1 /* 2 * Copyright (c) 2017-2018 Christoph Hellwig. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 */ 13 14 #include <linux/moduleparam.h> 15 #include <trace/events/block.h> 16 #include "nvme.h" 17 18 static bool multipath = true; 19 module_param(multipath, bool, 0444); 20 MODULE_PARM_DESC(multipath, 21 "turn on native support for multiple controllers per subsystem"); 22 23 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 24 { 25 return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3)); 26 } 27 28 /* 29 * If multipathing is enabled we need to always use the subsystem instance 30 * number for numbering our devices to avoid conflicts between subsystems that 31 * have multiple controllers and thus use the multipath-aware subsystem node 32 * and those that have a single controller and use the controller node 33 * directly. 34 */ 35 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 36 struct nvme_ctrl *ctrl, int *flags) 37 { 38 if (!multipath) { 39 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 40 } else if (ns->head->disk) { 41 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 42 ctrl->cntlid, ns->head->instance); 43 *flags = GENHD_FL_HIDDEN; 44 } else { 45 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 46 ns->head->instance); 47 } 48 } 49 50 void nvme_failover_req(struct request *req) 51 { 52 struct nvme_ns *ns = req->q->queuedata; 53 u16 status = nvme_req(req)->status; 54 unsigned long flags; 55 56 spin_lock_irqsave(&ns->head->requeue_lock, flags); 57 blk_steal_bios(&ns->head->requeue_list, req); 58 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 59 blk_mq_end_request(req, 0); 60 61 switch (status & 0x7ff) { 62 case NVME_SC_ANA_TRANSITION: 63 case NVME_SC_ANA_INACCESSIBLE: 64 case NVME_SC_ANA_PERSISTENT_LOSS: 65 /* 66 * If we got back an ANA error we know the controller is alive, 67 * but not ready to serve this namespaces. The spec suggests 68 * we should update our general state here, but due to the fact 69 * that the admin and I/O queues are not serialized that is 70 * fundamentally racy. So instead just clear the current path, 71 * mark the the path as pending and kick of a re-read of the ANA 72 * log page ASAP. 73 */ 74 nvme_mpath_clear_current_path(ns); 75 if (ns->ctrl->ana_log_buf) { 76 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 77 queue_work(nvme_wq, &ns->ctrl->ana_work); 78 } 79 break; 80 case NVME_SC_HOST_PATH_ERROR: 81 /* 82 * Temporary transport disruption in talking to the controller. 83 * Try to send on a new path. 84 */ 85 nvme_mpath_clear_current_path(ns); 86 break; 87 default: 88 /* 89 * Reset the controller for any non-ANA error as we don't know 90 * what caused the error. 91 */ 92 nvme_reset_ctrl(ns->ctrl); 93 break; 94 } 95 96 kblockd_schedule_work(&ns->head->requeue_work); 97 } 98 99 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 100 { 101 struct nvme_ns *ns; 102 103 down_read(&ctrl->namespaces_rwsem); 104 list_for_each_entry(ns, &ctrl->namespaces, list) { 105 if (ns->head->disk) 106 kblockd_schedule_work(&ns->head->requeue_work); 107 } 108 up_read(&ctrl->namespaces_rwsem); 109 } 110 111 static const char *nvme_ana_state_names[] = { 112 [0] = "invalid state", 113 [NVME_ANA_OPTIMIZED] = "optimized", 114 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 115 [NVME_ANA_INACCESSIBLE] = "inaccessible", 116 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 117 [NVME_ANA_CHANGE] = "change", 118 }; 119 120 void nvme_mpath_clear_current_path(struct nvme_ns *ns) 121 { 122 struct nvme_ns_head *head = ns->head; 123 int node; 124 125 if (!head) 126 return; 127 128 for_each_node(node) { 129 if (ns == rcu_access_pointer(head->current_path[node])) 130 rcu_assign_pointer(head->current_path[node], NULL); 131 } 132 } 133 134 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 135 { 136 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 137 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 138 139 list_for_each_entry_rcu(ns, &head->list, siblings) { 140 if (ns->ctrl->state != NVME_CTRL_LIVE || 141 test_bit(NVME_NS_ANA_PENDING, &ns->flags)) 142 continue; 143 144 distance = node_distance(node, dev_to_node(ns->ctrl->dev)); 145 146 switch (ns->ana_state) { 147 case NVME_ANA_OPTIMIZED: 148 if (distance < found_distance) { 149 found_distance = distance; 150 found = ns; 151 } 152 break; 153 case NVME_ANA_NONOPTIMIZED: 154 if (distance < fallback_distance) { 155 fallback_distance = distance; 156 fallback = ns; 157 } 158 break; 159 default: 160 break; 161 } 162 } 163 164 if (!found) 165 found = fallback; 166 if (found) 167 rcu_assign_pointer(head->current_path[node], found); 168 return found; 169 } 170 171 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 172 { 173 return ns->ctrl->state == NVME_CTRL_LIVE && 174 ns->ana_state == NVME_ANA_OPTIMIZED; 175 } 176 177 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 178 { 179 int node = numa_node_id(); 180 struct nvme_ns *ns; 181 182 ns = srcu_dereference(head->current_path[node], &head->srcu); 183 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 184 ns = __nvme_find_path(head, node); 185 return ns; 186 } 187 188 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 189 struct bio *bio) 190 { 191 struct nvme_ns_head *head = q->queuedata; 192 struct device *dev = disk_to_dev(head->disk); 193 struct nvme_ns *ns; 194 blk_qc_t ret = BLK_QC_T_NONE; 195 int srcu_idx; 196 197 srcu_idx = srcu_read_lock(&head->srcu); 198 ns = nvme_find_path(head); 199 if (likely(ns)) { 200 bio->bi_disk = ns->disk; 201 bio->bi_opf |= REQ_NVME_MPATH; 202 trace_block_bio_remap(bio->bi_disk->queue, bio, 203 disk_devt(ns->head->disk), 204 bio->bi_iter.bi_sector); 205 ret = direct_make_request(bio); 206 } else if (!list_empty_careful(&head->list)) { 207 dev_warn_ratelimited(dev, "no path available - requeuing I/O\n"); 208 209 spin_lock_irq(&head->requeue_lock); 210 bio_list_add(&head->requeue_list, bio); 211 spin_unlock_irq(&head->requeue_lock); 212 } else { 213 dev_warn_ratelimited(dev, "no path - failing I/O\n"); 214 215 bio->bi_status = BLK_STS_IOERR; 216 bio_endio(bio); 217 } 218 219 srcu_read_unlock(&head->srcu, srcu_idx); 220 return ret; 221 } 222 223 static bool nvme_ns_head_poll(struct request_queue *q, blk_qc_t qc) 224 { 225 struct nvme_ns_head *head = q->queuedata; 226 struct nvme_ns *ns; 227 bool found = false; 228 int srcu_idx; 229 230 srcu_idx = srcu_read_lock(&head->srcu); 231 ns = srcu_dereference(head->current_path[numa_node_id()], &head->srcu); 232 if (likely(ns && nvme_path_is_optimized(ns))) 233 found = ns->queue->poll_fn(q, qc); 234 srcu_read_unlock(&head->srcu, srcu_idx); 235 return found; 236 } 237 238 static void nvme_requeue_work(struct work_struct *work) 239 { 240 struct nvme_ns_head *head = 241 container_of(work, struct nvme_ns_head, requeue_work); 242 struct bio *bio, *next; 243 244 spin_lock_irq(&head->requeue_lock); 245 next = bio_list_get(&head->requeue_list); 246 spin_unlock_irq(&head->requeue_lock); 247 248 while ((bio = next) != NULL) { 249 next = bio->bi_next; 250 bio->bi_next = NULL; 251 252 /* 253 * Reset disk to the mpath node and resubmit to select a new 254 * path. 255 */ 256 bio->bi_disk = head->disk; 257 generic_make_request(bio); 258 } 259 } 260 261 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 262 { 263 struct request_queue *q; 264 bool vwc = false; 265 266 mutex_init(&head->lock); 267 bio_list_init(&head->requeue_list); 268 spin_lock_init(&head->requeue_lock); 269 INIT_WORK(&head->requeue_work, nvme_requeue_work); 270 271 /* 272 * Add a multipath node if the subsystems supports multiple controllers. 273 * We also do this for private namespaces as the namespace sharing data could 274 * change after a rescan. 275 */ 276 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 277 return 0; 278 279 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL); 280 if (!q) 281 goto out; 282 q->queuedata = head; 283 blk_queue_make_request(q, nvme_ns_head_make_request); 284 q->poll_fn = nvme_ns_head_poll; 285 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 286 /* set to a default value for 512 until disk is validated */ 287 blk_queue_logical_block_size(q, 512); 288 blk_set_stacking_limits(&q->limits); 289 290 /* we need to propagate up the VMC settings */ 291 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 292 vwc = true; 293 blk_queue_write_cache(q, vwc, vwc); 294 295 head->disk = alloc_disk(0); 296 if (!head->disk) 297 goto out_cleanup_queue; 298 head->disk->fops = &nvme_ns_head_ops; 299 head->disk->private_data = head; 300 head->disk->queue = q; 301 head->disk->flags = GENHD_FL_EXT_DEVT; 302 sprintf(head->disk->disk_name, "nvme%dn%d", 303 ctrl->subsys->instance, head->instance); 304 return 0; 305 306 out_cleanup_queue: 307 blk_cleanup_queue(q); 308 out: 309 return -ENOMEM; 310 } 311 312 static void nvme_mpath_set_live(struct nvme_ns *ns) 313 { 314 struct nvme_ns_head *head = ns->head; 315 316 lockdep_assert_held(&ns->head->lock); 317 318 if (!head->disk) 319 return; 320 321 if (!(head->disk->flags & GENHD_FL_UP)) 322 device_add_disk(&head->subsys->dev, head->disk, 323 nvme_ns_id_attr_groups); 324 325 if (nvme_path_is_optimized(ns)) { 326 int node, srcu_idx; 327 328 srcu_idx = srcu_read_lock(&head->srcu); 329 for_each_node(node) 330 __nvme_find_path(head, node); 331 srcu_read_unlock(&head->srcu, srcu_idx); 332 } 333 334 kblockd_schedule_work(&ns->head->requeue_work); 335 } 336 337 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 338 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 339 void *)) 340 { 341 void *base = ctrl->ana_log_buf; 342 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 343 int error, i; 344 345 lockdep_assert_held(&ctrl->ana_lock); 346 347 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 348 struct nvme_ana_group_desc *desc = base + offset; 349 u32 nr_nsids = le32_to_cpu(desc->nnsids); 350 size_t nsid_buf_size = nr_nsids * sizeof(__le32); 351 352 if (WARN_ON_ONCE(desc->grpid == 0)) 353 return -EINVAL; 354 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 355 return -EINVAL; 356 if (WARN_ON_ONCE(desc->state == 0)) 357 return -EINVAL; 358 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 359 return -EINVAL; 360 361 offset += sizeof(*desc); 362 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 363 return -EINVAL; 364 365 error = cb(ctrl, desc, data); 366 if (error) 367 return error; 368 369 offset += nsid_buf_size; 370 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 371 return -EINVAL; 372 } 373 374 return 0; 375 } 376 377 static inline bool nvme_state_is_live(enum nvme_ana_state state) 378 { 379 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 380 } 381 382 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 383 struct nvme_ns *ns) 384 { 385 enum nvme_ana_state old; 386 387 mutex_lock(&ns->head->lock); 388 old = ns->ana_state; 389 ns->ana_grpid = le32_to_cpu(desc->grpid); 390 ns->ana_state = desc->state; 391 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 392 393 if (nvme_state_is_live(ns->ana_state) && !nvme_state_is_live(old)) 394 nvme_mpath_set_live(ns); 395 mutex_unlock(&ns->head->lock); 396 } 397 398 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 399 struct nvme_ana_group_desc *desc, void *data) 400 { 401 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 402 unsigned *nr_change_groups = data; 403 struct nvme_ns *ns; 404 405 dev_info(ctrl->device, "ANA group %d: %s.\n", 406 le32_to_cpu(desc->grpid), 407 nvme_ana_state_names[desc->state]); 408 409 if (desc->state == NVME_ANA_CHANGE) 410 (*nr_change_groups)++; 411 412 if (!nr_nsids) 413 return 0; 414 415 down_write(&ctrl->namespaces_rwsem); 416 list_for_each_entry(ns, &ctrl->namespaces, list) { 417 if (ns->head->ns_id != le32_to_cpu(desc->nsids[n])) 418 continue; 419 nvme_update_ns_ana_state(desc, ns); 420 if (++n == nr_nsids) 421 break; 422 } 423 up_write(&ctrl->namespaces_rwsem); 424 WARN_ON_ONCE(n < nr_nsids); 425 return 0; 426 } 427 428 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only) 429 { 430 u32 nr_change_groups = 0; 431 int error; 432 433 mutex_lock(&ctrl->ana_lock); 434 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 435 groups_only ? NVME_ANA_LOG_RGO : 0, 436 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 437 if (error) { 438 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 439 goto out_unlock; 440 } 441 442 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 443 nvme_update_ana_state); 444 if (error) 445 goto out_unlock; 446 447 /* 448 * In theory we should have an ANATT timer per group as they might enter 449 * the change state at different times. But that is a lot of overhead 450 * just to protect against a target that keeps entering new changes 451 * states while never finishing previous ones. But we'll still 452 * eventually time out once all groups are in change state, so this 453 * isn't a big deal. 454 * 455 * We also double the ANATT value to provide some slack for transports 456 * or AEN processing overhead. 457 */ 458 if (nr_change_groups) 459 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 460 else 461 del_timer_sync(&ctrl->anatt_timer); 462 out_unlock: 463 mutex_unlock(&ctrl->ana_lock); 464 return error; 465 } 466 467 static void nvme_ana_work(struct work_struct *work) 468 { 469 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 470 471 nvme_read_ana_log(ctrl, false); 472 } 473 474 static void nvme_anatt_timeout(struct timer_list *t) 475 { 476 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 477 478 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 479 nvme_reset_ctrl(ctrl); 480 } 481 482 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 483 { 484 if (!nvme_ctrl_use_ana(ctrl)) 485 return; 486 del_timer_sync(&ctrl->anatt_timer); 487 cancel_work_sync(&ctrl->ana_work); 488 } 489 490 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 494 } 495 DEVICE_ATTR_RO(ana_grpid); 496 497 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 498 char *buf) 499 { 500 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 501 502 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 503 } 504 DEVICE_ATTR_RO(ana_state); 505 506 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 507 struct nvme_ana_group_desc *desc, void *data) 508 { 509 struct nvme_ns *ns = data; 510 511 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 512 nvme_update_ns_ana_state(desc, ns); 513 return -ENXIO; /* just break out of the loop */ 514 } 515 516 return 0; 517 } 518 519 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 520 { 521 if (nvme_ctrl_use_ana(ns->ctrl)) { 522 mutex_lock(&ns->ctrl->ana_lock); 523 ns->ana_grpid = le32_to_cpu(id->anagrpid); 524 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 525 mutex_unlock(&ns->ctrl->ana_lock); 526 } else { 527 mutex_lock(&ns->head->lock); 528 ns->ana_state = NVME_ANA_OPTIMIZED; 529 nvme_mpath_set_live(ns); 530 mutex_unlock(&ns->head->lock); 531 } 532 } 533 534 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 535 { 536 if (!head->disk) 537 return; 538 if (head->disk->flags & GENHD_FL_UP) 539 del_gendisk(head->disk); 540 blk_set_queue_dying(head->disk->queue); 541 /* make sure all pending bios are cleaned up */ 542 kblockd_schedule_work(&head->requeue_work); 543 flush_work(&head->requeue_work); 544 blk_cleanup_queue(head->disk->queue); 545 put_disk(head->disk); 546 } 547 548 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 549 { 550 int error; 551 552 if (!nvme_ctrl_use_ana(ctrl)) 553 return 0; 554 555 ctrl->anacap = id->anacap; 556 ctrl->anatt = id->anatt; 557 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 558 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 559 560 mutex_init(&ctrl->ana_lock); 561 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 562 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 563 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 564 if (!(ctrl->anacap & (1 << 6))) 565 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 566 567 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 568 dev_err(ctrl->device, 569 "ANA log page size (%zd) larger than MDTS (%d).\n", 570 ctrl->ana_log_size, 571 ctrl->max_hw_sectors << SECTOR_SHIFT); 572 dev_err(ctrl->device, "disabling ANA support.\n"); 573 return 0; 574 } 575 576 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 577 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 578 if (!ctrl->ana_log_buf) { 579 error = -ENOMEM; 580 goto out; 581 } 582 583 error = nvme_read_ana_log(ctrl, true); 584 if (error) 585 goto out_free_ana_log_buf; 586 return 0; 587 out_free_ana_log_buf: 588 kfree(ctrl->ana_log_buf); 589 out: 590 return error; 591 } 592 593 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 594 { 595 kfree(ctrl->ana_log_buf); 596 } 597 598