1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/moduleparam.h> 7 #include <trace/events/block.h> 8 #include "nvme.h" 9 10 static bool multipath = true; 11 module_param(multipath, bool, 0444); 12 MODULE_PARM_DESC(multipath, 13 "turn on native support for multiple controllers per subsystem"); 14 15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 16 { 17 return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3)); 18 } 19 20 /* 21 * If multipathing is enabled we need to always use the subsystem instance 22 * number for numbering our devices to avoid conflicts between subsystems that 23 * have multiple controllers and thus use the multipath-aware subsystem node 24 * and those that have a single controller and use the controller node 25 * directly. 26 */ 27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 28 struct nvme_ctrl *ctrl, int *flags) 29 { 30 if (!multipath) { 31 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 32 } else if (ns->head->disk) { 33 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 34 ctrl->cntlid, ns->head->instance); 35 *flags = GENHD_FL_HIDDEN; 36 } else { 37 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 38 ns->head->instance); 39 } 40 } 41 42 void nvme_failover_req(struct request *req) 43 { 44 struct nvme_ns *ns = req->q->queuedata; 45 u16 status = nvme_req(req)->status; 46 unsigned long flags; 47 48 spin_lock_irqsave(&ns->head->requeue_lock, flags); 49 blk_steal_bios(&ns->head->requeue_list, req); 50 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 51 blk_mq_end_request(req, 0); 52 53 switch (status & 0x7ff) { 54 case NVME_SC_ANA_TRANSITION: 55 case NVME_SC_ANA_INACCESSIBLE: 56 case NVME_SC_ANA_PERSISTENT_LOSS: 57 /* 58 * If we got back an ANA error we know the controller is alive, 59 * but not ready to serve this namespaces. The spec suggests 60 * we should update our general state here, but due to the fact 61 * that the admin and I/O queues are not serialized that is 62 * fundamentally racy. So instead just clear the current path, 63 * mark the the path as pending and kick of a re-read of the ANA 64 * log page ASAP. 65 */ 66 nvme_mpath_clear_current_path(ns); 67 if (ns->ctrl->ana_log_buf) { 68 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 69 queue_work(nvme_wq, &ns->ctrl->ana_work); 70 } 71 break; 72 case NVME_SC_HOST_PATH_ERROR: 73 /* 74 * Temporary transport disruption in talking to the controller. 75 * Try to send on a new path. 76 */ 77 nvme_mpath_clear_current_path(ns); 78 break; 79 default: 80 /* 81 * Reset the controller for any non-ANA error as we don't know 82 * what caused the error. 83 */ 84 nvme_reset_ctrl(ns->ctrl); 85 break; 86 } 87 88 kblockd_schedule_work(&ns->head->requeue_work); 89 } 90 91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 92 { 93 struct nvme_ns *ns; 94 95 down_read(&ctrl->namespaces_rwsem); 96 list_for_each_entry(ns, &ctrl->namespaces, list) { 97 if (ns->head->disk) 98 kblockd_schedule_work(&ns->head->requeue_work); 99 } 100 up_read(&ctrl->namespaces_rwsem); 101 } 102 103 static const char *nvme_ana_state_names[] = { 104 [0] = "invalid state", 105 [NVME_ANA_OPTIMIZED] = "optimized", 106 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 107 [NVME_ANA_INACCESSIBLE] = "inaccessible", 108 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 109 [NVME_ANA_CHANGE] = "change", 110 }; 111 112 void nvme_mpath_clear_current_path(struct nvme_ns *ns) 113 { 114 struct nvme_ns_head *head = ns->head; 115 int node; 116 117 if (!head) 118 return; 119 120 for_each_node(node) { 121 if (ns == rcu_access_pointer(head->current_path[node])) 122 rcu_assign_pointer(head->current_path[node], NULL); 123 } 124 } 125 126 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 127 { 128 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 129 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 130 131 list_for_each_entry_rcu(ns, &head->list, siblings) { 132 if (ns->ctrl->state != NVME_CTRL_LIVE || 133 test_bit(NVME_NS_ANA_PENDING, &ns->flags)) 134 continue; 135 136 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 137 distance = node_distance(node, ns->ctrl->numa_node); 138 else 139 distance = LOCAL_DISTANCE; 140 141 switch (ns->ana_state) { 142 case NVME_ANA_OPTIMIZED: 143 if (distance < found_distance) { 144 found_distance = distance; 145 found = ns; 146 } 147 break; 148 case NVME_ANA_NONOPTIMIZED: 149 if (distance < fallback_distance) { 150 fallback_distance = distance; 151 fallback = ns; 152 } 153 break; 154 default: 155 break; 156 } 157 } 158 159 if (!found) 160 found = fallback; 161 if (found) 162 rcu_assign_pointer(head->current_path[node], found); 163 return found; 164 } 165 166 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 167 struct nvme_ns *ns) 168 { 169 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 170 siblings); 171 if (ns) 172 return ns; 173 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 174 } 175 176 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 177 int node, struct nvme_ns *old) 178 { 179 struct nvme_ns *ns, *found, *fallback = NULL; 180 181 if (list_is_singular(&head->list)) 182 return old; 183 184 for (ns = nvme_next_ns(head, old); 185 ns != old; 186 ns = nvme_next_ns(head, ns)) { 187 if (ns->ctrl->state != NVME_CTRL_LIVE || 188 test_bit(NVME_NS_ANA_PENDING, &ns->flags)) 189 continue; 190 191 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 192 found = ns; 193 goto out; 194 } 195 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 196 fallback = ns; 197 } 198 199 if (!fallback) 200 return NULL; 201 found = fallback; 202 out: 203 rcu_assign_pointer(head->current_path[node], found); 204 return found; 205 } 206 207 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 208 { 209 return ns->ctrl->state == NVME_CTRL_LIVE && 210 ns->ana_state == NVME_ANA_OPTIMIZED; 211 } 212 213 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 214 { 215 int node = numa_node_id(); 216 struct nvme_ns *ns; 217 218 ns = srcu_dereference(head->current_path[node], &head->srcu); 219 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns) 220 ns = nvme_round_robin_path(head, node, ns); 221 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 222 ns = __nvme_find_path(head, node); 223 return ns; 224 } 225 226 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 227 struct bio *bio) 228 { 229 struct nvme_ns_head *head = q->queuedata; 230 struct device *dev = disk_to_dev(head->disk); 231 struct nvme_ns *ns; 232 blk_qc_t ret = BLK_QC_T_NONE; 233 int srcu_idx; 234 235 srcu_idx = srcu_read_lock(&head->srcu); 236 ns = nvme_find_path(head); 237 if (likely(ns)) { 238 bio->bi_disk = ns->disk; 239 bio->bi_opf |= REQ_NVME_MPATH; 240 trace_block_bio_remap(bio->bi_disk->queue, bio, 241 disk_devt(ns->head->disk), 242 bio->bi_iter.bi_sector); 243 ret = direct_make_request(bio); 244 } else if (!list_empty_careful(&head->list)) { 245 dev_warn_ratelimited(dev, "no path available - requeuing I/O\n"); 246 247 spin_lock_irq(&head->requeue_lock); 248 bio_list_add(&head->requeue_list, bio); 249 spin_unlock_irq(&head->requeue_lock); 250 } else { 251 dev_warn_ratelimited(dev, "no path - failing I/O\n"); 252 253 bio->bi_status = BLK_STS_IOERR; 254 bio_endio(bio); 255 } 256 257 srcu_read_unlock(&head->srcu, srcu_idx); 258 return ret; 259 } 260 261 static void nvme_requeue_work(struct work_struct *work) 262 { 263 struct nvme_ns_head *head = 264 container_of(work, struct nvme_ns_head, requeue_work); 265 struct bio *bio, *next; 266 267 spin_lock_irq(&head->requeue_lock); 268 next = bio_list_get(&head->requeue_list); 269 spin_unlock_irq(&head->requeue_lock); 270 271 while ((bio = next) != NULL) { 272 next = bio->bi_next; 273 bio->bi_next = NULL; 274 275 /* 276 * Reset disk to the mpath node and resubmit to select a new 277 * path. 278 */ 279 bio->bi_disk = head->disk; 280 generic_make_request(bio); 281 } 282 } 283 284 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 285 { 286 struct request_queue *q; 287 bool vwc = false; 288 289 mutex_init(&head->lock); 290 bio_list_init(&head->requeue_list); 291 spin_lock_init(&head->requeue_lock); 292 INIT_WORK(&head->requeue_work, nvme_requeue_work); 293 294 /* 295 * Add a multipath node if the subsystems supports multiple controllers. 296 * We also do this for private namespaces as the namespace sharing data could 297 * change after a rescan. 298 */ 299 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 300 return 0; 301 302 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node); 303 if (!q) 304 goto out; 305 q->queuedata = head; 306 blk_queue_make_request(q, nvme_ns_head_make_request); 307 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 308 /* set to a default value for 512 until disk is validated */ 309 blk_queue_logical_block_size(q, 512); 310 blk_set_stacking_limits(&q->limits); 311 312 /* we need to propagate up the VMC settings */ 313 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 314 vwc = true; 315 blk_queue_write_cache(q, vwc, vwc); 316 317 head->disk = alloc_disk(0); 318 if (!head->disk) 319 goto out_cleanup_queue; 320 head->disk->fops = &nvme_ns_head_ops; 321 head->disk->private_data = head; 322 head->disk->queue = q; 323 head->disk->flags = GENHD_FL_EXT_DEVT; 324 sprintf(head->disk->disk_name, "nvme%dn%d", 325 ctrl->subsys->instance, head->instance); 326 return 0; 327 328 out_cleanup_queue: 329 blk_cleanup_queue(q); 330 out: 331 return -ENOMEM; 332 } 333 334 static void nvme_mpath_set_live(struct nvme_ns *ns) 335 { 336 struct nvme_ns_head *head = ns->head; 337 338 lockdep_assert_held(&ns->head->lock); 339 340 if (!head->disk) 341 return; 342 343 if (!(head->disk->flags & GENHD_FL_UP)) 344 device_add_disk(&head->subsys->dev, head->disk, 345 nvme_ns_id_attr_groups); 346 347 if (nvme_path_is_optimized(ns)) { 348 int node, srcu_idx; 349 350 srcu_idx = srcu_read_lock(&head->srcu); 351 for_each_node(node) 352 __nvme_find_path(head, node); 353 srcu_read_unlock(&head->srcu, srcu_idx); 354 } 355 356 kblockd_schedule_work(&ns->head->requeue_work); 357 } 358 359 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 360 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 361 void *)) 362 { 363 void *base = ctrl->ana_log_buf; 364 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 365 int error, i; 366 367 lockdep_assert_held(&ctrl->ana_lock); 368 369 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 370 struct nvme_ana_group_desc *desc = base + offset; 371 u32 nr_nsids = le32_to_cpu(desc->nnsids); 372 size_t nsid_buf_size = nr_nsids * sizeof(__le32); 373 374 if (WARN_ON_ONCE(desc->grpid == 0)) 375 return -EINVAL; 376 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 377 return -EINVAL; 378 if (WARN_ON_ONCE(desc->state == 0)) 379 return -EINVAL; 380 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 381 return -EINVAL; 382 383 offset += sizeof(*desc); 384 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 385 return -EINVAL; 386 387 error = cb(ctrl, desc, data); 388 if (error) 389 return error; 390 391 offset += nsid_buf_size; 392 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 393 return -EINVAL; 394 } 395 396 return 0; 397 } 398 399 static inline bool nvme_state_is_live(enum nvme_ana_state state) 400 { 401 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 402 } 403 404 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 405 struct nvme_ns *ns) 406 { 407 mutex_lock(&ns->head->lock); 408 ns->ana_grpid = le32_to_cpu(desc->grpid); 409 ns->ana_state = desc->state; 410 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 411 412 if (nvme_state_is_live(ns->ana_state)) 413 nvme_mpath_set_live(ns); 414 mutex_unlock(&ns->head->lock); 415 } 416 417 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 418 struct nvme_ana_group_desc *desc, void *data) 419 { 420 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 421 unsigned *nr_change_groups = data; 422 struct nvme_ns *ns; 423 424 dev_info(ctrl->device, "ANA group %d: %s.\n", 425 le32_to_cpu(desc->grpid), 426 nvme_ana_state_names[desc->state]); 427 428 if (desc->state == NVME_ANA_CHANGE) 429 (*nr_change_groups)++; 430 431 if (!nr_nsids) 432 return 0; 433 434 down_write(&ctrl->namespaces_rwsem); 435 list_for_each_entry(ns, &ctrl->namespaces, list) { 436 if (ns->head->ns_id != le32_to_cpu(desc->nsids[n])) 437 continue; 438 nvme_update_ns_ana_state(desc, ns); 439 if (++n == nr_nsids) 440 break; 441 } 442 up_write(&ctrl->namespaces_rwsem); 443 WARN_ON_ONCE(n < nr_nsids); 444 return 0; 445 } 446 447 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only) 448 { 449 u32 nr_change_groups = 0; 450 int error; 451 452 mutex_lock(&ctrl->ana_lock); 453 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 454 groups_only ? NVME_ANA_LOG_RGO : 0, 455 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 456 if (error) { 457 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 458 goto out_unlock; 459 } 460 461 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 462 nvme_update_ana_state); 463 if (error) 464 goto out_unlock; 465 466 /* 467 * In theory we should have an ANATT timer per group as they might enter 468 * the change state at different times. But that is a lot of overhead 469 * just to protect against a target that keeps entering new changes 470 * states while never finishing previous ones. But we'll still 471 * eventually time out once all groups are in change state, so this 472 * isn't a big deal. 473 * 474 * We also double the ANATT value to provide some slack for transports 475 * or AEN processing overhead. 476 */ 477 if (nr_change_groups) 478 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 479 else 480 del_timer_sync(&ctrl->anatt_timer); 481 out_unlock: 482 mutex_unlock(&ctrl->ana_lock); 483 return error; 484 } 485 486 static void nvme_ana_work(struct work_struct *work) 487 { 488 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 489 490 nvme_read_ana_log(ctrl, false); 491 } 492 493 static void nvme_anatt_timeout(struct timer_list *t) 494 { 495 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 496 497 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 498 nvme_reset_ctrl(ctrl); 499 } 500 501 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 502 { 503 if (!nvme_ctrl_use_ana(ctrl)) 504 return; 505 del_timer_sync(&ctrl->anatt_timer); 506 cancel_work_sync(&ctrl->ana_work); 507 } 508 509 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 510 struct device_attribute subsys_attr_##_name = \ 511 __ATTR(_name, _mode, _show, _store) 512 513 static const char *nvme_iopolicy_names[] = { 514 [NVME_IOPOLICY_NUMA] = "numa", 515 [NVME_IOPOLICY_RR] = "round-robin", 516 }; 517 518 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct nvme_subsystem *subsys = 522 container_of(dev, struct nvme_subsystem, dev); 523 524 return sprintf(buf, "%s\n", 525 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 526 } 527 528 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 529 struct device_attribute *attr, const char *buf, size_t count) 530 { 531 struct nvme_subsystem *subsys = 532 container_of(dev, struct nvme_subsystem, dev); 533 int i; 534 535 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 536 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 537 WRITE_ONCE(subsys->iopolicy, i); 538 return count; 539 } 540 } 541 542 return -EINVAL; 543 } 544 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 545 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 546 547 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 548 char *buf) 549 { 550 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 551 } 552 DEVICE_ATTR_RO(ana_grpid); 553 554 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 555 char *buf) 556 { 557 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 558 559 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 560 } 561 DEVICE_ATTR_RO(ana_state); 562 563 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 564 struct nvme_ana_group_desc *desc, void *data) 565 { 566 struct nvme_ns *ns = data; 567 568 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 569 nvme_update_ns_ana_state(desc, ns); 570 return -ENXIO; /* just break out of the loop */ 571 } 572 573 return 0; 574 } 575 576 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 577 { 578 if (nvme_ctrl_use_ana(ns->ctrl)) { 579 mutex_lock(&ns->ctrl->ana_lock); 580 ns->ana_grpid = le32_to_cpu(id->anagrpid); 581 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 582 mutex_unlock(&ns->ctrl->ana_lock); 583 } else { 584 mutex_lock(&ns->head->lock); 585 ns->ana_state = NVME_ANA_OPTIMIZED; 586 nvme_mpath_set_live(ns); 587 mutex_unlock(&ns->head->lock); 588 } 589 } 590 591 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 592 { 593 if (!head->disk) 594 return; 595 if (head->disk->flags & GENHD_FL_UP) 596 del_gendisk(head->disk); 597 blk_set_queue_dying(head->disk->queue); 598 /* make sure all pending bios are cleaned up */ 599 kblockd_schedule_work(&head->requeue_work); 600 flush_work(&head->requeue_work); 601 blk_cleanup_queue(head->disk->queue); 602 put_disk(head->disk); 603 } 604 605 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 606 { 607 int error; 608 609 if (!nvme_ctrl_use_ana(ctrl)) 610 return 0; 611 612 ctrl->anacap = id->anacap; 613 ctrl->anatt = id->anatt; 614 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 615 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 616 617 mutex_init(&ctrl->ana_lock); 618 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 619 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 620 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 621 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 622 623 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 624 dev_err(ctrl->device, 625 "ANA log page size (%zd) larger than MDTS (%d).\n", 626 ctrl->ana_log_size, 627 ctrl->max_hw_sectors << SECTOR_SHIFT); 628 dev_err(ctrl->device, "disabling ANA support.\n"); 629 return 0; 630 } 631 632 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 633 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 634 if (!ctrl->ana_log_buf) { 635 error = -ENOMEM; 636 goto out; 637 } 638 639 error = nvme_read_ana_log(ctrl, true); 640 if (error) 641 goto out_free_ana_log_buf; 642 return 0; 643 out_free_ana_log_buf: 644 kfree(ctrl->ana_log_buf); 645 ctrl->ana_log_buf = NULL; 646 out: 647 return error; 648 } 649 650 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 651 { 652 kfree(ctrl->ana_log_buf); 653 ctrl->ana_log_buf = NULL; 654 } 655 656