xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9 
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13 	"turn on native support for multiple controllers per subsystem");
14 
15 /*
16  * If multipathing is enabled we need to always use the subsystem instance
17  * number for numbering our devices to avoid conflicts between subsystems that
18  * have multiple controllers and thus use the multipath-aware subsystem node
19  * and those that have a single controller and use the controller node
20  * directly.
21  */
22 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
23 			struct nvme_ctrl *ctrl, int *flags)
24 {
25 	if (!multipath) {
26 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
27 	} else if (ns->head->disk) {
28 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
29 				ctrl->instance, ns->head->instance);
30 		*flags = GENHD_FL_HIDDEN;
31 	} else {
32 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
33 				ns->head->instance);
34 	}
35 }
36 
37 void nvme_failover_req(struct request *req)
38 {
39 	struct nvme_ns *ns = req->q->queuedata;
40 	u16 status = nvme_req(req)->status;
41 	unsigned long flags;
42 
43 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
44 	blk_steal_bios(&ns->head->requeue_list, req);
45 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
46 	blk_mq_end_request(req, 0);
47 
48 	switch (status & 0x7ff) {
49 	case NVME_SC_ANA_TRANSITION:
50 	case NVME_SC_ANA_INACCESSIBLE:
51 	case NVME_SC_ANA_PERSISTENT_LOSS:
52 		/*
53 		 * If we got back an ANA error we know the controller is alive,
54 		 * but not ready to serve this namespaces.  The spec suggests
55 		 * we should update our general state here, but due to the fact
56 		 * that the admin and I/O queues are not serialized that is
57 		 * fundamentally racy.  So instead just clear the current path,
58 		 * mark the the path as pending and kick of a re-read of the ANA
59 		 * log page ASAP.
60 		 */
61 		nvme_mpath_clear_current_path(ns);
62 		if (ns->ctrl->ana_log_buf) {
63 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
64 			queue_work(nvme_wq, &ns->ctrl->ana_work);
65 		}
66 		break;
67 	case NVME_SC_HOST_PATH_ERROR:
68 		/*
69 		 * Temporary transport disruption in talking to the controller.
70 		 * Try to send on a new path.
71 		 */
72 		nvme_mpath_clear_current_path(ns);
73 		break;
74 	default:
75 		/*
76 		 * Reset the controller for any non-ANA error as we don't know
77 		 * what caused the error.
78 		 */
79 		nvme_reset_ctrl(ns->ctrl);
80 		break;
81 	}
82 
83 	kblockd_schedule_work(&ns->head->requeue_work);
84 }
85 
86 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
87 {
88 	struct nvme_ns *ns;
89 
90 	down_read(&ctrl->namespaces_rwsem);
91 	list_for_each_entry(ns, &ctrl->namespaces, list) {
92 		if (ns->head->disk)
93 			kblockd_schedule_work(&ns->head->requeue_work);
94 	}
95 	up_read(&ctrl->namespaces_rwsem);
96 }
97 
98 static const char *nvme_ana_state_names[] = {
99 	[0]				= "invalid state",
100 	[NVME_ANA_OPTIMIZED]		= "optimized",
101 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
102 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
103 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
104 	[NVME_ANA_CHANGE]		= "change",
105 };
106 
107 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
108 {
109 	struct nvme_ns_head *head = ns->head;
110 	int node;
111 
112 	if (!head)
113 		return;
114 
115 	for_each_node(node) {
116 		if (ns == rcu_access_pointer(head->current_path[node]))
117 			rcu_assign_pointer(head->current_path[node], NULL);
118 	}
119 }
120 
121 static bool nvme_path_is_disabled(struct nvme_ns *ns)
122 {
123 	return ns->ctrl->state != NVME_CTRL_LIVE ||
124 		test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
125 		test_bit(NVME_NS_REMOVING, &ns->flags);
126 }
127 
128 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
129 {
130 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
131 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
132 
133 	list_for_each_entry_rcu(ns, &head->list, siblings) {
134 		if (nvme_path_is_disabled(ns))
135 			continue;
136 
137 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
138 			distance = node_distance(node, ns->ctrl->numa_node);
139 		else
140 			distance = LOCAL_DISTANCE;
141 
142 		switch (ns->ana_state) {
143 		case NVME_ANA_OPTIMIZED:
144 			if (distance < found_distance) {
145 				found_distance = distance;
146 				found = ns;
147 			}
148 			break;
149 		case NVME_ANA_NONOPTIMIZED:
150 			if (distance < fallback_distance) {
151 				fallback_distance = distance;
152 				fallback = ns;
153 			}
154 			break;
155 		default:
156 			break;
157 		}
158 	}
159 
160 	if (!found)
161 		found = fallback;
162 	if (found)
163 		rcu_assign_pointer(head->current_path[node], found);
164 	return found;
165 }
166 
167 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
168 		struct nvme_ns *ns)
169 {
170 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
171 			siblings);
172 	if (ns)
173 		return ns;
174 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
175 }
176 
177 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
178 		int node, struct nvme_ns *old)
179 {
180 	struct nvme_ns *ns, *found, *fallback = NULL;
181 
182 	if (list_is_singular(&head->list)) {
183 		if (nvme_path_is_disabled(old))
184 			return NULL;
185 		return old;
186 	}
187 
188 	for (ns = nvme_next_ns(head, old);
189 	     ns != old;
190 	     ns = nvme_next_ns(head, ns)) {
191 		if (nvme_path_is_disabled(ns))
192 			continue;
193 
194 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
195 			found = ns;
196 			goto out;
197 		}
198 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
199 			fallback = ns;
200 	}
201 
202 	if (!fallback)
203 		return NULL;
204 	found = fallback;
205 out:
206 	rcu_assign_pointer(head->current_path[node], found);
207 	return found;
208 }
209 
210 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
211 {
212 	return ns->ctrl->state == NVME_CTRL_LIVE &&
213 		ns->ana_state == NVME_ANA_OPTIMIZED;
214 }
215 
216 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
217 {
218 	int node = numa_node_id();
219 	struct nvme_ns *ns;
220 
221 	ns = srcu_dereference(head->current_path[node], &head->srcu);
222 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
223 		ns = nvme_round_robin_path(head, node, ns);
224 	if (unlikely(!ns || !nvme_path_is_optimized(ns)))
225 		ns = __nvme_find_path(head, node);
226 	return ns;
227 }
228 
229 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
230 		struct bio *bio)
231 {
232 	struct nvme_ns_head *head = q->queuedata;
233 	struct device *dev = disk_to_dev(head->disk);
234 	struct nvme_ns *ns;
235 	blk_qc_t ret = BLK_QC_T_NONE;
236 	int srcu_idx;
237 
238 	/*
239 	 * The namespace might be going away and the bio might
240 	 * be moved to a different queue via blk_steal_bios(),
241 	 * so we need to use the bio_split pool from the original
242 	 * queue to allocate the bvecs from.
243 	 */
244 	blk_queue_split(q, &bio);
245 
246 	srcu_idx = srcu_read_lock(&head->srcu);
247 	ns = nvme_find_path(head);
248 	if (likely(ns)) {
249 		bio->bi_disk = ns->disk;
250 		bio->bi_opf |= REQ_NVME_MPATH;
251 		trace_block_bio_remap(bio->bi_disk->queue, bio,
252 				      disk_devt(ns->head->disk),
253 				      bio->bi_iter.bi_sector);
254 		ret = direct_make_request(bio);
255 	} else if (!list_empty_careful(&head->list)) {
256 		dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
257 
258 		spin_lock_irq(&head->requeue_lock);
259 		bio_list_add(&head->requeue_list, bio);
260 		spin_unlock_irq(&head->requeue_lock);
261 	} else {
262 		dev_warn_ratelimited(dev, "no path - failing I/O\n");
263 
264 		bio->bi_status = BLK_STS_IOERR;
265 		bio_endio(bio);
266 	}
267 
268 	srcu_read_unlock(&head->srcu, srcu_idx);
269 	return ret;
270 }
271 
272 static void nvme_requeue_work(struct work_struct *work)
273 {
274 	struct nvme_ns_head *head =
275 		container_of(work, struct nvme_ns_head, requeue_work);
276 	struct bio *bio, *next;
277 
278 	spin_lock_irq(&head->requeue_lock);
279 	next = bio_list_get(&head->requeue_list);
280 	spin_unlock_irq(&head->requeue_lock);
281 
282 	while ((bio = next) != NULL) {
283 		next = bio->bi_next;
284 		bio->bi_next = NULL;
285 
286 		/*
287 		 * Reset disk to the mpath node and resubmit to select a new
288 		 * path.
289 		 */
290 		bio->bi_disk = head->disk;
291 		generic_make_request(bio);
292 	}
293 }
294 
295 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
296 {
297 	struct request_queue *q;
298 	bool vwc = false;
299 
300 	mutex_init(&head->lock);
301 	bio_list_init(&head->requeue_list);
302 	spin_lock_init(&head->requeue_lock);
303 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
304 
305 	/*
306 	 * Add a multipath node if the subsystems supports multiple controllers.
307 	 * We also do this for private namespaces as the namespace sharing data could
308 	 * change after a rescan.
309 	 */
310 	if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
311 		return 0;
312 
313 	q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
314 	if (!q)
315 		goto out;
316 	q->queuedata = head;
317 	blk_queue_make_request(q, nvme_ns_head_make_request);
318 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
319 	/* set to a default value for 512 until disk is validated */
320 	blk_queue_logical_block_size(q, 512);
321 	blk_set_stacking_limits(&q->limits);
322 
323 	/* we need to propagate up the VMC settings */
324 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
325 		vwc = true;
326 	blk_queue_write_cache(q, vwc, vwc);
327 
328 	head->disk = alloc_disk(0);
329 	if (!head->disk)
330 		goto out_cleanup_queue;
331 	head->disk->fops = &nvme_ns_head_ops;
332 	head->disk->private_data = head;
333 	head->disk->queue = q;
334 	head->disk->flags = GENHD_FL_EXT_DEVT;
335 	sprintf(head->disk->disk_name, "nvme%dn%d",
336 			ctrl->subsys->instance, head->instance);
337 	return 0;
338 
339 out_cleanup_queue:
340 	blk_cleanup_queue(q);
341 out:
342 	return -ENOMEM;
343 }
344 
345 static void nvme_mpath_set_live(struct nvme_ns *ns)
346 {
347 	struct nvme_ns_head *head = ns->head;
348 
349 	lockdep_assert_held(&ns->head->lock);
350 
351 	if (!head->disk)
352 		return;
353 
354 	if (!(head->disk->flags & GENHD_FL_UP))
355 		device_add_disk(&head->subsys->dev, head->disk,
356 				nvme_ns_id_attr_groups);
357 
358 	if (nvme_path_is_optimized(ns)) {
359 		int node, srcu_idx;
360 
361 		srcu_idx = srcu_read_lock(&head->srcu);
362 		for_each_node(node)
363 			__nvme_find_path(head, node);
364 		srcu_read_unlock(&head->srcu, srcu_idx);
365 	}
366 
367 	kblockd_schedule_work(&ns->head->requeue_work);
368 }
369 
370 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
371 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
372 			void *))
373 {
374 	void *base = ctrl->ana_log_buf;
375 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
376 	int error, i;
377 
378 	lockdep_assert_held(&ctrl->ana_lock);
379 
380 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
381 		struct nvme_ana_group_desc *desc = base + offset;
382 		u32 nr_nsids = le32_to_cpu(desc->nnsids);
383 		size_t nsid_buf_size = nr_nsids * sizeof(__le32);
384 
385 		if (WARN_ON_ONCE(desc->grpid == 0))
386 			return -EINVAL;
387 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
388 			return -EINVAL;
389 		if (WARN_ON_ONCE(desc->state == 0))
390 			return -EINVAL;
391 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
392 			return -EINVAL;
393 
394 		offset += sizeof(*desc);
395 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
396 			return -EINVAL;
397 
398 		error = cb(ctrl, desc, data);
399 		if (error)
400 			return error;
401 
402 		offset += nsid_buf_size;
403 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
404 			return -EINVAL;
405 	}
406 
407 	return 0;
408 }
409 
410 static inline bool nvme_state_is_live(enum nvme_ana_state state)
411 {
412 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
413 }
414 
415 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
416 		struct nvme_ns *ns)
417 {
418 	mutex_lock(&ns->head->lock);
419 	ns->ana_grpid = le32_to_cpu(desc->grpid);
420 	ns->ana_state = desc->state;
421 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
422 
423 	if (nvme_state_is_live(ns->ana_state))
424 		nvme_mpath_set_live(ns);
425 	mutex_unlock(&ns->head->lock);
426 }
427 
428 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
429 		struct nvme_ana_group_desc *desc, void *data)
430 {
431 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
432 	unsigned *nr_change_groups = data;
433 	struct nvme_ns *ns;
434 
435 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
436 			le32_to_cpu(desc->grpid),
437 			nvme_ana_state_names[desc->state]);
438 
439 	if (desc->state == NVME_ANA_CHANGE)
440 		(*nr_change_groups)++;
441 
442 	if (!nr_nsids)
443 		return 0;
444 
445 	down_write(&ctrl->namespaces_rwsem);
446 	list_for_each_entry(ns, &ctrl->namespaces, list) {
447 		if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
448 			continue;
449 		nvme_update_ns_ana_state(desc, ns);
450 		if (++n == nr_nsids)
451 			break;
452 	}
453 	up_write(&ctrl->namespaces_rwsem);
454 	WARN_ON_ONCE(n < nr_nsids);
455 	return 0;
456 }
457 
458 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
459 {
460 	u32 nr_change_groups = 0;
461 	int error;
462 
463 	mutex_lock(&ctrl->ana_lock);
464 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
465 			groups_only ? NVME_ANA_LOG_RGO : 0,
466 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
467 	if (error) {
468 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
469 		goto out_unlock;
470 	}
471 
472 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
473 			nvme_update_ana_state);
474 	if (error)
475 		goto out_unlock;
476 
477 	/*
478 	 * In theory we should have an ANATT timer per group as they might enter
479 	 * the change state at different times.  But that is a lot of overhead
480 	 * just to protect against a target that keeps entering new changes
481 	 * states while never finishing previous ones.  But we'll still
482 	 * eventually time out once all groups are in change state, so this
483 	 * isn't a big deal.
484 	 *
485 	 * We also double the ANATT value to provide some slack for transports
486 	 * or AEN processing overhead.
487 	 */
488 	if (nr_change_groups)
489 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
490 	else
491 		del_timer_sync(&ctrl->anatt_timer);
492 out_unlock:
493 	mutex_unlock(&ctrl->ana_lock);
494 	return error;
495 }
496 
497 static void nvme_ana_work(struct work_struct *work)
498 {
499 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
500 
501 	nvme_read_ana_log(ctrl, false);
502 }
503 
504 static void nvme_anatt_timeout(struct timer_list *t)
505 {
506 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
507 
508 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
509 	nvme_reset_ctrl(ctrl);
510 }
511 
512 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
513 {
514 	if (!nvme_ctrl_use_ana(ctrl))
515 		return;
516 	del_timer_sync(&ctrl->anatt_timer);
517 	cancel_work_sync(&ctrl->ana_work);
518 }
519 
520 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
521 	struct device_attribute subsys_attr_##_name =	\
522 		__ATTR(_name, _mode, _show, _store)
523 
524 static const char *nvme_iopolicy_names[] = {
525 	[NVME_IOPOLICY_NUMA]	= "numa",
526 	[NVME_IOPOLICY_RR]	= "round-robin",
527 };
528 
529 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
530 		struct device_attribute *attr, char *buf)
531 {
532 	struct nvme_subsystem *subsys =
533 		container_of(dev, struct nvme_subsystem, dev);
534 
535 	return sprintf(buf, "%s\n",
536 			nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
537 }
538 
539 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
540 		struct device_attribute *attr, const char *buf, size_t count)
541 {
542 	struct nvme_subsystem *subsys =
543 		container_of(dev, struct nvme_subsystem, dev);
544 	int i;
545 
546 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
547 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
548 			WRITE_ONCE(subsys->iopolicy, i);
549 			return count;
550 		}
551 	}
552 
553 	return -EINVAL;
554 }
555 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
556 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
557 
558 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
559 		char *buf)
560 {
561 	return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
562 }
563 DEVICE_ATTR_RO(ana_grpid);
564 
565 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
566 		char *buf)
567 {
568 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
569 
570 	return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
571 }
572 DEVICE_ATTR_RO(ana_state);
573 
574 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
575 		struct nvme_ana_group_desc *desc, void *data)
576 {
577 	struct nvme_ns *ns = data;
578 
579 	if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
580 		nvme_update_ns_ana_state(desc, ns);
581 		return -ENXIO; /* just break out of the loop */
582 	}
583 
584 	return 0;
585 }
586 
587 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
588 {
589 	if (nvme_ctrl_use_ana(ns->ctrl)) {
590 		mutex_lock(&ns->ctrl->ana_lock);
591 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
592 		nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
593 		mutex_unlock(&ns->ctrl->ana_lock);
594 	} else {
595 		mutex_lock(&ns->head->lock);
596 		ns->ana_state = NVME_ANA_OPTIMIZED;
597 		nvme_mpath_set_live(ns);
598 		mutex_unlock(&ns->head->lock);
599 	}
600 }
601 
602 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
603 {
604 	if (!head->disk)
605 		return;
606 	if (head->disk->flags & GENHD_FL_UP)
607 		del_gendisk(head->disk);
608 	blk_set_queue_dying(head->disk->queue);
609 	/* make sure all pending bios are cleaned up */
610 	kblockd_schedule_work(&head->requeue_work);
611 	flush_work(&head->requeue_work);
612 	blk_cleanup_queue(head->disk->queue);
613 	put_disk(head->disk);
614 }
615 
616 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
617 {
618 	int error;
619 
620 	/* check if multipath is enabled and we have the capability */
621 	if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3)))
622 		return 0;
623 
624 	ctrl->anacap = id->anacap;
625 	ctrl->anatt = id->anatt;
626 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
627 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
628 
629 	mutex_init(&ctrl->ana_lock);
630 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
631 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
632 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
633 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
634 
635 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
636 		dev_err(ctrl->device,
637 			"ANA log page size (%zd) larger than MDTS (%d).\n",
638 			ctrl->ana_log_size,
639 			ctrl->max_hw_sectors << SECTOR_SHIFT);
640 		dev_err(ctrl->device, "disabling ANA support.\n");
641 		return 0;
642 	}
643 
644 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
645 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
646 	if (!ctrl->ana_log_buf) {
647 		error = -ENOMEM;
648 		goto out;
649 	}
650 
651 	error = nvme_read_ana_log(ctrl, true);
652 	if (error)
653 		goto out_free_ana_log_buf;
654 	return 0;
655 out_free_ana_log_buf:
656 	kfree(ctrl->ana_log_buf);
657 	ctrl->ana_log_buf = NULL;
658 out:
659 	return error;
660 }
661 
662 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
663 {
664 	kfree(ctrl->ana_log_buf);
665 	ctrl->ana_log_buf = NULL;
666 }
667 
668