xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 	if (!multipath)
56 		return false;
57 	if (!ns->head->disk) {
58 		sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 			ns->head->instance);
60 		return true;
61 	}
62 	sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 		ns->ctrl->instance, ns->head->instance);
64 	*flags = GENHD_FL_HIDDEN;
65 	return true;
66 }
67 
68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 	struct bio *bio;
74 
75 	nvme_mpath_clear_current_path(ns);
76 
77 	/*
78 	 * If we got back an ANA error, we know the controller is alive but not
79 	 * ready to serve this namespace.  Kick of a re-read of the ANA
80 	 * information page, and just try any other available path for now.
81 	 */
82 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 		queue_work(nvme_wq, &ns->ctrl->ana_work);
85 	}
86 
87 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 	for (bio = req->bio; bio; bio = bio->bi_next)
89 		bio_set_dev(bio, ns->head->disk->part0);
90 	blk_steal_bios(&ns->head->requeue_list, req);
91 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92 
93 	blk_mq_end_request(req, 0);
94 	kblockd_schedule_work(&ns->head->requeue_work);
95 }
96 
97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99 	struct nvme_ns *ns;
100 
101 	down_read(&ctrl->namespaces_rwsem);
102 	list_for_each_entry(ns, &ctrl->namespaces, list) {
103 		if (ns->head->disk)
104 			kblockd_schedule_work(&ns->head->requeue_work);
105 	}
106 	up_read(&ctrl->namespaces_rwsem);
107 }
108 
109 static const char *nvme_ana_state_names[] = {
110 	[0]				= "invalid state",
111 	[NVME_ANA_OPTIMIZED]		= "optimized",
112 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
113 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
114 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
115 	[NVME_ANA_CHANGE]		= "change",
116 };
117 
118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120 	struct nvme_ns_head *head = ns->head;
121 	bool changed = false;
122 	int node;
123 
124 	if (!head)
125 		goto out;
126 
127 	for_each_node(node) {
128 		if (ns == rcu_access_pointer(head->current_path[node])) {
129 			rcu_assign_pointer(head->current_path[node], NULL);
130 			changed = true;
131 		}
132 	}
133 out:
134 	return changed;
135 }
136 
137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139 	struct nvme_ns *ns;
140 
141 	mutex_lock(&ctrl->scan_lock);
142 	down_read(&ctrl->namespaces_rwsem);
143 	list_for_each_entry(ns, &ctrl->namespaces, list)
144 		if (nvme_mpath_clear_current_path(ns))
145 			kblockd_schedule_work(&ns->head->requeue_work);
146 	up_read(&ctrl->namespaces_rwsem);
147 	mutex_unlock(&ctrl->scan_lock);
148 }
149 
150 static bool nvme_path_is_disabled(struct nvme_ns *ns)
151 {
152 	/*
153 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
154 	 * still be able to complete assuming that the controller is connected.
155 	 * Otherwise it will fail immediately and return to the requeue list.
156 	 */
157 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
158 	    ns->ctrl->state != NVME_CTRL_DELETING)
159 		return true;
160 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
161 	    test_bit(NVME_NS_REMOVING, &ns->flags))
162 		return true;
163 	return false;
164 }
165 
166 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
167 {
168 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
169 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
170 
171 	list_for_each_entry_rcu(ns, &head->list, siblings) {
172 		if (nvme_path_is_disabled(ns))
173 			continue;
174 
175 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
176 			distance = node_distance(node, ns->ctrl->numa_node);
177 		else
178 			distance = LOCAL_DISTANCE;
179 
180 		switch (ns->ana_state) {
181 		case NVME_ANA_OPTIMIZED:
182 			if (distance < found_distance) {
183 				found_distance = distance;
184 				found = ns;
185 			}
186 			break;
187 		case NVME_ANA_NONOPTIMIZED:
188 			if (distance < fallback_distance) {
189 				fallback_distance = distance;
190 				fallback = ns;
191 			}
192 			break;
193 		default:
194 			break;
195 		}
196 	}
197 
198 	if (!found)
199 		found = fallback;
200 	if (found)
201 		rcu_assign_pointer(head->current_path[node], found);
202 	return found;
203 }
204 
205 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
206 		struct nvme_ns *ns)
207 {
208 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
209 			siblings);
210 	if (ns)
211 		return ns;
212 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
213 }
214 
215 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
216 		int node, struct nvme_ns *old)
217 {
218 	struct nvme_ns *ns, *found = NULL;
219 
220 	if (list_is_singular(&head->list)) {
221 		if (nvme_path_is_disabled(old))
222 			return NULL;
223 		return old;
224 	}
225 
226 	for (ns = nvme_next_ns(head, old);
227 	     ns && ns != old;
228 	     ns = nvme_next_ns(head, ns)) {
229 		if (nvme_path_is_disabled(ns))
230 			continue;
231 
232 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
233 			found = ns;
234 			goto out;
235 		}
236 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
237 			found = ns;
238 	}
239 
240 	/*
241 	 * The loop above skips the current path for round-robin semantics.
242 	 * Fall back to the current path if either:
243 	 *  - no other optimized path found and current is optimized,
244 	 *  - no other usable path found and current is usable.
245 	 */
246 	if (!nvme_path_is_disabled(old) &&
247 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
248 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
249 		return old;
250 
251 	if (!found)
252 		return NULL;
253 out:
254 	rcu_assign_pointer(head->current_path[node], found);
255 	return found;
256 }
257 
258 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
259 {
260 	return ns->ctrl->state == NVME_CTRL_LIVE &&
261 		ns->ana_state == NVME_ANA_OPTIMIZED;
262 }
263 
264 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
265 {
266 	int node = numa_node_id();
267 	struct nvme_ns *ns;
268 
269 	ns = srcu_dereference(head->current_path[node], &head->srcu);
270 	if (unlikely(!ns))
271 		return __nvme_find_path(head, node);
272 
273 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
274 		return nvme_round_robin_path(head, node, ns);
275 	if (unlikely(!nvme_path_is_optimized(ns)))
276 		return __nvme_find_path(head, node);
277 	return ns;
278 }
279 
280 static bool nvme_available_path(struct nvme_ns_head *head)
281 {
282 	struct nvme_ns *ns;
283 
284 	list_for_each_entry_rcu(ns, &head->list, siblings) {
285 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
286 			continue;
287 		switch (ns->ctrl->state) {
288 		case NVME_CTRL_LIVE:
289 		case NVME_CTRL_RESETTING:
290 		case NVME_CTRL_CONNECTING:
291 			/* fallthru */
292 			return true;
293 		default:
294 			break;
295 		}
296 	}
297 	return false;
298 }
299 
300 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
301 {
302 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
303 	struct device *dev = disk_to_dev(head->disk);
304 	struct nvme_ns *ns;
305 	blk_qc_t ret = BLK_QC_T_NONE;
306 	int srcu_idx;
307 
308 	/*
309 	 * The namespace might be going away and the bio might be moved to a
310 	 * different queue via blk_steal_bios(), so we need to use the bio_split
311 	 * pool from the original queue to allocate the bvecs from.
312 	 */
313 	blk_queue_split(&bio);
314 
315 	srcu_idx = srcu_read_lock(&head->srcu);
316 	ns = nvme_find_path(head);
317 	if (likely(ns)) {
318 		bio_set_dev(bio, ns->disk->part0);
319 		bio->bi_opf |= REQ_NVME_MPATH;
320 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
321 				      bio->bi_iter.bi_sector);
322 		ret = submit_bio_noacct(bio);
323 	} else if (nvme_available_path(head)) {
324 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
325 
326 		spin_lock_irq(&head->requeue_lock);
327 		bio_list_add(&head->requeue_list, bio);
328 		spin_unlock_irq(&head->requeue_lock);
329 	} else {
330 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
331 
332 		bio->bi_status = BLK_STS_IOERR;
333 		bio_endio(bio);
334 	}
335 
336 	srcu_read_unlock(&head->srcu, srcu_idx);
337 	return ret;
338 }
339 
340 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
341 {
342 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
343 		return -ENXIO;
344 	return 0;
345 }
346 
347 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
348 {
349 	nvme_put_ns_head(disk->private_data);
350 }
351 
352 #ifdef CONFIG_BLK_DEV_ZONED
353 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
354 		unsigned int nr_zones, report_zones_cb cb, void *data)
355 {
356 	struct nvme_ns_head *head = disk->private_data;
357 	struct nvme_ns *ns;
358 	int srcu_idx, ret = -EWOULDBLOCK;
359 
360 	srcu_idx = srcu_read_lock(&head->srcu);
361 	ns = nvme_find_path(head);
362 	if (ns)
363 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
364 	srcu_read_unlock(&head->srcu, srcu_idx);
365 	return ret;
366 }
367 #else
368 #define nvme_ns_head_report_zones	NULL
369 #endif /* CONFIG_BLK_DEV_ZONED */
370 
371 const struct block_device_operations nvme_ns_head_ops = {
372 	.owner		= THIS_MODULE,
373 	.submit_bio	= nvme_ns_head_submit_bio,
374 	.open		= nvme_ns_head_open,
375 	.release	= nvme_ns_head_release,
376 	.ioctl		= nvme_ns_head_ioctl,
377 	.getgeo		= nvme_getgeo,
378 	.report_zones	= nvme_ns_head_report_zones,
379 	.pr_ops		= &nvme_pr_ops,
380 };
381 
382 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
383 {
384 	return container_of(cdev, struct nvme_ns_head, cdev);
385 }
386 
387 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
388 {
389 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
390 		return -ENXIO;
391 	return 0;
392 }
393 
394 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
395 {
396 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
397 	return 0;
398 }
399 
400 static const struct file_operations nvme_ns_head_chr_fops = {
401 	.owner		= THIS_MODULE,
402 	.open		= nvme_ns_head_chr_open,
403 	.release	= nvme_ns_head_chr_release,
404 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
405 	.compat_ioctl	= compat_ptr_ioctl,
406 };
407 
408 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
409 {
410 	int ret;
411 
412 	head->cdev_device.parent = &head->subsys->dev;
413 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
414 			   head->subsys->instance, head->instance);
415 	if (ret)
416 		return ret;
417 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
418 			    &nvme_ns_head_chr_fops, THIS_MODULE);
419 	if (ret)
420 		kfree_const(head->cdev_device.kobj.name);
421 	return ret;
422 }
423 
424 static void nvme_requeue_work(struct work_struct *work)
425 {
426 	struct nvme_ns_head *head =
427 		container_of(work, struct nvme_ns_head, requeue_work);
428 	struct bio *bio, *next;
429 
430 	spin_lock_irq(&head->requeue_lock);
431 	next = bio_list_get(&head->requeue_list);
432 	spin_unlock_irq(&head->requeue_lock);
433 
434 	while ((bio = next) != NULL) {
435 		next = bio->bi_next;
436 		bio->bi_next = NULL;
437 
438 		submit_bio_noacct(bio);
439 	}
440 }
441 
442 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
443 {
444 	bool vwc = false;
445 
446 	mutex_init(&head->lock);
447 	bio_list_init(&head->requeue_list);
448 	spin_lock_init(&head->requeue_lock);
449 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
450 
451 	/*
452 	 * Add a multipath node if the subsystems supports multiple controllers.
453 	 * We also do this for private namespaces as the namespace sharing data could
454 	 * change after a rescan.
455 	 */
456 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
457 		return 0;
458 
459 	head->disk = blk_alloc_disk(ctrl->numa_node);
460 	if (!head->disk)
461 		return -ENOMEM;
462 	head->disk->fops = &nvme_ns_head_ops;
463 	head->disk->private_data = head;
464 	sprintf(head->disk->disk_name, "nvme%dn%d",
465 			ctrl->subsys->instance, head->instance);
466 
467 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
468 	/* set to a default value of 512 until the disk is validated */
469 	blk_queue_logical_block_size(head->disk->queue, 512);
470 	blk_set_stacking_limits(&head->disk->queue->limits);
471 
472 	/* we need to propagate up the VMC settings */
473 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
474 		vwc = true;
475 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
476 	return 0;
477 }
478 
479 static void nvme_mpath_set_live(struct nvme_ns *ns)
480 {
481 	struct nvme_ns_head *head = ns->head;
482 
483 	if (!head->disk)
484 		return;
485 
486 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
487 		device_add_disk(&head->subsys->dev, head->disk,
488 				nvme_ns_id_attr_groups);
489 		nvme_add_ns_head_cdev(head);
490 	}
491 
492 	mutex_lock(&head->lock);
493 	if (nvme_path_is_optimized(ns)) {
494 		int node, srcu_idx;
495 
496 		srcu_idx = srcu_read_lock(&head->srcu);
497 		for_each_node(node)
498 			__nvme_find_path(head, node);
499 		srcu_read_unlock(&head->srcu, srcu_idx);
500 	}
501 	mutex_unlock(&head->lock);
502 
503 	synchronize_srcu(&head->srcu);
504 	kblockd_schedule_work(&head->requeue_work);
505 }
506 
507 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
508 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
509 			void *))
510 {
511 	void *base = ctrl->ana_log_buf;
512 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
513 	int error, i;
514 
515 	lockdep_assert_held(&ctrl->ana_lock);
516 
517 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
518 		struct nvme_ana_group_desc *desc = base + offset;
519 		u32 nr_nsids;
520 		size_t nsid_buf_size;
521 
522 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
523 			return -EINVAL;
524 
525 		nr_nsids = le32_to_cpu(desc->nnsids);
526 		nsid_buf_size = nr_nsids * sizeof(__le32);
527 
528 		if (WARN_ON_ONCE(desc->grpid == 0))
529 			return -EINVAL;
530 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
531 			return -EINVAL;
532 		if (WARN_ON_ONCE(desc->state == 0))
533 			return -EINVAL;
534 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
535 			return -EINVAL;
536 
537 		offset += sizeof(*desc);
538 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
539 			return -EINVAL;
540 
541 		error = cb(ctrl, desc, data);
542 		if (error)
543 			return error;
544 
545 		offset += nsid_buf_size;
546 	}
547 
548 	return 0;
549 }
550 
551 static inline bool nvme_state_is_live(enum nvme_ana_state state)
552 {
553 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
554 }
555 
556 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
557 		struct nvme_ns *ns)
558 {
559 	ns->ana_grpid = le32_to_cpu(desc->grpid);
560 	ns->ana_state = desc->state;
561 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
562 
563 	if (nvme_state_is_live(ns->ana_state))
564 		nvme_mpath_set_live(ns);
565 }
566 
567 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
568 		struct nvme_ana_group_desc *desc, void *data)
569 {
570 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
571 	unsigned *nr_change_groups = data;
572 	struct nvme_ns *ns;
573 
574 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
575 			le32_to_cpu(desc->grpid),
576 			nvme_ana_state_names[desc->state]);
577 
578 	if (desc->state == NVME_ANA_CHANGE)
579 		(*nr_change_groups)++;
580 
581 	if (!nr_nsids)
582 		return 0;
583 
584 	down_read(&ctrl->namespaces_rwsem);
585 	list_for_each_entry(ns, &ctrl->namespaces, list) {
586 		unsigned nsid = le32_to_cpu(desc->nsids[n]);
587 
588 		if (ns->head->ns_id < nsid)
589 			continue;
590 		if (ns->head->ns_id == nsid)
591 			nvme_update_ns_ana_state(desc, ns);
592 		if (++n == nr_nsids)
593 			break;
594 	}
595 	up_read(&ctrl->namespaces_rwsem);
596 	return 0;
597 }
598 
599 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
600 {
601 	u32 nr_change_groups = 0;
602 	int error;
603 
604 	mutex_lock(&ctrl->ana_lock);
605 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
606 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
607 	if (error) {
608 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
609 		goto out_unlock;
610 	}
611 
612 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
613 			nvme_update_ana_state);
614 	if (error)
615 		goto out_unlock;
616 
617 	/*
618 	 * In theory we should have an ANATT timer per group as they might enter
619 	 * the change state at different times.  But that is a lot of overhead
620 	 * just to protect against a target that keeps entering new changes
621 	 * states while never finishing previous ones.  But we'll still
622 	 * eventually time out once all groups are in change state, so this
623 	 * isn't a big deal.
624 	 *
625 	 * We also double the ANATT value to provide some slack for transports
626 	 * or AEN processing overhead.
627 	 */
628 	if (nr_change_groups)
629 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
630 	else
631 		del_timer_sync(&ctrl->anatt_timer);
632 out_unlock:
633 	mutex_unlock(&ctrl->ana_lock);
634 	return error;
635 }
636 
637 static void nvme_ana_work(struct work_struct *work)
638 {
639 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
640 
641 	if (ctrl->state != NVME_CTRL_LIVE)
642 		return;
643 
644 	nvme_read_ana_log(ctrl);
645 }
646 
647 static void nvme_anatt_timeout(struct timer_list *t)
648 {
649 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
650 
651 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
652 	nvme_reset_ctrl(ctrl);
653 }
654 
655 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
656 {
657 	if (!nvme_ctrl_use_ana(ctrl))
658 		return;
659 	del_timer_sync(&ctrl->anatt_timer);
660 	cancel_work_sync(&ctrl->ana_work);
661 }
662 
663 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
664 	struct device_attribute subsys_attr_##_name =	\
665 		__ATTR(_name, _mode, _show, _store)
666 
667 static const char *nvme_iopolicy_names[] = {
668 	[NVME_IOPOLICY_NUMA]	= "numa",
669 	[NVME_IOPOLICY_RR]	= "round-robin",
670 };
671 
672 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
673 		struct device_attribute *attr, char *buf)
674 {
675 	struct nvme_subsystem *subsys =
676 		container_of(dev, struct nvme_subsystem, dev);
677 
678 	return sysfs_emit(buf, "%s\n",
679 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
680 }
681 
682 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
683 		struct device_attribute *attr, const char *buf, size_t count)
684 {
685 	struct nvme_subsystem *subsys =
686 		container_of(dev, struct nvme_subsystem, dev);
687 	int i;
688 
689 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
690 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
691 			WRITE_ONCE(subsys->iopolicy, i);
692 			return count;
693 		}
694 	}
695 
696 	return -EINVAL;
697 }
698 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
699 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
700 
701 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
702 		char *buf)
703 {
704 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
705 }
706 DEVICE_ATTR_RO(ana_grpid);
707 
708 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
709 		char *buf)
710 {
711 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
712 
713 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
714 }
715 DEVICE_ATTR_RO(ana_state);
716 
717 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
718 		struct nvme_ana_group_desc *desc, void *data)
719 {
720 	struct nvme_ana_group_desc *dst = data;
721 
722 	if (desc->grpid != dst->grpid)
723 		return 0;
724 
725 	*dst = *desc;
726 	return -ENXIO; /* just break out of the loop */
727 }
728 
729 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
730 {
731 	if (nvme_ctrl_use_ana(ns->ctrl)) {
732 		struct nvme_ana_group_desc desc = {
733 			.grpid = id->anagrpid,
734 			.state = 0,
735 		};
736 
737 		mutex_lock(&ns->ctrl->ana_lock);
738 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
739 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
740 		mutex_unlock(&ns->ctrl->ana_lock);
741 		if (desc.state) {
742 			/* found the group desc: update */
743 			nvme_update_ns_ana_state(&desc, ns);
744 		} else {
745 			/* group desc not found: trigger a re-read */
746 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
747 			queue_work(nvme_wq, &ns->ctrl->ana_work);
748 		}
749 	} else {
750 		ns->ana_state = NVME_ANA_OPTIMIZED;
751 		nvme_mpath_set_live(ns);
752 	}
753 
754 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
755 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
756 				   ns->head->disk->queue);
757 #ifdef CONFIG_BLK_DEV_ZONED
758 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
759 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
760 #endif
761 }
762 
763 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
764 {
765 	if (!head->disk)
766 		return;
767 	kblockd_schedule_work(&head->requeue_work);
768 	if (head->disk->flags & GENHD_FL_UP) {
769 		nvme_cdev_del(&head->cdev, &head->cdev_device);
770 		del_gendisk(head->disk);
771 	}
772 }
773 
774 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
775 {
776 	if (!head->disk)
777 		return;
778 	blk_set_queue_dying(head->disk->queue);
779 	/* make sure all pending bios are cleaned up */
780 	kblockd_schedule_work(&head->requeue_work);
781 	flush_work(&head->requeue_work);
782 	blk_cleanup_disk(head->disk);
783 }
784 
785 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
786 {
787 	mutex_init(&ctrl->ana_lock);
788 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
789 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
790 }
791 
792 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
793 {
794 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
795 	size_t ana_log_size;
796 	int error = 0;
797 
798 	/* check if multipath is enabled and we have the capability */
799 	if (!multipath || !ctrl->subsys ||
800 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
801 		return 0;
802 
803 	if (!ctrl->max_namespaces ||
804 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
805 		dev_err(ctrl->device,
806 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
807 		return -EINVAL;
808 	}
809 
810 	ctrl->anacap = id->anacap;
811 	ctrl->anatt = id->anatt;
812 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
813 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
814 
815 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
816 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
817 		ctrl->max_namespaces * sizeof(__le32);
818 	if (ana_log_size > max_transfer_size) {
819 		dev_err(ctrl->device,
820 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
821 			ana_log_size, max_transfer_size);
822 		dev_err(ctrl->device, "disabling ANA support.\n");
823 		goto out_uninit;
824 	}
825 	if (ana_log_size > ctrl->ana_log_size) {
826 		nvme_mpath_stop(ctrl);
827 		kfree(ctrl->ana_log_buf);
828 		ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
829 		if (!ctrl->ana_log_buf)
830 			return -ENOMEM;
831 	}
832 	ctrl->ana_log_size = ana_log_size;
833 	error = nvme_read_ana_log(ctrl);
834 	if (error)
835 		goto out_uninit;
836 	return 0;
837 
838 out_uninit:
839 	nvme_mpath_uninit(ctrl);
840 	return error;
841 }
842 
843 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
844 {
845 	kfree(ctrl->ana_log_buf);
846 	ctrl->ana_log_buf = NULL;
847 }
848