xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9 
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13 	"turn on native support for multiple controllers per subsystem");
14 
15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
16 {
17 	return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3));
18 }
19 
20 /*
21  * If multipathing is enabled we need to always use the subsystem instance
22  * number for numbering our devices to avoid conflicts between subsystems that
23  * have multiple controllers and thus use the multipath-aware subsystem node
24  * and those that have a single controller and use the controller node
25  * directly.
26  */
27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
28 			struct nvme_ctrl *ctrl, int *flags)
29 {
30 	if (!multipath) {
31 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
32 	} else if (ns->head->disk) {
33 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
34 				ctrl->instance, ns->head->instance);
35 		*flags = GENHD_FL_HIDDEN;
36 	} else {
37 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
38 				ns->head->instance);
39 	}
40 }
41 
42 void nvme_failover_req(struct request *req)
43 {
44 	struct nvme_ns *ns = req->q->queuedata;
45 	u16 status = nvme_req(req)->status;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
49 	blk_steal_bios(&ns->head->requeue_list, req);
50 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
51 	blk_mq_end_request(req, 0);
52 
53 	switch (status & 0x7ff) {
54 	case NVME_SC_ANA_TRANSITION:
55 	case NVME_SC_ANA_INACCESSIBLE:
56 	case NVME_SC_ANA_PERSISTENT_LOSS:
57 		/*
58 		 * If we got back an ANA error we know the controller is alive,
59 		 * but not ready to serve this namespaces.  The spec suggests
60 		 * we should update our general state here, but due to the fact
61 		 * that the admin and I/O queues are not serialized that is
62 		 * fundamentally racy.  So instead just clear the current path,
63 		 * mark the the path as pending and kick of a re-read of the ANA
64 		 * log page ASAP.
65 		 */
66 		nvme_mpath_clear_current_path(ns);
67 		if (ns->ctrl->ana_log_buf) {
68 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
69 			queue_work(nvme_wq, &ns->ctrl->ana_work);
70 		}
71 		break;
72 	case NVME_SC_HOST_PATH_ERROR:
73 		/*
74 		 * Temporary transport disruption in talking to the controller.
75 		 * Try to send on a new path.
76 		 */
77 		nvme_mpath_clear_current_path(ns);
78 		break;
79 	default:
80 		/*
81 		 * Reset the controller for any non-ANA error as we don't know
82 		 * what caused the error.
83 		 */
84 		nvme_reset_ctrl(ns->ctrl);
85 		break;
86 	}
87 
88 	kblockd_schedule_work(&ns->head->requeue_work);
89 }
90 
91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
92 {
93 	struct nvme_ns *ns;
94 
95 	down_read(&ctrl->namespaces_rwsem);
96 	list_for_each_entry(ns, &ctrl->namespaces, list) {
97 		if (ns->head->disk)
98 			kblockd_schedule_work(&ns->head->requeue_work);
99 	}
100 	up_read(&ctrl->namespaces_rwsem);
101 }
102 
103 static const char *nvme_ana_state_names[] = {
104 	[0]				= "invalid state",
105 	[NVME_ANA_OPTIMIZED]		= "optimized",
106 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
107 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
108 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
109 	[NVME_ANA_CHANGE]		= "change",
110 };
111 
112 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
113 {
114 	struct nvme_ns_head *head = ns->head;
115 	int node;
116 
117 	if (!head)
118 		return;
119 
120 	for_each_node(node) {
121 		if (ns == rcu_access_pointer(head->current_path[node]))
122 			rcu_assign_pointer(head->current_path[node], NULL);
123 	}
124 }
125 
126 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
127 {
128 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
129 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
130 
131 	list_for_each_entry_rcu(ns, &head->list, siblings) {
132 		if (ns->ctrl->state != NVME_CTRL_LIVE ||
133 		    test_bit(NVME_NS_ANA_PENDING, &ns->flags))
134 			continue;
135 
136 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
137 			distance = node_distance(node, ns->ctrl->numa_node);
138 		else
139 			distance = LOCAL_DISTANCE;
140 
141 		switch (ns->ana_state) {
142 		case NVME_ANA_OPTIMIZED:
143 			if (distance < found_distance) {
144 				found_distance = distance;
145 				found = ns;
146 			}
147 			break;
148 		case NVME_ANA_NONOPTIMIZED:
149 			if (distance < fallback_distance) {
150 				fallback_distance = distance;
151 				fallback = ns;
152 			}
153 			break;
154 		default:
155 			break;
156 		}
157 	}
158 
159 	if (!found)
160 		found = fallback;
161 	if (found)
162 		rcu_assign_pointer(head->current_path[node], found);
163 	return found;
164 }
165 
166 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
167 		struct nvme_ns *ns)
168 {
169 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
170 			siblings);
171 	if (ns)
172 		return ns;
173 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
174 }
175 
176 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
177 		int node, struct nvme_ns *old)
178 {
179 	struct nvme_ns *ns, *found, *fallback = NULL;
180 
181 	if (list_is_singular(&head->list))
182 		return old;
183 
184 	for (ns = nvme_next_ns(head, old);
185 	     ns != old;
186 	     ns = nvme_next_ns(head, ns)) {
187 		if (ns->ctrl->state != NVME_CTRL_LIVE ||
188 		    test_bit(NVME_NS_ANA_PENDING, &ns->flags))
189 			continue;
190 
191 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
192 			found = ns;
193 			goto out;
194 		}
195 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
196 			fallback = ns;
197 	}
198 
199 	if (!fallback)
200 		return NULL;
201 	found = fallback;
202 out:
203 	rcu_assign_pointer(head->current_path[node], found);
204 	return found;
205 }
206 
207 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
208 {
209 	return ns->ctrl->state == NVME_CTRL_LIVE &&
210 		ns->ana_state == NVME_ANA_OPTIMIZED;
211 }
212 
213 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
214 {
215 	int node = numa_node_id();
216 	struct nvme_ns *ns;
217 
218 	ns = srcu_dereference(head->current_path[node], &head->srcu);
219 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
220 		ns = nvme_round_robin_path(head, node, ns);
221 	if (unlikely(!ns || !nvme_path_is_optimized(ns)))
222 		ns = __nvme_find_path(head, node);
223 	return ns;
224 }
225 
226 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
227 		struct bio *bio)
228 {
229 	struct nvme_ns_head *head = q->queuedata;
230 	struct device *dev = disk_to_dev(head->disk);
231 	struct nvme_ns *ns;
232 	blk_qc_t ret = BLK_QC_T_NONE;
233 	int srcu_idx;
234 
235 	/*
236 	 * The namespace might be going away and the bio might
237 	 * be moved to a different queue via blk_steal_bios(),
238 	 * so we need to use the bio_split pool from the original
239 	 * queue to allocate the bvecs from.
240 	 */
241 	blk_queue_split(q, &bio);
242 
243 	srcu_idx = srcu_read_lock(&head->srcu);
244 	ns = nvme_find_path(head);
245 	if (likely(ns)) {
246 		bio->bi_disk = ns->disk;
247 		bio->bi_opf |= REQ_NVME_MPATH;
248 		trace_block_bio_remap(bio->bi_disk->queue, bio,
249 				      disk_devt(ns->head->disk),
250 				      bio->bi_iter.bi_sector);
251 		ret = direct_make_request(bio);
252 	} else if (!list_empty_careful(&head->list)) {
253 		dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
254 
255 		spin_lock_irq(&head->requeue_lock);
256 		bio_list_add(&head->requeue_list, bio);
257 		spin_unlock_irq(&head->requeue_lock);
258 	} else {
259 		dev_warn_ratelimited(dev, "no path - failing I/O\n");
260 
261 		bio->bi_status = BLK_STS_IOERR;
262 		bio_endio(bio);
263 	}
264 
265 	srcu_read_unlock(&head->srcu, srcu_idx);
266 	return ret;
267 }
268 
269 static void nvme_requeue_work(struct work_struct *work)
270 {
271 	struct nvme_ns_head *head =
272 		container_of(work, struct nvme_ns_head, requeue_work);
273 	struct bio *bio, *next;
274 
275 	spin_lock_irq(&head->requeue_lock);
276 	next = bio_list_get(&head->requeue_list);
277 	spin_unlock_irq(&head->requeue_lock);
278 
279 	while ((bio = next) != NULL) {
280 		next = bio->bi_next;
281 		bio->bi_next = NULL;
282 
283 		/*
284 		 * Reset disk to the mpath node and resubmit to select a new
285 		 * path.
286 		 */
287 		bio->bi_disk = head->disk;
288 		generic_make_request(bio);
289 	}
290 }
291 
292 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
293 {
294 	struct request_queue *q;
295 	bool vwc = false;
296 
297 	mutex_init(&head->lock);
298 	bio_list_init(&head->requeue_list);
299 	spin_lock_init(&head->requeue_lock);
300 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
301 
302 	/*
303 	 * Add a multipath node if the subsystems supports multiple controllers.
304 	 * We also do this for private namespaces as the namespace sharing data could
305 	 * change after a rescan.
306 	 */
307 	if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
308 		return 0;
309 
310 	q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
311 	if (!q)
312 		goto out;
313 	q->queuedata = head;
314 	blk_queue_make_request(q, nvme_ns_head_make_request);
315 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
316 	/* set to a default value for 512 until disk is validated */
317 	blk_queue_logical_block_size(q, 512);
318 	blk_set_stacking_limits(&q->limits);
319 
320 	/* we need to propagate up the VMC settings */
321 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
322 		vwc = true;
323 	blk_queue_write_cache(q, vwc, vwc);
324 
325 	head->disk = alloc_disk(0);
326 	if (!head->disk)
327 		goto out_cleanup_queue;
328 	head->disk->fops = &nvme_ns_head_ops;
329 	head->disk->private_data = head;
330 	head->disk->queue = q;
331 	head->disk->flags = GENHD_FL_EXT_DEVT;
332 	sprintf(head->disk->disk_name, "nvme%dn%d",
333 			ctrl->subsys->instance, head->instance);
334 	return 0;
335 
336 out_cleanup_queue:
337 	blk_cleanup_queue(q);
338 out:
339 	return -ENOMEM;
340 }
341 
342 static void nvme_mpath_set_live(struct nvme_ns *ns)
343 {
344 	struct nvme_ns_head *head = ns->head;
345 
346 	lockdep_assert_held(&ns->head->lock);
347 
348 	if (!head->disk)
349 		return;
350 
351 	if (!(head->disk->flags & GENHD_FL_UP))
352 		device_add_disk(&head->subsys->dev, head->disk,
353 				nvme_ns_id_attr_groups);
354 
355 	if (nvme_path_is_optimized(ns)) {
356 		int node, srcu_idx;
357 
358 		srcu_idx = srcu_read_lock(&head->srcu);
359 		for_each_node(node)
360 			__nvme_find_path(head, node);
361 		srcu_read_unlock(&head->srcu, srcu_idx);
362 	}
363 
364 	kblockd_schedule_work(&ns->head->requeue_work);
365 }
366 
367 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
368 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
369 			void *))
370 {
371 	void *base = ctrl->ana_log_buf;
372 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
373 	int error, i;
374 
375 	lockdep_assert_held(&ctrl->ana_lock);
376 
377 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
378 		struct nvme_ana_group_desc *desc = base + offset;
379 		u32 nr_nsids = le32_to_cpu(desc->nnsids);
380 		size_t nsid_buf_size = nr_nsids * sizeof(__le32);
381 
382 		if (WARN_ON_ONCE(desc->grpid == 0))
383 			return -EINVAL;
384 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
385 			return -EINVAL;
386 		if (WARN_ON_ONCE(desc->state == 0))
387 			return -EINVAL;
388 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
389 			return -EINVAL;
390 
391 		offset += sizeof(*desc);
392 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
393 			return -EINVAL;
394 
395 		error = cb(ctrl, desc, data);
396 		if (error)
397 			return error;
398 
399 		offset += nsid_buf_size;
400 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
401 			return -EINVAL;
402 	}
403 
404 	return 0;
405 }
406 
407 static inline bool nvme_state_is_live(enum nvme_ana_state state)
408 {
409 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
410 }
411 
412 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
413 		struct nvme_ns *ns)
414 {
415 	mutex_lock(&ns->head->lock);
416 	ns->ana_grpid = le32_to_cpu(desc->grpid);
417 	ns->ana_state = desc->state;
418 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
419 
420 	if (nvme_state_is_live(ns->ana_state))
421 		nvme_mpath_set_live(ns);
422 	mutex_unlock(&ns->head->lock);
423 }
424 
425 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
426 		struct nvme_ana_group_desc *desc, void *data)
427 {
428 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
429 	unsigned *nr_change_groups = data;
430 	struct nvme_ns *ns;
431 
432 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
433 			le32_to_cpu(desc->grpid),
434 			nvme_ana_state_names[desc->state]);
435 
436 	if (desc->state == NVME_ANA_CHANGE)
437 		(*nr_change_groups)++;
438 
439 	if (!nr_nsids)
440 		return 0;
441 
442 	down_write(&ctrl->namespaces_rwsem);
443 	list_for_each_entry(ns, &ctrl->namespaces, list) {
444 		if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
445 			continue;
446 		nvme_update_ns_ana_state(desc, ns);
447 		if (++n == nr_nsids)
448 			break;
449 	}
450 	up_write(&ctrl->namespaces_rwsem);
451 	WARN_ON_ONCE(n < nr_nsids);
452 	return 0;
453 }
454 
455 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
456 {
457 	u32 nr_change_groups = 0;
458 	int error;
459 
460 	mutex_lock(&ctrl->ana_lock);
461 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
462 			groups_only ? NVME_ANA_LOG_RGO : 0,
463 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
464 	if (error) {
465 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
466 		goto out_unlock;
467 	}
468 
469 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
470 			nvme_update_ana_state);
471 	if (error)
472 		goto out_unlock;
473 
474 	/*
475 	 * In theory we should have an ANATT timer per group as they might enter
476 	 * the change state at different times.  But that is a lot of overhead
477 	 * just to protect against a target that keeps entering new changes
478 	 * states while never finishing previous ones.  But we'll still
479 	 * eventually time out once all groups are in change state, so this
480 	 * isn't a big deal.
481 	 *
482 	 * We also double the ANATT value to provide some slack for transports
483 	 * or AEN processing overhead.
484 	 */
485 	if (nr_change_groups)
486 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
487 	else
488 		del_timer_sync(&ctrl->anatt_timer);
489 out_unlock:
490 	mutex_unlock(&ctrl->ana_lock);
491 	return error;
492 }
493 
494 static void nvme_ana_work(struct work_struct *work)
495 {
496 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
497 
498 	nvme_read_ana_log(ctrl, false);
499 }
500 
501 static void nvme_anatt_timeout(struct timer_list *t)
502 {
503 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
504 
505 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
506 	nvme_reset_ctrl(ctrl);
507 }
508 
509 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
510 {
511 	if (!nvme_ctrl_use_ana(ctrl))
512 		return;
513 	del_timer_sync(&ctrl->anatt_timer);
514 	cancel_work_sync(&ctrl->ana_work);
515 }
516 
517 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
518 	struct device_attribute subsys_attr_##_name =	\
519 		__ATTR(_name, _mode, _show, _store)
520 
521 static const char *nvme_iopolicy_names[] = {
522 	[NVME_IOPOLICY_NUMA]	= "numa",
523 	[NVME_IOPOLICY_RR]	= "round-robin",
524 };
525 
526 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
527 		struct device_attribute *attr, char *buf)
528 {
529 	struct nvme_subsystem *subsys =
530 		container_of(dev, struct nvme_subsystem, dev);
531 
532 	return sprintf(buf, "%s\n",
533 			nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
534 }
535 
536 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
537 		struct device_attribute *attr, const char *buf, size_t count)
538 {
539 	struct nvme_subsystem *subsys =
540 		container_of(dev, struct nvme_subsystem, dev);
541 	int i;
542 
543 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
544 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
545 			WRITE_ONCE(subsys->iopolicy, i);
546 			return count;
547 		}
548 	}
549 
550 	return -EINVAL;
551 }
552 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
553 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
554 
555 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
556 		char *buf)
557 {
558 	return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
559 }
560 DEVICE_ATTR_RO(ana_grpid);
561 
562 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
563 		char *buf)
564 {
565 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
566 
567 	return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
568 }
569 DEVICE_ATTR_RO(ana_state);
570 
571 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
572 		struct nvme_ana_group_desc *desc, void *data)
573 {
574 	struct nvme_ns *ns = data;
575 
576 	if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
577 		nvme_update_ns_ana_state(desc, ns);
578 		return -ENXIO; /* just break out of the loop */
579 	}
580 
581 	return 0;
582 }
583 
584 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
585 {
586 	if (nvme_ctrl_use_ana(ns->ctrl)) {
587 		mutex_lock(&ns->ctrl->ana_lock);
588 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
589 		nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
590 		mutex_unlock(&ns->ctrl->ana_lock);
591 	} else {
592 		mutex_lock(&ns->head->lock);
593 		ns->ana_state = NVME_ANA_OPTIMIZED;
594 		nvme_mpath_set_live(ns);
595 		mutex_unlock(&ns->head->lock);
596 	}
597 }
598 
599 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
600 {
601 	if (!head->disk)
602 		return;
603 	if (head->disk->flags & GENHD_FL_UP)
604 		del_gendisk(head->disk);
605 	blk_set_queue_dying(head->disk->queue);
606 	/* make sure all pending bios are cleaned up */
607 	kblockd_schedule_work(&head->requeue_work);
608 	flush_work(&head->requeue_work);
609 	blk_cleanup_queue(head->disk->queue);
610 	put_disk(head->disk);
611 }
612 
613 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
614 {
615 	int error;
616 
617 	if (!nvme_ctrl_use_ana(ctrl))
618 		return 0;
619 
620 	ctrl->anacap = id->anacap;
621 	ctrl->anatt = id->anatt;
622 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
623 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
624 
625 	mutex_init(&ctrl->ana_lock);
626 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
627 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
628 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
629 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
630 
631 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
632 		dev_err(ctrl->device,
633 			"ANA log page size (%zd) larger than MDTS (%d).\n",
634 			ctrl->ana_log_size,
635 			ctrl->max_hw_sectors << SECTOR_SHIFT);
636 		dev_err(ctrl->device, "disabling ANA support.\n");
637 		return 0;
638 	}
639 
640 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
641 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
642 	if (!ctrl->ana_log_buf) {
643 		error = -ENOMEM;
644 		goto out;
645 	}
646 
647 	error = nvme_read_ana_log(ctrl, true);
648 	if (error)
649 		goto out_free_ana_log_buf;
650 	return 0;
651 out_free_ana_log_buf:
652 	kfree(ctrl->ana_log_buf);
653 	ctrl->ana_log_buf = NULL;
654 out:
655 	return error;
656 }
657 
658 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
659 {
660 	kfree(ctrl->ana_log_buf);
661 	ctrl->ana_log_buf = NULL;
662 }
663 
664