xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 3af6ed23)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 };
21 
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23 
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 	if (!val)
27 		return -EINVAL;
28 	if (!strncmp(val, "numa", 4))
29 		iopolicy = NVME_IOPOLICY_NUMA;
30 	else if (!strncmp(val, "round-robin", 11))
31 		iopolicy = NVME_IOPOLICY_RR;
32 	else
33 		return -EINVAL;
34 
35 	return 0;
36 }
37 
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42 
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 	&iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47 
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 	subsys->iopolicy = iopolicy;
51 }
52 
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 	struct nvme_ns_head *h;
56 
57 	lockdep_assert_held(&subsys->lock);
58 	list_for_each_entry(h, &subsys->nsheads, entry)
59 		if (h->disk)
60 			blk_mq_unfreeze_queue(h->disk->queue);
61 }
62 
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 	struct nvme_ns_head *h;
66 
67 	lockdep_assert_held(&subsys->lock);
68 	list_for_each_entry(h, &subsys->nsheads, entry)
69 		if (h->disk)
70 			blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72 
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 	struct nvme_ns_head *h;
76 
77 	lockdep_assert_held(&subsys->lock);
78 	list_for_each_entry(h, &subsys->nsheads, entry)
79 		if (h->disk)
80 			blk_freeze_queue_start(h->disk->queue);
81 }
82 
83 void nvme_failover_req(struct request *req)
84 {
85 	struct nvme_ns *ns = req->q->queuedata;
86 	u16 status = nvme_req(req)->status & 0x7ff;
87 	unsigned long flags;
88 	struct bio *bio;
89 
90 	nvme_mpath_clear_current_path(ns);
91 
92 	/*
93 	 * If we got back an ANA error, we know the controller is alive but not
94 	 * ready to serve this namespace.  Kick of a re-read of the ANA
95 	 * information page, and just try any other available path for now.
96 	 */
97 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 		queue_work(nvme_wq, &ns->ctrl->ana_work);
100 	}
101 
102 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 	for (bio = req->bio; bio; bio = bio->bi_next) {
104 		bio_set_dev(bio, ns->head->disk->part0);
105 		if (bio->bi_opf & REQ_POLLED) {
106 			bio->bi_opf &= ~REQ_POLLED;
107 			bio->bi_cookie = BLK_QC_T_NONE;
108 		}
109 		/*
110 		 * The alternate request queue that we may end up submitting
111 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 		 * will fail the I/O immediately with EAGAIN to the issuer.
113 		 * We are not in the issuer context which cannot block. Clear
114 		 * the flag to avoid spurious EAGAIN I/O failures.
115 		 */
116 		bio->bi_opf &= ~REQ_NOWAIT;
117 	}
118 	blk_steal_bios(&ns->head->requeue_list, req);
119 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120 
121 	blk_mq_end_request(req, 0);
122 	kblockd_schedule_work(&ns->head->requeue_work);
123 }
124 
125 void nvme_mpath_start_request(struct request *rq)
126 {
127 	struct nvme_ns *ns = rq->q->queuedata;
128 	struct gendisk *disk = ns->head->disk;
129 
130 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131 		return;
132 
133 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135 						      jiffies);
136 }
137 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138 
139 void nvme_mpath_end_request(struct request *rq)
140 {
141 	struct nvme_ns *ns = rq->q->queuedata;
142 
143 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144 		return;
145 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147 			 nvme_req(rq)->start_time);
148 }
149 
150 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151 {
152 	struct nvme_ns *ns;
153 
154 	down_read(&ctrl->namespaces_rwsem);
155 	list_for_each_entry(ns, &ctrl->namespaces, list) {
156 		if (!ns->head->disk)
157 			continue;
158 		kblockd_schedule_work(&ns->head->requeue_work);
159 		if (ctrl->state == NVME_CTRL_LIVE)
160 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
161 	}
162 	up_read(&ctrl->namespaces_rwsem);
163 }
164 
165 static const char *nvme_ana_state_names[] = {
166 	[0]				= "invalid state",
167 	[NVME_ANA_OPTIMIZED]		= "optimized",
168 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
169 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
170 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
171 	[NVME_ANA_CHANGE]		= "change",
172 };
173 
174 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175 {
176 	struct nvme_ns_head *head = ns->head;
177 	bool changed = false;
178 	int node;
179 
180 	if (!head)
181 		goto out;
182 
183 	for_each_node(node) {
184 		if (ns == rcu_access_pointer(head->current_path[node])) {
185 			rcu_assign_pointer(head->current_path[node], NULL);
186 			changed = true;
187 		}
188 	}
189 out:
190 	return changed;
191 }
192 
193 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194 {
195 	struct nvme_ns *ns;
196 
197 	down_read(&ctrl->namespaces_rwsem);
198 	list_for_each_entry(ns, &ctrl->namespaces, list) {
199 		nvme_mpath_clear_current_path(ns);
200 		kblockd_schedule_work(&ns->head->requeue_work);
201 	}
202 	up_read(&ctrl->namespaces_rwsem);
203 }
204 
205 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206 {
207 	struct nvme_ns_head *head = ns->head;
208 	sector_t capacity = get_capacity(head->disk);
209 	int node;
210 	int srcu_idx;
211 
212 	srcu_idx = srcu_read_lock(&head->srcu);
213 	list_for_each_entry_rcu(ns, &head->list, siblings) {
214 		if (capacity != get_capacity(ns->disk))
215 			clear_bit(NVME_NS_READY, &ns->flags);
216 	}
217 	srcu_read_unlock(&head->srcu, srcu_idx);
218 
219 	for_each_node(node)
220 		rcu_assign_pointer(head->current_path[node], NULL);
221 	kblockd_schedule_work(&head->requeue_work);
222 }
223 
224 static bool nvme_path_is_disabled(struct nvme_ns *ns)
225 {
226 	/*
227 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
228 	 * still be able to complete assuming that the controller is connected.
229 	 * Otherwise it will fail immediately and return to the requeue list.
230 	 */
231 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
232 	    ns->ctrl->state != NVME_CTRL_DELETING)
233 		return true;
234 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
235 	    !test_bit(NVME_NS_READY, &ns->flags))
236 		return true;
237 	return false;
238 }
239 
240 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
241 {
242 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
243 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
244 
245 	list_for_each_entry_rcu(ns, &head->list, siblings) {
246 		if (nvme_path_is_disabled(ns))
247 			continue;
248 
249 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
250 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
251 			distance = node_distance(node, ns->ctrl->numa_node);
252 		else
253 			distance = LOCAL_DISTANCE;
254 
255 		switch (ns->ana_state) {
256 		case NVME_ANA_OPTIMIZED:
257 			if (distance < found_distance) {
258 				found_distance = distance;
259 				found = ns;
260 			}
261 			break;
262 		case NVME_ANA_NONOPTIMIZED:
263 			if (distance < fallback_distance) {
264 				fallback_distance = distance;
265 				fallback = ns;
266 			}
267 			break;
268 		default:
269 			break;
270 		}
271 	}
272 
273 	if (!found)
274 		found = fallback;
275 	if (found)
276 		rcu_assign_pointer(head->current_path[node], found);
277 	return found;
278 }
279 
280 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
281 		struct nvme_ns *ns)
282 {
283 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
284 			siblings);
285 	if (ns)
286 		return ns;
287 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
288 }
289 
290 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
291 		int node, struct nvme_ns *old)
292 {
293 	struct nvme_ns *ns, *found = NULL;
294 
295 	if (list_is_singular(&head->list)) {
296 		if (nvme_path_is_disabled(old))
297 			return NULL;
298 		return old;
299 	}
300 
301 	for (ns = nvme_next_ns(head, old);
302 	     ns && ns != old;
303 	     ns = nvme_next_ns(head, ns)) {
304 		if (nvme_path_is_disabled(ns))
305 			continue;
306 
307 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
308 			found = ns;
309 			goto out;
310 		}
311 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
312 			found = ns;
313 	}
314 
315 	/*
316 	 * The loop above skips the current path for round-robin semantics.
317 	 * Fall back to the current path if either:
318 	 *  - no other optimized path found and current is optimized,
319 	 *  - no other usable path found and current is usable.
320 	 */
321 	if (!nvme_path_is_disabled(old) &&
322 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
323 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
324 		return old;
325 
326 	if (!found)
327 		return NULL;
328 out:
329 	rcu_assign_pointer(head->current_path[node], found);
330 	return found;
331 }
332 
333 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
334 {
335 	return ns->ctrl->state == NVME_CTRL_LIVE &&
336 		ns->ana_state == NVME_ANA_OPTIMIZED;
337 }
338 
339 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
340 {
341 	int node = numa_node_id();
342 	struct nvme_ns *ns;
343 
344 	ns = srcu_dereference(head->current_path[node], &head->srcu);
345 	if (unlikely(!ns))
346 		return __nvme_find_path(head, node);
347 
348 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
349 		return nvme_round_robin_path(head, node, ns);
350 	if (unlikely(!nvme_path_is_optimized(ns)))
351 		return __nvme_find_path(head, node);
352 	return ns;
353 }
354 
355 static bool nvme_available_path(struct nvme_ns_head *head)
356 {
357 	struct nvme_ns *ns;
358 
359 	list_for_each_entry_rcu(ns, &head->list, siblings) {
360 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
361 			continue;
362 		switch (ns->ctrl->state) {
363 		case NVME_CTRL_LIVE:
364 		case NVME_CTRL_RESETTING:
365 		case NVME_CTRL_CONNECTING:
366 			/* fallthru */
367 			return true;
368 		default:
369 			break;
370 		}
371 	}
372 	return false;
373 }
374 
375 static void nvme_ns_head_submit_bio(struct bio *bio)
376 {
377 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
378 	struct device *dev = disk_to_dev(head->disk);
379 	struct nvme_ns *ns;
380 	int srcu_idx;
381 
382 	/*
383 	 * The namespace might be going away and the bio might be moved to a
384 	 * different queue via blk_steal_bios(), so we need to use the bio_split
385 	 * pool from the original queue to allocate the bvecs from.
386 	 */
387 	bio = bio_split_to_limits(bio);
388 	if (!bio)
389 		return;
390 
391 	srcu_idx = srcu_read_lock(&head->srcu);
392 	ns = nvme_find_path(head);
393 	if (likely(ns)) {
394 		bio_set_dev(bio, ns->disk->part0);
395 		bio->bi_opf |= REQ_NVME_MPATH;
396 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
397 				      bio->bi_iter.bi_sector);
398 		submit_bio_noacct(bio);
399 	} else if (nvme_available_path(head)) {
400 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
401 
402 		spin_lock_irq(&head->requeue_lock);
403 		bio_list_add(&head->requeue_list, bio);
404 		spin_unlock_irq(&head->requeue_lock);
405 	} else {
406 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
407 
408 		bio_io_error(bio);
409 	}
410 
411 	srcu_read_unlock(&head->srcu, srcu_idx);
412 }
413 
414 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
415 {
416 	if (!nvme_tryget_ns_head(disk->private_data))
417 		return -ENXIO;
418 	return 0;
419 }
420 
421 static void nvme_ns_head_release(struct gendisk *disk)
422 {
423 	nvme_put_ns_head(disk->private_data);
424 }
425 
426 #ifdef CONFIG_BLK_DEV_ZONED
427 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
428 		unsigned int nr_zones, report_zones_cb cb, void *data)
429 {
430 	struct nvme_ns_head *head = disk->private_data;
431 	struct nvme_ns *ns;
432 	int srcu_idx, ret = -EWOULDBLOCK;
433 
434 	srcu_idx = srcu_read_lock(&head->srcu);
435 	ns = nvme_find_path(head);
436 	if (ns)
437 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
438 	srcu_read_unlock(&head->srcu, srcu_idx);
439 	return ret;
440 }
441 #else
442 #define nvme_ns_head_report_zones	NULL
443 #endif /* CONFIG_BLK_DEV_ZONED */
444 
445 const struct block_device_operations nvme_ns_head_ops = {
446 	.owner		= THIS_MODULE,
447 	.submit_bio	= nvme_ns_head_submit_bio,
448 	.open		= nvme_ns_head_open,
449 	.release	= nvme_ns_head_release,
450 	.ioctl		= nvme_ns_head_ioctl,
451 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
452 	.getgeo		= nvme_getgeo,
453 	.report_zones	= nvme_ns_head_report_zones,
454 	.pr_ops		= &nvme_pr_ops,
455 };
456 
457 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
458 {
459 	return container_of(cdev, struct nvme_ns_head, cdev);
460 }
461 
462 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
463 {
464 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
465 		return -ENXIO;
466 	return 0;
467 }
468 
469 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
470 {
471 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
472 	return 0;
473 }
474 
475 static const struct file_operations nvme_ns_head_chr_fops = {
476 	.owner		= THIS_MODULE,
477 	.open		= nvme_ns_head_chr_open,
478 	.release	= nvme_ns_head_chr_release,
479 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
480 	.compat_ioctl	= compat_ptr_ioctl,
481 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
482 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
483 };
484 
485 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
486 {
487 	int ret;
488 
489 	head->cdev_device.parent = &head->subsys->dev;
490 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
491 			   head->subsys->instance, head->instance);
492 	if (ret)
493 		return ret;
494 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
495 			    &nvme_ns_head_chr_fops, THIS_MODULE);
496 	return ret;
497 }
498 
499 static void nvme_requeue_work(struct work_struct *work)
500 {
501 	struct nvme_ns_head *head =
502 		container_of(work, struct nvme_ns_head, requeue_work);
503 	struct bio *bio, *next;
504 
505 	spin_lock_irq(&head->requeue_lock);
506 	next = bio_list_get(&head->requeue_list);
507 	spin_unlock_irq(&head->requeue_lock);
508 
509 	while ((bio = next) != NULL) {
510 		next = bio->bi_next;
511 		bio->bi_next = NULL;
512 
513 		submit_bio_noacct(bio);
514 	}
515 }
516 
517 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
518 {
519 	bool vwc = false;
520 
521 	mutex_init(&head->lock);
522 	bio_list_init(&head->requeue_list);
523 	spin_lock_init(&head->requeue_lock);
524 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
525 
526 	/*
527 	 * Add a multipath node if the subsystems supports multiple controllers.
528 	 * We also do this for private namespaces as the namespace sharing flag
529 	 * could change after a rescan.
530 	 */
531 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
532 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
533 		return 0;
534 
535 	head->disk = blk_alloc_disk(ctrl->numa_node);
536 	if (!head->disk)
537 		return -ENOMEM;
538 	head->disk->fops = &nvme_ns_head_ops;
539 	head->disk->private_data = head;
540 	sprintf(head->disk->disk_name, "nvme%dn%d",
541 			ctrl->subsys->instance, head->instance);
542 
543 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
544 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
545 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
546 	/*
547 	 * This assumes all controllers that refer to a namespace either
548 	 * support poll queues or not.  That is not a strict guarantee,
549 	 * but if the assumption is wrong the effect is only suboptimal
550 	 * performance but not correctness problem.
551 	 */
552 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
553 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
554 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
555 
556 	/* set to a default value of 512 until the disk is validated */
557 	blk_queue_logical_block_size(head->disk->queue, 512);
558 	blk_set_stacking_limits(&head->disk->queue->limits);
559 	blk_queue_dma_alignment(head->disk->queue, 3);
560 
561 	/* we need to propagate up the VMC settings */
562 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
563 		vwc = true;
564 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
565 	return 0;
566 }
567 
568 static void nvme_mpath_set_live(struct nvme_ns *ns)
569 {
570 	struct nvme_ns_head *head = ns->head;
571 	int rc;
572 
573 	if (!head->disk)
574 		return;
575 
576 	/*
577 	 * test_and_set_bit() is used because it is protecting against two nvme
578 	 * paths simultaneously calling device_add_disk() on the same namespace
579 	 * head.
580 	 */
581 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
582 		rc = device_add_disk(&head->subsys->dev, head->disk,
583 				     nvme_ns_id_attr_groups);
584 		if (rc) {
585 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
586 			return;
587 		}
588 		nvme_add_ns_head_cdev(head);
589 	}
590 
591 	mutex_lock(&head->lock);
592 	if (nvme_path_is_optimized(ns)) {
593 		int node, srcu_idx;
594 
595 		srcu_idx = srcu_read_lock(&head->srcu);
596 		for_each_node(node)
597 			__nvme_find_path(head, node);
598 		srcu_read_unlock(&head->srcu, srcu_idx);
599 	}
600 	mutex_unlock(&head->lock);
601 
602 	synchronize_srcu(&head->srcu);
603 	kblockd_schedule_work(&head->requeue_work);
604 }
605 
606 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
607 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
608 			void *))
609 {
610 	void *base = ctrl->ana_log_buf;
611 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
612 	int error, i;
613 
614 	lockdep_assert_held(&ctrl->ana_lock);
615 
616 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
617 		struct nvme_ana_group_desc *desc = base + offset;
618 		u32 nr_nsids;
619 		size_t nsid_buf_size;
620 
621 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
622 			return -EINVAL;
623 
624 		nr_nsids = le32_to_cpu(desc->nnsids);
625 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
626 
627 		if (WARN_ON_ONCE(desc->grpid == 0))
628 			return -EINVAL;
629 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
630 			return -EINVAL;
631 		if (WARN_ON_ONCE(desc->state == 0))
632 			return -EINVAL;
633 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
634 			return -EINVAL;
635 
636 		offset += sizeof(*desc);
637 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
638 			return -EINVAL;
639 
640 		error = cb(ctrl, desc, data);
641 		if (error)
642 			return error;
643 
644 		offset += nsid_buf_size;
645 	}
646 
647 	return 0;
648 }
649 
650 static inline bool nvme_state_is_live(enum nvme_ana_state state)
651 {
652 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
653 }
654 
655 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
656 		struct nvme_ns *ns)
657 {
658 	ns->ana_grpid = le32_to_cpu(desc->grpid);
659 	ns->ana_state = desc->state;
660 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
661 	/*
662 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
663 	 * and in turn to this path device.  However we cannot accept this I/O
664 	 * if the controller is not live.  This may deadlock if called from
665 	 * nvme_mpath_init_identify() and the ctrl will never complete
666 	 * initialization, preventing I/O from completing.  For this case we
667 	 * will reprocess the ANA log page in nvme_mpath_update() once the
668 	 * controller is ready.
669 	 */
670 	if (nvme_state_is_live(ns->ana_state) &&
671 	    ns->ctrl->state == NVME_CTRL_LIVE)
672 		nvme_mpath_set_live(ns);
673 }
674 
675 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
676 		struct nvme_ana_group_desc *desc, void *data)
677 {
678 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
679 	unsigned *nr_change_groups = data;
680 	struct nvme_ns *ns;
681 
682 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
683 			le32_to_cpu(desc->grpid),
684 			nvme_ana_state_names[desc->state]);
685 
686 	if (desc->state == NVME_ANA_CHANGE)
687 		(*nr_change_groups)++;
688 
689 	if (!nr_nsids)
690 		return 0;
691 
692 	down_read(&ctrl->namespaces_rwsem);
693 	list_for_each_entry(ns, &ctrl->namespaces, list) {
694 		unsigned nsid;
695 again:
696 		nsid = le32_to_cpu(desc->nsids[n]);
697 		if (ns->head->ns_id < nsid)
698 			continue;
699 		if (ns->head->ns_id == nsid)
700 			nvme_update_ns_ana_state(desc, ns);
701 		if (++n == nr_nsids)
702 			break;
703 		if (ns->head->ns_id > nsid)
704 			goto again;
705 	}
706 	up_read(&ctrl->namespaces_rwsem);
707 	return 0;
708 }
709 
710 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
711 {
712 	u32 nr_change_groups = 0;
713 	int error;
714 
715 	mutex_lock(&ctrl->ana_lock);
716 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
717 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
718 	if (error) {
719 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
720 		goto out_unlock;
721 	}
722 
723 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
724 			nvme_update_ana_state);
725 	if (error)
726 		goto out_unlock;
727 
728 	/*
729 	 * In theory we should have an ANATT timer per group as they might enter
730 	 * the change state at different times.  But that is a lot of overhead
731 	 * just to protect against a target that keeps entering new changes
732 	 * states while never finishing previous ones.  But we'll still
733 	 * eventually time out once all groups are in change state, so this
734 	 * isn't a big deal.
735 	 *
736 	 * We also double the ANATT value to provide some slack for transports
737 	 * or AEN processing overhead.
738 	 */
739 	if (nr_change_groups)
740 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
741 	else
742 		del_timer_sync(&ctrl->anatt_timer);
743 out_unlock:
744 	mutex_unlock(&ctrl->ana_lock);
745 	return error;
746 }
747 
748 static void nvme_ana_work(struct work_struct *work)
749 {
750 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
751 
752 	if (ctrl->state != NVME_CTRL_LIVE)
753 		return;
754 
755 	nvme_read_ana_log(ctrl);
756 }
757 
758 void nvme_mpath_update(struct nvme_ctrl *ctrl)
759 {
760 	u32 nr_change_groups = 0;
761 
762 	if (!ctrl->ana_log_buf)
763 		return;
764 
765 	mutex_lock(&ctrl->ana_lock);
766 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
767 	mutex_unlock(&ctrl->ana_lock);
768 }
769 
770 static void nvme_anatt_timeout(struct timer_list *t)
771 {
772 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
773 
774 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
775 	nvme_reset_ctrl(ctrl);
776 }
777 
778 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
779 {
780 	if (!nvme_ctrl_use_ana(ctrl))
781 		return;
782 	del_timer_sync(&ctrl->anatt_timer);
783 	cancel_work_sync(&ctrl->ana_work);
784 }
785 
786 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
787 	struct device_attribute subsys_attr_##_name =	\
788 		__ATTR(_name, _mode, _show, _store)
789 
790 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
791 		struct device_attribute *attr, char *buf)
792 {
793 	struct nvme_subsystem *subsys =
794 		container_of(dev, struct nvme_subsystem, dev);
795 
796 	return sysfs_emit(buf, "%s\n",
797 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
798 }
799 
800 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
801 		struct device_attribute *attr, const char *buf, size_t count)
802 {
803 	struct nvme_subsystem *subsys =
804 		container_of(dev, struct nvme_subsystem, dev);
805 	int i;
806 
807 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
808 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
809 			WRITE_ONCE(subsys->iopolicy, i);
810 			return count;
811 		}
812 	}
813 
814 	return -EINVAL;
815 }
816 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
817 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
818 
819 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
820 		char *buf)
821 {
822 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
823 }
824 DEVICE_ATTR_RO(ana_grpid);
825 
826 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
827 		char *buf)
828 {
829 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
830 
831 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
832 }
833 DEVICE_ATTR_RO(ana_state);
834 
835 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
836 		struct nvme_ana_group_desc *desc, void *data)
837 {
838 	struct nvme_ana_group_desc *dst = data;
839 
840 	if (desc->grpid != dst->grpid)
841 		return 0;
842 
843 	*dst = *desc;
844 	return -ENXIO; /* just break out of the loop */
845 }
846 
847 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
848 {
849 	if (nvme_ctrl_use_ana(ns->ctrl)) {
850 		struct nvme_ana_group_desc desc = {
851 			.grpid = anagrpid,
852 			.state = 0,
853 		};
854 
855 		mutex_lock(&ns->ctrl->ana_lock);
856 		ns->ana_grpid = le32_to_cpu(anagrpid);
857 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
858 		mutex_unlock(&ns->ctrl->ana_lock);
859 		if (desc.state) {
860 			/* found the group desc: update */
861 			nvme_update_ns_ana_state(&desc, ns);
862 		} else {
863 			/* group desc not found: trigger a re-read */
864 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
865 			queue_work(nvme_wq, &ns->ctrl->ana_work);
866 		}
867 	} else {
868 		ns->ana_state = NVME_ANA_OPTIMIZED;
869 		nvme_mpath_set_live(ns);
870 	}
871 
872 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
873 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
874 				   ns->head->disk->queue);
875 #ifdef CONFIG_BLK_DEV_ZONED
876 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
877 		ns->head->disk->nr_zones = ns->disk->nr_zones;
878 #endif
879 }
880 
881 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
882 {
883 	if (!head->disk)
884 		return;
885 	kblockd_schedule_work(&head->requeue_work);
886 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
887 		nvme_cdev_del(&head->cdev, &head->cdev_device);
888 		del_gendisk(head->disk);
889 	}
890 }
891 
892 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
893 {
894 	if (!head->disk)
895 		return;
896 	/* make sure all pending bios are cleaned up */
897 	kblockd_schedule_work(&head->requeue_work);
898 	flush_work(&head->requeue_work);
899 	put_disk(head->disk);
900 }
901 
902 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
903 {
904 	mutex_init(&ctrl->ana_lock);
905 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
906 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
907 }
908 
909 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
910 {
911 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
912 	size_t ana_log_size;
913 	int error = 0;
914 
915 	/* check if multipath is enabled and we have the capability */
916 	if (!multipath || !ctrl->subsys ||
917 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
918 		return 0;
919 
920 	if (!ctrl->max_namespaces ||
921 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
922 		dev_err(ctrl->device,
923 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
924 		return -EINVAL;
925 	}
926 
927 	ctrl->anacap = id->anacap;
928 	ctrl->anatt = id->anatt;
929 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
930 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
931 
932 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
933 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
934 		ctrl->max_namespaces * sizeof(__le32);
935 	if (ana_log_size > max_transfer_size) {
936 		dev_err(ctrl->device,
937 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
938 			ana_log_size, max_transfer_size);
939 		dev_err(ctrl->device, "disabling ANA support.\n");
940 		goto out_uninit;
941 	}
942 	if (ana_log_size > ctrl->ana_log_size) {
943 		nvme_mpath_stop(ctrl);
944 		nvme_mpath_uninit(ctrl);
945 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
946 		if (!ctrl->ana_log_buf)
947 			return -ENOMEM;
948 	}
949 	ctrl->ana_log_size = ana_log_size;
950 	error = nvme_read_ana_log(ctrl);
951 	if (error)
952 		goto out_uninit;
953 	return 0;
954 
955 out_uninit:
956 	nvme_mpath_uninit(ctrl);
957 	return error;
958 }
959 
960 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
961 {
962 	kvfree(ctrl->ana_log_buf);
963 	ctrl->ana_log_buf = NULL;
964 	ctrl->ana_log_size = 0;
965 }
966