xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 6491d698)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9 
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13 	"turn on native support for multiple controllers per subsystem");
14 
15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
16 {
17 	return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3));
18 }
19 
20 /*
21  * If multipathing is enabled we need to always use the subsystem instance
22  * number for numbering our devices to avoid conflicts between subsystems that
23  * have multiple controllers and thus use the multipath-aware subsystem node
24  * and those that have a single controller and use the controller node
25  * directly.
26  */
27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
28 			struct nvme_ctrl *ctrl, int *flags)
29 {
30 	if (!multipath) {
31 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
32 	} else if (ns->head->disk) {
33 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
34 				ctrl->cntlid, ns->head->instance);
35 		*flags = GENHD_FL_HIDDEN;
36 	} else {
37 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
38 				ns->head->instance);
39 	}
40 }
41 
42 void nvme_failover_req(struct request *req)
43 {
44 	struct nvme_ns *ns = req->q->queuedata;
45 	u16 status = nvme_req(req)->status;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
49 	blk_steal_bios(&ns->head->requeue_list, req);
50 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
51 	blk_mq_end_request(req, 0);
52 
53 	switch (status & 0x7ff) {
54 	case NVME_SC_ANA_TRANSITION:
55 	case NVME_SC_ANA_INACCESSIBLE:
56 	case NVME_SC_ANA_PERSISTENT_LOSS:
57 		/*
58 		 * If we got back an ANA error we know the controller is alive,
59 		 * but not ready to serve this namespaces.  The spec suggests
60 		 * we should update our general state here, but due to the fact
61 		 * that the admin and I/O queues are not serialized that is
62 		 * fundamentally racy.  So instead just clear the current path,
63 		 * mark the the path as pending and kick of a re-read of the ANA
64 		 * log page ASAP.
65 		 */
66 		nvme_mpath_clear_current_path(ns);
67 		if (ns->ctrl->ana_log_buf) {
68 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
69 			queue_work(nvme_wq, &ns->ctrl->ana_work);
70 		}
71 		break;
72 	case NVME_SC_HOST_PATH_ERROR:
73 		/*
74 		 * Temporary transport disruption in talking to the controller.
75 		 * Try to send on a new path.
76 		 */
77 		nvme_mpath_clear_current_path(ns);
78 		break;
79 	default:
80 		/*
81 		 * Reset the controller for any non-ANA error as we don't know
82 		 * what caused the error.
83 		 */
84 		nvme_reset_ctrl(ns->ctrl);
85 		break;
86 	}
87 
88 	kblockd_schedule_work(&ns->head->requeue_work);
89 }
90 
91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
92 {
93 	struct nvme_ns *ns;
94 
95 	down_read(&ctrl->namespaces_rwsem);
96 	list_for_each_entry(ns, &ctrl->namespaces, list) {
97 		if (ns->head->disk)
98 			kblockd_schedule_work(&ns->head->requeue_work);
99 	}
100 	up_read(&ctrl->namespaces_rwsem);
101 }
102 
103 static const char *nvme_ana_state_names[] = {
104 	[0]				= "invalid state",
105 	[NVME_ANA_OPTIMIZED]		= "optimized",
106 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
107 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
108 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
109 	[NVME_ANA_CHANGE]		= "change",
110 };
111 
112 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
113 {
114 	struct nvme_ns_head *head = ns->head;
115 	int node;
116 
117 	if (!head)
118 		return;
119 
120 	for_each_node(node) {
121 		if (ns == rcu_access_pointer(head->current_path[node]))
122 			rcu_assign_pointer(head->current_path[node], NULL);
123 	}
124 }
125 
126 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
127 {
128 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
129 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
130 
131 	list_for_each_entry_rcu(ns, &head->list, siblings) {
132 		if (ns->ctrl->state != NVME_CTRL_LIVE ||
133 		    test_bit(NVME_NS_ANA_PENDING, &ns->flags))
134 			continue;
135 
136 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
137 			distance = node_distance(node, ns->ctrl->numa_node);
138 		else
139 			distance = LOCAL_DISTANCE;
140 
141 		switch (ns->ana_state) {
142 		case NVME_ANA_OPTIMIZED:
143 			if (distance < found_distance) {
144 				found_distance = distance;
145 				found = ns;
146 			}
147 			break;
148 		case NVME_ANA_NONOPTIMIZED:
149 			if (distance < fallback_distance) {
150 				fallback_distance = distance;
151 				fallback = ns;
152 			}
153 			break;
154 		default:
155 			break;
156 		}
157 	}
158 
159 	if (!found)
160 		found = fallback;
161 	if (found)
162 		rcu_assign_pointer(head->current_path[node], found);
163 	return found;
164 }
165 
166 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
167 		struct nvme_ns *ns)
168 {
169 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
170 			siblings);
171 	if (ns)
172 		return ns;
173 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
174 }
175 
176 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
177 		int node, struct nvme_ns *old)
178 {
179 	struct nvme_ns *ns, *found, *fallback = NULL;
180 
181 	if (list_is_singular(&head->list))
182 		return old;
183 
184 	for (ns = nvme_next_ns(head, old);
185 	     ns != old;
186 	     ns = nvme_next_ns(head, ns)) {
187 		if (ns->ctrl->state != NVME_CTRL_LIVE ||
188 		    test_bit(NVME_NS_ANA_PENDING, &ns->flags))
189 			continue;
190 
191 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
192 			found = ns;
193 			goto out;
194 		}
195 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
196 			fallback = ns;
197 	}
198 
199 	if (!fallback)
200 		return NULL;
201 	found = fallback;
202 out:
203 	rcu_assign_pointer(head->current_path[node], found);
204 	return found;
205 }
206 
207 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
208 {
209 	return ns->ctrl->state == NVME_CTRL_LIVE &&
210 		ns->ana_state == NVME_ANA_OPTIMIZED;
211 }
212 
213 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
214 {
215 	int node = numa_node_id();
216 	struct nvme_ns *ns;
217 
218 	ns = srcu_dereference(head->current_path[node], &head->srcu);
219 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
220 		ns = nvme_round_robin_path(head, node, ns);
221 	if (unlikely(!ns || !nvme_path_is_optimized(ns)))
222 		ns = __nvme_find_path(head, node);
223 	return ns;
224 }
225 
226 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
227 		struct bio *bio)
228 {
229 	struct nvme_ns_head *head = q->queuedata;
230 	struct device *dev = disk_to_dev(head->disk);
231 	struct nvme_ns *ns;
232 	blk_qc_t ret = BLK_QC_T_NONE;
233 	int srcu_idx;
234 
235 	srcu_idx = srcu_read_lock(&head->srcu);
236 	ns = nvme_find_path(head);
237 	if (likely(ns)) {
238 		bio->bi_disk = ns->disk;
239 		bio->bi_opf |= REQ_NVME_MPATH;
240 		trace_block_bio_remap(bio->bi_disk->queue, bio,
241 				      disk_devt(ns->head->disk),
242 				      bio->bi_iter.bi_sector);
243 		ret = direct_make_request(bio);
244 	} else if (!list_empty_careful(&head->list)) {
245 		dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
246 
247 		spin_lock_irq(&head->requeue_lock);
248 		bio_list_add(&head->requeue_list, bio);
249 		spin_unlock_irq(&head->requeue_lock);
250 	} else {
251 		dev_warn_ratelimited(dev, "no path - failing I/O\n");
252 
253 		bio->bi_status = BLK_STS_IOERR;
254 		bio_endio(bio);
255 	}
256 
257 	srcu_read_unlock(&head->srcu, srcu_idx);
258 	return ret;
259 }
260 
261 static void nvme_requeue_work(struct work_struct *work)
262 {
263 	struct nvme_ns_head *head =
264 		container_of(work, struct nvme_ns_head, requeue_work);
265 	struct bio *bio, *next;
266 
267 	spin_lock_irq(&head->requeue_lock);
268 	next = bio_list_get(&head->requeue_list);
269 	spin_unlock_irq(&head->requeue_lock);
270 
271 	while ((bio = next) != NULL) {
272 		next = bio->bi_next;
273 		bio->bi_next = NULL;
274 
275 		/*
276 		 * Reset disk to the mpath node and resubmit to select a new
277 		 * path.
278 		 */
279 		bio->bi_disk = head->disk;
280 		generic_make_request(bio);
281 	}
282 }
283 
284 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
285 {
286 	struct request_queue *q;
287 	bool vwc = false;
288 
289 	mutex_init(&head->lock);
290 	bio_list_init(&head->requeue_list);
291 	spin_lock_init(&head->requeue_lock);
292 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
293 
294 	/*
295 	 * Add a multipath node if the subsystems supports multiple controllers.
296 	 * We also do this for private namespaces as the namespace sharing data could
297 	 * change after a rescan.
298 	 */
299 	if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
300 		return 0;
301 
302 	q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
303 	if (!q)
304 		goto out;
305 	q->queuedata = head;
306 	blk_queue_make_request(q, nvme_ns_head_make_request);
307 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
308 	/* set to a default value for 512 until disk is validated */
309 	blk_queue_logical_block_size(q, 512);
310 	blk_set_stacking_limits(&q->limits);
311 
312 	/* we need to propagate up the VMC settings */
313 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
314 		vwc = true;
315 	blk_queue_write_cache(q, vwc, vwc);
316 
317 	head->disk = alloc_disk(0);
318 	if (!head->disk)
319 		goto out_cleanup_queue;
320 	head->disk->fops = &nvme_ns_head_ops;
321 	head->disk->private_data = head;
322 	head->disk->queue = q;
323 	head->disk->flags = GENHD_FL_EXT_DEVT;
324 	sprintf(head->disk->disk_name, "nvme%dn%d",
325 			ctrl->subsys->instance, head->instance);
326 	return 0;
327 
328 out_cleanup_queue:
329 	blk_cleanup_queue(q);
330 out:
331 	return -ENOMEM;
332 }
333 
334 static void nvme_mpath_set_live(struct nvme_ns *ns)
335 {
336 	struct nvme_ns_head *head = ns->head;
337 
338 	lockdep_assert_held(&ns->head->lock);
339 
340 	if (!head->disk)
341 		return;
342 
343 	if (!(head->disk->flags & GENHD_FL_UP))
344 		device_add_disk(&head->subsys->dev, head->disk,
345 				nvme_ns_id_attr_groups);
346 
347 	if (nvme_path_is_optimized(ns)) {
348 		int node, srcu_idx;
349 
350 		srcu_idx = srcu_read_lock(&head->srcu);
351 		for_each_node(node)
352 			__nvme_find_path(head, node);
353 		srcu_read_unlock(&head->srcu, srcu_idx);
354 	}
355 
356 	kblockd_schedule_work(&ns->head->requeue_work);
357 }
358 
359 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
360 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
361 			void *))
362 {
363 	void *base = ctrl->ana_log_buf;
364 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
365 	int error, i;
366 
367 	lockdep_assert_held(&ctrl->ana_lock);
368 
369 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
370 		struct nvme_ana_group_desc *desc = base + offset;
371 		u32 nr_nsids = le32_to_cpu(desc->nnsids);
372 		size_t nsid_buf_size = nr_nsids * sizeof(__le32);
373 
374 		if (WARN_ON_ONCE(desc->grpid == 0))
375 			return -EINVAL;
376 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
377 			return -EINVAL;
378 		if (WARN_ON_ONCE(desc->state == 0))
379 			return -EINVAL;
380 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
381 			return -EINVAL;
382 
383 		offset += sizeof(*desc);
384 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
385 			return -EINVAL;
386 
387 		error = cb(ctrl, desc, data);
388 		if (error)
389 			return error;
390 
391 		offset += nsid_buf_size;
392 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
393 			return -EINVAL;
394 	}
395 
396 	return 0;
397 }
398 
399 static inline bool nvme_state_is_live(enum nvme_ana_state state)
400 {
401 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
402 }
403 
404 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
405 		struct nvme_ns *ns)
406 {
407 	mutex_lock(&ns->head->lock);
408 	ns->ana_grpid = le32_to_cpu(desc->grpid);
409 	ns->ana_state = desc->state;
410 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
411 
412 	if (nvme_state_is_live(ns->ana_state))
413 		nvme_mpath_set_live(ns);
414 	mutex_unlock(&ns->head->lock);
415 }
416 
417 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
418 		struct nvme_ana_group_desc *desc, void *data)
419 {
420 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
421 	unsigned *nr_change_groups = data;
422 	struct nvme_ns *ns;
423 
424 	dev_info(ctrl->device, "ANA group %d: %s.\n",
425 			le32_to_cpu(desc->grpid),
426 			nvme_ana_state_names[desc->state]);
427 
428 	if (desc->state == NVME_ANA_CHANGE)
429 		(*nr_change_groups)++;
430 
431 	if (!nr_nsids)
432 		return 0;
433 
434 	down_write(&ctrl->namespaces_rwsem);
435 	list_for_each_entry(ns, &ctrl->namespaces, list) {
436 		if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
437 			continue;
438 		nvme_update_ns_ana_state(desc, ns);
439 		if (++n == nr_nsids)
440 			break;
441 	}
442 	up_write(&ctrl->namespaces_rwsem);
443 	WARN_ON_ONCE(n < nr_nsids);
444 	return 0;
445 }
446 
447 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
448 {
449 	u32 nr_change_groups = 0;
450 	int error;
451 
452 	mutex_lock(&ctrl->ana_lock);
453 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
454 			groups_only ? NVME_ANA_LOG_RGO : 0,
455 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
456 	if (error) {
457 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
458 		goto out_unlock;
459 	}
460 
461 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
462 			nvme_update_ana_state);
463 	if (error)
464 		goto out_unlock;
465 
466 	/*
467 	 * In theory we should have an ANATT timer per group as they might enter
468 	 * the change state at different times.  But that is a lot of overhead
469 	 * just to protect against a target that keeps entering new changes
470 	 * states while never finishing previous ones.  But we'll still
471 	 * eventually time out once all groups are in change state, so this
472 	 * isn't a big deal.
473 	 *
474 	 * We also double the ANATT value to provide some slack for transports
475 	 * or AEN processing overhead.
476 	 */
477 	if (nr_change_groups)
478 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
479 	else
480 		del_timer_sync(&ctrl->anatt_timer);
481 out_unlock:
482 	mutex_unlock(&ctrl->ana_lock);
483 	return error;
484 }
485 
486 static void nvme_ana_work(struct work_struct *work)
487 {
488 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
489 
490 	nvme_read_ana_log(ctrl, false);
491 }
492 
493 static void nvme_anatt_timeout(struct timer_list *t)
494 {
495 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
496 
497 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
498 	nvme_reset_ctrl(ctrl);
499 }
500 
501 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
502 {
503 	if (!nvme_ctrl_use_ana(ctrl))
504 		return;
505 	del_timer_sync(&ctrl->anatt_timer);
506 	cancel_work_sync(&ctrl->ana_work);
507 }
508 
509 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
510 	struct device_attribute subsys_attr_##_name =	\
511 		__ATTR(_name, _mode, _show, _store)
512 
513 static const char *nvme_iopolicy_names[] = {
514 	[NVME_IOPOLICY_NUMA]	= "numa",
515 	[NVME_IOPOLICY_RR]	= "round-robin",
516 };
517 
518 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
519 		struct device_attribute *attr, char *buf)
520 {
521 	struct nvme_subsystem *subsys =
522 		container_of(dev, struct nvme_subsystem, dev);
523 
524 	return sprintf(buf, "%s\n",
525 			nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
526 }
527 
528 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
529 		struct device_attribute *attr, const char *buf, size_t count)
530 {
531 	struct nvme_subsystem *subsys =
532 		container_of(dev, struct nvme_subsystem, dev);
533 	int i;
534 
535 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
536 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
537 			WRITE_ONCE(subsys->iopolicy, i);
538 			return count;
539 		}
540 	}
541 
542 	return -EINVAL;
543 }
544 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
545 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
546 
547 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
548 		char *buf)
549 {
550 	return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
551 }
552 DEVICE_ATTR_RO(ana_grpid);
553 
554 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
555 		char *buf)
556 {
557 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
558 
559 	return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
560 }
561 DEVICE_ATTR_RO(ana_state);
562 
563 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
564 		struct nvme_ana_group_desc *desc, void *data)
565 {
566 	struct nvme_ns *ns = data;
567 
568 	if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
569 		nvme_update_ns_ana_state(desc, ns);
570 		return -ENXIO; /* just break out of the loop */
571 	}
572 
573 	return 0;
574 }
575 
576 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
577 {
578 	if (nvme_ctrl_use_ana(ns->ctrl)) {
579 		mutex_lock(&ns->ctrl->ana_lock);
580 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
581 		nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
582 		mutex_unlock(&ns->ctrl->ana_lock);
583 	} else {
584 		mutex_lock(&ns->head->lock);
585 		ns->ana_state = NVME_ANA_OPTIMIZED;
586 		nvme_mpath_set_live(ns);
587 		mutex_unlock(&ns->head->lock);
588 	}
589 }
590 
591 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
592 {
593 	if (!head->disk)
594 		return;
595 	if (head->disk->flags & GENHD_FL_UP)
596 		del_gendisk(head->disk);
597 	blk_set_queue_dying(head->disk->queue);
598 	/* make sure all pending bios are cleaned up */
599 	kblockd_schedule_work(&head->requeue_work);
600 	flush_work(&head->requeue_work);
601 	blk_cleanup_queue(head->disk->queue);
602 	put_disk(head->disk);
603 }
604 
605 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
606 {
607 	int error;
608 
609 	if (!nvme_ctrl_use_ana(ctrl))
610 		return 0;
611 
612 	ctrl->anacap = id->anacap;
613 	ctrl->anatt = id->anatt;
614 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
615 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
616 
617 	mutex_init(&ctrl->ana_lock);
618 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
619 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
620 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
621 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
622 
623 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
624 		dev_err(ctrl->device,
625 			"ANA log page size (%zd) larger than MDTS (%d).\n",
626 			ctrl->ana_log_size,
627 			ctrl->max_hw_sectors << SECTOR_SHIFT);
628 		dev_err(ctrl->device, "disabling ANA support.\n");
629 		return 0;
630 	}
631 
632 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
633 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
634 	if (!ctrl->ana_log_buf) {
635 		error = -ENOMEM;
636 		goto out;
637 	}
638 
639 	error = nvme_read_ana_log(ctrl, true);
640 	if (error)
641 		goto out_free_ana_log_buf;
642 	return 0;
643 out_free_ana_log_buf:
644 	kfree(ctrl->ana_log_buf);
645 	ctrl->ana_log_buf = NULL;
646 out:
647 	return error;
648 }
649 
650 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
651 {
652 	kfree(ctrl->ana_log_buf);
653 	ctrl->ana_log_buf = NULL;
654 }
655 
656