xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 5f66f73b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 	if (!multipath)
56 		return false;
57 	if (!ns->head->disk) {
58 		sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 			ns->head->instance);
60 		return true;
61 	}
62 	sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 		ns->ctrl->instance, ns->head->instance);
64 	*flags = GENHD_FL_HIDDEN;
65 	return true;
66 }
67 
68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 
74 	nvme_mpath_clear_current_path(ns);
75 
76 	/*
77 	 * If we got back an ANA error, we know the controller is alive but not
78 	 * ready to serve this namespace.  Kick of a re-read of the ANA
79 	 * information page, and just try any other available path for now.
80 	 */
81 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
82 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
83 		queue_work(nvme_wq, &ns->ctrl->ana_work);
84 	}
85 
86 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
87 	blk_steal_bios(&ns->head->requeue_list, req);
88 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
89 
90 	blk_mq_end_request(req, 0);
91 	kblockd_schedule_work(&ns->head->requeue_work);
92 }
93 
94 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
95 {
96 	struct nvme_ns *ns;
97 
98 	down_read(&ctrl->namespaces_rwsem);
99 	list_for_each_entry(ns, &ctrl->namespaces, list) {
100 		if (ns->head->disk)
101 			kblockd_schedule_work(&ns->head->requeue_work);
102 	}
103 	up_read(&ctrl->namespaces_rwsem);
104 }
105 
106 static const char *nvme_ana_state_names[] = {
107 	[0]				= "invalid state",
108 	[NVME_ANA_OPTIMIZED]		= "optimized",
109 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
110 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
111 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
112 	[NVME_ANA_CHANGE]		= "change",
113 };
114 
115 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
116 {
117 	struct nvme_ns_head *head = ns->head;
118 	bool changed = false;
119 	int node;
120 
121 	if (!head)
122 		goto out;
123 
124 	for_each_node(node) {
125 		if (ns == rcu_access_pointer(head->current_path[node])) {
126 			rcu_assign_pointer(head->current_path[node], NULL);
127 			changed = true;
128 		}
129 	}
130 out:
131 	return changed;
132 }
133 
134 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
135 {
136 	struct nvme_ns *ns;
137 
138 	mutex_lock(&ctrl->scan_lock);
139 	down_read(&ctrl->namespaces_rwsem);
140 	list_for_each_entry(ns, &ctrl->namespaces, list)
141 		if (nvme_mpath_clear_current_path(ns))
142 			kblockd_schedule_work(&ns->head->requeue_work);
143 	up_read(&ctrl->namespaces_rwsem);
144 	mutex_unlock(&ctrl->scan_lock);
145 }
146 
147 static bool nvme_path_is_disabled(struct nvme_ns *ns)
148 {
149 	/*
150 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
151 	 * still be able to complete assuming that the controller is connected.
152 	 * Otherwise it will fail immediately and return to the requeue list.
153 	 */
154 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
155 	    ns->ctrl->state != NVME_CTRL_DELETING)
156 		return true;
157 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
158 	    test_bit(NVME_NS_REMOVING, &ns->flags))
159 		return true;
160 	return false;
161 }
162 
163 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
164 {
165 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
166 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
167 
168 	list_for_each_entry_rcu(ns, &head->list, siblings) {
169 		if (nvme_path_is_disabled(ns))
170 			continue;
171 
172 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
173 			distance = node_distance(node, ns->ctrl->numa_node);
174 		else
175 			distance = LOCAL_DISTANCE;
176 
177 		switch (ns->ana_state) {
178 		case NVME_ANA_OPTIMIZED:
179 			if (distance < found_distance) {
180 				found_distance = distance;
181 				found = ns;
182 			}
183 			break;
184 		case NVME_ANA_NONOPTIMIZED:
185 			if (distance < fallback_distance) {
186 				fallback_distance = distance;
187 				fallback = ns;
188 			}
189 			break;
190 		default:
191 			break;
192 		}
193 	}
194 
195 	if (!found)
196 		found = fallback;
197 	if (found)
198 		rcu_assign_pointer(head->current_path[node], found);
199 	return found;
200 }
201 
202 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
203 		struct nvme_ns *ns)
204 {
205 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
206 			siblings);
207 	if (ns)
208 		return ns;
209 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
210 }
211 
212 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
213 		int node, struct nvme_ns *old)
214 {
215 	struct nvme_ns *ns, *found = NULL;
216 
217 	if (list_is_singular(&head->list)) {
218 		if (nvme_path_is_disabled(old))
219 			return NULL;
220 		return old;
221 	}
222 
223 	for (ns = nvme_next_ns(head, old);
224 	     ns && ns != old;
225 	     ns = nvme_next_ns(head, ns)) {
226 		if (nvme_path_is_disabled(ns))
227 			continue;
228 
229 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
230 			found = ns;
231 			goto out;
232 		}
233 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
234 			found = ns;
235 	}
236 
237 	/*
238 	 * The loop above skips the current path for round-robin semantics.
239 	 * Fall back to the current path if either:
240 	 *  - no other optimized path found and current is optimized,
241 	 *  - no other usable path found and current is usable.
242 	 */
243 	if (!nvme_path_is_disabled(old) &&
244 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
245 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
246 		return old;
247 
248 	if (!found)
249 		return NULL;
250 out:
251 	rcu_assign_pointer(head->current_path[node], found);
252 	return found;
253 }
254 
255 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
256 {
257 	return ns->ctrl->state == NVME_CTRL_LIVE &&
258 		ns->ana_state == NVME_ANA_OPTIMIZED;
259 }
260 
261 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
262 {
263 	int node = numa_node_id();
264 	struct nvme_ns *ns;
265 
266 	ns = srcu_dereference(head->current_path[node], &head->srcu);
267 	if (unlikely(!ns))
268 		return __nvme_find_path(head, node);
269 
270 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
271 		return nvme_round_robin_path(head, node, ns);
272 	if (unlikely(!nvme_path_is_optimized(ns)))
273 		return __nvme_find_path(head, node);
274 	return ns;
275 }
276 
277 static bool nvme_available_path(struct nvme_ns_head *head)
278 {
279 	struct nvme_ns *ns;
280 
281 	list_for_each_entry_rcu(ns, &head->list, siblings) {
282 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
283 			continue;
284 		switch (ns->ctrl->state) {
285 		case NVME_CTRL_LIVE:
286 		case NVME_CTRL_RESETTING:
287 		case NVME_CTRL_CONNECTING:
288 			/* fallthru */
289 			return true;
290 		default:
291 			break;
292 		}
293 	}
294 	return false;
295 }
296 
297 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
298 {
299 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
300 	struct device *dev = disk_to_dev(head->disk);
301 	struct nvme_ns *ns;
302 	blk_qc_t ret = BLK_QC_T_NONE;
303 	int srcu_idx;
304 
305 	/*
306 	 * The namespace might be going away and the bio might be moved to a
307 	 * different queue via blk_steal_bios(), so we need to use the bio_split
308 	 * pool from the original queue to allocate the bvecs from.
309 	 */
310 	blk_queue_split(&bio);
311 
312 	srcu_idx = srcu_read_lock(&head->srcu);
313 	ns = nvme_find_path(head);
314 	if (likely(ns)) {
315 		bio_set_dev(bio, ns->disk->part0);
316 		bio->bi_opf |= REQ_NVME_MPATH;
317 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
318 				      bio->bi_iter.bi_sector);
319 		ret = submit_bio_noacct(bio);
320 	} else if (nvme_available_path(head)) {
321 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
322 
323 		spin_lock_irq(&head->requeue_lock);
324 		bio_list_add(&head->requeue_list, bio);
325 		spin_unlock_irq(&head->requeue_lock);
326 	} else {
327 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
328 
329 		bio->bi_status = BLK_STS_IOERR;
330 		bio_endio(bio);
331 	}
332 
333 	srcu_read_unlock(&head->srcu, srcu_idx);
334 	return ret;
335 }
336 
337 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
338 {
339 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
340 		return -ENXIO;
341 	return 0;
342 }
343 
344 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
345 {
346 	nvme_put_ns_head(disk->private_data);
347 }
348 
349 const struct block_device_operations nvme_ns_head_ops = {
350 	.owner		= THIS_MODULE,
351 	.submit_bio	= nvme_ns_head_submit_bio,
352 	.open		= nvme_ns_head_open,
353 	.release	= nvme_ns_head_release,
354 	.ioctl		= nvme_ns_head_ioctl,
355 	.getgeo		= nvme_getgeo,
356 	.report_zones	= nvme_report_zones,
357 	.pr_ops		= &nvme_pr_ops,
358 };
359 
360 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
361 {
362 	return container_of(cdev, struct nvme_ns_head, cdev);
363 }
364 
365 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
366 {
367 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
368 		return -ENXIO;
369 	return 0;
370 }
371 
372 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
373 {
374 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
375 	return 0;
376 }
377 
378 static const struct file_operations nvme_ns_head_chr_fops = {
379 	.owner		= THIS_MODULE,
380 	.open		= nvme_ns_head_chr_open,
381 	.release	= nvme_ns_head_chr_release,
382 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
383 	.compat_ioctl	= compat_ptr_ioctl,
384 };
385 
386 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
387 {
388 	int ret;
389 
390 	head->cdev_device.parent = &head->subsys->dev;
391 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
392 			   head->subsys->instance, head->instance);
393 	if (ret)
394 		return ret;
395 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
396 			    &nvme_ns_head_chr_fops, THIS_MODULE);
397 	if (ret)
398 		kfree_const(head->cdev_device.kobj.name);
399 	return ret;
400 }
401 
402 static void nvme_requeue_work(struct work_struct *work)
403 {
404 	struct nvme_ns_head *head =
405 		container_of(work, struct nvme_ns_head, requeue_work);
406 	struct bio *bio, *next;
407 
408 	spin_lock_irq(&head->requeue_lock);
409 	next = bio_list_get(&head->requeue_list);
410 	spin_unlock_irq(&head->requeue_lock);
411 
412 	while ((bio = next) != NULL) {
413 		next = bio->bi_next;
414 		bio->bi_next = NULL;
415 
416 		/*
417 		 * Reset disk to the mpath node and resubmit to select a new
418 		 * path.
419 		 */
420 		bio_set_dev(bio, head->disk->part0);
421 		submit_bio_noacct(bio);
422 	}
423 }
424 
425 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
426 {
427 	struct request_queue *q;
428 	bool vwc = false;
429 
430 	mutex_init(&head->lock);
431 	bio_list_init(&head->requeue_list);
432 	spin_lock_init(&head->requeue_lock);
433 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
434 
435 	/*
436 	 * Add a multipath node if the subsystems supports multiple controllers.
437 	 * We also do this for private namespaces as the namespace sharing data could
438 	 * change after a rescan.
439 	 */
440 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
441 		return 0;
442 
443 	q = blk_alloc_queue(ctrl->numa_node);
444 	if (!q)
445 		goto out;
446 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
447 	/* set to a default value for 512 until disk is validated */
448 	blk_queue_logical_block_size(q, 512);
449 	blk_set_stacking_limits(&q->limits);
450 
451 	/* we need to propagate up the VMC settings */
452 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
453 		vwc = true;
454 	blk_queue_write_cache(q, vwc, vwc);
455 
456 	head->disk = alloc_disk(0);
457 	if (!head->disk)
458 		goto out_cleanup_queue;
459 	head->disk->fops = &nvme_ns_head_ops;
460 	head->disk->private_data = head;
461 	head->disk->queue = q;
462 	head->disk->flags = GENHD_FL_EXT_DEVT;
463 	sprintf(head->disk->disk_name, "nvme%dn%d",
464 			ctrl->subsys->instance, head->instance);
465 	return 0;
466 
467 out_cleanup_queue:
468 	blk_cleanup_queue(q);
469 out:
470 	return -ENOMEM;
471 }
472 
473 static void nvme_mpath_set_live(struct nvme_ns *ns)
474 {
475 	struct nvme_ns_head *head = ns->head;
476 
477 	if (!head->disk)
478 		return;
479 
480 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
481 		device_add_disk(&head->subsys->dev, head->disk,
482 				nvme_ns_id_attr_groups);
483 		nvme_add_ns_head_cdev(head);
484 	}
485 
486 	mutex_lock(&head->lock);
487 	if (nvme_path_is_optimized(ns)) {
488 		int node, srcu_idx;
489 
490 		srcu_idx = srcu_read_lock(&head->srcu);
491 		for_each_node(node)
492 			__nvme_find_path(head, node);
493 		srcu_read_unlock(&head->srcu, srcu_idx);
494 	}
495 	mutex_unlock(&head->lock);
496 
497 	synchronize_srcu(&head->srcu);
498 	kblockd_schedule_work(&head->requeue_work);
499 }
500 
501 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
502 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
503 			void *))
504 {
505 	void *base = ctrl->ana_log_buf;
506 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
507 	int error, i;
508 
509 	lockdep_assert_held(&ctrl->ana_lock);
510 
511 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
512 		struct nvme_ana_group_desc *desc = base + offset;
513 		u32 nr_nsids;
514 		size_t nsid_buf_size;
515 
516 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
517 			return -EINVAL;
518 
519 		nr_nsids = le32_to_cpu(desc->nnsids);
520 		nsid_buf_size = nr_nsids * sizeof(__le32);
521 
522 		if (WARN_ON_ONCE(desc->grpid == 0))
523 			return -EINVAL;
524 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
525 			return -EINVAL;
526 		if (WARN_ON_ONCE(desc->state == 0))
527 			return -EINVAL;
528 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
529 			return -EINVAL;
530 
531 		offset += sizeof(*desc);
532 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
533 			return -EINVAL;
534 
535 		error = cb(ctrl, desc, data);
536 		if (error)
537 			return error;
538 
539 		offset += nsid_buf_size;
540 	}
541 
542 	return 0;
543 }
544 
545 static inline bool nvme_state_is_live(enum nvme_ana_state state)
546 {
547 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
548 }
549 
550 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
551 		struct nvme_ns *ns)
552 {
553 	ns->ana_grpid = le32_to_cpu(desc->grpid);
554 	ns->ana_state = desc->state;
555 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
556 
557 	if (nvme_state_is_live(ns->ana_state))
558 		nvme_mpath_set_live(ns);
559 }
560 
561 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
562 		struct nvme_ana_group_desc *desc, void *data)
563 {
564 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
565 	unsigned *nr_change_groups = data;
566 	struct nvme_ns *ns;
567 
568 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
569 			le32_to_cpu(desc->grpid),
570 			nvme_ana_state_names[desc->state]);
571 
572 	if (desc->state == NVME_ANA_CHANGE)
573 		(*nr_change_groups)++;
574 
575 	if (!nr_nsids)
576 		return 0;
577 
578 	down_read(&ctrl->namespaces_rwsem);
579 	list_for_each_entry(ns, &ctrl->namespaces, list) {
580 		unsigned nsid = le32_to_cpu(desc->nsids[n]);
581 
582 		if (ns->head->ns_id < nsid)
583 			continue;
584 		if (ns->head->ns_id == nsid)
585 			nvme_update_ns_ana_state(desc, ns);
586 		if (++n == nr_nsids)
587 			break;
588 	}
589 	up_read(&ctrl->namespaces_rwsem);
590 	return 0;
591 }
592 
593 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
594 {
595 	u32 nr_change_groups = 0;
596 	int error;
597 
598 	mutex_lock(&ctrl->ana_lock);
599 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
600 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
601 	if (error) {
602 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
603 		goto out_unlock;
604 	}
605 
606 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
607 			nvme_update_ana_state);
608 	if (error)
609 		goto out_unlock;
610 
611 	/*
612 	 * In theory we should have an ANATT timer per group as they might enter
613 	 * the change state at different times.  But that is a lot of overhead
614 	 * just to protect against a target that keeps entering new changes
615 	 * states while never finishing previous ones.  But we'll still
616 	 * eventually time out once all groups are in change state, so this
617 	 * isn't a big deal.
618 	 *
619 	 * We also double the ANATT value to provide some slack for transports
620 	 * or AEN processing overhead.
621 	 */
622 	if (nr_change_groups)
623 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
624 	else
625 		del_timer_sync(&ctrl->anatt_timer);
626 out_unlock:
627 	mutex_unlock(&ctrl->ana_lock);
628 	return error;
629 }
630 
631 static void nvme_ana_work(struct work_struct *work)
632 {
633 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
634 
635 	if (ctrl->state != NVME_CTRL_LIVE)
636 		return;
637 
638 	nvme_read_ana_log(ctrl);
639 }
640 
641 static void nvme_anatt_timeout(struct timer_list *t)
642 {
643 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
644 
645 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
646 	nvme_reset_ctrl(ctrl);
647 }
648 
649 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
650 {
651 	if (!nvme_ctrl_use_ana(ctrl))
652 		return;
653 	del_timer_sync(&ctrl->anatt_timer);
654 	cancel_work_sync(&ctrl->ana_work);
655 }
656 
657 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
658 	struct device_attribute subsys_attr_##_name =	\
659 		__ATTR(_name, _mode, _show, _store)
660 
661 static const char *nvme_iopolicy_names[] = {
662 	[NVME_IOPOLICY_NUMA]	= "numa",
663 	[NVME_IOPOLICY_RR]	= "round-robin",
664 };
665 
666 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
667 		struct device_attribute *attr, char *buf)
668 {
669 	struct nvme_subsystem *subsys =
670 		container_of(dev, struct nvme_subsystem, dev);
671 
672 	return sysfs_emit(buf, "%s\n",
673 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
674 }
675 
676 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
677 		struct device_attribute *attr, const char *buf, size_t count)
678 {
679 	struct nvme_subsystem *subsys =
680 		container_of(dev, struct nvme_subsystem, dev);
681 	int i;
682 
683 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
684 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
685 			WRITE_ONCE(subsys->iopolicy, i);
686 			return count;
687 		}
688 	}
689 
690 	return -EINVAL;
691 }
692 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
693 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
694 
695 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
696 		char *buf)
697 {
698 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
699 }
700 DEVICE_ATTR_RO(ana_grpid);
701 
702 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
703 		char *buf)
704 {
705 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
706 
707 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
708 }
709 DEVICE_ATTR_RO(ana_state);
710 
711 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
712 		struct nvme_ana_group_desc *desc, void *data)
713 {
714 	struct nvme_ana_group_desc *dst = data;
715 
716 	if (desc->grpid != dst->grpid)
717 		return 0;
718 
719 	*dst = *desc;
720 	return -ENXIO; /* just break out of the loop */
721 }
722 
723 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
724 {
725 	if (nvme_ctrl_use_ana(ns->ctrl)) {
726 		struct nvme_ana_group_desc desc = {
727 			.grpid = id->anagrpid,
728 			.state = 0,
729 		};
730 
731 		mutex_lock(&ns->ctrl->ana_lock);
732 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
733 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
734 		mutex_unlock(&ns->ctrl->ana_lock);
735 		if (desc.state) {
736 			/* found the group desc: update */
737 			nvme_update_ns_ana_state(&desc, ns);
738 		} else {
739 			/* group desc not found: trigger a re-read */
740 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
741 			queue_work(nvme_wq, &ns->ctrl->ana_work);
742 		}
743 	} else {
744 		ns->ana_state = NVME_ANA_OPTIMIZED;
745 		nvme_mpath_set_live(ns);
746 	}
747 
748 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
749 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
750 				   ns->head->disk->queue);
751 #ifdef CONFIG_BLK_DEV_ZONED
752 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
753 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
754 #endif
755 }
756 
757 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
758 {
759 	if (!head->disk)
760 		return;
761 	if (head->disk->flags & GENHD_FL_UP) {
762 		nvme_cdev_del(&head->cdev, &head->cdev_device);
763 		del_gendisk(head->disk);
764 	}
765 	blk_set_queue_dying(head->disk->queue);
766 	/* make sure all pending bios are cleaned up */
767 	kblockd_schedule_work(&head->requeue_work);
768 	flush_work(&head->requeue_work);
769 	blk_cleanup_queue(head->disk->queue);
770 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
771 		/*
772 		 * if device_add_disk wasn't called, prevent
773 		 * disk release to put a bogus reference on the
774 		 * request queue
775 		 */
776 		head->disk->queue = NULL;
777 	}
778 	put_disk(head->disk);
779 }
780 
781 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
782 {
783 	int error;
784 
785 	/* check if multipath is enabled and we have the capability */
786 	if (!multipath || !ctrl->subsys ||
787 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
788 		return 0;
789 
790 	ctrl->anacap = id->anacap;
791 	ctrl->anatt = id->anatt;
792 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
793 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
794 
795 	mutex_init(&ctrl->ana_lock);
796 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
797 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
798 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
799 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
800 
801 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
802 		dev_err(ctrl->device,
803 			"ANA log page size (%zd) larger than MDTS (%d).\n",
804 			ctrl->ana_log_size,
805 			ctrl->max_hw_sectors << SECTOR_SHIFT);
806 		dev_err(ctrl->device, "disabling ANA support.\n");
807 		return 0;
808 	}
809 
810 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
811 	kfree(ctrl->ana_log_buf);
812 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
813 	if (!ctrl->ana_log_buf) {
814 		error = -ENOMEM;
815 		goto out;
816 	}
817 
818 	error = nvme_read_ana_log(ctrl);
819 	if (error)
820 		goto out_free_ana_log_buf;
821 	return 0;
822 out_free_ana_log_buf:
823 	kfree(ctrl->ana_log_buf);
824 	ctrl->ana_log_buf = NULL;
825 out:
826 	return error;
827 }
828 
829 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
830 {
831 	kfree(ctrl->ana_log_buf);
832 	ctrl->ana_log_buf = NULL;
833 }
834