xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision 23966841)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9 
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13 	"turn on native support for multiple controllers per subsystem");
14 
15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
16 {
17 	return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3));
18 }
19 
20 /*
21  * If multipathing is enabled we need to always use the subsystem instance
22  * number for numbering our devices to avoid conflicts between subsystems that
23  * have multiple controllers and thus use the multipath-aware subsystem node
24  * and those that have a single controller and use the controller node
25  * directly.
26  */
27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
28 			struct nvme_ctrl *ctrl, int *flags)
29 {
30 	if (!multipath) {
31 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
32 	} else if (ns->head->disk) {
33 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
34 				ctrl->instance, ns->head->instance);
35 		*flags = GENHD_FL_HIDDEN;
36 	} else {
37 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
38 				ns->head->instance);
39 	}
40 }
41 
42 void nvme_failover_req(struct request *req)
43 {
44 	struct nvme_ns *ns = req->q->queuedata;
45 	u16 status = nvme_req(req)->status;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
49 	blk_steal_bios(&ns->head->requeue_list, req);
50 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
51 	blk_mq_end_request(req, 0);
52 
53 	switch (status & 0x7ff) {
54 	case NVME_SC_ANA_TRANSITION:
55 	case NVME_SC_ANA_INACCESSIBLE:
56 	case NVME_SC_ANA_PERSISTENT_LOSS:
57 		/*
58 		 * If we got back an ANA error we know the controller is alive,
59 		 * but not ready to serve this namespaces.  The spec suggests
60 		 * we should update our general state here, but due to the fact
61 		 * that the admin and I/O queues are not serialized that is
62 		 * fundamentally racy.  So instead just clear the current path,
63 		 * mark the the path as pending and kick of a re-read of the ANA
64 		 * log page ASAP.
65 		 */
66 		nvme_mpath_clear_current_path(ns);
67 		if (ns->ctrl->ana_log_buf) {
68 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
69 			queue_work(nvme_wq, &ns->ctrl->ana_work);
70 		}
71 		break;
72 	case NVME_SC_HOST_PATH_ERROR:
73 		/*
74 		 * Temporary transport disruption in talking to the controller.
75 		 * Try to send on a new path.
76 		 */
77 		nvme_mpath_clear_current_path(ns);
78 		break;
79 	default:
80 		/*
81 		 * Reset the controller for any non-ANA error as we don't know
82 		 * what caused the error.
83 		 */
84 		nvme_reset_ctrl(ns->ctrl);
85 		break;
86 	}
87 
88 	kblockd_schedule_work(&ns->head->requeue_work);
89 }
90 
91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
92 {
93 	struct nvme_ns *ns;
94 
95 	down_read(&ctrl->namespaces_rwsem);
96 	list_for_each_entry(ns, &ctrl->namespaces, list) {
97 		if (ns->head->disk)
98 			kblockd_schedule_work(&ns->head->requeue_work);
99 	}
100 	up_read(&ctrl->namespaces_rwsem);
101 }
102 
103 static const char *nvme_ana_state_names[] = {
104 	[0]				= "invalid state",
105 	[NVME_ANA_OPTIMIZED]		= "optimized",
106 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
107 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
108 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
109 	[NVME_ANA_CHANGE]		= "change",
110 };
111 
112 void nvme_mpath_clear_current_path(struct nvme_ns *ns)
113 {
114 	struct nvme_ns_head *head = ns->head;
115 	int node;
116 
117 	if (!head)
118 		return;
119 
120 	for_each_node(node) {
121 		if (ns == rcu_access_pointer(head->current_path[node]))
122 			rcu_assign_pointer(head->current_path[node], NULL);
123 	}
124 }
125 
126 static bool nvme_path_is_disabled(struct nvme_ns *ns)
127 {
128 	return ns->ctrl->state != NVME_CTRL_LIVE ||
129 		test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
130 		test_bit(NVME_NS_REMOVING, &ns->flags);
131 }
132 
133 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
134 {
135 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
136 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
137 
138 	list_for_each_entry_rcu(ns, &head->list, siblings) {
139 		if (nvme_path_is_disabled(ns))
140 			continue;
141 
142 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
143 			distance = node_distance(node, ns->ctrl->numa_node);
144 		else
145 			distance = LOCAL_DISTANCE;
146 
147 		switch (ns->ana_state) {
148 		case NVME_ANA_OPTIMIZED:
149 			if (distance < found_distance) {
150 				found_distance = distance;
151 				found = ns;
152 			}
153 			break;
154 		case NVME_ANA_NONOPTIMIZED:
155 			if (distance < fallback_distance) {
156 				fallback_distance = distance;
157 				fallback = ns;
158 			}
159 			break;
160 		default:
161 			break;
162 		}
163 	}
164 
165 	if (!found)
166 		found = fallback;
167 	if (found)
168 		rcu_assign_pointer(head->current_path[node], found);
169 	return found;
170 }
171 
172 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
173 		struct nvme_ns *ns)
174 {
175 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
176 			siblings);
177 	if (ns)
178 		return ns;
179 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
180 }
181 
182 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
183 		int node, struct nvme_ns *old)
184 {
185 	struct nvme_ns *ns, *found, *fallback = NULL;
186 
187 	if (list_is_singular(&head->list)) {
188 		if (nvme_path_is_disabled(old))
189 			return NULL;
190 		return old;
191 	}
192 
193 	for (ns = nvme_next_ns(head, old);
194 	     ns != old;
195 	     ns = nvme_next_ns(head, ns)) {
196 		if (nvme_path_is_disabled(ns))
197 			continue;
198 
199 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
200 			found = ns;
201 			goto out;
202 		}
203 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
204 			fallback = ns;
205 	}
206 
207 	if (!fallback)
208 		return NULL;
209 	found = fallback;
210 out:
211 	rcu_assign_pointer(head->current_path[node], found);
212 	return found;
213 }
214 
215 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
216 {
217 	return ns->ctrl->state == NVME_CTRL_LIVE &&
218 		ns->ana_state == NVME_ANA_OPTIMIZED;
219 }
220 
221 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
222 {
223 	int node = numa_node_id();
224 	struct nvme_ns *ns;
225 
226 	ns = srcu_dereference(head->current_path[node], &head->srcu);
227 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
228 		ns = nvme_round_robin_path(head, node, ns);
229 	if (unlikely(!ns || !nvme_path_is_optimized(ns)))
230 		ns = __nvme_find_path(head, node);
231 	return ns;
232 }
233 
234 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
235 		struct bio *bio)
236 {
237 	struct nvme_ns_head *head = q->queuedata;
238 	struct device *dev = disk_to_dev(head->disk);
239 	struct nvme_ns *ns;
240 	blk_qc_t ret = BLK_QC_T_NONE;
241 	int srcu_idx;
242 
243 	/*
244 	 * The namespace might be going away and the bio might
245 	 * be moved to a different queue via blk_steal_bios(),
246 	 * so we need to use the bio_split pool from the original
247 	 * queue to allocate the bvecs from.
248 	 */
249 	blk_queue_split(q, &bio);
250 
251 	srcu_idx = srcu_read_lock(&head->srcu);
252 	ns = nvme_find_path(head);
253 	if (likely(ns)) {
254 		bio->bi_disk = ns->disk;
255 		bio->bi_opf |= REQ_NVME_MPATH;
256 		trace_block_bio_remap(bio->bi_disk->queue, bio,
257 				      disk_devt(ns->head->disk),
258 				      bio->bi_iter.bi_sector);
259 		ret = direct_make_request(bio);
260 	} else if (!list_empty_careful(&head->list)) {
261 		dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
262 
263 		spin_lock_irq(&head->requeue_lock);
264 		bio_list_add(&head->requeue_list, bio);
265 		spin_unlock_irq(&head->requeue_lock);
266 	} else {
267 		dev_warn_ratelimited(dev, "no path - failing I/O\n");
268 
269 		bio->bi_status = BLK_STS_IOERR;
270 		bio_endio(bio);
271 	}
272 
273 	srcu_read_unlock(&head->srcu, srcu_idx);
274 	return ret;
275 }
276 
277 static void nvme_requeue_work(struct work_struct *work)
278 {
279 	struct nvme_ns_head *head =
280 		container_of(work, struct nvme_ns_head, requeue_work);
281 	struct bio *bio, *next;
282 
283 	spin_lock_irq(&head->requeue_lock);
284 	next = bio_list_get(&head->requeue_list);
285 	spin_unlock_irq(&head->requeue_lock);
286 
287 	while ((bio = next) != NULL) {
288 		next = bio->bi_next;
289 		bio->bi_next = NULL;
290 
291 		/*
292 		 * Reset disk to the mpath node and resubmit to select a new
293 		 * path.
294 		 */
295 		bio->bi_disk = head->disk;
296 		generic_make_request(bio);
297 	}
298 }
299 
300 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
301 {
302 	struct request_queue *q;
303 	bool vwc = false;
304 
305 	mutex_init(&head->lock);
306 	bio_list_init(&head->requeue_list);
307 	spin_lock_init(&head->requeue_lock);
308 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
309 
310 	/*
311 	 * Add a multipath node if the subsystems supports multiple controllers.
312 	 * We also do this for private namespaces as the namespace sharing data could
313 	 * change after a rescan.
314 	 */
315 	if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
316 		return 0;
317 
318 	q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
319 	if (!q)
320 		goto out;
321 	q->queuedata = head;
322 	blk_queue_make_request(q, nvme_ns_head_make_request);
323 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
324 	/* set to a default value for 512 until disk is validated */
325 	blk_queue_logical_block_size(q, 512);
326 	blk_set_stacking_limits(&q->limits);
327 
328 	/* we need to propagate up the VMC settings */
329 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
330 		vwc = true;
331 	blk_queue_write_cache(q, vwc, vwc);
332 
333 	head->disk = alloc_disk(0);
334 	if (!head->disk)
335 		goto out_cleanup_queue;
336 	head->disk->fops = &nvme_ns_head_ops;
337 	head->disk->private_data = head;
338 	head->disk->queue = q;
339 	head->disk->flags = GENHD_FL_EXT_DEVT;
340 	sprintf(head->disk->disk_name, "nvme%dn%d",
341 			ctrl->subsys->instance, head->instance);
342 	return 0;
343 
344 out_cleanup_queue:
345 	blk_cleanup_queue(q);
346 out:
347 	return -ENOMEM;
348 }
349 
350 static void nvme_mpath_set_live(struct nvme_ns *ns)
351 {
352 	struct nvme_ns_head *head = ns->head;
353 
354 	lockdep_assert_held(&ns->head->lock);
355 
356 	if (!head->disk)
357 		return;
358 
359 	if (!(head->disk->flags & GENHD_FL_UP))
360 		device_add_disk(&head->subsys->dev, head->disk,
361 				nvme_ns_id_attr_groups);
362 
363 	if (nvme_path_is_optimized(ns)) {
364 		int node, srcu_idx;
365 
366 		srcu_idx = srcu_read_lock(&head->srcu);
367 		for_each_node(node)
368 			__nvme_find_path(head, node);
369 		srcu_read_unlock(&head->srcu, srcu_idx);
370 	}
371 
372 	kblockd_schedule_work(&ns->head->requeue_work);
373 }
374 
375 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
376 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
377 			void *))
378 {
379 	void *base = ctrl->ana_log_buf;
380 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
381 	int error, i;
382 
383 	lockdep_assert_held(&ctrl->ana_lock);
384 
385 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
386 		struct nvme_ana_group_desc *desc = base + offset;
387 		u32 nr_nsids = le32_to_cpu(desc->nnsids);
388 		size_t nsid_buf_size = nr_nsids * sizeof(__le32);
389 
390 		if (WARN_ON_ONCE(desc->grpid == 0))
391 			return -EINVAL;
392 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
393 			return -EINVAL;
394 		if (WARN_ON_ONCE(desc->state == 0))
395 			return -EINVAL;
396 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
397 			return -EINVAL;
398 
399 		offset += sizeof(*desc);
400 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
401 			return -EINVAL;
402 
403 		error = cb(ctrl, desc, data);
404 		if (error)
405 			return error;
406 
407 		offset += nsid_buf_size;
408 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
409 			return -EINVAL;
410 	}
411 
412 	return 0;
413 }
414 
415 static inline bool nvme_state_is_live(enum nvme_ana_state state)
416 {
417 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
418 }
419 
420 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
421 		struct nvme_ns *ns)
422 {
423 	mutex_lock(&ns->head->lock);
424 	ns->ana_grpid = le32_to_cpu(desc->grpid);
425 	ns->ana_state = desc->state;
426 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
427 
428 	if (nvme_state_is_live(ns->ana_state))
429 		nvme_mpath_set_live(ns);
430 	mutex_unlock(&ns->head->lock);
431 }
432 
433 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
434 		struct nvme_ana_group_desc *desc, void *data)
435 {
436 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
437 	unsigned *nr_change_groups = data;
438 	struct nvme_ns *ns;
439 
440 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
441 			le32_to_cpu(desc->grpid),
442 			nvme_ana_state_names[desc->state]);
443 
444 	if (desc->state == NVME_ANA_CHANGE)
445 		(*nr_change_groups)++;
446 
447 	if (!nr_nsids)
448 		return 0;
449 
450 	down_write(&ctrl->namespaces_rwsem);
451 	list_for_each_entry(ns, &ctrl->namespaces, list) {
452 		if (ns->head->ns_id != le32_to_cpu(desc->nsids[n]))
453 			continue;
454 		nvme_update_ns_ana_state(desc, ns);
455 		if (++n == nr_nsids)
456 			break;
457 	}
458 	up_write(&ctrl->namespaces_rwsem);
459 	WARN_ON_ONCE(n < nr_nsids);
460 	return 0;
461 }
462 
463 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only)
464 {
465 	u32 nr_change_groups = 0;
466 	int error;
467 
468 	mutex_lock(&ctrl->ana_lock);
469 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA,
470 			groups_only ? NVME_ANA_LOG_RGO : 0,
471 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
472 	if (error) {
473 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
474 		goto out_unlock;
475 	}
476 
477 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
478 			nvme_update_ana_state);
479 	if (error)
480 		goto out_unlock;
481 
482 	/*
483 	 * In theory we should have an ANATT timer per group as they might enter
484 	 * the change state at different times.  But that is a lot of overhead
485 	 * just to protect against a target that keeps entering new changes
486 	 * states while never finishing previous ones.  But we'll still
487 	 * eventually time out once all groups are in change state, so this
488 	 * isn't a big deal.
489 	 *
490 	 * We also double the ANATT value to provide some slack for transports
491 	 * or AEN processing overhead.
492 	 */
493 	if (nr_change_groups)
494 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
495 	else
496 		del_timer_sync(&ctrl->anatt_timer);
497 out_unlock:
498 	mutex_unlock(&ctrl->ana_lock);
499 	return error;
500 }
501 
502 static void nvme_ana_work(struct work_struct *work)
503 {
504 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
505 
506 	nvme_read_ana_log(ctrl, false);
507 }
508 
509 static void nvme_anatt_timeout(struct timer_list *t)
510 {
511 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
512 
513 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
514 	nvme_reset_ctrl(ctrl);
515 }
516 
517 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
518 {
519 	if (!nvme_ctrl_use_ana(ctrl))
520 		return;
521 	del_timer_sync(&ctrl->anatt_timer);
522 	cancel_work_sync(&ctrl->ana_work);
523 }
524 
525 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
526 	struct device_attribute subsys_attr_##_name =	\
527 		__ATTR(_name, _mode, _show, _store)
528 
529 static const char *nvme_iopolicy_names[] = {
530 	[NVME_IOPOLICY_NUMA]	= "numa",
531 	[NVME_IOPOLICY_RR]	= "round-robin",
532 };
533 
534 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
535 		struct device_attribute *attr, char *buf)
536 {
537 	struct nvme_subsystem *subsys =
538 		container_of(dev, struct nvme_subsystem, dev);
539 
540 	return sprintf(buf, "%s\n",
541 			nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
542 }
543 
544 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
545 		struct device_attribute *attr, const char *buf, size_t count)
546 {
547 	struct nvme_subsystem *subsys =
548 		container_of(dev, struct nvme_subsystem, dev);
549 	int i;
550 
551 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
552 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
553 			WRITE_ONCE(subsys->iopolicy, i);
554 			return count;
555 		}
556 	}
557 
558 	return -EINVAL;
559 }
560 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
561 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
562 
563 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
564 		char *buf)
565 {
566 	return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
567 }
568 DEVICE_ATTR_RO(ana_grpid);
569 
570 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
571 		char *buf)
572 {
573 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
574 
575 	return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
576 }
577 DEVICE_ATTR_RO(ana_state);
578 
579 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
580 		struct nvme_ana_group_desc *desc, void *data)
581 {
582 	struct nvme_ns *ns = data;
583 
584 	if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
585 		nvme_update_ns_ana_state(desc, ns);
586 		return -ENXIO; /* just break out of the loop */
587 	}
588 
589 	return 0;
590 }
591 
592 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
593 {
594 	if (nvme_ctrl_use_ana(ns->ctrl)) {
595 		mutex_lock(&ns->ctrl->ana_lock);
596 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
597 		nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
598 		mutex_unlock(&ns->ctrl->ana_lock);
599 	} else {
600 		mutex_lock(&ns->head->lock);
601 		ns->ana_state = NVME_ANA_OPTIMIZED;
602 		nvme_mpath_set_live(ns);
603 		mutex_unlock(&ns->head->lock);
604 	}
605 }
606 
607 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
608 {
609 	if (!head->disk)
610 		return;
611 	if (head->disk->flags & GENHD_FL_UP)
612 		del_gendisk(head->disk);
613 	blk_set_queue_dying(head->disk->queue);
614 	/* make sure all pending bios are cleaned up */
615 	kblockd_schedule_work(&head->requeue_work);
616 	flush_work(&head->requeue_work);
617 	blk_cleanup_queue(head->disk->queue);
618 	put_disk(head->disk);
619 }
620 
621 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
622 {
623 	int error;
624 
625 	if (!nvme_ctrl_use_ana(ctrl))
626 		return 0;
627 
628 	ctrl->anacap = id->anacap;
629 	ctrl->anatt = id->anatt;
630 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
631 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
632 
633 	mutex_init(&ctrl->ana_lock);
634 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
635 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
636 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
637 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
638 
639 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
640 		dev_err(ctrl->device,
641 			"ANA log page size (%zd) larger than MDTS (%d).\n",
642 			ctrl->ana_log_size,
643 			ctrl->max_hw_sectors << SECTOR_SHIFT);
644 		dev_err(ctrl->device, "disabling ANA support.\n");
645 		return 0;
646 	}
647 
648 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
649 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
650 	if (!ctrl->ana_log_buf) {
651 		error = -ENOMEM;
652 		goto out;
653 	}
654 
655 	error = nvme_read_ana_log(ctrl, true);
656 	if (error)
657 		goto out_free_ana_log_buf;
658 	return 0;
659 out_free_ana_log_buf:
660 	kfree(ctrl->ana_log_buf);
661 	ctrl->ana_log_buf = NULL;
662 out:
663 	return error;
664 }
665 
666 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
667 {
668 	kfree(ctrl->ana_log_buf);
669 	ctrl->ana_log_buf = NULL;
670 }
671 
672