xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision c3651fef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 };
21 
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23 
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 	if (!val)
27 		return -EINVAL;
28 	if (!strncmp(val, "numa", 4))
29 		iopolicy = NVME_IOPOLICY_NUMA;
30 	else if (!strncmp(val, "round-robin", 11))
31 		iopolicy = NVME_IOPOLICY_RR;
32 	else
33 		return -EINVAL;
34 
35 	return 0;
36 }
37 
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42 
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 	&iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47 
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 	subsys->iopolicy = iopolicy;
51 }
52 
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 	struct nvme_ns_head *h;
56 
57 	lockdep_assert_held(&subsys->lock);
58 	list_for_each_entry(h, &subsys->nsheads, entry)
59 		if (h->disk)
60 			blk_mq_unfreeze_queue(h->disk->queue);
61 }
62 
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 	struct nvme_ns_head *h;
66 
67 	lockdep_assert_held(&subsys->lock);
68 	list_for_each_entry(h, &subsys->nsheads, entry)
69 		if (h->disk)
70 			blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72 
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 	struct nvme_ns_head *h;
76 
77 	lockdep_assert_held(&subsys->lock);
78 	list_for_each_entry(h, &subsys->nsheads, entry)
79 		if (h->disk)
80 			blk_freeze_queue_start(h->disk->queue);
81 }
82 
83 void nvme_failover_req(struct request *req)
84 {
85 	struct nvme_ns *ns = req->q->queuedata;
86 	u16 status = nvme_req(req)->status & 0x7ff;
87 	unsigned long flags;
88 	struct bio *bio;
89 
90 	nvme_mpath_clear_current_path(ns);
91 
92 	/*
93 	 * If we got back an ANA error, we know the controller is alive but not
94 	 * ready to serve this namespace.  Kick of a re-read of the ANA
95 	 * information page, and just try any other available path for now.
96 	 */
97 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 		queue_work(nvme_wq, &ns->ctrl->ana_work);
100 	}
101 
102 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 	for (bio = req->bio; bio; bio = bio->bi_next) {
104 		bio_set_dev(bio, ns->head->disk->part0);
105 		if (bio->bi_opf & REQ_POLLED) {
106 			bio->bi_opf &= ~REQ_POLLED;
107 			bio->bi_cookie = BLK_QC_T_NONE;
108 		}
109 		/*
110 		 * The alternate request queue that we may end up submitting
111 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 		 * will fail the I/O immediately with EAGAIN to the issuer.
113 		 * We are not in the issuer context which cannot block. Clear
114 		 * the flag to avoid spurious EAGAIN I/O failures.
115 		 */
116 		bio->bi_opf &= ~REQ_NOWAIT;
117 	}
118 	blk_steal_bios(&ns->head->requeue_list, req);
119 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120 
121 	blk_mq_end_request(req, 0);
122 	kblockd_schedule_work(&ns->head->requeue_work);
123 }
124 
125 void nvme_mpath_start_request(struct request *rq)
126 {
127 	struct nvme_ns *ns = rq->q->queuedata;
128 	struct gendisk *disk = ns->head->disk;
129 
130 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131 		return;
132 
133 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135 						      jiffies);
136 }
137 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138 
139 void nvme_mpath_end_request(struct request *rq)
140 {
141 	struct nvme_ns *ns = rq->q->queuedata;
142 
143 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144 		return;
145 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147 			 nvme_req(rq)->start_time);
148 }
149 
150 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151 {
152 	struct nvme_ns *ns;
153 
154 	down_read(&ctrl->namespaces_rwsem);
155 	list_for_each_entry(ns, &ctrl->namespaces, list) {
156 		if (!ns->head->disk)
157 			continue;
158 		kblockd_schedule_work(&ns->head->requeue_work);
159 		if (ctrl->state == NVME_CTRL_LIVE)
160 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
161 	}
162 	up_read(&ctrl->namespaces_rwsem);
163 }
164 
165 static const char *nvme_ana_state_names[] = {
166 	[0]				= "invalid state",
167 	[NVME_ANA_OPTIMIZED]		= "optimized",
168 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
169 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
170 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
171 	[NVME_ANA_CHANGE]		= "change",
172 };
173 
174 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175 {
176 	struct nvme_ns_head *head = ns->head;
177 	bool changed = false;
178 	int node;
179 
180 	if (!head)
181 		goto out;
182 
183 	for_each_node(node) {
184 		if (ns == rcu_access_pointer(head->current_path[node])) {
185 			rcu_assign_pointer(head->current_path[node], NULL);
186 			changed = true;
187 		}
188 	}
189 out:
190 	return changed;
191 }
192 
193 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194 {
195 	struct nvme_ns *ns;
196 
197 	down_read(&ctrl->namespaces_rwsem);
198 	list_for_each_entry(ns, &ctrl->namespaces, list) {
199 		nvme_mpath_clear_current_path(ns);
200 		kblockd_schedule_work(&ns->head->requeue_work);
201 	}
202 	up_read(&ctrl->namespaces_rwsem);
203 }
204 
205 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206 {
207 	struct nvme_ns_head *head = ns->head;
208 	sector_t capacity = get_capacity(head->disk);
209 	int node;
210 	int srcu_idx;
211 
212 	srcu_idx = srcu_read_lock(&head->srcu);
213 	list_for_each_entry_rcu(ns, &head->list, siblings) {
214 		if (capacity != get_capacity(ns->disk))
215 			clear_bit(NVME_NS_READY, &ns->flags);
216 	}
217 	srcu_read_unlock(&head->srcu, srcu_idx);
218 
219 	for_each_node(node)
220 		rcu_assign_pointer(head->current_path[node], NULL);
221 	kblockd_schedule_work(&head->requeue_work);
222 }
223 
224 static bool nvme_path_is_disabled(struct nvme_ns *ns)
225 {
226 	/*
227 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
228 	 * still be able to complete assuming that the controller is connected.
229 	 * Otherwise it will fail immediately and return to the requeue list.
230 	 */
231 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
232 	    ns->ctrl->state != NVME_CTRL_DELETING)
233 		return true;
234 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
235 	    !test_bit(NVME_NS_READY, &ns->flags))
236 		return true;
237 	return false;
238 }
239 
240 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
241 {
242 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
243 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
244 
245 	list_for_each_entry_rcu(ns, &head->list, siblings) {
246 		if (nvme_path_is_disabled(ns))
247 			continue;
248 
249 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
250 			distance = node_distance(node, ns->ctrl->numa_node);
251 		else
252 			distance = LOCAL_DISTANCE;
253 
254 		switch (ns->ana_state) {
255 		case NVME_ANA_OPTIMIZED:
256 			if (distance < found_distance) {
257 				found_distance = distance;
258 				found = ns;
259 			}
260 			break;
261 		case NVME_ANA_NONOPTIMIZED:
262 			if (distance < fallback_distance) {
263 				fallback_distance = distance;
264 				fallback = ns;
265 			}
266 			break;
267 		default:
268 			break;
269 		}
270 	}
271 
272 	if (!found)
273 		found = fallback;
274 	if (found)
275 		rcu_assign_pointer(head->current_path[node], found);
276 	return found;
277 }
278 
279 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
280 		struct nvme_ns *ns)
281 {
282 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
283 			siblings);
284 	if (ns)
285 		return ns;
286 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
287 }
288 
289 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
290 		int node, struct nvme_ns *old)
291 {
292 	struct nvme_ns *ns, *found = NULL;
293 
294 	if (list_is_singular(&head->list)) {
295 		if (nvme_path_is_disabled(old))
296 			return NULL;
297 		return old;
298 	}
299 
300 	for (ns = nvme_next_ns(head, old);
301 	     ns && ns != old;
302 	     ns = nvme_next_ns(head, ns)) {
303 		if (nvme_path_is_disabled(ns))
304 			continue;
305 
306 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
307 			found = ns;
308 			goto out;
309 		}
310 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
311 			found = ns;
312 	}
313 
314 	/*
315 	 * The loop above skips the current path for round-robin semantics.
316 	 * Fall back to the current path if either:
317 	 *  - no other optimized path found and current is optimized,
318 	 *  - no other usable path found and current is usable.
319 	 */
320 	if (!nvme_path_is_disabled(old) &&
321 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
322 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
323 		return old;
324 
325 	if (!found)
326 		return NULL;
327 out:
328 	rcu_assign_pointer(head->current_path[node], found);
329 	return found;
330 }
331 
332 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
333 {
334 	return ns->ctrl->state == NVME_CTRL_LIVE &&
335 		ns->ana_state == NVME_ANA_OPTIMIZED;
336 }
337 
338 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
339 {
340 	int node = numa_node_id();
341 	struct nvme_ns *ns;
342 
343 	ns = srcu_dereference(head->current_path[node], &head->srcu);
344 	if (unlikely(!ns))
345 		return __nvme_find_path(head, node);
346 
347 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
348 		return nvme_round_robin_path(head, node, ns);
349 	if (unlikely(!nvme_path_is_optimized(ns)))
350 		return __nvme_find_path(head, node);
351 	return ns;
352 }
353 
354 static bool nvme_available_path(struct nvme_ns_head *head)
355 {
356 	struct nvme_ns *ns;
357 
358 	list_for_each_entry_rcu(ns, &head->list, siblings) {
359 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
360 			continue;
361 		switch (ns->ctrl->state) {
362 		case NVME_CTRL_LIVE:
363 		case NVME_CTRL_RESETTING:
364 		case NVME_CTRL_CONNECTING:
365 			/* fallthru */
366 			return true;
367 		default:
368 			break;
369 		}
370 	}
371 	return false;
372 }
373 
374 static void nvme_ns_head_submit_bio(struct bio *bio)
375 {
376 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
377 	struct device *dev = disk_to_dev(head->disk);
378 	struct nvme_ns *ns;
379 	int srcu_idx;
380 
381 	/*
382 	 * The namespace might be going away and the bio might be moved to a
383 	 * different queue via blk_steal_bios(), so we need to use the bio_split
384 	 * pool from the original queue to allocate the bvecs from.
385 	 */
386 	bio = bio_split_to_limits(bio);
387 	if (!bio)
388 		return;
389 
390 	srcu_idx = srcu_read_lock(&head->srcu);
391 	ns = nvme_find_path(head);
392 	if (likely(ns)) {
393 		bio_set_dev(bio, ns->disk->part0);
394 		bio->bi_opf |= REQ_NVME_MPATH;
395 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
396 				      bio->bi_iter.bi_sector);
397 		submit_bio_noacct(bio);
398 	} else if (nvme_available_path(head)) {
399 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
400 
401 		spin_lock_irq(&head->requeue_lock);
402 		bio_list_add(&head->requeue_list, bio);
403 		spin_unlock_irq(&head->requeue_lock);
404 	} else {
405 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
406 
407 		bio_io_error(bio);
408 	}
409 
410 	srcu_read_unlock(&head->srcu, srcu_idx);
411 }
412 
413 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
414 {
415 	if (!nvme_tryget_ns_head(disk->private_data))
416 		return -ENXIO;
417 	return 0;
418 }
419 
420 static void nvme_ns_head_release(struct gendisk *disk)
421 {
422 	nvme_put_ns_head(disk->private_data);
423 }
424 
425 #ifdef CONFIG_BLK_DEV_ZONED
426 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
427 		unsigned int nr_zones, report_zones_cb cb, void *data)
428 {
429 	struct nvme_ns_head *head = disk->private_data;
430 	struct nvme_ns *ns;
431 	int srcu_idx, ret = -EWOULDBLOCK;
432 
433 	srcu_idx = srcu_read_lock(&head->srcu);
434 	ns = nvme_find_path(head);
435 	if (ns)
436 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
437 	srcu_read_unlock(&head->srcu, srcu_idx);
438 	return ret;
439 }
440 #else
441 #define nvme_ns_head_report_zones	NULL
442 #endif /* CONFIG_BLK_DEV_ZONED */
443 
444 const struct block_device_operations nvme_ns_head_ops = {
445 	.owner		= THIS_MODULE,
446 	.submit_bio	= nvme_ns_head_submit_bio,
447 	.open		= nvme_ns_head_open,
448 	.release	= nvme_ns_head_release,
449 	.ioctl		= nvme_ns_head_ioctl,
450 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
451 	.getgeo		= nvme_getgeo,
452 	.report_zones	= nvme_ns_head_report_zones,
453 	.pr_ops		= &nvme_pr_ops,
454 };
455 
456 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
457 {
458 	return container_of(cdev, struct nvme_ns_head, cdev);
459 }
460 
461 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
462 {
463 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
464 		return -ENXIO;
465 	return 0;
466 }
467 
468 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
469 {
470 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
471 	return 0;
472 }
473 
474 static const struct file_operations nvme_ns_head_chr_fops = {
475 	.owner		= THIS_MODULE,
476 	.open		= nvme_ns_head_chr_open,
477 	.release	= nvme_ns_head_chr_release,
478 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
479 	.compat_ioctl	= compat_ptr_ioctl,
480 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
481 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
482 };
483 
484 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
485 {
486 	int ret;
487 
488 	head->cdev_device.parent = &head->subsys->dev;
489 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
490 			   head->subsys->instance, head->instance);
491 	if (ret)
492 		return ret;
493 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
494 			    &nvme_ns_head_chr_fops, THIS_MODULE);
495 	return ret;
496 }
497 
498 static void nvme_requeue_work(struct work_struct *work)
499 {
500 	struct nvme_ns_head *head =
501 		container_of(work, struct nvme_ns_head, requeue_work);
502 	struct bio *bio, *next;
503 
504 	spin_lock_irq(&head->requeue_lock);
505 	next = bio_list_get(&head->requeue_list);
506 	spin_unlock_irq(&head->requeue_lock);
507 
508 	while ((bio = next) != NULL) {
509 		next = bio->bi_next;
510 		bio->bi_next = NULL;
511 
512 		submit_bio_noacct(bio);
513 	}
514 }
515 
516 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
517 {
518 	bool vwc = false;
519 
520 	mutex_init(&head->lock);
521 	bio_list_init(&head->requeue_list);
522 	spin_lock_init(&head->requeue_lock);
523 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
524 
525 	/*
526 	 * Add a multipath node if the subsystems supports multiple controllers.
527 	 * We also do this for private namespaces as the namespace sharing flag
528 	 * could change after a rescan.
529 	 */
530 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
531 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
532 		return 0;
533 
534 	head->disk = blk_alloc_disk(ctrl->numa_node);
535 	if (!head->disk)
536 		return -ENOMEM;
537 	head->disk->fops = &nvme_ns_head_ops;
538 	head->disk->private_data = head;
539 	sprintf(head->disk->disk_name, "nvme%dn%d",
540 			ctrl->subsys->instance, head->instance);
541 
542 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
543 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
544 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
545 	/*
546 	 * This assumes all controllers that refer to a namespace either
547 	 * support poll queues or not.  That is not a strict guarantee,
548 	 * but if the assumption is wrong the effect is only suboptimal
549 	 * performance but not correctness problem.
550 	 */
551 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
552 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
553 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
554 
555 	/* set to a default value of 512 until the disk is validated */
556 	blk_queue_logical_block_size(head->disk->queue, 512);
557 	blk_set_stacking_limits(&head->disk->queue->limits);
558 	blk_queue_dma_alignment(head->disk->queue, 3);
559 
560 	/* we need to propagate up the VMC settings */
561 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
562 		vwc = true;
563 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
564 	return 0;
565 }
566 
567 static void nvme_mpath_set_live(struct nvme_ns *ns)
568 {
569 	struct nvme_ns_head *head = ns->head;
570 	int rc;
571 
572 	if (!head->disk)
573 		return;
574 
575 	/*
576 	 * test_and_set_bit() is used because it is protecting against two nvme
577 	 * paths simultaneously calling device_add_disk() on the same namespace
578 	 * head.
579 	 */
580 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
581 		rc = device_add_disk(&head->subsys->dev, head->disk,
582 				     nvme_ns_id_attr_groups);
583 		if (rc) {
584 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
585 			return;
586 		}
587 		nvme_add_ns_head_cdev(head);
588 	}
589 
590 	mutex_lock(&head->lock);
591 	if (nvme_path_is_optimized(ns)) {
592 		int node, srcu_idx;
593 
594 		srcu_idx = srcu_read_lock(&head->srcu);
595 		for_each_node(node)
596 			__nvme_find_path(head, node);
597 		srcu_read_unlock(&head->srcu, srcu_idx);
598 	}
599 	mutex_unlock(&head->lock);
600 
601 	synchronize_srcu(&head->srcu);
602 	kblockd_schedule_work(&head->requeue_work);
603 }
604 
605 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
606 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
607 			void *))
608 {
609 	void *base = ctrl->ana_log_buf;
610 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
611 	int error, i;
612 
613 	lockdep_assert_held(&ctrl->ana_lock);
614 
615 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
616 		struct nvme_ana_group_desc *desc = base + offset;
617 		u32 nr_nsids;
618 		size_t nsid_buf_size;
619 
620 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
621 			return -EINVAL;
622 
623 		nr_nsids = le32_to_cpu(desc->nnsids);
624 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
625 
626 		if (WARN_ON_ONCE(desc->grpid == 0))
627 			return -EINVAL;
628 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
629 			return -EINVAL;
630 		if (WARN_ON_ONCE(desc->state == 0))
631 			return -EINVAL;
632 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
633 			return -EINVAL;
634 
635 		offset += sizeof(*desc);
636 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
637 			return -EINVAL;
638 
639 		error = cb(ctrl, desc, data);
640 		if (error)
641 			return error;
642 
643 		offset += nsid_buf_size;
644 	}
645 
646 	return 0;
647 }
648 
649 static inline bool nvme_state_is_live(enum nvme_ana_state state)
650 {
651 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
652 }
653 
654 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
655 		struct nvme_ns *ns)
656 {
657 	ns->ana_grpid = le32_to_cpu(desc->grpid);
658 	ns->ana_state = desc->state;
659 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
660 	/*
661 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
662 	 * and in turn to this path device.  However we cannot accept this I/O
663 	 * if the controller is not live.  This may deadlock if called from
664 	 * nvme_mpath_init_identify() and the ctrl will never complete
665 	 * initialization, preventing I/O from completing.  For this case we
666 	 * will reprocess the ANA log page in nvme_mpath_update() once the
667 	 * controller is ready.
668 	 */
669 	if (nvme_state_is_live(ns->ana_state) &&
670 	    ns->ctrl->state == NVME_CTRL_LIVE)
671 		nvme_mpath_set_live(ns);
672 }
673 
674 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
675 		struct nvme_ana_group_desc *desc, void *data)
676 {
677 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
678 	unsigned *nr_change_groups = data;
679 	struct nvme_ns *ns;
680 
681 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
682 			le32_to_cpu(desc->grpid),
683 			nvme_ana_state_names[desc->state]);
684 
685 	if (desc->state == NVME_ANA_CHANGE)
686 		(*nr_change_groups)++;
687 
688 	if (!nr_nsids)
689 		return 0;
690 
691 	down_read(&ctrl->namespaces_rwsem);
692 	list_for_each_entry(ns, &ctrl->namespaces, list) {
693 		unsigned nsid;
694 again:
695 		nsid = le32_to_cpu(desc->nsids[n]);
696 		if (ns->head->ns_id < nsid)
697 			continue;
698 		if (ns->head->ns_id == nsid)
699 			nvme_update_ns_ana_state(desc, ns);
700 		if (++n == nr_nsids)
701 			break;
702 		if (ns->head->ns_id > nsid)
703 			goto again;
704 	}
705 	up_read(&ctrl->namespaces_rwsem);
706 	return 0;
707 }
708 
709 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
710 {
711 	u32 nr_change_groups = 0;
712 	int error;
713 
714 	mutex_lock(&ctrl->ana_lock);
715 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
716 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
717 	if (error) {
718 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
719 		goto out_unlock;
720 	}
721 
722 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
723 			nvme_update_ana_state);
724 	if (error)
725 		goto out_unlock;
726 
727 	/*
728 	 * In theory we should have an ANATT timer per group as they might enter
729 	 * the change state at different times.  But that is a lot of overhead
730 	 * just to protect against a target that keeps entering new changes
731 	 * states while never finishing previous ones.  But we'll still
732 	 * eventually time out once all groups are in change state, so this
733 	 * isn't a big deal.
734 	 *
735 	 * We also double the ANATT value to provide some slack for transports
736 	 * or AEN processing overhead.
737 	 */
738 	if (nr_change_groups)
739 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
740 	else
741 		del_timer_sync(&ctrl->anatt_timer);
742 out_unlock:
743 	mutex_unlock(&ctrl->ana_lock);
744 	return error;
745 }
746 
747 static void nvme_ana_work(struct work_struct *work)
748 {
749 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
750 
751 	if (ctrl->state != NVME_CTRL_LIVE)
752 		return;
753 
754 	nvme_read_ana_log(ctrl);
755 }
756 
757 void nvme_mpath_update(struct nvme_ctrl *ctrl)
758 {
759 	u32 nr_change_groups = 0;
760 
761 	if (!ctrl->ana_log_buf)
762 		return;
763 
764 	mutex_lock(&ctrl->ana_lock);
765 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
766 	mutex_unlock(&ctrl->ana_lock);
767 }
768 
769 static void nvme_anatt_timeout(struct timer_list *t)
770 {
771 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
772 
773 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
774 	nvme_reset_ctrl(ctrl);
775 }
776 
777 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
778 {
779 	if (!nvme_ctrl_use_ana(ctrl))
780 		return;
781 	del_timer_sync(&ctrl->anatt_timer);
782 	cancel_work_sync(&ctrl->ana_work);
783 }
784 
785 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
786 	struct device_attribute subsys_attr_##_name =	\
787 		__ATTR(_name, _mode, _show, _store)
788 
789 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
790 		struct device_attribute *attr, char *buf)
791 {
792 	struct nvme_subsystem *subsys =
793 		container_of(dev, struct nvme_subsystem, dev);
794 
795 	return sysfs_emit(buf, "%s\n",
796 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
797 }
798 
799 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
800 		struct device_attribute *attr, const char *buf, size_t count)
801 {
802 	struct nvme_subsystem *subsys =
803 		container_of(dev, struct nvme_subsystem, dev);
804 	int i;
805 
806 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
807 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
808 			WRITE_ONCE(subsys->iopolicy, i);
809 			return count;
810 		}
811 	}
812 
813 	return -EINVAL;
814 }
815 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
816 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
817 
818 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
819 		char *buf)
820 {
821 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
822 }
823 DEVICE_ATTR_RO(ana_grpid);
824 
825 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
826 		char *buf)
827 {
828 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
829 
830 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
831 }
832 DEVICE_ATTR_RO(ana_state);
833 
834 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
835 		struct nvme_ana_group_desc *desc, void *data)
836 {
837 	struct nvme_ana_group_desc *dst = data;
838 
839 	if (desc->grpid != dst->grpid)
840 		return 0;
841 
842 	*dst = *desc;
843 	return -ENXIO; /* just break out of the loop */
844 }
845 
846 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
847 {
848 	if (nvme_ctrl_use_ana(ns->ctrl)) {
849 		struct nvme_ana_group_desc desc = {
850 			.grpid = anagrpid,
851 			.state = 0,
852 		};
853 
854 		mutex_lock(&ns->ctrl->ana_lock);
855 		ns->ana_grpid = le32_to_cpu(anagrpid);
856 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
857 		mutex_unlock(&ns->ctrl->ana_lock);
858 		if (desc.state) {
859 			/* found the group desc: update */
860 			nvme_update_ns_ana_state(&desc, ns);
861 		} else {
862 			/* group desc not found: trigger a re-read */
863 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
864 			queue_work(nvme_wq, &ns->ctrl->ana_work);
865 		}
866 	} else {
867 		ns->ana_state = NVME_ANA_OPTIMIZED;
868 		nvme_mpath_set_live(ns);
869 	}
870 
871 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
872 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
873 				   ns->head->disk->queue);
874 #ifdef CONFIG_BLK_DEV_ZONED
875 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
876 		ns->head->disk->nr_zones = ns->disk->nr_zones;
877 #endif
878 }
879 
880 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
881 {
882 	if (!head->disk)
883 		return;
884 	kblockd_schedule_work(&head->requeue_work);
885 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
886 		nvme_cdev_del(&head->cdev, &head->cdev_device);
887 		del_gendisk(head->disk);
888 	}
889 }
890 
891 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
892 {
893 	if (!head->disk)
894 		return;
895 	/* make sure all pending bios are cleaned up */
896 	kblockd_schedule_work(&head->requeue_work);
897 	flush_work(&head->requeue_work);
898 	put_disk(head->disk);
899 }
900 
901 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
902 {
903 	mutex_init(&ctrl->ana_lock);
904 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
905 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
906 }
907 
908 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
909 {
910 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
911 	size_t ana_log_size;
912 	int error = 0;
913 
914 	/* check if multipath is enabled and we have the capability */
915 	if (!multipath || !ctrl->subsys ||
916 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
917 		return 0;
918 
919 	if (!ctrl->max_namespaces ||
920 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
921 		dev_err(ctrl->device,
922 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
923 		return -EINVAL;
924 	}
925 
926 	ctrl->anacap = id->anacap;
927 	ctrl->anatt = id->anatt;
928 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
929 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
930 
931 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
932 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
933 		ctrl->max_namespaces * sizeof(__le32);
934 	if (ana_log_size > max_transfer_size) {
935 		dev_err(ctrl->device,
936 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
937 			ana_log_size, max_transfer_size);
938 		dev_err(ctrl->device, "disabling ANA support.\n");
939 		goto out_uninit;
940 	}
941 	if (ana_log_size > ctrl->ana_log_size) {
942 		nvme_mpath_stop(ctrl);
943 		nvme_mpath_uninit(ctrl);
944 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
945 		if (!ctrl->ana_log_buf)
946 			return -ENOMEM;
947 	}
948 	ctrl->ana_log_size = ana_log_size;
949 	error = nvme_read_ana_log(ctrl);
950 	if (error)
951 		goto out_uninit;
952 	return 0;
953 
954 out_uninit:
955 	nvme_mpath_uninit(ctrl);
956 	return error;
957 }
958 
959 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
960 {
961 	kvfree(ctrl->ana_log_buf);
962 	ctrl->ana_log_buf = NULL;
963 	ctrl->ana_log_size = 0;
964 }
965