1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <trace/events/block.h> 9 #include "nvme.h" 10 11 static bool multipath = true; 12 module_param(multipath, bool, 0444); 13 MODULE_PARM_DESC(multipath, 14 "turn on native support for multiple controllers per subsystem"); 15 16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 17 { 18 struct nvme_ns_head *h; 19 20 lockdep_assert_held(&subsys->lock); 21 list_for_each_entry(h, &subsys->nsheads, entry) 22 if (h->disk) 23 blk_mq_unfreeze_queue(h->disk->queue); 24 } 25 26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 27 { 28 struct nvme_ns_head *h; 29 30 lockdep_assert_held(&subsys->lock); 31 list_for_each_entry(h, &subsys->nsheads, entry) 32 if (h->disk) 33 blk_mq_freeze_queue_wait(h->disk->queue); 34 } 35 36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 37 { 38 struct nvme_ns_head *h; 39 40 lockdep_assert_held(&subsys->lock); 41 list_for_each_entry(h, &subsys->nsheads, entry) 42 if (h->disk) 43 blk_freeze_queue_start(h->disk->queue); 44 } 45 46 /* 47 * If multipathing is enabled we need to always use the subsystem instance 48 * number for numbering our devices to avoid conflicts between subsystems that 49 * have multiple controllers and thus use the multipath-aware subsystem node 50 * and those that have a single controller and use the controller node 51 * directly. 52 */ 53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 54 struct nvme_ctrl *ctrl, int *flags) 55 { 56 if (!multipath) { 57 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 58 } else if (ns->head->disk) { 59 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 60 ctrl->instance, ns->head->instance); 61 *flags = GENHD_FL_HIDDEN; 62 } else { 63 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 64 ns->head->instance); 65 } 66 } 67 68 bool nvme_failover_req(struct request *req) 69 { 70 struct nvme_ns *ns = req->q->queuedata; 71 u16 status = nvme_req(req)->status; 72 unsigned long flags; 73 74 switch (status & 0x7ff) { 75 case NVME_SC_ANA_TRANSITION: 76 case NVME_SC_ANA_INACCESSIBLE: 77 case NVME_SC_ANA_PERSISTENT_LOSS: 78 /* 79 * If we got back an ANA error we know the controller is alive, 80 * but not ready to serve this namespaces. The spec suggests 81 * we should update our general state here, but due to the fact 82 * that the admin and I/O queues are not serialized that is 83 * fundamentally racy. So instead just clear the current path, 84 * mark the the path as pending and kick of a re-read of the ANA 85 * log page ASAP. 86 */ 87 nvme_mpath_clear_current_path(ns); 88 if (ns->ctrl->ana_log_buf) { 89 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 90 queue_work(nvme_wq, &ns->ctrl->ana_work); 91 } 92 break; 93 case NVME_SC_HOST_PATH_ERROR: 94 case NVME_SC_HOST_ABORTED_CMD: 95 /* 96 * Temporary transport disruption in talking to the controller. 97 * Try to send on a new path. 98 */ 99 nvme_mpath_clear_current_path(ns); 100 break; 101 default: 102 /* This was a non-ANA error so follow the normal error path. */ 103 return false; 104 } 105 106 spin_lock_irqsave(&ns->head->requeue_lock, flags); 107 blk_steal_bios(&ns->head->requeue_list, req); 108 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 109 blk_mq_end_request(req, 0); 110 111 kblockd_schedule_work(&ns->head->requeue_work); 112 return true; 113 } 114 115 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 116 { 117 struct nvme_ns *ns; 118 119 down_read(&ctrl->namespaces_rwsem); 120 list_for_each_entry(ns, &ctrl->namespaces, list) { 121 if (ns->head->disk) 122 kblockd_schedule_work(&ns->head->requeue_work); 123 } 124 up_read(&ctrl->namespaces_rwsem); 125 } 126 127 static const char *nvme_ana_state_names[] = { 128 [0] = "invalid state", 129 [NVME_ANA_OPTIMIZED] = "optimized", 130 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 131 [NVME_ANA_INACCESSIBLE] = "inaccessible", 132 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 133 [NVME_ANA_CHANGE] = "change", 134 }; 135 136 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 137 { 138 struct nvme_ns_head *head = ns->head; 139 bool changed = false; 140 int node; 141 142 if (!head) 143 goto out; 144 145 for_each_node(node) { 146 if (ns == rcu_access_pointer(head->current_path[node])) { 147 rcu_assign_pointer(head->current_path[node], NULL); 148 changed = true; 149 } 150 } 151 out: 152 return changed; 153 } 154 155 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 156 { 157 struct nvme_ns *ns; 158 159 mutex_lock(&ctrl->scan_lock); 160 down_read(&ctrl->namespaces_rwsem); 161 list_for_each_entry(ns, &ctrl->namespaces, list) 162 if (nvme_mpath_clear_current_path(ns)) 163 kblockd_schedule_work(&ns->head->requeue_work); 164 up_read(&ctrl->namespaces_rwsem); 165 mutex_unlock(&ctrl->scan_lock); 166 } 167 168 static bool nvme_path_is_disabled(struct nvme_ns *ns) 169 { 170 /* 171 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 172 * still be able to complete assuming that the controller is connected. 173 * Otherwise it will fail immediately and return to the requeue list. 174 */ 175 if (ns->ctrl->state != NVME_CTRL_LIVE && 176 ns->ctrl->state != NVME_CTRL_DELETING) 177 return true; 178 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 179 test_bit(NVME_NS_REMOVING, &ns->flags)) 180 return true; 181 return false; 182 } 183 184 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 185 { 186 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 187 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 188 189 list_for_each_entry_rcu(ns, &head->list, siblings) { 190 if (nvme_path_is_disabled(ns)) 191 continue; 192 193 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 194 distance = node_distance(node, ns->ctrl->numa_node); 195 else 196 distance = LOCAL_DISTANCE; 197 198 switch (ns->ana_state) { 199 case NVME_ANA_OPTIMIZED: 200 if (distance < found_distance) { 201 found_distance = distance; 202 found = ns; 203 } 204 break; 205 case NVME_ANA_NONOPTIMIZED: 206 if (distance < fallback_distance) { 207 fallback_distance = distance; 208 fallback = ns; 209 } 210 break; 211 default: 212 break; 213 } 214 } 215 216 if (!found) 217 found = fallback; 218 if (found) 219 rcu_assign_pointer(head->current_path[node], found); 220 return found; 221 } 222 223 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 224 struct nvme_ns *ns) 225 { 226 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 227 siblings); 228 if (ns) 229 return ns; 230 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 231 } 232 233 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 234 int node, struct nvme_ns *old) 235 { 236 struct nvme_ns *ns, *found, *fallback = NULL; 237 238 if (list_is_singular(&head->list)) { 239 if (nvme_path_is_disabled(old)) 240 return NULL; 241 return old; 242 } 243 244 for (ns = nvme_next_ns(head, old); 245 ns != old; 246 ns = nvme_next_ns(head, ns)) { 247 if (nvme_path_is_disabled(ns)) 248 continue; 249 250 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 251 found = ns; 252 goto out; 253 } 254 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 255 fallback = ns; 256 } 257 258 /* No optimized path found, re-check the current path */ 259 if (!nvme_path_is_disabled(old) && 260 old->ana_state == NVME_ANA_OPTIMIZED) { 261 found = old; 262 goto out; 263 } 264 if (!fallback) 265 return NULL; 266 found = fallback; 267 out: 268 rcu_assign_pointer(head->current_path[node], found); 269 return found; 270 } 271 272 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 273 { 274 return ns->ctrl->state == NVME_CTRL_LIVE && 275 ns->ana_state == NVME_ANA_OPTIMIZED; 276 } 277 278 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 279 { 280 int node = numa_node_id(); 281 struct nvme_ns *ns; 282 283 ns = srcu_dereference(head->current_path[node], &head->srcu); 284 if (unlikely(!ns)) 285 return __nvme_find_path(head, node); 286 287 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 288 return nvme_round_robin_path(head, node, ns); 289 if (unlikely(!nvme_path_is_optimized(ns))) 290 return __nvme_find_path(head, node); 291 return ns; 292 } 293 294 static bool nvme_available_path(struct nvme_ns_head *head) 295 { 296 struct nvme_ns *ns; 297 298 list_for_each_entry_rcu(ns, &head->list, siblings) { 299 switch (ns->ctrl->state) { 300 case NVME_CTRL_LIVE: 301 case NVME_CTRL_RESETTING: 302 case NVME_CTRL_CONNECTING: 303 /* fallthru */ 304 return true; 305 default: 306 break; 307 } 308 } 309 return false; 310 } 311 312 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio) 313 { 314 struct nvme_ns_head *head = bio->bi_disk->private_data; 315 struct device *dev = disk_to_dev(head->disk); 316 struct nvme_ns *ns; 317 blk_qc_t ret = BLK_QC_T_NONE; 318 int srcu_idx; 319 320 /* 321 * The namespace might be going away and the bio might be moved to a 322 * different queue via blk_steal_bios(), so we need to use the bio_split 323 * pool from the original queue to allocate the bvecs from. 324 */ 325 blk_queue_split(&bio); 326 327 srcu_idx = srcu_read_lock(&head->srcu); 328 ns = nvme_find_path(head); 329 if (likely(ns)) { 330 bio->bi_disk = ns->disk; 331 bio->bi_opf |= REQ_NVME_MPATH; 332 trace_block_bio_remap(bio->bi_disk->queue, bio, 333 disk_devt(ns->head->disk), 334 bio->bi_iter.bi_sector); 335 ret = submit_bio_noacct(bio); 336 } else if (nvme_available_path(head)) { 337 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 338 339 spin_lock_irq(&head->requeue_lock); 340 bio_list_add(&head->requeue_list, bio); 341 spin_unlock_irq(&head->requeue_lock); 342 } else { 343 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 344 345 bio->bi_status = BLK_STS_IOERR; 346 bio_endio(bio); 347 } 348 349 srcu_read_unlock(&head->srcu, srcu_idx); 350 return ret; 351 } 352 353 static void nvme_requeue_work(struct work_struct *work) 354 { 355 struct nvme_ns_head *head = 356 container_of(work, struct nvme_ns_head, requeue_work); 357 struct bio *bio, *next; 358 359 spin_lock_irq(&head->requeue_lock); 360 next = bio_list_get(&head->requeue_list); 361 spin_unlock_irq(&head->requeue_lock); 362 363 while ((bio = next) != NULL) { 364 next = bio->bi_next; 365 bio->bi_next = NULL; 366 367 /* 368 * Reset disk to the mpath node and resubmit to select a new 369 * path. 370 */ 371 bio->bi_disk = head->disk; 372 submit_bio_noacct(bio); 373 } 374 } 375 376 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 377 { 378 struct request_queue *q; 379 bool vwc = false; 380 381 mutex_init(&head->lock); 382 bio_list_init(&head->requeue_list); 383 spin_lock_init(&head->requeue_lock); 384 INIT_WORK(&head->requeue_work, nvme_requeue_work); 385 386 /* 387 * Add a multipath node if the subsystems supports multiple controllers. 388 * We also do this for private namespaces as the namespace sharing data could 389 * change after a rescan. 390 */ 391 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath) 392 return 0; 393 394 q = blk_alloc_queue(ctrl->numa_node); 395 if (!q) 396 goto out; 397 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 398 /* set to a default value for 512 until disk is validated */ 399 blk_queue_logical_block_size(q, 512); 400 blk_set_stacking_limits(&q->limits); 401 402 /* we need to propagate up the VMC settings */ 403 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 404 vwc = true; 405 blk_queue_write_cache(q, vwc, vwc); 406 407 head->disk = alloc_disk(0); 408 if (!head->disk) 409 goto out_cleanup_queue; 410 head->disk->fops = &nvme_ns_head_ops; 411 head->disk->private_data = head; 412 head->disk->queue = q; 413 head->disk->flags = GENHD_FL_EXT_DEVT; 414 sprintf(head->disk->disk_name, "nvme%dn%d", 415 ctrl->subsys->instance, head->instance); 416 return 0; 417 418 out_cleanup_queue: 419 blk_cleanup_queue(q); 420 out: 421 return -ENOMEM; 422 } 423 424 static void nvme_mpath_set_live(struct nvme_ns *ns) 425 { 426 struct nvme_ns_head *head = ns->head; 427 428 if (!head->disk) 429 return; 430 431 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) 432 device_add_disk(&head->subsys->dev, head->disk, 433 nvme_ns_id_attr_groups); 434 435 mutex_lock(&head->lock); 436 if (nvme_path_is_optimized(ns)) { 437 int node, srcu_idx; 438 439 srcu_idx = srcu_read_lock(&head->srcu); 440 for_each_node(node) 441 __nvme_find_path(head, node); 442 srcu_read_unlock(&head->srcu, srcu_idx); 443 } 444 mutex_unlock(&head->lock); 445 446 synchronize_srcu(&head->srcu); 447 kblockd_schedule_work(&head->requeue_work); 448 } 449 450 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 451 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 452 void *)) 453 { 454 void *base = ctrl->ana_log_buf; 455 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 456 int error, i; 457 458 lockdep_assert_held(&ctrl->ana_lock); 459 460 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 461 struct nvme_ana_group_desc *desc = base + offset; 462 u32 nr_nsids; 463 size_t nsid_buf_size; 464 465 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 466 return -EINVAL; 467 468 nr_nsids = le32_to_cpu(desc->nnsids); 469 nsid_buf_size = nr_nsids * sizeof(__le32); 470 471 if (WARN_ON_ONCE(desc->grpid == 0)) 472 return -EINVAL; 473 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 474 return -EINVAL; 475 if (WARN_ON_ONCE(desc->state == 0)) 476 return -EINVAL; 477 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 478 return -EINVAL; 479 480 offset += sizeof(*desc); 481 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 482 return -EINVAL; 483 484 error = cb(ctrl, desc, data); 485 if (error) 486 return error; 487 488 offset += nsid_buf_size; 489 } 490 491 return 0; 492 } 493 494 static inline bool nvme_state_is_live(enum nvme_ana_state state) 495 { 496 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 497 } 498 499 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 500 struct nvme_ns *ns) 501 { 502 ns->ana_grpid = le32_to_cpu(desc->grpid); 503 ns->ana_state = desc->state; 504 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 505 506 if (nvme_state_is_live(ns->ana_state)) 507 nvme_mpath_set_live(ns); 508 } 509 510 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 511 struct nvme_ana_group_desc *desc, void *data) 512 { 513 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 514 unsigned *nr_change_groups = data; 515 struct nvme_ns *ns; 516 517 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 518 le32_to_cpu(desc->grpid), 519 nvme_ana_state_names[desc->state]); 520 521 if (desc->state == NVME_ANA_CHANGE) 522 (*nr_change_groups)++; 523 524 if (!nr_nsids) 525 return 0; 526 527 down_read(&ctrl->namespaces_rwsem); 528 list_for_each_entry(ns, &ctrl->namespaces, list) { 529 unsigned nsid = le32_to_cpu(desc->nsids[n]); 530 531 if (ns->head->ns_id < nsid) 532 continue; 533 if (ns->head->ns_id == nsid) 534 nvme_update_ns_ana_state(desc, ns); 535 if (++n == nr_nsids) 536 break; 537 } 538 up_read(&ctrl->namespaces_rwsem); 539 return 0; 540 } 541 542 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 543 { 544 u32 nr_change_groups = 0; 545 int error; 546 547 mutex_lock(&ctrl->ana_lock); 548 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 549 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 550 if (error) { 551 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 552 goto out_unlock; 553 } 554 555 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 556 nvme_update_ana_state); 557 if (error) 558 goto out_unlock; 559 560 /* 561 * In theory we should have an ANATT timer per group as they might enter 562 * the change state at different times. But that is a lot of overhead 563 * just to protect against a target that keeps entering new changes 564 * states while never finishing previous ones. But we'll still 565 * eventually time out once all groups are in change state, so this 566 * isn't a big deal. 567 * 568 * We also double the ANATT value to provide some slack for transports 569 * or AEN processing overhead. 570 */ 571 if (nr_change_groups) 572 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 573 else 574 del_timer_sync(&ctrl->anatt_timer); 575 out_unlock: 576 mutex_unlock(&ctrl->ana_lock); 577 return error; 578 } 579 580 static void nvme_ana_work(struct work_struct *work) 581 { 582 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 583 584 if (ctrl->state != NVME_CTRL_LIVE) 585 return; 586 587 nvme_read_ana_log(ctrl); 588 } 589 590 static void nvme_anatt_timeout(struct timer_list *t) 591 { 592 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 593 594 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 595 nvme_reset_ctrl(ctrl); 596 } 597 598 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 599 { 600 if (!nvme_ctrl_use_ana(ctrl)) 601 return; 602 del_timer_sync(&ctrl->anatt_timer); 603 cancel_work_sync(&ctrl->ana_work); 604 } 605 606 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 607 struct device_attribute subsys_attr_##_name = \ 608 __ATTR(_name, _mode, _show, _store) 609 610 static const char *nvme_iopolicy_names[] = { 611 [NVME_IOPOLICY_NUMA] = "numa", 612 [NVME_IOPOLICY_RR] = "round-robin", 613 }; 614 615 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 616 struct device_attribute *attr, char *buf) 617 { 618 struct nvme_subsystem *subsys = 619 container_of(dev, struct nvme_subsystem, dev); 620 621 return sprintf(buf, "%s\n", 622 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 623 } 624 625 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 626 struct device_attribute *attr, const char *buf, size_t count) 627 { 628 struct nvme_subsystem *subsys = 629 container_of(dev, struct nvme_subsystem, dev); 630 int i; 631 632 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 633 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 634 WRITE_ONCE(subsys->iopolicy, i); 635 return count; 636 } 637 } 638 639 return -EINVAL; 640 } 641 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 642 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 643 644 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 645 char *buf) 646 { 647 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 648 } 649 DEVICE_ATTR_RO(ana_grpid); 650 651 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 652 char *buf) 653 { 654 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 655 656 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 657 } 658 DEVICE_ATTR_RO(ana_state); 659 660 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 661 struct nvme_ana_group_desc *desc, void *data) 662 { 663 struct nvme_ana_group_desc *dst = data; 664 665 if (desc->grpid != dst->grpid) 666 return 0; 667 668 *dst = *desc; 669 return -ENXIO; /* just break out of the loop */ 670 } 671 672 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 673 { 674 if (nvme_ctrl_use_ana(ns->ctrl)) { 675 struct nvme_ana_group_desc desc = { 676 .grpid = id->anagrpid, 677 .state = 0, 678 }; 679 680 mutex_lock(&ns->ctrl->ana_lock); 681 ns->ana_grpid = le32_to_cpu(id->anagrpid); 682 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 683 mutex_unlock(&ns->ctrl->ana_lock); 684 if (desc.state) { 685 /* found the group desc: update */ 686 nvme_update_ns_ana_state(&desc, ns); 687 } 688 } else { 689 ns->ana_state = NVME_ANA_OPTIMIZED; 690 nvme_mpath_set_live(ns); 691 } 692 693 if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) { 694 struct gendisk *disk = ns->head->disk; 695 696 if (disk) 697 disk->queue->backing_dev_info->capabilities |= 698 BDI_CAP_STABLE_WRITES; 699 } 700 } 701 702 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 703 { 704 if (!head->disk) 705 return; 706 if (head->disk->flags & GENHD_FL_UP) 707 del_gendisk(head->disk); 708 blk_set_queue_dying(head->disk->queue); 709 /* make sure all pending bios are cleaned up */ 710 kblockd_schedule_work(&head->requeue_work); 711 flush_work(&head->requeue_work); 712 blk_cleanup_queue(head->disk->queue); 713 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 714 /* 715 * if device_add_disk wasn't called, prevent 716 * disk release to put a bogus reference on the 717 * request queue 718 */ 719 head->disk->queue = NULL; 720 } 721 put_disk(head->disk); 722 } 723 724 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 725 { 726 int error; 727 728 /* check if multipath is enabled and we have the capability */ 729 if (!multipath || !ctrl->subsys || 730 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 731 return 0; 732 733 ctrl->anacap = id->anacap; 734 ctrl->anatt = id->anatt; 735 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 736 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 737 738 mutex_init(&ctrl->ana_lock); 739 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 740 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 741 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 742 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 743 744 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 745 dev_err(ctrl->device, 746 "ANA log page size (%zd) larger than MDTS (%d).\n", 747 ctrl->ana_log_size, 748 ctrl->max_hw_sectors << SECTOR_SHIFT); 749 dev_err(ctrl->device, "disabling ANA support.\n"); 750 return 0; 751 } 752 753 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 754 kfree(ctrl->ana_log_buf); 755 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 756 if (!ctrl->ana_log_buf) { 757 error = -ENOMEM; 758 goto out; 759 } 760 761 error = nvme_read_ana_log(ctrl); 762 if (error) 763 goto out_free_ana_log_buf; 764 return 0; 765 out_free_ana_log_buf: 766 kfree(ctrl->ana_log_buf); 767 ctrl->ana_log_buf = NULL; 768 out: 769 return error; 770 } 771 772 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 773 { 774 kfree(ctrl->ana_log_buf); 775 ctrl->ana_log_buf = NULL; 776 } 777 778