1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <trace/events/block.h> 9 #include "nvme.h" 10 11 static bool multipath = true; 12 module_param(multipath, bool, 0444); 13 MODULE_PARM_DESC(multipath, 14 "turn on native support for multiple controllers per subsystem"); 15 16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 17 { 18 struct nvme_ns_head *h; 19 20 lockdep_assert_held(&subsys->lock); 21 list_for_each_entry(h, &subsys->nsheads, entry) 22 if (h->disk) 23 blk_mq_unfreeze_queue(h->disk->queue); 24 } 25 26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 27 { 28 struct nvme_ns_head *h; 29 30 lockdep_assert_held(&subsys->lock); 31 list_for_each_entry(h, &subsys->nsheads, entry) 32 if (h->disk) 33 blk_mq_freeze_queue_wait(h->disk->queue); 34 } 35 36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 37 { 38 struct nvme_ns_head *h; 39 40 lockdep_assert_held(&subsys->lock); 41 list_for_each_entry(h, &subsys->nsheads, entry) 42 if (h->disk) 43 blk_freeze_queue_start(h->disk->queue); 44 } 45 46 /* 47 * If multipathing is enabled we need to always use the subsystem instance 48 * number for numbering our devices to avoid conflicts between subsystems that 49 * have multiple controllers and thus use the multipath-aware subsystem node 50 * and those that have a single controller and use the controller node 51 * directly. 52 */ 53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags) 54 { 55 if (!multipath) 56 return false; 57 if (!ns->head->disk) { 58 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance, 59 ns->head->instance); 60 return true; 61 } 62 sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance, 63 ns->ctrl->instance, ns->head->instance); 64 *flags = GENHD_FL_HIDDEN; 65 return true; 66 } 67 68 void nvme_failover_req(struct request *req) 69 { 70 struct nvme_ns *ns = req->q->queuedata; 71 u16 status = nvme_req(req)->status & 0x7ff; 72 unsigned long flags; 73 struct bio *bio; 74 75 nvme_mpath_clear_current_path(ns); 76 77 /* 78 * If we got back an ANA error, we know the controller is alive but not 79 * ready to serve this namespace. Kick of a re-read of the ANA 80 * information page, and just try any other available path for now. 81 */ 82 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { 83 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 84 queue_work(nvme_wq, &ns->ctrl->ana_work); 85 } 86 87 spin_lock_irqsave(&ns->head->requeue_lock, flags); 88 for (bio = req->bio; bio; bio = bio->bi_next) 89 bio_set_dev(bio, ns->head->disk->part0); 90 blk_steal_bios(&ns->head->requeue_list, req); 91 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 92 93 blk_mq_end_request(req, 0); 94 kblockd_schedule_work(&ns->head->requeue_work); 95 } 96 97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 98 { 99 struct nvme_ns *ns; 100 101 down_read(&ctrl->namespaces_rwsem); 102 list_for_each_entry(ns, &ctrl->namespaces, list) { 103 if (ns->head->disk) 104 kblockd_schedule_work(&ns->head->requeue_work); 105 } 106 up_read(&ctrl->namespaces_rwsem); 107 } 108 109 static const char *nvme_ana_state_names[] = { 110 [0] = "invalid state", 111 [NVME_ANA_OPTIMIZED] = "optimized", 112 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 113 [NVME_ANA_INACCESSIBLE] = "inaccessible", 114 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 115 [NVME_ANA_CHANGE] = "change", 116 }; 117 118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 119 { 120 struct nvme_ns_head *head = ns->head; 121 bool changed = false; 122 int node; 123 124 if (!head) 125 goto out; 126 127 for_each_node(node) { 128 if (ns == rcu_access_pointer(head->current_path[node])) { 129 rcu_assign_pointer(head->current_path[node], NULL); 130 changed = true; 131 } 132 } 133 out: 134 return changed; 135 } 136 137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 138 { 139 struct nvme_ns *ns; 140 141 mutex_lock(&ctrl->scan_lock); 142 down_read(&ctrl->namespaces_rwsem); 143 list_for_each_entry(ns, &ctrl->namespaces, list) 144 if (nvme_mpath_clear_current_path(ns)) 145 kblockd_schedule_work(&ns->head->requeue_work); 146 up_read(&ctrl->namespaces_rwsem); 147 mutex_unlock(&ctrl->scan_lock); 148 } 149 150 void nvme_mpath_revalidate_paths(struct nvme_ns *ns) 151 { 152 struct nvme_ns_head *head = ns->head; 153 sector_t capacity = get_capacity(head->disk); 154 int node; 155 156 list_for_each_entry_rcu(ns, &head->list, siblings) { 157 if (capacity != get_capacity(ns->disk)) 158 clear_bit(NVME_NS_READY, &ns->flags); 159 } 160 161 for_each_node(node) 162 rcu_assign_pointer(head->current_path[node], NULL); 163 } 164 165 static bool nvme_path_is_disabled(struct nvme_ns *ns) 166 { 167 /* 168 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 169 * still be able to complete assuming that the controller is connected. 170 * Otherwise it will fail immediately and return to the requeue list. 171 */ 172 if (ns->ctrl->state != NVME_CTRL_LIVE && 173 ns->ctrl->state != NVME_CTRL_DELETING) 174 return true; 175 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 176 !test_bit(NVME_NS_READY, &ns->flags)) 177 return true; 178 return false; 179 } 180 181 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 182 { 183 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 184 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 185 186 list_for_each_entry_rcu(ns, &head->list, siblings) { 187 if (nvme_path_is_disabled(ns)) 188 continue; 189 190 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 191 distance = node_distance(node, ns->ctrl->numa_node); 192 else 193 distance = LOCAL_DISTANCE; 194 195 switch (ns->ana_state) { 196 case NVME_ANA_OPTIMIZED: 197 if (distance < found_distance) { 198 found_distance = distance; 199 found = ns; 200 } 201 break; 202 case NVME_ANA_NONOPTIMIZED: 203 if (distance < fallback_distance) { 204 fallback_distance = distance; 205 fallback = ns; 206 } 207 break; 208 default: 209 break; 210 } 211 } 212 213 if (!found) 214 found = fallback; 215 if (found) 216 rcu_assign_pointer(head->current_path[node], found); 217 return found; 218 } 219 220 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 221 struct nvme_ns *ns) 222 { 223 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 224 siblings); 225 if (ns) 226 return ns; 227 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 228 } 229 230 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 231 int node, struct nvme_ns *old) 232 { 233 struct nvme_ns *ns, *found = NULL; 234 235 if (list_is_singular(&head->list)) { 236 if (nvme_path_is_disabled(old)) 237 return NULL; 238 return old; 239 } 240 241 for (ns = nvme_next_ns(head, old); 242 ns && ns != old; 243 ns = nvme_next_ns(head, ns)) { 244 if (nvme_path_is_disabled(ns)) 245 continue; 246 247 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 248 found = ns; 249 goto out; 250 } 251 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 252 found = ns; 253 } 254 255 /* 256 * The loop above skips the current path for round-robin semantics. 257 * Fall back to the current path if either: 258 * - no other optimized path found and current is optimized, 259 * - no other usable path found and current is usable. 260 */ 261 if (!nvme_path_is_disabled(old) && 262 (old->ana_state == NVME_ANA_OPTIMIZED || 263 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) 264 return old; 265 266 if (!found) 267 return NULL; 268 out: 269 rcu_assign_pointer(head->current_path[node], found); 270 return found; 271 } 272 273 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 274 { 275 return ns->ctrl->state == NVME_CTRL_LIVE && 276 ns->ana_state == NVME_ANA_OPTIMIZED; 277 } 278 279 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 280 { 281 int node = numa_node_id(); 282 struct nvme_ns *ns; 283 284 ns = srcu_dereference(head->current_path[node], &head->srcu); 285 if (unlikely(!ns)) 286 return __nvme_find_path(head, node); 287 288 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 289 return nvme_round_robin_path(head, node, ns); 290 if (unlikely(!nvme_path_is_optimized(ns))) 291 return __nvme_find_path(head, node); 292 return ns; 293 } 294 295 static bool nvme_available_path(struct nvme_ns_head *head) 296 { 297 struct nvme_ns *ns; 298 299 list_for_each_entry_rcu(ns, &head->list, siblings) { 300 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) 301 continue; 302 switch (ns->ctrl->state) { 303 case NVME_CTRL_LIVE: 304 case NVME_CTRL_RESETTING: 305 case NVME_CTRL_CONNECTING: 306 /* fallthru */ 307 return true; 308 default: 309 break; 310 } 311 } 312 return false; 313 } 314 315 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio) 316 { 317 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; 318 struct device *dev = disk_to_dev(head->disk); 319 struct nvme_ns *ns; 320 blk_qc_t ret = BLK_QC_T_NONE; 321 int srcu_idx; 322 323 /* 324 * The namespace might be going away and the bio might be moved to a 325 * different queue via blk_steal_bios(), so we need to use the bio_split 326 * pool from the original queue to allocate the bvecs from. 327 */ 328 blk_queue_split(&bio); 329 330 srcu_idx = srcu_read_lock(&head->srcu); 331 ns = nvme_find_path(head); 332 if (likely(ns)) { 333 bio_set_dev(bio, ns->disk->part0); 334 bio->bi_opf |= REQ_NVME_MPATH; 335 trace_block_bio_remap(bio, disk_devt(ns->head->disk), 336 bio->bi_iter.bi_sector); 337 ret = submit_bio_noacct(bio); 338 } else if (nvme_available_path(head)) { 339 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 340 341 spin_lock_irq(&head->requeue_lock); 342 bio_list_add(&head->requeue_list, bio); 343 spin_unlock_irq(&head->requeue_lock); 344 } else { 345 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 346 347 bio->bi_status = BLK_STS_IOERR; 348 bio_endio(bio); 349 } 350 351 srcu_read_unlock(&head->srcu, srcu_idx); 352 return ret; 353 } 354 355 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 356 { 357 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data)) 358 return -ENXIO; 359 return 0; 360 } 361 362 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 363 { 364 nvme_put_ns_head(disk->private_data); 365 } 366 367 #ifdef CONFIG_BLK_DEV_ZONED 368 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, 369 unsigned int nr_zones, report_zones_cb cb, void *data) 370 { 371 struct nvme_ns_head *head = disk->private_data; 372 struct nvme_ns *ns; 373 int srcu_idx, ret = -EWOULDBLOCK; 374 375 srcu_idx = srcu_read_lock(&head->srcu); 376 ns = nvme_find_path(head); 377 if (ns) 378 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); 379 srcu_read_unlock(&head->srcu, srcu_idx); 380 return ret; 381 } 382 #else 383 #define nvme_ns_head_report_zones NULL 384 #endif /* CONFIG_BLK_DEV_ZONED */ 385 386 const struct block_device_operations nvme_ns_head_ops = { 387 .owner = THIS_MODULE, 388 .submit_bio = nvme_ns_head_submit_bio, 389 .open = nvme_ns_head_open, 390 .release = nvme_ns_head_release, 391 .ioctl = nvme_ns_head_ioctl, 392 .getgeo = nvme_getgeo, 393 .report_zones = nvme_ns_head_report_zones, 394 .pr_ops = &nvme_pr_ops, 395 }; 396 397 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) 398 { 399 return container_of(cdev, struct nvme_ns_head, cdev); 400 } 401 402 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) 403 { 404 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) 405 return -ENXIO; 406 return 0; 407 } 408 409 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) 410 { 411 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); 412 return 0; 413 } 414 415 static const struct file_operations nvme_ns_head_chr_fops = { 416 .owner = THIS_MODULE, 417 .open = nvme_ns_head_chr_open, 418 .release = nvme_ns_head_chr_release, 419 .unlocked_ioctl = nvme_ns_head_chr_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 }; 422 423 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) 424 { 425 int ret; 426 427 head->cdev_device.parent = &head->subsys->dev; 428 ret = dev_set_name(&head->cdev_device, "ng%dn%d", 429 head->subsys->instance, head->instance); 430 if (ret) 431 return ret; 432 ret = nvme_cdev_add(&head->cdev, &head->cdev_device, 433 &nvme_ns_head_chr_fops, THIS_MODULE); 434 if (ret) 435 kfree_const(head->cdev_device.kobj.name); 436 return ret; 437 } 438 439 static void nvme_requeue_work(struct work_struct *work) 440 { 441 struct nvme_ns_head *head = 442 container_of(work, struct nvme_ns_head, requeue_work); 443 struct bio *bio, *next; 444 445 spin_lock_irq(&head->requeue_lock); 446 next = bio_list_get(&head->requeue_list); 447 spin_unlock_irq(&head->requeue_lock); 448 449 while ((bio = next) != NULL) { 450 next = bio->bi_next; 451 bio->bi_next = NULL; 452 453 submit_bio_noacct(bio); 454 } 455 } 456 457 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 458 { 459 bool vwc = false; 460 461 mutex_init(&head->lock); 462 bio_list_init(&head->requeue_list); 463 spin_lock_init(&head->requeue_lock); 464 INIT_WORK(&head->requeue_work, nvme_requeue_work); 465 466 /* 467 * Add a multipath node if the subsystems supports multiple controllers. 468 * We also do this for private namespaces as the namespace sharing data could 469 * change after a rescan. 470 */ 471 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath) 472 return 0; 473 474 head->disk = blk_alloc_disk(ctrl->numa_node); 475 if (!head->disk) 476 return -ENOMEM; 477 head->disk->fops = &nvme_ns_head_ops; 478 head->disk->private_data = head; 479 sprintf(head->disk->disk_name, "nvme%dn%d", 480 ctrl->subsys->instance, head->instance); 481 482 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue); 483 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue); 484 485 /* set to a default value of 512 until the disk is validated */ 486 blk_queue_logical_block_size(head->disk->queue, 512); 487 blk_set_stacking_limits(&head->disk->queue->limits); 488 489 /* we need to propagate up the VMC settings */ 490 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 491 vwc = true; 492 blk_queue_write_cache(head->disk->queue, vwc, vwc); 493 return 0; 494 } 495 496 static void nvme_mpath_set_live(struct nvme_ns *ns) 497 { 498 struct nvme_ns_head *head = ns->head; 499 500 if (!head->disk) 501 return; 502 503 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 504 device_add_disk(&head->subsys->dev, head->disk, 505 nvme_ns_id_attr_groups); 506 nvme_add_ns_head_cdev(head); 507 } 508 509 mutex_lock(&head->lock); 510 if (nvme_path_is_optimized(ns)) { 511 int node, srcu_idx; 512 513 srcu_idx = srcu_read_lock(&head->srcu); 514 for_each_node(node) 515 __nvme_find_path(head, node); 516 srcu_read_unlock(&head->srcu, srcu_idx); 517 } 518 mutex_unlock(&head->lock); 519 520 synchronize_srcu(&head->srcu); 521 kblockd_schedule_work(&head->requeue_work); 522 } 523 524 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 525 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 526 void *)) 527 { 528 void *base = ctrl->ana_log_buf; 529 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 530 int error, i; 531 532 lockdep_assert_held(&ctrl->ana_lock); 533 534 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 535 struct nvme_ana_group_desc *desc = base + offset; 536 u32 nr_nsids; 537 size_t nsid_buf_size; 538 539 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 540 return -EINVAL; 541 542 nr_nsids = le32_to_cpu(desc->nnsids); 543 nsid_buf_size = nr_nsids * sizeof(__le32); 544 545 if (WARN_ON_ONCE(desc->grpid == 0)) 546 return -EINVAL; 547 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 548 return -EINVAL; 549 if (WARN_ON_ONCE(desc->state == 0)) 550 return -EINVAL; 551 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 552 return -EINVAL; 553 554 offset += sizeof(*desc); 555 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 556 return -EINVAL; 557 558 error = cb(ctrl, desc, data); 559 if (error) 560 return error; 561 562 offset += nsid_buf_size; 563 } 564 565 return 0; 566 } 567 568 static inline bool nvme_state_is_live(enum nvme_ana_state state) 569 { 570 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 571 } 572 573 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 574 struct nvme_ns *ns) 575 { 576 ns->ana_grpid = le32_to_cpu(desc->grpid); 577 ns->ana_state = desc->state; 578 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 579 580 if (nvme_state_is_live(ns->ana_state)) 581 nvme_mpath_set_live(ns); 582 } 583 584 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 585 struct nvme_ana_group_desc *desc, void *data) 586 { 587 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 588 unsigned *nr_change_groups = data; 589 struct nvme_ns *ns; 590 591 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 592 le32_to_cpu(desc->grpid), 593 nvme_ana_state_names[desc->state]); 594 595 if (desc->state == NVME_ANA_CHANGE) 596 (*nr_change_groups)++; 597 598 if (!nr_nsids) 599 return 0; 600 601 down_read(&ctrl->namespaces_rwsem); 602 list_for_each_entry(ns, &ctrl->namespaces, list) { 603 unsigned nsid = le32_to_cpu(desc->nsids[n]); 604 605 if (ns->head->ns_id < nsid) 606 continue; 607 if (ns->head->ns_id == nsid) 608 nvme_update_ns_ana_state(desc, ns); 609 if (++n == nr_nsids) 610 break; 611 } 612 up_read(&ctrl->namespaces_rwsem); 613 return 0; 614 } 615 616 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 617 { 618 u32 nr_change_groups = 0; 619 int error; 620 621 mutex_lock(&ctrl->ana_lock); 622 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 623 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 624 if (error) { 625 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 626 goto out_unlock; 627 } 628 629 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 630 nvme_update_ana_state); 631 if (error) 632 goto out_unlock; 633 634 /* 635 * In theory we should have an ANATT timer per group as they might enter 636 * the change state at different times. But that is a lot of overhead 637 * just to protect against a target that keeps entering new changes 638 * states while never finishing previous ones. But we'll still 639 * eventually time out once all groups are in change state, so this 640 * isn't a big deal. 641 * 642 * We also double the ANATT value to provide some slack for transports 643 * or AEN processing overhead. 644 */ 645 if (nr_change_groups) 646 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 647 else 648 del_timer_sync(&ctrl->anatt_timer); 649 out_unlock: 650 mutex_unlock(&ctrl->ana_lock); 651 return error; 652 } 653 654 static void nvme_ana_work(struct work_struct *work) 655 { 656 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 657 658 if (ctrl->state != NVME_CTRL_LIVE) 659 return; 660 661 nvme_read_ana_log(ctrl); 662 } 663 664 static void nvme_anatt_timeout(struct timer_list *t) 665 { 666 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 667 668 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 669 nvme_reset_ctrl(ctrl); 670 } 671 672 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 673 { 674 if (!nvme_ctrl_use_ana(ctrl)) 675 return; 676 del_timer_sync(&ctrl->anatt_timer); 677 cancel_work_sync(&ctrl->ana_work); 678 } 679 680 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 681 struct device_attribute subsys_attr_##_name = \ 682 __ATTR(_name, _mode, _show, _store) 683 684 static const char *nvme_iopolicy_names[] = { 685 [NVME_IOPOLICY_NUMA] = "numa", 686 [NVME_IOPOLICY_RR] = "round-robin", 687 }; 688 689 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 690 struct device_attribute *attr, char *buf) 691 { 692 struct nvme_subsystem *subsys = 693 container_of(dev, struct nvme_subsystem, dev); 694 695 return sysfs_emit(buf, "%s\n", 696 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 697 } 698 699 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 700 struct device_attribute *attr, const char *buf, size_t count) 701 { 702 struct nvme_subsystem *subsys = 703 container_of(dev, struct nvme_subsystem, dev); 704 int i; 705 706 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 707 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 708 WRITE_ONCE(subsys->iopolicy, i); 709 return count; 710 } 711 } 712 713 return -EINVAL; 714 } 715 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 716 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 717 718 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 719 char *buf) 720 { 721 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 722 } 723 DEVICE_ATTR_RO(ana_grpid); 724 725 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 726 char *buf) 727 { 728 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 729 730 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 731 } 732 DEVICE_ATTR_RO(ana_state); 733 734 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 735 struct nvme_ana_group_desc *desc, void *data) 736 { 737 struct nvme_ana_group_desc *dst = data; 738 739 if (desc->grpid != dst->grpid) 740 return 0; 741 742 *dst = *desc; 743 return -ENXIO; /* just break out of the loop */ 744 } 745 746 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 747 { 748 if (nvme_ctrl_use_ana(ns->ctrl)) { 749 struct nvme_ana_group_desc desc = { 750 .grpid = id->anagrpid, 751 .state = 0, 752 }; 753 754 mutex_lock(&ns->ctrl->ana_lock); 755 ns->ana_grpid = le32_to_cpu(id->anagrpid); 756 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 757 mutex_unlock(&ns->ctrl->ana_lock); 758 if (desc.state) { 759 /* found the group desc: update */ 760 nvme_update_ns_ana_state(&desc, ns); 761 } else { 762 /* group desc not found: trigger a re-read */ 763 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 764 queue_work(nvme_wq, &ns->ctrl->ana_work); 765 } 766 } else { 767 ns->ana_state = NVME_ANA_OPTIMIZED; 768 nvme_mpath_set_live(ns); 769 } 770 771 if (blk_queue_stable_writes(ns->queue) && ns->head->disk) 772 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, 773 ns->head->disk->queue); 774 #ifdef CONFIG_BLK_DEV_ZONED 775 if (blk_queue_is_zoned(ns->queue) && ns->head->disk) 776 ns->head->disk->queue->nr_zones = ns->queue->nr_zones; 777 #endif 778 } 779 780 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) 781 { 782 if (!head->disk) 783 return; 784 kblockd_schedule_work(&head->requeue_work); 785 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 786 nvme_cdev_del(&head->cdev, &head->cdev_device); 787 del_gendisk(head->disk); 788 } 789 } 790 791 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 792 { 793 if (!head->disk) 794 return; 795 blk_set_queue_dying(head->disk->queue); 796 /* make sure all pending bios are cleaned up */ 797 kblockd_schedule_work(&head->requeue_work); 798 flush_work(&head->requeue_work); 799 blk_cleanup_disk(head->disk); 800 } 801 802 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) 803 { 804 mutex_init(&ctrl->ana_lock); 805 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 806 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 807 } 808 809 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 810 { 811 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; 812 size_t ana_log_size; 813 int error = 0; 814 815 /* check if multipath is enabled and we have the capability */ 816 if (!multipath || !ctrl->subsys || 817 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 818 return 0; 819 820 if (!ctrl->max_namespaces || 821 ctrl->max_namespaces > le32_to_cpu(id->nn)) { 822 dev_err(ctrl->device, 823 "Invalid MNAN value %u\n", ctrl->max_namespaces); 824 return -EINVAL; 825 } 826 827 ctrl->anacap = id->anacap; 828 ctrl->anatt = id->anatt; 829 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 830 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 831 832 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 833 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + 834 ctrl->max_namespaces * sizeof(__le32); 835 if (ana_log_size > max_transfer_size) { 836 dev_err(ctrl->device, 837 "ANA log page size (%zd) larger than MDTS (%zd).\n", 838 ana_log_size, max_transfer_size); 839 dev_err(ctrl->device, "disabling ANA support.\n"); 840 goto out_uninit; 841 } 842 if (ana_log_size > ctrl->ana_log_size) { 843 nvme_mpath_stop(ctrl); 844 kfree(ctrl->ana_log_buf); 845 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL); 846 if (!ctrl->ana_log_buf) 847 return -ENOMEM; 848 } 849 ctrl->ana_log_size = ana_log_size; 850 error = nvme_read_ana_log(ctrl); 851 if (error) 852 goto out_uninit; 853 return 0; 854 855 out_uninit: 856 nvme_mpath_uninit(ctrl); 857 return error; 858 } 859 860 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 861 { 862 kfree(ctrl->ana_log_buf); 863 ctrl->ana_log_buf = NULL; 864 } 865