1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <trace/events/block.h> 9 #include "nvme.h" 10 11 static bool multipath = true; 12 module_param(multipath, bool, 0444); 13 MODULE_PARM_DESC(multipath, 14 "turn on native support for multiple controllers per subsystem"); 15 16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 17 { 18 struct nvme_ns_head *h; 19 20 lockdep_assert_held(&subsys->lock); 21 list_for_each_entry(h, &subsys->nsheads, entry) 22 if (h->disk) 23 blk_mq_unfreeze_queue(h->disk->queue); 24 } 25 26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 27 { 28 struct nvme_ns_head *h; 29 30 lockdep_assert_held(&subsys->lock); 31 list_for_each_entry(h, &subsys->nsheads, entry) 32 if (h->disk) 33 blk_mq_freeze_queue_wait(h->disk->queue); 34 } 35 36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 37 { 38 struct nvme_ns_head *h; 39 40 lockdep_assert_held(&subsys->lock); 41 list_for_each_entry(h, &subsys->nsheads, entry) 42 if (h->disk) 43 blk_freeze_queue_start(h->disk->queue); 44 } 45 46 /* 47 * If multipathing is enabled we need to always use the subsystem instance 48 * number for numbering our devices to avoid conflicts between subsystems that 49 * have multiple controllers and thus use the multipath-aware subsystem node 50 * and those that have a single controller and use the controller node 51 * directly. 52 */ 53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 54 struct nvme_ctrl *ctrl, int *flags) 55 { 56 if (!multipath) { 57 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 58 } else if (ns->head->disk) { 59 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 60 ctrl->instance, ns->head->instance); 61 *flags = GENHD_FL_HIDDEN; 62 } else { 63 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 64 ns->head->instance); 65 } 66 } 67 68 void nvme_failover_req(struct request *req) 69 { 70 struct nvme_ns *ns = req->q->queuedata; 71 u16 status = nvme_req(req)->status & 0x7ff; 72 unsigned long flags; 73 74 nvme_mpath_clear_current_path(ns); 75 76 /* 77 * If we got back an ANA error, we know the controller is alive but not 78 * ready to serve this namespace. Kick of a re-read of the ANA 79 * information page, and just try any other available path for now. 80 */ 81 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { 82 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 83 queue_work(nvme_wq, &ns->ctrl->ana_work); 84 } 85 86 spin_lock_irqsave(&ns->head->requeue_lock, flags); 87 blk_steal_bios(&ns->head->requeue_list, req); 88 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 89 90 blk_mq_end_request(req, 0); 91 kblockd_schedule_work(&ns->head->requeue_work); 92 } 93 94 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 95 { 96 struct nvme_ns *ns; 97 98 down_read(&ctrl->namespaces_rwsem); 99 list_for_each_entry(ns, &ctrl->namespaces, list) { 100 if (ns->head->disk) 101 kblockd_schedule_work(&ns->head->requeue_work); 102 } 103 up_read(&ctrl->namespaces_rwsem); 104 } 105 106 static const char *nvme_ana_state_names[] = { 107 [0] = "invalid state", 108 [NVME_ANA_OPTIMIZED] = "optimized", 109 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 110 [NVME_ANA_INACCESSIBLE] = "inaccessible", 111 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 112 [NVME_ANA_CHANGE] = "change", 113 }; 114 115 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 116 { 117 struct nvme_ns_head *head = ns->head; 118 bool changed = false; 119 int node; 120 121 if (!head) 122 goto out; 123 124 for_each_node(node) { 125 if (ns == rcu_access_pointer(head->current_path[node])) { 126 rcu_assign_pointer(head->current_path[node], NULL); 127 changed = true; 128 } 129 } 130 out: 131 return changed; 132 } 133 134 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 135 { 136 struct nvme_ns *ns; 137 138 mutex_lock(&ctrl->scan_lock); 139 down_read(&ctrl->namespaces_rwsem); 140 list_for_each_entry(ns, &ctrl->namespaces, list) 141 if (nvme_mpath_clear_current_path(ns)) 142 kblockd_schedule_work(&ns->head->requeue_work); 143 up_read(&ctrl->namespaces_rwsem); 144 mutex_unlock(&ctrl->scan_lock); 145 } 146 147 static bool nvme_path_is_disabled(struct nvme_ns *ns) 148 { 149 /* 150 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 151 * still be able to complete assuming that the controller is connected. 152 * Otherwise it will fail immediately and return to the requeue list. 153 */ 154 if (ns->ctrl->state != NVME_CTRL_LIVE && 155 ns->ctrl->state != NVME_CTRL_DELETING) 156 return true; 157 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 158 test_bit(NVME_NS_REMOVING, &ns->flags)) 159 return true; 160 return false; 161 } 162 163 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 164 { 165 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 166 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 167 168 list_for_each_entry_rcu(ns, &head->list, siblings) { 169 if (nvme_path_is_disabled(ns)) 170 continue; 171 172 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 173 distance = node_distance(node, ns->ctrl->numa_node); 174 else 175 distance = LOCAL_DISTANCE; 176 177 switch (ns->ana_state) { 178 case NVME_ANA_OPTIMIZED: 179 if (distance < found_distance) { 180 found_distance = distance; 181 found = ns; 182 } 183 break; 184 case NVME_ANA_NONOPTIMIZED: 185 if (distance < fallback_distance) { 186 fallback_distance = distance; 187 fallback = ns; 188 } 189 break; 190 default: 191 break; 192 } 193 } 194 195 if (!found) 196 found = fallback; 197 if (found) 198 rcu_assign_pointer(head->current_path[node], found); 199 return found; 200 } 201 202 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 203 struct nvme_ns *ns) 204 { 205 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 206 siblings); 207 if (ns) 208 return ns; 209 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 210 } 211 212 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 213 int node, struct nvme_ns *old) 214 { 215 struct nvme_ns *ns, *found = NULL; 216 217 if (list_is_singular(&head->list)) { 218 if (nvme_path_is_disabled(old)) 219 return NULL; 220 return old; 221 } 222 223 for (ns = nvme_next_ns(head, old); 224 ns && ns != old; 225 ns = nvme_next_ns(head, ns)) { 226 if (nvme_path_is_disabled(ns)) 227 continue; 228 229 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 230 found = ns; 231 goto out; 232 } 233 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 234 found = ns; 235 } 236 237 /* 238 * The loop above skips the current path for round-robin semantics. 239 * Fall back to the current path if either: 240 * - no other optimized path found and current is optimized, 241 * - no other usable path found and current is usable. 242 */ 243 if (!nvme_path_is_disabled(old) && 244 (old->ana_state == NVME_ANA_OPTIMIZED || 245 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) 246 return old; 247 248 if (!found) 249 return NULL; 250 out: 251 rcu_assign_pointer(head->current_path[node], found); 252 return found; 253 } 254 255 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 256 { 257 return ns->ctrl->state == NVME_CTRL_LIVE && 258 ns->ana_state == NVME_ANA_OPTIMIZED; 259 } 260 261 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 262 { 263 int node = numa_node_id(); 264 struct nvme_ns *ns; 265 266 ns = srcu_dereference(head->current_path[node], &head->srcu); 267 if (unlikely(!ns)) 268 return __nvme_find_path(head, node); 269 270 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 271 return nvme_round_robin_path(head, node, ns); 272 if (unlikely(!nvme_path_is_optimized(ns))) 273 return __nvme_find_path(head, node); 274 return ns; 275 } 276 277 static bool nvme_available_path(struct nvme_ns_head *head) 278 { 279 struct nvme_ns *ns; 280 281 list_for_each_entry_rcu(ns, &head->list, siblings) { 282 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) 283 continue; 284 switch (ns->ctrl->state) { 285 case NVME_CTRL_LIVE: 286 case NVME_CTRL_RESETTING: 287 case NVME_CTRL_CONNECTING: 288 /* fallthru */ 289 return true; 290 default: 291 break; 292 } 293 } 294 return false; 295 } 296 297 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio) 298 { 299 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; 300 struct device *dev = disk_to_dev(head->disk); 301 struct nvme_ns *ns; 302 blk_qc_t ret = BLK_QC_T_NONE; 303 int srcu_idx; 304 305 /* 306 * The namespace might be going away and the bio might be moved to a 307 * different queue via blk_steal_bios(), so we need to use the bio_split 308 * pool from the original queue to allocate the bvecs from. 309 */ 310 blk_queue_split(&bio); 311 312 srcu_idx = srcu_read_lock(&head->srcu); 313 ns = nvme_find_path(head); 314 if (likely(ns)) { 315 bio_set_dev(bio, ns->disk->part0); 316 bio->bi_opf |= REQ_NVME_MPATH; 317 trace_block_bio_remap(bio, disk_devt(ns->head->disk), 318 bio->bi_iter.bi_sector); 319 ret = submit_bio_noacct(bio); 320 } else if (nvme_available_path(head)) { 321 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 322 323 spin_lock_irq(&head->requeue_lock); 324 bio_list_add(&head->requeue_list, bio); 325 spin_unlock_irq(&head->requeue_lock); 326 } else { 327 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 328 329 bio->bi_status = BLK_STS_IOERR; 330 bio_endio(bio); 331 } 332 333 srcu_read_unlock(&head->srcu, srcu_idx); 334 return ret; 335 } 336 337 static void nvme_requeue_work(struct work_struct *work) 338 { 339 struct nvme_ns_head *head = 340 container_of(work, struct nvme_ns_head, requeue_work); 341 struct bio *bio, *next; 342 343 spin_lock_irq(&head->requeue_lock); 344 next = bio_list_get(&head->requeue_list); 345 spin_unlock_irq(&head->requeue_lock); 346 347 while ((bio = next) != NULL) { 348 next = bio->bi_next; 349 bio->bi_next = NULL; 350 351 /* 352 * Reset disk to the mpath node and resubmit to select a new 353 * path. 354 */ 355 bio_set_dev(bio, head->disk->part0); 356 submit_bio_noacct(bio); 357 } 358 } 359 360 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 361 { 362 struct request_queue *q; 363 bool vwc = false; 364 365 mutex_init(&head->lock); 366 bio_list_init(&head->requeue_list); 367 spin_lock_init(&head->requeue_lock); 368 INIT_WORK(&head->requeue_work, nvme_requeue_work); 369 370 /* 371 * Add a multipath node if the subsystems supports multiple controllers. 372 * We also do this for private namespaces as the namespace sharing data could 373 * change after a rescan. 374 */ 375 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath) 376 return 0; 377 378 q = blk_alloc_queue(ctrl->numa_node); 379 if (!q) 380 goto out; 381 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 382 /* set to a default value for 512 until disk is validated */ 383 blk_queue_logical_block_size(q, 512); 384 blk_set_stacking_limits(&q->limits); 385 386 /* we need to propagate up the VMC settings */ 387 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 388 vwc = true; 389 blk_queue_write_cache(q, vwc, vwc); 390 391 head->disk = alloc_disk(0); 392 if (!head->disk) 393 goto out_cleanup_queue; 394 head->disk->fops = &nvme_ns_head_ops; 395 head->disk->private_data = head; 396 head->disk->queue = q; 397 head->disk->flags = GENHD_FL_EXT_DEVT; 398 sprintf(head->disk->disk_name, "nvme%dn%d", 399 ctrl->subsys->instance, head->instance); 400 return 0; 401 402 out_cleanup_queue: 403 blk_cleanup_queue(q); 404 out: 405 return -ENOMEM; 406 } 407 408 static void nvme_mpath_set_live(struct nvme_ns *ns) 409 { 410 struct nvme_ns_head *head = ns->head; 411 412 if (!head->disk) 413 return; 414 415 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) 416 device_add_disk(&head->subsys->dev, head->disk, 417 nvme_ns_id_attr_groups); 418 419 mutex_lock(&head->lock); 420 if (nvme_path_is_optimized(ns)) { 421 int node, srcu_idx; 422 423 srcu_idx = srcu_read_lock(&head->srcu); 424 for_each_node(node) 425 __nvme_find_path(head, node); 426 srcu_read_unlock(&head->srcu, srcu_idx); 427 } 428 mutex_unlock(&head->lock); 429 430 synchronize_srcu(&head->srcu); 431 kblockd_schedule_work(&head->requeue_work); 432 } 433 434 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 435 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 436 void *)) 437 { 438 void *base = ctrl->ana_log_buf; 439 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 440 int error, i; 441 442 lockdep_assert_held(&ctrl->ana_lock); 443 444 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 445 struct nvme_ana_group_desc *desc = base + offset; 446 u32 nr_nsids; 447 size_t nsid_buf_size; 448 449 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 450 return -EINVAL; 451 452 nr_nsids = le32_to_cpu(desc->nnsids); 453 nsid_buf_size = nr_nsids * sizeof(__le32); 454 455 if (WARN_ON_ONCE(desc->grpid == 0)) 456 return -EINVAL; 457 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 458 return -EINVAL; 459 if (WARN_ON_ONCE(desc->state == 0)) 460 return -EINVAL; 461 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 462 return -EINVAL; 463 464 offset += sizeof(*desc); 465 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 466 return -EINVAL; 467 468 error = cb(ctrl, desc, data); 469 if (error) 470 return error; 471 472 offset += nsid_buf_size; 473 } 474 475 return 0; 476 } 477 478 static inline bool nvme_state_is_live(enum nvme_ana_state state) 479 { 480 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 481 } 482 483 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 484 struct nvme_ns *ns) 485 { 486 ns->ana_grpid = le32_to_cpu(desc->grpid); 487 ns->ana_state = desc->state; 488 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 489 490 if (nvme_state_is_live(ns->ana_state)) 491 nvme_mpath_set_live(ns); 492 } 493 494 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 495 struct nvme_ana_group_desc *desc, void *data) 496 { 497 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 498 unsigned *nr_change_groups = data; 499 struct nvme_ns *ns; 500 501 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 502 le32_to_cpu(desc->grpid), 503 nvme_ana_state_names[desc->state]); 504 505 if (desc->state == NVME_ANA_CHANGE) 506 (*nr_change_groups)++; 507 508 if (!nr_nsids) 509 return 0; 510 511 down_read(&ctrl->namespaces_rwsem); 512 list_for_each_entry(ns, &ctrl->namespaces, list) { 513 unsigned nsid = le32_to_cpu(desc->nsids[n]); 514 515 if (ns->head->ns_id < nsid) 516 continue; 517 if (ns->head->ns_id == nsid) 518 nvme_update_ns_ana_state(desc, ns); 519 if (++n == nr_nsids) 520 break; 521 } 522 up_read(&ctrl->namespaces_rwsem); 523 return 0; 524 } 525 526 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 527 { 528 u32 nr_change_groups = 0; 529 int error; 530 531 mutex_lock(&ctrl->ana_lock); 532 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 533 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 534 if (error) { 535 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 536 goto out_unlock; 537 } 538 539 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 540 nvme_update_ana_state); 541 if (error) 542 goto out_unlock; 543 544 /* 545 * In theory we should have an ANATT timer per group as they might enter 546 * the change state at different times. But that is a lot of overhead 547 * just to protect against a target that keeps entering new changes 548 * states while never finishing previous ones. But we'll still 549 * eventually time out once all groups are in change state, so this 550 * isn't a big deal. 551 * 552 * We also double the ANATT value to provide some slack for transports 553 * or AEN processing overhead. 554 */ 555 if (nr_change_groups) 556 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 557 else 558 del_timer_sync(&ctrl->anatt_timer); 559 out_unlock: 560 mutex_unlock(&ctrl->ana_lock); 561 return error; 562 } 563 564 static void nvme_ana_work(struct work_struct *work) 565 { 566 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 567 568 if (ctrl->state != NVME_CTRL_LIVE) 569 return; 570 571 nvme_read_ana_log(ctrl); 572 } 573 574 static void nvme_anatt_timeout(struct timer_list *t) 575 { 576 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 577 578 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 579 nvme_reset_ctrl(ctrl); 580 } 581 582 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 583 { 584 if (!nvme_ctrl_use_ana(ctrl)) 585 return; 586 del_timer_sync(&ctrl->anatt_timer); 587 cancel_work_sync(&ctrl->ana_work); 588 } 589 590 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 591 struct device_attribute subsys_attr_##_name = \ 592 __ATTR(_name, _mode, _show, _store) 593 594 static const char *nvme_iopolicy_names[] = { 595 [NVME_IOPOLICY_NUMA] = "numa", 596 [NVME_IOPOLICY_RR] = "round-robin", 597 }; 598 599 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 600 struct device_attribute *attr, char *buf) 601 { 602 struct nvme_subsystem *subsys = 603 container_of(dev, struct nvme_subsystem, dev); 604 605 return sprintf(buf, "%s\n", 606 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 607 } 608 609 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 610 struct device_attribute *attr, const char *buf, size_t count) 611 { 612 struct nvme_subsystem *subsys = 613 container_of(dev, struct nvme_subsystem, dev); 614 int i; 615 616 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 617 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 618 WRITE_ONCE(subsys->iopolicy, i); 619 return count; 620 } 621 } 622 623 return -EINVAL; 624 } 625 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 626 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 627 628 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 629 char *buf) 630 { 631 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 632 } 633 DEVICE_ATTR_RO(ana_grpid); 634 635 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 636 char *buf) 637 { 638 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 639 640 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 641 } 642 DEVICE_ATTR_RO(ana_state); 643 644 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 645 struct nvme_ana_group_desc *desc, void *data) 646 { 647 struct nvme_ana_group_desc *dst = data; 648 649 if (desc->grpid != dst->grpid) 650 return 0; 651 652 *dst = *desc; 653 return -ENXIO; /* just break out of the loop */ 654 } 655 656 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 657 { 658 if (nvme_ctrl_use_ana(ns->ctrl)) { 659 struct nvme_ana_group_desc desc = { 660 .grpid = id->anagrpid, 661 .state = 0, 662 }; 663 664 mutex_lock(&ns->ctrl->ana_lock); 665 ns->ana_grpid = le32_to_cpu(id->anagrpid); 666 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 667 mutex_unlock(&ns->ctrl->ana_lock); 668 if (desc.state) { 669 /* found the group desc: update */ 670 nvme_update_ns_ana_state(&desc, ns); 671 } 672 } else { 673 ns->ana_state = NVME_ANA_OPTIMIZED; 674 nvme_mpath_set_live(ns); 675 } 676 677 if (blk_queue_stable_writes(ns->queue) && ns->head->disk) 678 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, 679 ns->head->disk->queue); 680 #ifdef CONFIG_BLK_DEV_ZONED 681 if (blk_queue_is_zoned(ns->queue) && ns->head->disk) 682 ns->head->disk->queue->nr_zones = ns->queue->nr_zones; 683 #endif 684 } 685 686 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 687 { 688 if (!head->disk) 689 return; 690 if (head->disk->flags & GENHD_FL_UP) 691 del_gendisk(head->disk); 692 blk_set_queue_dying(head->disk->queue); 693 /* make sure all pending bios are cleaned up */ 694 kblockd_schedule_work(&head->requeue_work); 695 flush_work(&head->requeue_work); 696 blk_cleanup_queue(head->disk->queue); 697 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 698 /* 699 * if device_add_disk wasn't called, prevent 700 * disk release to put a bogus reference on the 701 * request queue 702 */ 703 head->disk->queue = NULL; 704 } 705 put_disk(head->disk); 706 } 707 708 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 709 { 710 int error; 711 712 /* check if multipath is enabled and we have the capability */ 713 if (!multipath || !ctrl->subsys || 714 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 715 return 0; 716 717 ctrl->anacap = id->anacap; 718 ctrl->anatt = id->anatt; 719 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 720 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 721 722 mutex_init(&ctrl->ana_lock); 723 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 724 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 725 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 726 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 727 728 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 729 dev_err(ctrl->device, 730 "ANA log page size (%zd) larger than MDTS (%d).\n", 731 ctrl->ana_log_size, 732 ctrl->max_hw_sectors << SECTOR_SHIFT); 733 dev_err(ctrl->device, "disabling ANA support.\n"); 734 return 0; 735 } 736 737 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 738 kfree(ctrl->ana_log_buf); 739 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 740 if (!ctrl->ana_log_buf) { 741 error = -ENOMEM; 742 goto out; 743 } 744 745 error = nvme_read_ana_log(ctrl); 746 if (error) 747 goto out_free_ana_log_buf; 748 return 0; 749 out_free_ana_log_buf: 750 kfree(ctrl->ana_log_buf); 751 ctrl->ana_log_buf = NULL; 752 out: 753 return error; 754 } 755 756 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 757 { 758 kfree(ctrl->ana_log_buf); 759 ctrl->ana_log_buf = NULL; 760 } 761 762