0))
526 			return -EINVAL;
527 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
528 			return -EINVAL;
529 		if (WARN_ON_ONCE(desc->state == 0))
530 			return -EINVAL;
531 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
532 			return -EINVAL;
533 
534 		offset += sizeof(*desc);
535 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
536 			return -EINVAL;
537 
538 		error = cb(ctrl, desc, data);
539 		if (error)
540 			return error;
541 
542 		offset += nsid_buf_size;
543 	}
544 
545 	return 0;
546 }
547 
548 static inline bool nvme_state_is_live(enum nvme_ana_state state)
549 {
550 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
551 }
552 
553 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
554 		struct nvme_ns *ns)
555 {
556 	ns->ana_grpid = le32_to_cpu(desc->grpid);
557 	ns->ana_state = desc->state;
558 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
559 
560 	if (nvme_state_is_live(ns->ana_state))
561 		nvme_mpath_set_live(ns);
562 }
563 
564 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
565 		struct nvme_ana_group_desc *desc, void *data)
566 {
567 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
568 	unsigned *nr_change_groups = data;
569 	struct nvme_ns *ns;
570 
571 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
572 			le32_to_cpu(desc->grpid),
573 			nvme_ana_state_names[desc->state]);
574 
575 	if (desc->state == NVME_ANA_CHANGE)
576 		(*nr_change_groups)++;
577 
578 	if (!nr_nsids)
579 		return 0;
580 
581 	down_read(&ctrl->namespaces_rwsem);
582 	list_for_each_entry(ns, &ctrl->namespaces, list) {
583 		unsigned nsid = le32_to_cpu(desc->nsids[n]);
584 
585 		if (ns->head->ns_id < nsid)
586 			continue;
587 		if (ns->head->ns_id == nsid)
588 			nvme_update_ns_ana_state(desc, ns);
589 		if (++n == nr_nsids)
590 			break;
591 	}
592 	up_read(&ctrl->namespaces_rwsem);
593 	return 0;
594 }
595 
596 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
597 {
598 	u32 nr_change_groups = 0;
599 	int error;
600 
601 	mutex_lock(&ctrl->ana_lock);
602 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
603 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
604 	if (error) {
605 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
606 		goto out_unlock;
607 	}
608 
609 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
610 			nvme_update_ana_state);
611 	if (error)
612 		goto out_unlock;
613 
614 	/*
615 	 * In theory we should have an ANATT timer per group as they might enter
616 	 * the change state at different times.  But that is a lot of overhead
617 	 * just to protect against a target that keeps entering new changes
618 	 * states while never finishing previous ones.  But we'll still
619 	 * eventually time out once all groups are in change state, so this
620 	 * isn't a big deal.
621 	 *
622 	 * We also double the ANATT value to provide some slack for transports
623 	 * or AEN processing overhead.
624 	 */
625 	if (nr_change_groups)
626 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
627 	else
628 		del_timer_sync(&ctrl->anatt_timer);
629 out_unlock:
630 	mutex_unlock(&ctrl->ana_lock);
631 	return error;
632 }
633 
634 static void nvme_ana_work(struct work_struct *work)
635 {
636 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
637 
638 	if (ctrl->state != NVME_CTRL_LIVE)
639 		return;
640 
641 	nvme_read_ana_log(ctrl);
642 }
643 
644 static void nvme_anatt_timeout(struct timer_list *t)
645 {
646 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
647 
648 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
649 	nvme_reset_ctrl(ctrl);
650 }
651 
652 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
653 {
654 	if (!nvme_ctrl_use_ana(ctrl))
655 		return;
656 	del_timer_sync(&ctrl->anatt_timer);
657 	cancel_work_sync(&ctrl->ana_work);
658 }
659 
660 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
661 	struct device_attribute subsys_attr_##_name =	\
662 		__ATTR(_name, _mode, _show, _store)
663 
664 static const char *nvme_iopolicy_names[] = {
665 	[NVME_IOPOLICY_NUMA]	= "numa",
666 	[NVME_IOPOLICY_RR]	= "round-robin",
667 };
668 
669 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
670 		struct device_attribute *attr, char *buf)
671 {
672 	struct nvme_subsystem *subsys =
673 		container_of(dev, struct nvme_subsystem, dev);
674 
675 	return sysfs_emit(buf, "%s\n",
676 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
677 }
678 
679 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
680 		struct device_attribute *attr, const char *buf, size_t count)
681 {
682 	struct nvme_subsystem *subsys =
683 		container_of(dev, struct nvme_subsystem, dev);
684 	int i;
685 
686 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
687 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
688 			WRITE_ONCE(subsys->iopolicy, i);
689 			return count;
690 		}
691 	}
692 
693 	return -EINVAL;
694 }
695 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
696 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
697 
698 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
699 		char *buf)
700 {
701 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
702 }
703 DEVICE_ATTR_RO(ana_grpid);
704 
705 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
706 		char *buf)
707 {
708 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
709 
710 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
711 }
712 DEVICE_ATTR_RO(ana_state);
713 
714 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
715 		struct nvme_ana_group_desc *desc, void *data)
716 {
717 	struct nvme_ana_group_desc *dst = data;
718 
719 	if (desc->grpid != dst->grpid)
720 		return 0;
721 
722 	*dst = *desc;
723 	return -ENXIO; /* just break out of the loop */
724 }
725 
726 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
727 {
728 	if (nvme_ctrl_use_ana(ns->ctrl)) {
729 		struct nvme_ana_group_desc desc = {
730 			.grpid = id->anagrpid,
731 			.state = 0,
732 		};
733 
734 		mutex_lock(&ns->ctrl->ana_lock);
735 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
736 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
737 		mutex_unlock(&ns->ctrl->ana_lock);
738 		if (desc.state) {
739 			/* found the group desc: update */
740 			nvme_update_ns_ana_state(&desc, ns);
741 		} else {
742 			/* group desc not found: trigger a re-read */
743 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
744 			queue_work(nvme_wq, &ns->ctrl->ana_work);
745 		}
746 	} else {
747 		ns->ana_state = NVME_ANA_OPTIMIZED;
748 		nvme_mpath_set_live(ns);
749 	}
750 
751 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
752 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
753 				   ns->head->disk->queue);
754 #ifdef CONFIG_BLK_DEV_ZONED
755 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
756 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
757 #endif
758 }
759 
760 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
761 {
762 	if (!head->disk)
763 		return;
764 	if (head->disk->flags & GENHD_FL_UP) {
765 		nvme_cdev_del(&head->cdev, &head->cdev_device);
766 		del_gendisk(head->disk);
767 	}
768 	blk_set_queue_dying(head->disk->queue);
769 	/* make sure all pending bios are cleaned up */
770 	kblockd_schedule_work(&head->requeue_work);
771 	flush_work(&head->requeue_work);
772 	blk_cleanup_queue(head->disk->queue);
773 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
774 		/*
775 		 * if device_add_disk wasn't called, prevent
776 		 * disk release to put a bogus reference on the
777 		 * request queue
778 		 */
779 		head->disk->queue = NULL;
780 	}
781 	put_disk(head->disk);
782 }
783 
784 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
785 {
786 	int error;
787 
788 	/* check if multipath is enabled and we have the capability */
789 	if (!multipath || !ctrl->subsys ||
790 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
791 		return 0;
792 
793 	ctrl->anacap = id->anacap;
794 	ctrl->anatt = id->anatt;
795 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
796 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
797 
798 	mutex_init(&ctrl->ana_lock);
799 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
800 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
801 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
802 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
803 
804 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
805 		dev_err(ctrl->device,
806 			"ANA log page size (%zd) larger than MDTS (%d).\n",
807 			ctrl->ana_log_size,
808 			ctrl->max_hw_sectors << SECTOR_SHIFT);
809 		dev_err(ctrl->device, "disabling ANA support.\n");
810 		return 0;
811 	}
812 
813 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
814 	kfree(ctrl->ana_log_buf);
815 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
816 	if (!ctrl->ana_log_buf) {
817 		error = -ENOMEM;
818 		goto out;
819 	}
820 
821 	error = nvme_read_ana_log(ctrl);
822 	if (error)
823 		goto out_free_ana_log_buf;
824 	return 0;
825 out_free_ana_log_buf:
826 	kfree(ctrl->ana_log_buf);
827 	ctrl->ana_log_buf = NULL;
828 out:
829 	return error;
830 }
831 
832 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
833 {
834 	kfree(ctrl->ana_log_buf);
835 	ctrl->ana_log_buf = NULL;
836 }
837