1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/moduleparam.h> 7 #include <trace/events/block.h> 8 #include "nvme.h" 9 10 static bool multipath = true; 11 module_param(multipath, bool, 0444); 12 MODULE_PARM_DESC(multipath, 13 "turn on native support for multiple controllers per subsystem"); 14 15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 16 { 17 struct nvme_ns_head *h; 18 19 lockdep_assert_held(&subsys->lock); 20 list_for_each_entry(h, &subsys->nsheads, entry) 21 if (h->disk) 22 blk_mq_unfreeze_queue(h->disk->queue); 23 } 24 25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 26 { 27 struct nvme_ns_head *h; 28 29 lockdep_assert_held(&subsys->lock); 30 list_for_each_entry(h, &subsys->nsheads, entry) 31 if (h->disk) 32 blk_mq_freeze_queue_wait(h->disk->queue); 33 } 34 35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 36 { 37 struct nvme_ns_head *h; 38 39 lockdep_assert_held(&subsys->lock); 40 list_for_each_entry(h, &subsys->nsheads, entry) 41 if (h->disk) 42 blk_freeze_queue_start(h->disk->queue); 43 } 44 45 /* 46 * If multipathing is enabled we need to always use the subsystem instance 47 * number for numbering our devices to avoid conflicts between subsystems that 48 * have multiple controllers and thus use the multipath-aware subsystem node 49 * and those that have a single controller and use the controller node 50 * directly. 51 */ 52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 53 struct nvme_ctrl *ctrl, int *flags) 54 { 55 if (!multipath) { 56 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 57 } else if (ns->head->disk) { 58 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 59 ctrl->instance, ns->head->instance); 60 *flags = GENHD_FL_HIDDEN; 61 } else { 62 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 63 ns->head->instance); 64 } 65 } 66 67 void nvme_failover_req(struct request *req) 68 { 69 struct nvme_ns *ns = req->q->queuedata; 70 u16 status = nvme_req(req)->status; 71 unsigned long flags; 72 73 spin_lock_irqsave(&ns->head->requeue_lock, flags); 74 blk_steal_bios(&ns->head->requeue_list, req); 75 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 76 blk_mq_end_request(req, 0); 77 78 switch (status & 0x7ff) { 79 case NVME_SC_ANA_TRANSITION: 80 case NVME_SC_ANA_INACCESSIBLE: 81 case NVME_SC_ANA_PERSISTENT_LOSS: 82 /* 83 * If we got back an ANA error we know the controller is alive, 84 * but not ready to serve this namespaces. The spec suggests 85 * we should update our general state here, but due to the fact 86 * that the admin and I/O queues are not serialized that is 87 * fundamentally racy. So instead just clear the current path, 88 * mark the the path as pending and kick of a re-read of the ANA 89 * log page ASAP. 90 */ 91 nvme_mpath_clear_current_path(ns); 92 if (ns->ctrl->ana_log_buf) { 93 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 94 queue_work(nvme_wq, &ns->ctrl->ana_work); 95 } 96 break; 97 case NVME_SC_HOST_PATH_ERROR: 98 /* 99 * Temporary transport disruption in talking to the controller. 100 * Try to send on a new path. 101 */ 102 nvme_mpath_clear_current_path(ns); 103 break; 104 default: 105 /* 106 * Reset the controller for any non-ANA error as we don't know 107 * what caused the error. 108 */ 109 nvme_reset_ctrl(ns->ctrl); 110 break; 111 } 112 113 kblockd_schedule_work(&ns->head->requeue_work); 114 } 115 116 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 117 { 118 struct nvme_ns *ns; 119 120 down_read(&ctrl->namespaces_rwsem); 121 list_for_each_entry(ns, &ctrl->namespaces, list) { 122 if (ns->head->disk) 123 kblockd_schedule_work(&ns->head->requeue_work); 124 } 125 up_read(&ctrl->namespaces_rwsem); 126 } 127 128 static const char *nvme_ana_state_names[] = { 129 [0] = "invalid state", 130 [NVME_ANA_OPTIMIZED] = "optimized", 131 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 132 [NVME_ANA_INACCESSIBLE] = "inaccessible", 133 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 134 [NVME_ANA_CHANGE] = "change", 135 }; 136 137 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 138 { 139 struct nvme_ns_head *head = ns->head; 140 bool changed = false; 141 int node; 142 143 if (!head) 144 goto out; 145 146 for_each_node(node) { 147 if (ns == rcu_access_pointer(head->current_path[node])) { 148 rcu_assign_pointer(head->current_path[node], NULL); 149 changed = true; 150 } 151 } 152 out: 153 return changed; 154 } 155 156 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 157 { 158 struct nvme_ns *ns; 159 160 mutex_lock(&ctrl->scan_lock); 161 down_read(&ctrl->namespaces_rwsem); 162 list_for_each_entry(ns, &ctrl->namespaces, list) 163 if (nvme_mpath_clear_current_path(ns)) 164 kblockd_schedule_work(&ns->head->requeue_work); 165 up_read(&ctrl->namespaces_rwsem); 166 mutex_unlock(&ctrl->scan_lock); 167 } 168 169 static bool nvme_path_is_disabled(struct nvme_ns *ns) 170 { 171 return ns->ctrl->state != NVME_CTRL_LIVE || 172 test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 173 test_bit(NVME_NS_REMOVING, &ns->flags); 174 } 175 176 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 177 { 178 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 179 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 180 181 list_for_each_entry_rcu(ns, &head->list, siblings) { 182 if (nvme_path_is_disabled(ns)) 183 continue; 184 185 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 186 distance = node_distance(node, ns->ctrl->numa_node); 187 else 188 distance = LOCAL_DISTANCE; 189 190 switch (ns->ana_state) { 191 case NVME_ANA_OPTIMIZED: 192 if (distance < found_distance) { 193 found_distance = distance; 194 found = ns; 195 } 196 break; 197 case NVME_ANA_NONOPTIMIZED: 198 if (distance < fallback_distance) { 199 fallback_distance = distance; 200 fallback = ns; 201 } 202 break; 203 default: 204 break; 205 } 206 } 207 208 if (!found) 209 found = fallback; 210 if (found) 211 rcu_assign_pointer(head->current_path[node], found); 212 return found; 213 } 214 215 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 216 struct nvme_ns *ns) 217 { 218 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 219 siblings); 220 if (ns) 221 return ns; 222 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 223 } 224 225 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 226 int node, struct nvme_ns *old) 227 { 228 struct nvme_ns *ns, *found, *fallback = NULL; 229 230 if (list_is_singular(&head->list)) { 231 if (nvme_path_is_disabled(old)) 232 return NULL; 233 return old; 234 } 235 236 for (ns = nvme_next_ns(head, old); 237 ns != old; 238 ns = nvme_next_ns(head, ns)) { 239 if (nvme_path_is_disabled(ns)) 240 continue; 241 242 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 243 found = ns; 244 goto out; 245 } 246 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 247 fallback = ns; 248 } 249 250 if (!fallback) 251 return NULL; 252 found = fallback; 253 out: 254 rcu_assign_pointer(head->current_path[node], found); 255 return found; 256 } 257 258 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 259 { 260 return ns->ctrl->state == NVME_CTRL_LIVE && 261 ns->ana_state == NVME_ANA_OPTIMIZED; 262 } 263 264 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 265 { 266 int node = numa_node_id(); 267 struct nvme_ns *ns; 268 269 ns = srcu_dereference(head->current_path[node], &head->srcu); 270 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns) 271 ns = nvme_round_robin_path(head, node, ns); 272 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 273 ns = __nvme_find_path(head, node); 274 return ns; 275 } 276 277 static bool nvme_available_path(struct nvme_ns_head *head) 278 { 279 struct nvme_ns *ns; 280 281 list_for_each_entry_rcu(ns, &head->list, siblings) { 282 switch (ns->ctrl->state) { 283 case NVME_CTRL_LIVE: 284 case NVME_CTRL_RESETTING: 285 case NVME_CTRL_CONNECTING: 286 /* fallthru */ 287 return true; 288 default: 289 break; 290 } 291 } 292 return false; 293 } 294 295 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 296 struct bio *bio) 297 { 298 struct nvme_ns_head *head = q->queuedata; 299 struct device *dev = disk_to_dev(head->disk); 300 struct nvme_ns *ns; 301 blk_qc_t ret = BLK_QC_T_NONE; 302 int srcu_idx; 303 304 /* 305 * The namespace might be going away and the bio might 306 * be moved to a different queue via blk_steal_bios(), 307 * so we need to use the bio_split pool from the original 308 * queue to allocate the bvecs from. 309 */ 310 blk_queue_split(q, &bio); 311 312 srcu_idx = srcu_read_lock(&head->srcu); 313 ns = nvme_find_path(head); 314 if (likely(ns)) { 315 bio->bi_disk = ns->disk; 316 bio->bi_opf |= REQ_NVME_MPATH; 317 trace_block_bio_remap(bio->bi_disk->queue, bio, 318 disk_devt(ns->head->disk), 319 bio->bi_iter.bi_sector); 320 ret = direct_make_request(bio); 321 } else if (nvme_available_path(head)) { 322 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 323 324 spin_lock_irq(&head->requeue_lock); 325 bio_list_add(&head->requeue_list, bio); 326 spin_unlock_irq(&head->requeue_lock); 327 } else { 328 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 329 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 } 333 334 srcu_read_unlock(&head->srcu, srcu_idx); 335 return ret; 336 } 337 338 static void nvme_requeue_work(struct work_struct *work) 339 { 340 struct nvme_ns_head *head = 341 container_of(work, struct nvme_ns_head, requeue_work); 342 struct bio *bio, *next; 343 344 spin_lock_irq(&head->requeue_lock); 345 next = bio_list_get(&head->requeue_list); 346 spin_unlock_irq(&head->requeue_lock); 347 348 while ((bio = next) != NULL) { 349 next = bio->bi_next; 350 bio->bi_next = NULL; 351 352 /* 353 * Reset disk to the mpath node and resubmit to select a new 354 * path. 355 */ 356 bio->bi_disk = head->disk; 357 generic_make_request(bio); 358 } 359 } 360 361 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 362 { 363 struct request_queue *q; 364 bool vwc = false; 365 366 mutex_init(&head->lock); 367 bio_list_init(&head->requeue_list); 368 spin_lock_init(&head->requeue_lock); 369 INIT_WORK(&head->requeue_work, nvme_requeue_work); 370 371 /* 372 * Add a multipath node if the subsystems supports multiple controllers. 373 * We also do this for private namespaces as the namespace sharing data could 374 * change after a rescan. 375 */ 376 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 377 return 0; 378 379 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node); 380 if (!q) 381 goto out; 382 q->queuedata = head; 383 blk_queue_make_request(q, nvme_ns_head_make_request); 384 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 385 /* set to a default value for 512 until disk is validated */ 386 blk_queue_logical_block_size(q, 512); 387 blk_set_stacking_limits(&q->limits); 388 389 /* we need to propagate up the VMC settings */ 390 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 391 vwc = true; 392 blk_queue_write_cache(q, vwc, vwc); 393 394 head->disk = alloc_disk(0); 395 if (!head->disk) 396 goto out_cleanup_queue; 397 head->disk->fops = &nvme_ns_head_ops; 398 head->disk->private_data = head; 399 head->disk->queue = q; 400 head->disk->flags = GENHD_FL_EXT_DEVT; 401 sprintf(head->disk->disk_name, "nvme%dn%d", 402 ctrl->subsys->instance, head->instance); 403 return 0; 404 405 out_cleanup_queue: 406 blk_cleanup_queue(q); 407 out: 408 return -ENOMEM; 409 } 410 411 static void nvme_mpath_set_live(struct nvme_ns *ns) 412 { 413 struct nvme_ns_head *head = ns->head; 414 415 lockdep_assert_held(&ns->head->lock); 416 417 if (!head->disk) 418 return; 419 420 if (!(head->disk->flags & GENHD_FL_UP)) 421 device_add_disk(&head->subsys->dev, head->disk, 422 nvme_ns_id_attr_groups); 423 424 if (nvme_path_is_optimized(ns)) { 425 int node, srcu_idx; 426 427 srcu_idx = srcu_read_lock(&head->srcu); 428 for_each_node(node) 429 __nvme_find_path(head, node); 430 srcu_read_unlock(&head->srcu, srcu_idx); 431 } 432 433 synchronize_srcu(&ns->head->srcu); 434 kblockd_schedule_work(&ns->head->requeue_work); 435 } 436 437 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 438 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 439 void *)) 440 { 441 void *base = ctrl->ana_log_buf; 442 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 443 int error, i; 444 445 lockdep_assert_held(&ctrl->ana_lock); 446 447 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 448 struct nvme_ana_group_desc *desc = base + offset; 449 u32 nr_nsids = le32_to_cpu(desc->nnsids); 450 size_t nsid_buf_size = nr_nsids * sizeof(__le32); 451 452 if (WARN_ON_ONCE(desc->grpid == 0)) 453 return -EINVAL; 454 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 455 return -EINVAL; 456 if (WARN_ON_ONCE(desc->state == 0)) 457 return -EINVAL; 458 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 459 return -EINVAL; 460 461 offset += sizeof(*desc); 462 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 463 return -EINVAL; 464 465 error = cb(ctrl, desc, data); 466 if (error) 467 return error; 468 469 offset += nsid_buf_size; 470 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 471 return -EINVAL; 472 } 473 474 return 0; 475 } 476 477 static inline bool nvme_state_is_live(enum nvme_ana_state state) 478 { 479 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 480 } 481 482 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 483 struct nvme_ns *ns) 484 { 485 mutex_lock(&ns->head->lock); 486 ns->ana_grpid = le32_to_cpu(desc->grpid); 487 ns->ana_state = desc->state; 488 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 489 490 if (nvme_state_is_live(ns->ana_state)) 491 nvme_mpath_set_live(ns); 492 mutex_unlock(&ns->head->lock); 493 } 494 495 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 496 struct nvme_ana_group_desc *desc, void *data) 497 { 498 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 499 unsigned *nr_change_groups = data; 500 struct nvme_ns *ns; 501 502 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 503 le32_to_cpu(desc->grpid), 504 nvme_ana_state_names[desc->state]); 505 506 if (desc->state == NVME_ANA_CHANGE) 507 (*nr_change_groups)++; 508 509 if (!nr_nsids) 510 return 0; 511 512 down_write(&ctrl->namespaces_rwsem); 513 list_for_each_entry(ns, &ctrl->namespaces, list) { 514 unsigned nsid = le32_to_cpu(desc->nsids[n]); 515 516 if (ns->head->ns_id < nsid) 517 continue; 518 if (ns->head->ns_id == nsid) 519 nvme_update_ns_ana_state(desc, ns); 520 if (++n == nr_nsids) 521 break; 522 } 523 up_write(&ctrl->namespaces_rwsem); 524 return 0; 525 } 526 527 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 528 { 529 u32 nr_change_groups = 0; 530 int error; 531 532 mutex_lock(&ctrl->ana_lock); 533 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, 534 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 535 if (error) { 536 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 537 goto out_unlock; 538 } 539 540 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 541 nvme_update_ana_state); 542 if (error) 543 goto out_unlock; 544 545 /* 546 * In theory we should have an ANATT timer per group as they might enter 547 * the change state at different times. But that is a lot of overhead 548 * just to protect against a target that keeps entering new changes 549 * states while never finishing previous ones. But we'll still 550 * eventually time out once all groups are in change state, so this 551 * isn't a big deal. 552 * 553 * We also double the ANATT value to provide some slack for transports 554 * or AEN processing overhead. 555 */ 556 if (nr_change_groups) 557 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 558 else 559 del_timer_sync(&ctrl->anatt_timer); 560 out_unlock: 561 mutex_unlock(&ctrl->ana_lock); 562 return error; 563 } 564 565 static void nvme_ana_work(struct work_struct *work) 566 { 567 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 568 569 nvme_read_ana_log(ctrl); 570 } 571 572 static void nvme_anatt_timeout(struct timer_list *t) 573 { 574 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 575 576 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 577 nvme_reset_ctrl(ctrl); 578 } 579 580 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 581 { 582 if (!nvme_ctrl_use_ana(ctrl)) 583 return; 584 del_timer_sync(&ctrl->anatt_timer); 585 cancel_work_sync(&ctrl->ana_work); 586 } 587 588 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 589 struct device_attribute subsys_attr_##_name = \ 590 __ATTR(_name, _mode, _show, _store) 591 592 static const char *nvme_iopolicy_names[] = { 593 [NVME_IOPOLICY_NUMA] = "numa", 594 [NVME_IOPOLICY_RR] = "round-robin", 595 }; 596 597 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 598 struct device_attribute *attr, char *buf) 599 { 600 struct nvme_subsystem *subsys = 601 container_of(dev, struct nvme_subsystem, dev); 602 603 return sprintf(buf, "%s\n", 604 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 605 } 606 607 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 608 struct device_attribute *attr, const char *buf, size_t count) 609 { 610 struct nvme_subsystem *subsys = 611 container_of(dev, struct nvme_subsystem, dev); 612 int i; 613 614 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 615 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 616 WRITE_ONCE(subsys->iopolicy, i); 617 return count; 618 } 619 } 620 621 return -EINVAL; 622 } 623 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 624 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 625 626 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 627 char *buf) 628 { 629 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 630 } 631 DEVICE_ATTR_RO(ana_grpid); 632 633 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 634 char *buf) 635 { 636 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 637 638 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 639 } 640 DEVICE_ATTR_RO(ana_state); 641 642 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 643 struct nvme_ana_group_desc *desc, void *data) 644 { 645 struct nvme_ns *ns = data; 646 647 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 648 nvme_update_ns_ana_state(desc, ns); 649 return -ENXIO; /* just break out of the loop */ 650 } 651 652 return 0; 653 } 654 655 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 656 { 657 if (nvme_ctrl_use_ana(ns->ctrl)) { 658 mutex_lock(&ns->ctrl->ana_lock); 659 ns->ana_grpid = le32_to_cpu(id->anagrpid); 660 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 661 mutex_unlock(&ns->ctrl->ana_lock); 662 } else { 663 mutex_lock(&ns->head->lock); 664 ns->ana_state = NVME_ANA_OPTIMIZED; 665 nvme_mpath_set_live(ns); 666 mutex_unlock(&ns->head->lock); 667 } 668 } 669 670 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 671 { 672 if (!head->disk) 673 return; 674 if (head->disk->flags & GENHD_FL_UP) 675 del_gendisk(head->disk); 676 blk_set_queue_dying(head->disk->queue); 677 /* make sure all pending bios are cleaned up */ 678 kblockd_schedule_work(&head->requeue_work); 679 flush_work(&head->requeue_work); 680 blk_cleanup_queue(head->disk->queue); 681 put_disk(head->disk); 682 } 683 684 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 685 { 686 int error; 687 688 /* check if multipath is enabled and we have the capability */ 689 if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3))) 690 return 0; 691 692 ctrl->anacap = id->anacap; 693 ctrl->anatt = id->anatt; 694 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 695 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 696 697 mutex_init(&ctrl->ana_lock); 698 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 699 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 700 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 701 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 702 703 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 704 dev_err(ctrl->device, 705 "ANA log page size (%zd) larger than MDTS (%d).\n", 706 ctrl->ana_log_size, 707 ctrl->max_hw_sectors << SECTOR_SHIFT); 708 dev_err(ctrl->device, "disabling ANA support.\n"); 709 return 0; 710 } 711 712 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 713 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 714 if (!ctrl->ana_log_buf) { 715 error = -ENOMEM; 716 goto out; 717 } 718 719 error = nvme_read_ana_log(ctrl); 720 if (error) 721 goto out_free_ana_log_buf; 722 return 0; 723 out_free_ana_log_buf: 724 kfree(ctrl->ana_log_buf); 725 ctrl->ana_log_buf = NULL; 726 out: 727 return error; 728 } 729 730 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 731 { 732 kfree(ctrl->ana_log_buf); 733 ctrl->ana_log_buf = NULL; 734 } 735 736