1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <linux/vmalloc.h> 9 #include <trace/events/block.h> 10 #include "nvme.h" 11 12 bool multipath = true; 13 module_param(multipath, bool, 0444); 14 MODULE_PARM_DESC(multipath, 15 "turn on native support for multiple controllers per subsystem"); 16 17 static const char *nvme_iopolicy_names[] = { 18 [NVME_IOPOLICY_NUMA] = "numa", 19 [NVME_IOPOLICY_RR] = "round-robin", 20 }; 21 22 static int iopolicy = NVME_IOPOLICY_NUMA; 23 24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp) 25 { 26 if (!val) 27 return -EINVAL; 28 if (!strncmp(val, "numa", 4)) 29 iopolicy = NVME_IOPOLICY_NUMA; 30 else if (!strncmp(val, "round-robin", 11)) 31 iopolicy = NVME_IOPOLICY_RR; 32 else 33 return -EINVAL; 34 35 return 0; 36 } 37 38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp) 39 { 40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]); 41 } 42 43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy, 44 &iopolicy, 0644); 45 MODULE_PARM_DESC(iopolicy, 46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'"); 47 48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) 49 { 50 subsys->iopolicy = iopolicy; 51 } 52 53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 54 { 55 struct nvme_ns_head *h; 56 57 lockdep_assert_held(&subsys->lock); 58 list_for_each_entry(h, &subsys->nsheads, entry) 59 if (h->disk) 60 blk_mq_unfreeze_queue(h->disk->queue); 61 } 62 63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 64 { 65 struct nvme_ns_head *h; 66 67 lockdep_assert_held(&subsys->lock); 68 list_for_each_entry(h, &subsys->nsheads, entry) 69 if (h->disk) 70 blk_mq_freeze_queue_wait(h->disk->queue); 71 } 72 73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 74 { 75 struct nvme_ns_head *h; 76 77 lockdep_assert_held(&subsys->lock); 78 list_for_each_entry(h, &subsys->nsheads, entry) 79 if (h->disk) 80 blk_freeze_queue_start(h->disk->queue); 81 } 82 83 void nvme_failover_req(struct request *req) 84 { 85 struct nvme_ns *ns = req->q->queuedata; 86 u16 status = nvme_req(req)->status & 0x7ff; 87 unsigned long flags; 88 struct bio *bio; 89 90 nvme_mpath_clear_current_path(ns); 91 92 /* 93 * If we got back an ANA error, we know the controller is alive but not 94 * ready to serve this namespace. Kick of a re-read of the ANA 95 * information page, and just try any other available path for now. 96 */ 97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { 98 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 99 queue_work(nvme_wq, &ns->ctrl->ana_work); 100 } 101 102 spin_lock_irqsave(&ns->head->requeue_lock, flags); 103 for (bio = req->bio; bio; bio = bio->bi_next) { 104 bio_set_dev(bio, ns->head->disk->part0); 105 if (bio->bi_opf & REQ_POLLED) { 106 bio->bi_opf &= ~REQ_POLLED; 107 bio->bi_cookie = BLK_QC_T_NONE; 108 } 109 /* 110 * The alternate request queue that we may end up submitting 111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT 112 * will fail the I/O immediately with EAGAIN to the issuer. 113 * We are not in the issuer context which cannot block. Clear 114 * the flag to avoid spurious EAGAIN I/O failures. 115 */ 116 bio->bi_opf &= ~REQ_NOWAIT; 117 } 118 blk_steal_bios(&ns->head->requeue_list, req); 119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 120 121 nvme_req(req)->status = 0; 122 nvme_end_req(req); 123 kblockd_schedule_work(&ns->head->requeue_work); 124 } 125 126 void nvme_mpath_start_request(struct request *rq) 127 { 128 struct nvme_ns *ns = rq->q->queuedata; 129 struct gendisk *disk = ns->head->disk; 130 131 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq)) 132 return; 133 134 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS; 135 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq), 136 jiffies); 137 } 138 EXPORT_SYMBOL_GPL(nvme_mpath_start_request); 139 140 void nvme_mpath_end_request(struct request *rq) 141 { 142 struct nvme_ns *ns = rq->q->queuedata; 143 144 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS)) 145 return; 146 bdev_end_io_acct(ns->head->disk->part0, req_op(rq), 147 blk_rq_bytes(rq) >> SECTOR_SHIFT, 148 nvme_req(rq)->start_time); 149 } 150 151 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 152 { 153 struct nvme_ns *ns; 154 155 down_read(&ctrl->namespaces_rwsem); 156 list_for_each_entry(ns, &ctrl->namespaces, list) { 157 if (!ns->head->disk) 158 continue; 159 kblockd_schedule_work(&ns->head->requeue_work); 160 if (ctrl->state == NVME_CTRL_LIVE) 161 disk_uevent(ns->head->disk, KOBJ_CHANGE); 162 } 163 up_read(&ctrl->namespaces_rwsem); 164 } 165 166 static const char *nvme_ana_state_names[] = { 167 [0] = "invalid state", 168 [NVME_ANA_OPTIMIZED] = "optimized", 169 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 170 [NVME_ANA_INACCESSIBLE] = "inaccessible", 171 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 172 [NVME_ANA_CHANGE] = "change", 173 }; 174 175 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 176 { 177 struct nvme_ns_head *head = ns->head; 178 bool changed = false; 179 int node; 180 181 if (!head) 182 goto out; 183 184 for_each_node(node) { 185 if (ns == rcu_access_pointer(head->current_path[node])) { 186 rcu_assign_pointer(head->current_path[node], NULL); 187 changed = true; 188 } 189 } 190 out: 191 return changed; 192 } 193 194 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 195 { 196 struct nvme_ns *ns; 197 198 down_read(&ctrl->namespaces_rwsem); 199 list_for_each_entry(ns, &ctrl->namespaces, list) { 200 nvme_mpath_clear_current_path(ns); 201 kblockd_schedule_work(&ns->head->requeue_work); 202 } 203 up_read(&ctrl->namespaces_rwsem); 204 } 205 206 void nvme_mpath_revalidate_paths(struct nvme_ns *ns) 207 { 208 struct nvme_ns_head *head = ns->head; 209 sector_t capacity = get_capacity(head->disk); 210 int node; 211 int srcu_idx; 212 213 srcu_idx = srcu_read_lock(&head->srcu); 214 list_for_each_entry_rcu(ns, &head->list, siblings) { 215 if (capacity != get_capacity(ns->disk)) 216 clear_bit(NVME_NS_READY, &ns->flags); 217 } 218 srcu_read_unlock(&head->srcu, srcu_idx); 219 220 for_each_node(node) 221 rcu_assign_pointer(head->current_path[node], NULL); 222 kblockd_schedule_work(&head->requeue_work); 223 } 224 225 static bool nvme_path_is_disabled(struct nvme_ns *ns) 226 { 227 /* 228 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 229 * still be able to complete assuming that the controller is connected. 230 * Otherwise it will fail immediately and return to the requeue list. 231 */ 232 if (ns->ctrl->state != NVME_CTRL_LIVE && 233 ns->ctrl->state != NVME_CTRL_DELETING) 234 return true; 235 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 236 !test_bit(NVME_NS_READY, &ns->flags)) 237 return true; 238 return false; 239 } 240 241 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 242 { 243 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 244 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 245 246 list_for_each_entry_rcu(ns, &head->list, siblings) { 247 if (nvme_path_is_disabled(ns)) 248 continue; 249 250 if (ns->ctrl->numa_node != NUMA_NO_NODE && 251 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 252 distance = node_distance(node, ns->ctrl->numa_node); 253 else 254 distance = LOCAL_DISTANCE; 255 256 switch (ns->ana_state) { 257 case NVME_ANA_OPTIMIZED: 258 if (distance < found_distance) { 259 found_distance = distance; 260 found = ns; 261 } 262 break; 263 case NVME_ANA_NONOPTIMIZED: 264 if (distance < fallback_distance) { 265 fallback_distance = distance; 266 fallback = ns; 267 } 268 break; 269 default: 270 break; 271 } 272 } 273 274 if (!found) 275 found = fallback; 276 if (found) 277 rcu_assign_pointer(head->current_path[node], found); 278 return found; 279 } 280 281 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 282 struct nvme_ns *ns) 283 { 284 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 285 siblings); 286 if (ns) 287 return ns; 288 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 289 } 290 291 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 292 int node, struct nvme_ns *old) 293 { 294 struct nvme_ns *ns, *found = NULL; 295 296 if (list_is_singular(&head->list)) { 297 if (nvme_path_is_disabled(old)) 298 return NULL; 299 return old; 300 } 301 302 for (ns = nvme_next_ns(head, old); 303 ns && ns != old; 304 ns = nvme_next_ns(head, ns)) { 305 if (nvme_path_is_disabled(ns)) 306 continue; 307 308 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 309 found = ns; 310 goto out; 311 } 312 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 313 found = ns; 314 } 315 316 /* 317 * The loop above skips the current path for round-robin semantics. 318 * Fall back to the current path if either: 319 * - no other optimized path found and current is optimized, 320 * - no other usable path found and current is usable. 321 */ 322 if (!nvme_path_is_disabled(old) && 323 (old->ana_state == NVME_ANA_OPTIMIZED || 324 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) 325 return old; 326 327 if (!found) 328 return NULL; 329 out: 330 rcu_assign_pointer(head->current_path[node], found); 331 return found; 332 } 333 334 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 335 { 336 return ns->ctrl->state == NVME_CTRL_LIVE && 337 ns->ana_state == NVME_ANA_OPTIMIZED; 338 } 339 340 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 341 { 342 int node = numa_node_id(); 343 struct nvme_ns *ns; 344 345 ns = srcu_dereference(head->current_path[node], &head->srcu); 346 if (unlikely(!ns)) 347 return __nvme_find_path(head, node); 348 349 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 350 return nvme_round_robin_path(head, node, ns); 351 if (unlikely(!nvme_path_is_optimized(ns))) 352 return __nvme_find_path(head, node); 353 return ns; 354 } 355 356 static bool nvme_available_path(struct nvme_ns_head *head) 357 { 358 struct nvme_ns *ns; 359 360 list_for_each_entry_rcu(ns, &head->list, siblings) { 361 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) 362 continue; 363 switch (ns->ctrl->state) { 364 case NVME_CTRL_LIVE: 365 case NVME_CTRL_RESETTING: 366 case NVME_CTRL_CONNECTING: 367 /* fallthru */ 368 return true; 369 default: 370 break; 371 } 372 } 373 return false; 374 } 375 376 static void nvme_ns_head_submit_bio(struct bio *bio) 377 { 378 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; 379 struct device *dev = disk_to_dev(head->disk); 380 struct nvme_ns *ns; 381 int srcu_idx; 382 383 /* 384 * The namespace might be going away and the bio might be moved to a 385 * different queue via blk_steal_bios(), so we need to use the bio_split 386 * pool from the original queue to allocate the bvecs from. 387 */ 388 bio = bio_split_to_limits(bio); 389 if (!bio) 390 return; 391 392 srcu_idx = srcu_read_lock(&head->srcu); 393 ns = nvme_find_path(head); 394 if (likely(ns)) { 395 bio_set_dev(bio, ns->disk->part0); 396 bio->bi_opf |= REQ_NVME_MPATH; 397 trace_block_bio_remap(bio, disk_devt(ns->head->disk), 398 bio->bi_iter.bi_sector); 399 submit_bio_noacct(bio); 400 } else if (nvme_available_path(head)) { 401 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 402 403 spin_lock_irq(&head->requeue_lock); 404 bio_list_add(&head->requeue_list, bio); 405 spin_unlock_irq(&head->requeue_lock); 406 } else { 407 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 408 409 bio_io_error(bio); 410 } 411 412 srcu_read_unlock(&head->srcu, srcu_idx); 413 } 414 415 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode) 416 { 417 if (!nvme_tryget_ns_head(disk->private_data)) 418 return -ENXIO; 419 return 0; 420 } 421 422 static void nvme_ns_head_release(struct gendisk *disk) 423 { 424 nvme_put_ns_head(disk->private_data); 425 } 426 427 #ifdef CONFIG_BLK_DEV_ZONED 428 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, 429 unsigned int nr_zones, report_zones_cb cb, void *data) 430 { 431 struct nvme_ns_head *head = disk->private_data; 432 struct nvme_ns *ns; 433 int srcu_idx, ret = -EWOULDBLOCK; 434 435 srcu_idx = srcu_read_lock(&head->srcu); 436 ns = nvme_find_path(head); 437 if (ns) 438 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); 439 srcu_read_unlock(&head->srcu, srcu_idx); 440 return ret; 441 } 442 #else 443 #define nvme_ns_head_report_zones NULL 444 #endif /* CONFIG_BLK_DEV_ZONED */ 445 446 const struct block_device_operations nvme_ns_head_ops = { 447 .owner = THIS_MODULE, 448 .submit_bio = nvme_ns_head_submit_bio, 449 .open = nvme_ns_head_open, 450 .release = nvme_ns_head_release, 451 .ioctl = nvme_ns_head_ioctl, 452 .compat_ioctl = blkdev_compat_ptr_ioctl, 453 .getgeo = nvme_getgeo, 454 .report_zones = nvme_ns_head_report_zones, 455 .pr_ops = &nvme_pr_ops, 456 }; 457 458 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) 459 { 460 return container_of(cdev, struct nvme_ns_head, cdev); 461 } 462 463 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) 464 { 465 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) 466 return -ENXIO; 467 return 0; 468 } 469 470 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) 471 { 472 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); 473 return 0; 474 } 475 476 static const struct file_operations nvme_ns_head_chr_fops = { 477 .owner = THIS_MODULE, 478 .open = nvme_ns_head_chr_open, 479 .release = nvme_ns_head_chr_release, 480 .unlocked_ioctl = nvme_ns_head_chr_ioctl, 481 .compat_ioctl = compat_ptr_ioctl, 482 .uring_cmd = nvme_ns_head_chr_uring_cmd, 483 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 484 }; 485 486 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) 487 { 488 int ret; 489 490 head->cdev_device.parent = &head->subsys->dev; 491 ret = dev_set_name(&head->cdev_device, "ng%dn%d", 492 head->subsys->instance, head->instance); 493 if (ret) 494 return ret; 495 ret = nvme_cdev_add(&head->cdev, &head->cdev_device, 496 &nvme_ns_head_chr_fops, THIS_MODULE); 497 return ret; 498 } 499 500 static void nvme_requeue_work(struct work_struct *work) 501 { 502 struct nvme_ns_head *head = 503 container_of(work, struct nvme_ns_head, requeue_work); 504 struct bio *bio, *next; 505 506 spin_lock_irq(&head->requeue_lock); 507 next = bio_list_get(&head->requeue_list); 508 spin_unlock_irq(&head->requeue_lock); 509 510 while ((bio = next) != NULL) { 511 next = bio->bi_next; 512 bio->bi_next = NULL; 513 514 submit_bio_noacct(bio); 515 } 516 } 517 518 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 519 { 520 bool vwc = false; 521 522 mutex_init(&head->lock); 523 bio_list_init(&head->requeue_list); 524 spin_lock_init(&head->requeue_lock); 525 INIT_WORK(&head->requeue_work, nvme_requeue_work); 526 527 /* 528 * Add a multipath node if the subsystems supports multiple controllers. 529 * We also do this for private namespaces as the namespace sharing flag 530 * could change after a rescan. 531 */ 532 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 533 !nvme_is_unique_nsid(ctrl, head) || !multipath) 534 return 0; 535 536 head->disk = blk_alloc_disk(ctrl->numa_node); 537 if (!head->disk) 538 return -ENOMEM; 539 head->disk->fops = &nvme_ns_head_ops; 540 head->disk->private_data = head; 541 sprintf(head->disk->disk_name, "nvme%dn%d", 542 ctrl->subsys->instance, head->instance); 543 544 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue); 545 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue); 546 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue); 547 /* 548 * This assumes all controllers that refer to a namespace either 549 * support poll queues or not. That is not a strict guarantee, 550 * but if the assumption is wrong the effect is only suboptimal 551 * performance but not correctness problem. 552 */ 553 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL && 554 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues) 555 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue); 556 557 /* set to a default value of 512 until the disk is validated */ 558 blk_queue_logical_block_size(head->disk->queue, 512); 559 blk_set_stacking_limits(&head->disk->queue->limits); 560 blk_queue_dma_alignment(head->disk->queue, 3); 561 562 /* we need to propagate up the VMC settings */ 563 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 564 vwc = true; 565 blk_queue_write_cache(head->disk->queue, vwc, vwc); 566 return 0; 567 } 568 569 static void nvme_mpath_set_live(struct nvme_ns *ns) 570 { 571 struct nvme_ns_head *head = ns->head; 572 int rc; 573 574 if (!head->disk) 575 return; 576 577 /* 578 * test_and_set_bit() is used because it is protecting against two nvme 579 * paths simultaneously calling device_add_disk() on the same namespace 580 * head. 581 */ 582 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 583 rc = device_add_disk(&head->subsys->dev, head->disk, 584 nvme_ns_id_attr_groups); 585 if (rc) { 586 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags); 587 return; 588 } 589 nvme_add_ns_head_cdev(head); 590 } 591 592 mutex_lock(&head->lock); 593 if (nvme_path_is_optimized(ns)) { 594 int node, srcu_idx; 595 596 srcu_idx = srcu_read_lock(&head->srcu); 597 for_each_node(node) 598 __nvme_find_path(head, node); 599 srcu_read_unlock(&head->srcu, srcu_idx); 600 } 601 mutex_unlock(&head->lock); 602 603 synchronize_srcu(&head->srcu); 604 kblockd_schedule_work(&head->requeue_work); 605 } 606 607 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 608 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 609 void *)) 610 { 611 void *base = ctrl->ana_log_buf; 612 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 613 int error, i; 614 615 lockdep_assert_held(&ctrl->ana_lock); 616 617 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 618 struct nvme_ana_group_desc *desc = base + offset; 619 u32 nr_nsids; 620 size_t nsid_buf_size; 621 622 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 623 return -EINVAL; 624 625 nr_nsids = le32_to_cpu(desc->nnsids); 626 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids); 627 628 if (WARN_ON_ONCE(desc->grpid == 0)) 629 return -EINVAL; 630 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 631 return -EINVAL; 632 if (WARN_ON_ONCE(desc->state == 0)) 633 return -EINVAL; 634 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 635 return -EINVAL; 636 637 offset += sizeof(*desc); 638 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 639 return -EINVAL; 640 641 error = cb(ctrl, desc, data); 642 if (error) 643 return error; 644 645 offset += nsid_buf_size; 646 } 647 648 return 0; 649 } 650 651 static inline bool nvme_state_is_live(enum nvme_ana_state state) 652 { 653 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 654 } 655 656 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 657 struct nvme_ns *ns) 658 { 659 ns->ana_grpid = le32_to_cpu(desc->grpid); 660 ns->ana_state = desc->state; 661 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 662 /* 663 * nvme_mpath_set_live() will trigger I/O to the multipath path device 664 * and in turn to this path device. However we cannot accept this I/O 665 * if the controller is not live. This may deadlock if called from 666 * nvme_mpath_init_identify() and the ctrl will never complete 667 * initialization, preventing I/O from completing. For this case we 668 * will reprocess the ANA log page in nvme_mpath_update() once the 669 * controller is ready. 670 */ 671 if (nvme_state_is_live(ns->ana_state) && 672 ns->ctrl->state == NVME_CTRL_LIVE) 673 nvme_mpath_set_live(ns); 674 } 675 676 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 677 struct nvme_ana_group_desc *desc, void *data) 678 { 679 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 680 unsigned *nr_change_groups = data; 681 struct nvme_ns *ns; 682 683 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 684 le32_to_cpu(desc->grpid), 685 nvme_ana_state_names[desc->state]); 686 687 if (desc->state == NVME_ANA_CHANGE) 688 (*nr_change_groups)++; 689 690 if (!nr_nsids) 691 return 0; 692 693 down_read(&ctrl->namespaces_rwsem); 694 list_for_each_entry(ns, &ctrl->namespaces, list) { 695 unsigned nsid; 696 again: 697 nsid = le32_to_cpu(desc->nsids[n]); 698 if (ns->head->ns_id < nsid) 699 continue; 700 if (ns->head->ns_id == nsid) 701 nvme_update_ns_ana_state(desc, ns); 702 if (++n == nr_nsids) 703 break; 704 if (ns->head->ns_id > nsid) 705 goto again; 706 } 707 up_read(&ctrl->namespaces_rwsem); 708 return 0; 709 } 710 711 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 712 { 713 u32 nr_change_groups = 0; 714 int error; 715 716 mutex_lock(&ctrl->ana_lock); 717 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 718 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 719 if (error) { 720 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 721 goto out_unlock; 722 } 723 724 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 725 nvme_update_ana_state); 726 if (error) 727 goto out_unlock; 728 729 /* 730 * In theory we should have an ANATT timer per group as they might enter 731 * the change state at different times. But that is a lot of overhead 732 * just to protect against a target that keeps entering new changes 733 * states while never finishing previous ones. But we'll still 734 * eventually time out once all groups are in change state, so this 735 * isn't a big deal. 736 * 737 * We also double the ANATT value to provide some slack for transports 738 * or AEN processing overhead. 739 */ 740 if (nr_change_groups) 741 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 742 else 743 del_timer_sync(&ctrl->anatt_timer); 744 out_unlock: 745 mutex_unlock(&ctrl->ana_lock); 746 return error; 747 } 748 749 static void nvme_ana_work(struct work_struct *work) 750 { 751 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 752 753 if (ctrl->state != NVME_CTRL_LIVE) 754 return; 755 756 nvme_read_ana_log(ctrl); 757 } 758 759 void nvme_mpath_update(struct nvme_ctrl *ctrl) 760 { 761 u32 nr_change_groups = 0; 762 763 if (!ctrl->ana_log_buf) 764 return; 765 766 mutex_lock(&ctrl->ana_lock); 767 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); 768 mutex_unlock(&ctrl->ana_lock); 769 } 770 771 static void nvme_anatt_timeout(struct timer_list *t) 772 { 773 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 774 775 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 776 nvme_reset_ctrl(ctrl); 777 } 778 779 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 780 { 781 if (!nvme_ctrl_use_ana(ctrl)) 782 return; 783 del_timer_sync(&ctrl->anatt_timer); 784 cancel_work_sync(&ctrl->ana_work); 785 } 786 787 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 788 struct device_attribute subsys_attr_##_name = \ 789 __ATTR(_name, _mode, _show, _store) 790 791 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 792 struct device_attribute *attr, char *buf) 793 { 794 struct nvme_subsystem *subsys = 795 container_of(dev, struct nvme_subsystem, dev); 796 797 return sysfs_emit(buf, "%s\n", 798 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 799 } 800 801 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 802 struct device_attribute *attr, const char *buf, size_t count) 803 { 804 struct nvme_subsystem *subsys = 805 container_of(dev, struct nvme_subsystem, dev); 806 int i; 807 808 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 809 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 810 WRITE_ONCE(subsys->iopolicy, i); 811 return count; 812 } 813 } 814 815 return -EINVAL; 816 } 817 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 818 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 819 820 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 821 char *buf) 822 { 823 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 824 } 825 DEVICE_ATTR_RO(ana_grpid); 826 827 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 828 char *buf) 829 { 830 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 831 832 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 833 } 834 DEVICE_ATTR_RO(ana_state); 835 836 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 837 struct nvme_ana_group_desc *desc, void *data) 838 { 839 struct nvme_ana_group_desc *dst = data; 840 841 if (desc->grpid != dst->grpid) 842 return 0; 843 844 *dst = *desc; 845 return -ENXIO; /* just break out of the loop */ 846 } 847 848 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) 849 { 850 if (nvme_ctrl_use_ana(ns->ctrl)) { 851 struct nvme_ana_group_desc desc = { 852 .grpid = anagrpid, 853 .state = 0, 854 }; 855 856 mutex_lock(&ns->ctrl->ana_lock); 857 ns->ana_grpid = le32_to_cpu(anagrpid); 858 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 859 mutex_unlock(&ns->ctrl->ana_lock); 860 if (desc.state) { 861 /* found the group desc: update */ 862 nvme_update_ns_ana_state(&desc, ns); 863 } else { 864 /* group desc not found: trigger a re-read */ 865 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 866 queue_work(nvme_wq, &ns->ctrl->ana_work); 867 } 868 } else { 869 ns->ana_state = NVME_ANA_OPTIMIZED; 870 nvme_mpath_set_live(ns); 871 } 872 873 if (blk_queue_stable_writes(ns->queue) && ns->head->disk) 874 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, 875 ns->head->disk->queue); 876 #ifdef CONFIG_BLK_DEV_ZONED 877 if (blk_queue_is_zoned(ns->queue) && ns->head->disk) 878 ns->head->disk->nr_zones = ns->disk->nr_zones; 879 #endif 880 } 881 882 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) 883 { 884 if (!head->disk) 885 return; 886 kblockd_schedule_work(&head->requeue_work); 887 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 888 nvme_cdev_del(&head->cdev, &head->cdev_device); 889 del_gendisk(head->disk); 890 } 891 } 892 893 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 894 { 895 if (!head->disk) 896 return; 897 /* make sure all pending bios are cleaned up */ 898 kblockd_schedule_work(&head->requeue_work); 899 flush_work(&head->requeue_work); 900 put_disk(head->disk); 901 } 902 903 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) 904 { 905 mutex_init(&ctrl->ana_lock); 906 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 907 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 908 } 909 910 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 911 { 912 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; 913 size_t ana_log_size; 914 int error = 0; 915 916 /* check if multipath is enabled and we have the capability */ 917 if (!multipath || !ctrl->subsys || 918 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 919 return 0; 920 921 if (!ctrl->max_namespaces || 922 ctrl->max_namespaces > le32_to_cpu(id->nn)) { 923 dev_err(ctrl->device, 924 "Invalid MNAN value %u\n", ctrl->max_namespaces); 925 return -EINVAL; 926 } 927 928 ctrl->anacap = id->anacap; 929 ctrl->anatt = id->anatt; 930 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 931 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 932 933 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 934 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + 935 ctrl->max_namespaces * sizeof(__le32); 936 if (ana_log_size > max_transfer_size) { 937 dev_err(ctrl->device, 938 "ANA log page size (%zd) larger than MDTS (%zd).\n", 939 ana_log_size, max_transfer_size); 940 dev_err(ctrl->device, "disabling ANA support.\n"); 941 goto out_uninit; 942 } 943 if (ana_log_size > ctrl->ana_log_size) { 944 nvme_mpath_stop(ctrl); 945 nvme_mpath_uninit(ctrl); 946 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL); 947 if (!ctrl->ana_log_buf) 948 return -ENOMEM; 949 } 950 ctrl->ana_log_size = ana_log_size; 951 error = nvme_read_ana_log(ctrl); 952 if (error) 953 goto out_uninit; 954 return 0; 955 956 out_uninit: 957 nvme_mpath_uninit(ctrl); 958 return error; 959 } 960 961 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 962 { 963 kvfree(ctrl->ana_log_buf); 964 ctrl->ana_log_buf = NULL; 965 ctrl->ana_log_size = 0; 966 } 967