xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 36926a7d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 };
21 
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23 
24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 	if (!val)
27 		return -EINVAL;
28 	if (!strncmp(val, "numa", 4))
29 		iopolicy = NVME_IOPOLICY_NUMA;
30 	else if (!strncmp(val, "round-robin", 11))
31 		iopolicy = NVME_IOPOLICY_RR;
32 	else
33 		return -EINVAL;
34 
35 	return 0;
36 }
37 
38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42 
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 	&iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 	"Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47 
48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 	subsys->iopolicy = iopolicy;
51 }
52 
53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 	struct nvme_ns_head *h;
56 
57 	lockdep_assert_held(&subsys->lock);
58 	list_for_each_entry(h, &subsys->nsheads, entry)
59 		if (h->disk)
60 			blk_mq_unfreeze_queue(h->disk->queue);
61 }
62 
63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 	struct nvme_ns_head *h;
66 
67 	lockdep_assert_held(&subsys->lock);
68 	list_for_each_entry(h, &subsys->nsheads, entry)
69 		if (h->disk)
70 			blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72 
73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 	struct nvme_ns_head *h;
76 
77 	lockdep_assert_held(&subsys->lock);
78 	list_for_each_entry(h, &subsys->nsheads, entry)
79 		if (h->disk)
80 			blk_freeze_queue_start(h->disk->queue);
81 }
82 
83 void nvme_failover_req(struct request *req)
84 {
85 	struct nvme_ns *ns = req->q->queuedata;
86 	u16 status = nvme_req(req)->status & 0x7ff;
87 	unsigned long flags;
88 	struct bio *bio;
89 
90 	nvme_mpath_clear_current_path(ns);
91 
92 	/*
93 	 * If we got back an ANA error, we know the controller is alive but not
94 	 * ready to serve this namespace.  Kick of a re-read of the ANA
95 	 * information page, and just try any other available path for now.
96 	 */
97 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 		queue_work(nvme_wq, &ns->ctrl->ana_work);
100 	}
101 
102 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 	for (bio = req->bio; bio; bio = bio->bi_next) {
104 		bio_set_dev(bio, ns->head->disk->part0);
105 		if (bio->bi_opf & REQ_POLLED) {
106 			bio->bi_opf &= ~REQ_POLLED;
107 			bio->bi_cookie = BLK_QC_T_NONE;
108 		}
109 	}
110 	blk_steal_bios(&ns->head->requeue_list, req);
111 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
112 
113 	blk_mq_end_request(req, 0);
114 	kblockd_schedule_work(&ns->head->requeue_work);
115 }
116 
117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
118 {
119 	struct nvme_ns *ns;
120 
121 	down_read(&ctrl->namespaces_rwsem);
122 	list_for_each_entry(ns, &ctrl->namespaces, list) {
123 		if (!ns->head->disk)
124 			continue;
125 		kblockd_schedule_work(&ns->head->requeue_work);
126 		if (ctrl->state == NVME_CTRL_LIVE)
127 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
128 	}
129 	up_read(&ctrl->namespaces_rwsem);
130 }
131 
132 static const char *nvme_ana_state_names[] = {
133 	[0]				= "invalid state",
134 	[NVME_ANA_OPTIMIZED]		= "optimized",
135 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
136 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
137 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
138 	[NVME_ANA_CHANGE]		= "change",
139 };
140 
141 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
142 {
143 	struct nvme_ns_head *head = ns->head;
144 	bool changed = false;
145 	int node;
146 
147 	if (!head)
148 		goto out;
149 
150 	for_each_node(node) {
151 		if (ns == rcu_access_pointer(head->current_path[node])) {
152 			rcu_assign_pointer(head->current_path[node], NULL);
153 			changed = true;
154 		}
155 	}
156 out:
157 	return changed;
158 }
159 
160 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
161 {
162 	struct nvme_ns *ns;
163 
164 	down_read(&ctrl->namespaces_rwsem);
165 	list_for_each_entry(ns, &ctrl->namespaces, list) {
166 		nvme_mpath_clear_current_path(ns);
167 		kblockd_schedule_work(&ns->head->requeue_work);
168 	}
169 	up_read(&ctrl->namespaces_rwsem);
170 }
171 
172 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
173 {
174 	struct nvme_ns_head *head = ns->head;
175 	sector_t capacity = get_capacity(head->disk);
176 	int node;
177 
178 	list_for_each_entry_rcu(ns, &head->list, siblings) {
179 		if (capacity != get_capacity(ns->disk))
180 			clear_bit(NVME_NS_READY, &ns->flags);
181 	}
182 
183 	for_each_node(node)
184 		rcu_assign_pointer(head->current_path[node], NULL);
185 }
186 
187 static bool nvme_path_is_disabled(struct nvme_ns *ns)
188 {
189 	/*
190 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
191 	 * still be able to complete assuming that the controller is connected.
192 	 * Otherwise it will fail immediately and return to the requeue list.
193 	 */
194 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
195 	    ns->ctrl->state != NVME_CTRL_DELETING)
196 		return true;
197 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
198 	    !test_bit(NVME_NS_READY, &ns->flags))
199 		return true;
200 	return false;
201 }
202 
203 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
204 {
205 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
206 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
207 
208 	list_for_each_entry_rcu(ns, &head->list, siblings) {
209 		if (nvme_path_is_disabled(ns))
210 			continue;
211 
212 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
213 			distance = node_distance(node, ns->ctrl->numa_node);
214 		else
215 			distance = LOCAL_DISTANCE;
216 
217 		switch (ns->ana_state) {
218 		case NVME_ANA_OPTIMIZED:
219 			if (distance < found_distance) {
220 				found_distance = distance;
221 				found = ns;
222 			}
223 			break;
224 		case NVME_ANA_NONOPTIMIZED:
225 			if (distance < fallback_distance) {
226 				fallback_distance = distance;
227 				fallback = ns;
228 			}
229 			break;
230 		default:
231 			break;
232 		}
233 	}
234 
235 	if (!found)
236 		found = fallback;
237 	if (found)
238 		rcu_assign_pointer(head->current_path[node], found);
239 	return found;
240 }
241 
242 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
243 		struct nvme_ns *ns)
244 {
245 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
246 			siblings);
247 	if (ns)
248 		return ns;
249 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
250 }
251 
252 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
253 		int node, struct nvme_ns *old)
254 {
255 	struct nvme_ns *ns, *found = NULL;
256 
257 	if (list_is_singular(&head->list)) {
258 		if (nvme_path_is_disabled(old))
259 			return NULL;
260 		return old;
261 	}
262 
263 	for (ns = nvme_next_ns(head, old);
264 	     ns && ns != old;
265 	     ns = nvme_next_ns(head, ns)) {
266 		if (nvme_path_is_disabled(ns))
267 			continue;
268 
269 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
270 			found = ns;
271 			goto out;
272 		}
273 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
274 			found = ns;
275 	}
276 
277 	/*
278 	 * The loop above skips the current path for round-robin semantics.
279 	 * Fall back to the current path if either:
280 	 *  - no other optimized path found and current is optimized,
281 	 *  - no other usable path found and current is usable.
282 	 */
283 	if (!nvme_path_is_disabled(old) &&
284 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
285 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
286 		return old;
287 
288 	if (!found)
289 		return NULL;
290 out:
291 	rcu_assign_pointer(head->current_path[node], found);
292 	return found;
293 }
294 
295 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
296 {
297 	return ns->ctrl->state == NVME_CTRL_LIVE &&
298 		ns->ana_state == NVME_ANA_OPTIMIZED;
299 }
300 
301 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
302 {
303 	int node = numa_node_id();
304 	struct nvme_ns *ns;
305 
306 	ns = srcu_dereference(head->current_path[node], &head->srcu);
307 	if (unlikely(!ns))
308 		return __nvme_find_path(head, node);
309 
310 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
311 		return nvme_round_robin_path(head, node, ns);
312 	if (unlikely(!nvme_path_is_optimized(ns)))
313 		return __nvme_find_path(head, node);
314 	return ns;
315 }
316 
317 static bool nvme_available_path(struct nvme_ns_head *head)
318 {
319 	struct nvme_ns *ns;
320 
321 	list_for_each_entry_rcu(ns, &head->list, siblings) {
322 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
323 			continue;
324 		switch (ns->ctrl->state) {
325 		case NVME_CTRL_LIVE:
326 		case NVME_CTRL_RESETTING:
327 		case NVME_CTRL_CONNECTING:
328 			/* fallthru */
329 			return true;
330 		default:
331 			break;
332 		}
333 	}
334 	return false;
335 }
336 
337 static void nvme_ns_head_submit_bio(struct bio *bio)
338 {
339 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
340 	struct device *dev = disk_to_dev(head->disk);
341 	struct nvme_ns *ns;
342 	int srcu_idx;
343 
344 	/*
345 	 * The namespace might be going away and the bio might be moved to a
346 	 * different queue via blk_steal_bios(), so we need to use the bio_split
347 	 * pool from the original queue to allocate the bvecs from.
348 	 */
349 	bio = bio_split_to_limits(bio);
350 
351 	srcu_idx = srcu_read_lock(&head->srcu);
352 	ns = nvme_find_path(head);
353 	if (likely(ns)) {
354 		bio_set_dev(bio, ns->disk->part0);
355 		bio->bi_opf |= REQ_NVME_MPATH;
356 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
357 				      bio->bi_iter.bi_sector);
358 		submit_bio_noacct(bio);
359 	} else if (nvme_available_path(head)) {
360 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
361 
362 		spin_lock_irq(&head->requeue_lock);
363 		bio_list_add(&head->requeue_list, bio);
364 		spin_unlock_irq(&head->requeue_lock);
365 	} else {
366 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
367 
368 		bio_io_error(bio);
369 	}
370 
371 	srcu_read_unlock(&head->srcu, srcu_idx);
372 }
373 
374 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
375 {
376 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
377 		return -ENXIO;
378 	return 0;
379 }
380 
381 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
382 {
383 	nvme_put_ns_head(disk->private_data);
384 }
385 
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
388 		unsigned int nr_zones, report_zones_cb cb, void *data)
389 {
390 	struct nvme_ns_head *head = disk->private_data;
391 	struct nvme_ns *ns;
392 	int srcu_idx, ret = -EWOULDBLOCK;
393 
394 	srcu_idx = srcu_read_lock(&head->srcu);
395 	ns = nvme_find_path(head);
396 	if (ns)
397 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
398 	srcu_read_unlock(&head->srcu, srcu_idx);
399 	return ret;
400 }
401 #else
402 #define nvme_ns_head_report_zones	NULL
403 #endif /* CONFIG_BLK_DEV_ZONED */
404 
405 const struct block_device_operations nvme_ns_head_ops = {
406 	.owner		= THIS_MODULE,
407 	.submit_bio	= nvme_ns_head_submit_bio,
408 	.open		= nvme_ns_head_open,
409 	.release	= nvme_ns_head_release,
410 	.ioctl		= nvme_ns_head_ioctl,
411 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
412 	.getgeo		= nvme_getgeo,
413 	.report_zones	= nvme_ns_head_report_zones,
414 	.pr_ops		= &nvme_pr_ops,
415 };
416 
417 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
418 {
419 	return container_of(cdev, struct nvme_ns_head, cdev);
420 }
421 
422 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
423 {
424 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
425 		return -ENXIO;
426 	return 0;
427 }
428 
429 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
430 {
431 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
432 	return 0;
433 }
434 
435 static const struct file_operations nvme_ns_head_chr_fops = {
436 	.owner		= THIS_MODULE,
437 	.open		= nvme_ns_head_chr_open,
438 	.release	= nvme_ns_head_chr_release,
439 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
440 	.compat_ioctl	= compat_ptr_ioctl,
441 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
442 	.uring_cmd_iopoll = nvme_ns_head_chr_uring_cmd_iopoll,
443 };
444 
445 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
446 {
447 	int ret;
448 
449 	head->cdev_device.parent = &head->subsys->dev;
450 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
451 			   head->subsys->instance, head->instance);
452 	if (ret)
453 		return ret;
454 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
455 			    &nvme_ns_head_chr_fops, THIS_MODULE);
456 	return ret;
457 }
458 
459 static void nvme_requeue_work(struct work_struct *work)
460 {
461 	struct nvme_ns_head *head =
462 		container_of(work, struct nvme_ns_head, requeue_work);
463 	struct bio *bio, *next;
464 
465 	spin_lock_irq(&head->requeue_lock);
466 	next = bio_list_get(&head->requeue_list);
467 	spin_unlock_irq(&head->requeue_lock);
468 
469 	while ((bio = next) != NULL) {
470 		next = bio->bi_next;
471 		bio->bi_next = NULL;
472 
473 		submit_bio_noacct(bio);
474 	}
475 }
476 
477 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
478 {
479 	bool vwc = false;
480 
481 	mutex_init(&head->lock);
482 	bio_list_init(&head->requeue_list);
483 	spin_lock_init(&head->requeue_lock);
484 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
485 
486 	/*
487 	 * Add a multipath node if the subsystems supports multiple controllers.
488 	 * We also do this for private namespaces as the namespace sharing flag
489 	 * could change after a rescan.
490 	 */
491 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
492 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
493 		return 0;
494 
495 	head->disk = blk_alloc_disk(ctrl->numa_node);
496 	if (!head->disk)
497 		return -ENOMEM;
498 	head->disk->fops = &nvme_ns_head_ops;
499 	head->disk->private_data = head;
500 	sprintf(head->disk->disk_name, "nvme%dn%d",
501 			ctrl->subsys->instance, head->instance);
502 
503 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
504 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
505 	/*
506 	 * This assumes all controllers that refer to a namespace either
507 	 * support poll queues or not.  That is not a strict guarantee,
508 	 * but if the assumption is wrong the effect is only suboptimal
509 	 * performance but not correctness problem.
510 	 */
511 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
512 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
513 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
514 
515 	/* set to a default value of 512 until the disk is validated */
516 	blk_queue_logical_block_size(head->disk->queue, 512);
517 	blk_set_stacking_limits(&head->disk->queue->limits);
518 
519 	/* we need to propagate up the VMC settings */
520 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
521 		vwc = true;
522 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
523 	return 0;
524 }
525 
526 static void nvme_mpath_set_live(struct nvme_ns *ns)
527 {
528 	struct nvme_ns_head *head = ns->head;
529 	int rc;
530 
531 	if (!head->disk)
532 		return;
533 
534 	/*
535 	 * test_and_set_bit() is used because it is protecting against two nvme
536 	 * paths simultaneously calling device_add_disk() on the same namespace
537 	 * head.
538 	 */
539 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
540 		rc = device_add_disk(&head->subsys->dev, head->disk,
541 				     nvme_ns_id_attr_groups);
542 		if (rc) {
543 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
544 			return;
545 		}
546 		nvme_add_ns_head_cdev(head);
547 	}
548 
549 	mutex_lock(&head->lock);
550 	if (nvme_path_is_optimized(ns)) {
551 		int node, srcu_idx;
552 
553 		srcu_idx = srcu_read_lock(&head->srcu);
554 		for_each_node(node)
555 			__nvme_find_path(head, node);
556 		srcu_read_unlock(&head->srcu, srcu_idx);
557 	}
558 	mutex_unlock(&head->lock);
559 
560 	synchronize_srcu(&head->srcu);
561 	kblockd_schedule_work(&head->requeue_work);
562 }
563 
564 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
565 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
566 			void *))
567 {
568 	void *base = ctrl->ana_log_buf;
569 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
570 	int error, i;
571 
572 	lockdep_assert_held(&ctrl->ana_lock);
573 
574 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
575 		struct nvme_ana_group_desc *desc = base + offset;
576 		u32 nr_nsids;
577 		size_t nsid_buf_size;
578 
579 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
580 			return -EINVAL;
581 
582 		nr_nsids = le32_to_cpu(desc->nnsids);
583 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
584 
585 		if (WARN_ON_ONCE(desc->grpid == 0))
586 			return -EINVAL;
587 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
588 			return -EINVAL;
589 		if (WARN_ON_ONCE(desc->state == 0))
590 			return -EINVAL;
591 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
592 			return -EINVAL;
593 
594 		offset += sizeof(*desc);
595 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
596 			return -EINVAL;
597 
598 		error = cb(ctrl, desc, data);
599 		if (error)
600 			return error;
601 
602 		offset += nsid_buf_size;
603 	}
604 
605 	return 0;
606 }
607 
608 static inline bool nvme_state_is_live(enum nvme_ana_state state)
609 {
610 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
611 }
612 
613 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
614 		struct nvme_ns *ns)
615 {
616 	ns->ana_grpid = le32_to_cpu(desc->grpid);
617 	ns->ana_state = desc->state;
618 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
619 	/*
620 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
621 	 * and in turn to this path device.  However we cannot accept this I/O
622 	 * if the controller is not live.  This may deadlock if called from
623 	 * nvme_mpath_init_identify() and the ctrl will never complete
624 	 * initialization, preventing I/O from completing.  For this case we
625 	 * will reprocess the ANA log page in nvme_mpath_update() once the
626 	 * controller is ready.
627 	 */
628 	if (nvme_state_is_live(ns->ana_state) &&
629 	    ns->ctrl->state == NVME_CTRL_LIVE)
630 		nvme_mpath_set_live(ns);
631 }
632 
633 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
634 		struct nvme_ana_group_desc *desc, void *data)
635 {
636 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
637 	unsigned *nr_change_groups = data;
638 	struct nvme_ns *ns;
639 
640 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
641 			le32_to_cpu(desc->grpid),
642 			nvme_ana_state_names[desc->state]);
643 
644 	if (desc->state == NVME_ANA_CHANGE)
645 		(*nr_change_groups)++;
646 
647 	if (!nr_nsids)
648 		return 0;
649 
650 	down_read(&ctrl->namespaces_rwsem);
651 	list_for_each_entry(ns, &ctrl->namespaces, list) {
652 		unsigned nsid;
653 again:
654 		nsid = le32_to_cpu(desc->nsids[n]);
655 		if (ns->head->ns_id < nsid)
656 			continue;
657 		if (ns->head->ns_id == nsid)
658 			nvme_update_ns_ana_state(desc, ns);
659 		if (++n == nr_nsids)
660 			break;
661 		if (ns->head->ns_id > nsid)
662 			goto again;
663 	}
664 	up_read(&ctrl->namespaces_rwsem);
665 	return 0;
666 }
667 
668 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
669 {
670 	u32 nr_change_groups = 0;
671 	int error;
672 
673 	mutex_lock(&ctrl->ana_lock);
674 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
675 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
676 	if (error) {
677 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
678 		goto out_unlock;
679 	}
680 
681 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
682 			nvme_update_ana_state);
683 	if (error)
684 		goto out_unlock;
685 
686 	/*
687 	 * In theory we should have an ANATT timer per group as they might enter
688 	 * the change state at different times.  But that is a lot of overhead
689 	 * just to protect against a target that keeps entering new changes
690 	 * states while never finishing previous ones.  But we'll still
691 	 * eventually time out once all groups are in change state, so this
692 	 * isn't a big deal.
693 	 *
694 	 * We also double the ANATT value to provide some slack for transports
695 	 * or AEN processing overhead.
696 	 */
697 	if (nr_change_groups)
698 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
699 	else
700 		del_timer_sync(&ctrl->anatt_timer);
701 out_unlock:
702 	mutex_unlock(&ctrl->ana_lock);
703 	return error;
704 }
705 
706 static void nvme_ana_work(struct work_struct *work)
707 {
708 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
709 
710 	if (ctrl->state != NVME_CTRL_LIVE)
711 		return;
712 
713 	nvme_read_ana_log(ctrl);
714 }
715 
716 void nvme_mpath_update(struct nvme_ctrl *ctrl)
717 {
718 	u32 nr_change_groups = 0;
719 
720 	if (!ctrl->ana_log_buf)
721 		return;
722 
723 	mutex_lock(&ctrl->ana_lock);
724 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
725 	mutex_unlock(&ctrl->ana_lock);
726 }
727 
728 static void nvme_anatt_timeout(struct timer_list *t)
729 {
730 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
731 
732 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
733 	nvme_reset_ctrl(ctrl);
734 }
735 
736 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
737 {
738 	if (!nvme_ctrl_use_ana(ctrl))
739 		return;
740 	del_timer_sync(&ctrl->anatt_timer);
741 	cancel_work_sync(&ctrl->ana_work);
742 }
743 
744 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
745 	struct device_attribute subsys_attr_##_name =	\
746 		__ATTR(_name, _mode, _show, _store)
747 
748 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
749 		struct device_attribute *attr, char *buf)
750 {
751 	struct nvme_subsystem *subsys =
752 		container_of(dev, struct nvme_subsystem, dev);
753 
754 	return sysfs_emit(buf, "%s\n",
755 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
756 }
757 
758 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
759 		struct device_attribute *attr, const char *buf, size_t count)
760 {
761 	struct nvme_subsystem *subsys =
762 		container_of(dev, struct nvme_subsystem, dev);
763 	int i;
764 
765 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
766 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
767 			WRITE_ONCE(subsys->iopolicy, i);
768 			return count;
769 		}
770 	}
771 
772 	return -EINVAL;
773 }
774 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
775 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
776 
777 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
778 		char *buf)
779 {
780 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
781 }
782 DEVICE_ATTR_RO(ana_grpid);
783 
784 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
785 		char *buf)
786 {
787 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
788 
789 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
790 }
791 DEVICE_ATTR_RO(ana_state);
792 
793 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
794 		struct nvme_ana_group_desc *desc, void *data)
795 {
796 	struct nvme_ana_group_desc *dst = data;
797 
798 	if (desc->grpid != dst->grpid)
799 		return 0;
800 
801 	*dst = *desc;
802 	return -ENXIO; /* just break out of the loop */
803 }
804 
805 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
806 {
807 	if (nvme_ctrl_use_ana(ns->ctrl)) {
808 		struct nvme_ana_group_desc desc = {
809 			.grpid = anagrpid,
810 			.state = 0,
811 		};
812 
813 		mutex_lock(&ns->ctrl->ana_lock);
814 		ns->ana_grpid = le32_to_cpu(anagrpid);
815 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
816 		mutex_unlock(&ns->ctrl->ana_lock);
817 		if (desc.state) {
818 			/* found the group desc: update */
819 			nvme_update_ns_ana_state(&desc, ns);
820 		} else {
821 			/* group desc not found: trigger a re-read */
822 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
823 			queue_work(nvme_wq, &ns->ctrl->ana_work);
824 		}
825 	} else {
826 		ns->ana_state = NVME_ANA_OPTIMIZED;
827 		nvme_mpath_set_live(ns);
828 	}
829 
830 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
831 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
832 				   ns->head->disk->queue);
833 #ifdef CONFIG_BLK_DEV_ZONED
834 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
835 		ns->head->disk->nr_zones = ns->disk->nr_zones;
836 #endif
837 }
838 
839 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
840 {
841 	if (!head->disk)
842 		return;
843 	kblockd_schedule_work(&head->requeue_work);
844 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
845 		nvme_cdev_del(&head->cdev, &head->cdev_device);
846 		del_gendisk(head->disk);
847 	}
848 }
849 
850 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
851 {
852 	if (!head->disk)
853 		return;
854 	blk_mark_disk_dead(head->disk);
855 	/* make sure all pending bios are cleaned up */
856 	kblockd_schedule_work(&head->requeue_work);
857 	flush_work(&head->requeue_work);
858 	put_disk(head->disk);
859 }
860 
861 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
862 {
863 	mutex_init(&ctrl->ana_lock);
864 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
865 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
866 }
867 
868 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
869 {
870 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
871 	size_t ana_log_size;
872 	int error = 0;
873 
874 	/* check if multipath is enabled and we have the capability */
875 	if (!multipath || !ctrl->subsys ||
876 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
877 		return 0;
878 
879 	if (!ctrl->max_namespaces ||
880 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
881 		dev_err(ctrl->device,
882 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
883 		return -EINVAL;
884 	}
885 
886 	ctrl->anacap = id->anacap;
887 	ctrl->anatt = id->anatt;
888 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
889 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
890 
891 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
892 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
893 		ctrl->max_namespaces * sizeof(__le32);
894 	if (ana_log_size > max_transfer_size) {
895 		dev_err(ctrl->device,
896 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
897 			ana_log_size, max_transfer_size);
898 		dev_err(ctrl->device, "disabling ANA support.\n");
899 		goto out_uninit;
900 	}
901 	if (ana_log_size > ctrl->ana_log_size) {
902 		nvme_mpath_stop(ctrl);
903 		nvme_mpath_uninit(ctrl);
904 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
905 		if (!ctrl->ana_log_buf)
906 			return -ENOMEM;
907 	}
908 	ctrl->ana_log_size = ana_log_size;
909 	error = nvme_read_ana_log(ctrl);
910 	if (error)
911 		goto out_uninit;
912 	return 0;
913 
914 out_uninit:
915 	nvme_mpath_uninit(ctrl);
916 	return error;
917 }
918 
919 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
920 {
921 	kvfree(ctrl->ana_log_buf);
922 	ctrl->ana_log_buf = NULL;
923 	ctrl->ana_log_size = 0;
924 }
925