1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/moduleparam.h> 7 #include <trace/events/block.h> 8 #include "nvme.h" 9 10 static bool multipath = true; 11 module_param(multipath, bool, 0444); 12 MODULE_PARM_DESC(multipath, 13 "turn on native support for multiple controllers per subsystem"); 14 15 inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 16 { 17 return multipath && ctrl->subsys && (ctrl->subsys->cmic & (1 << 3)); 18 } 19 20 /* 21 * If multipathing is enabled we need to always use the subsystem instance 22 * number for numbering our devices to avoid conflicts between subsystems that 23 * have multiple controllers and thus use the multipath-aware subsystem node 24 * and those that have a single controller and use the controller node 25 * directly. 26 */ 27 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 28 struct nvme_ctrl *ctrl, int *flags) 29 { 30 if (!multipath) { 31 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 32 } else if (ns->head->disk) { 33 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 34 ctrl->instance, ns->head->instance); 35 *flags = GENHD_FL_HIDDEN; 36 } else { 37 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 38 ns->head->instance); 39 } 40 } 41 42 void nvme_failover_req(struct request *req) 43 { 44 struct nvme_ns *ns = req->q->queuedata; 45 u16 status = nvme_req(req)->status; 46 unsigned long flags; 47 48 spin_lock_irqsave(&ns->head->requeue_lock, flags); 49 blk_steal_bios(&ns->head->requeue_list, req); 50 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 51 blk_mq_end_request(req, 0); 52 53 switch (status & 0x7ff) { 54 case NVME_SC_ANA_TRANSITION: 55 case NVME_SC_ANA_INACCESSIBLE: 56 case NVME_SC_ANA_PERSISTENT_LOSS: 57 /* 58 * If we got back an ANA error we know the controller is alive, 59 * but not ready to serve this namespaces. The spec suggests 60 * we should update our general state here, but due to the fact 61 * that the admin and I/O queues are not serialized that is 62 * fundamentally racy. So instead just clear the current path, 63 * mark the the path as pending and kick of a re-read of the ANA 64 * log page ASAP. 65 */ 66 nvme_mpath_clear_current_path(ns); 67 if (ns->ctrl->ana_log_buf) { 68 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 69 queue_work(nvme_wq, &ns->ctrl->ana_work); 70 } 71 break; 72 case NVME_SC_HOST_PATH_ERROR: 73 /* 74 * Temporary transport disruption in talking to the controller. 75 * Try to send on a new path. 76 */ 77 nvme_mpath_clear_current_path(ns); 78 break; 79 default: 80 /* 81 * Reset the controller for any non-ANA error as we don't know 82 * what caused the error. 83 */ 84 nvme_reset_ctrl(ns->ctrl); 85 break; 86 } 87 88 kblockd_schedule_work(&ns->head->requeue_work); 89 } 90 91 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 92 { 93 struct nvme_ns *ns; 94 95 down_read(&ctrl->namespaces_rwsem); 96 list_for_each_entry(ns, &ctrl->namespaces, list) { 97 if (ns->head->disk) 98 kblockd_schedule_work(&ns->head->requeue_work); 99 } 100 up_read(&ctrl->namespaces_rwsem); 101 } 102 103 static const char *nvme_ana_state_names[] = { 104 [0] = "invalid state", 105 [NVME_ANA_OPTIMIZED] = "optimized", 106 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 107 [NVME_ANA_INACCESSIBLE] = "inaccessible", 108 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 109 [NVME_ANA_CHANGE] = "change", 110 }; 111 112 void nvme_mpath_clear_current_path(struct nvme_ns *ns) 113 { 114 struct nvme_ns_head *head = ns->head; 115 int node; 116 117 if (!head) 118 return; 119 120 for_each_node(node) { 121 if (ns == rcu_access_pointer(head->current_path[node])) 122 rcu_assign_pointer(head->current_path[node], NULL); 123 } 124 } 125 126 static bool nvme_path_is_disabled(struct nvme_ns *ns) 127 { 128 return ns->ctrl->state != NVME_CTRL_LIVE || 129 test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 130 test_bit(NVME_NS_REMOVING, &ns->flags); 131 } 132 133 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 134 { 135 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 136 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 137 138 list_for_each_entry_rcu(ns, &head->list, siblings) { 139 if (nvme_path_is_disabled(ns)) 140 continue; 141 142 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 143 distance = node_distance(node, ns->ctrl->numa_node); 144 else 145 distance = LOCAL_DISTANCE; 146 147 switch (ns->ana_state) { 148 case NVME_ANA_OPTIMIZED: 149 if (distance < found_distance) { 150 found_distance = distance; 151 found = ns; 152 } 153 break; 154 case NVME_ANA_NONOPTIMIZED: 155 if (distance < fallback_distance) { 156 fallback_distance = distance; 157 fallback = ns; 158 } 159 break; 160 default: 161 break; 162 } 163 } 164 165 if (!found) 166 found = fallback; 167 if (found) 168 rcu_assign_pointer(head->current_path[node], found); 169 return found; 170 } 171 172 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 173 struct nvme_ns *ns) 174 { 175 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 176 siblings); 177 if (ns) 178 return ns; 179 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 180 } 181 182 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 183 int node, struct nvme_ns *old) 184 { 185 struct nvme_ns *ns, *found, *fallback = NULL; 186 187 if (list_is_singular(&head->list)) { 188 if (nvme_path_is_disabled(old)) 189 return NULL; 190 return old; 191 } 192 193 for (ns = nvme_next_ns(head, old); 194 ns != old; 195 ns = nvme_next_ns(head, ns)) { 196 if (nvme_path_is_disabled(ns)) 197 continue; 198 199 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 200 found = ns; 201 goto out; 202 } 203 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 204 fallback = ns; 205 } 206 207 if (!fallback) 208 return NULL; 209 found = fallback; 210 out: 211 rcu_assign_pointer(head->current_path[node], found); 212 return found; 213 } 214 215 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 216 { 217 return ns->ctrl->state == NVME_CTRL_LIVE && 218 ns->ana_state == NVME_ANA_OPTIMIZED; 219 } 220 221 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 222 { 223 int node = numa_node_id(); 224 struct nvme_ns *ns; 225 226 ns = srcu_dereference(head->current_path[node], &head->srcu); 227 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns) 228 ns = nvme_round_robin_path(head, node, ns); 229 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 230 ns = __nvme_find_path(head, node); 231 return ns; 232 } 233 234 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 235 struct bio *bio) 236 { 237 struct nvme_ns_head *head = q->queuedata; 238 struct device *dev = disk_to_dev(head->disk); 239 struct nvme_ns *ns; 240 blk_qc_t ret = BLK_QC_T_NONE; 241 int srcu_idx; 242 243 /* 244 * The namespace might be going away and the bio might 245 * be moved to a different queue via blk_steal_bios(), 246 * so we need to use the bio_split pool from the original 247 * queue to allocate the bvecs from. 248 */ 249 blk_queue_split(q, &bio); 250 251 srcu_idx = srcu_read_lock(&head->srcu); 252 ns = nvme_find_path(head); 253 if (likely(ns)) { 254 bio->bi_disk = ns->disk; 255 bio->bi_opf |= REQ_NVME_MPATH; 256 trace_block_bio_remap(bio->bi_disk->queue, bio, 257 disk_devt(ns->head->disk), 258 bio->bi_iter.bi_sector); 259 ret = direct_make_request(bio); 260 } else if (!list_empty_careful(&head->list)) { 261 dev_warn_ratelimited(dev, "no path available - requeuing I/O\n"); 262 263 spin_lock_irq(&head->requeue_lock); 264 bio_list_add(&head->requeue_list, bio); 265 spin_unlock_irq(&head->requeue_lock); 266 } else { 267 dev_warn_ratelimited(dev, "no path - failing I/O\n"); 268 269 bio->bi_status = BLK_STS_IOERR; 270 bio_endio(bio); 271 } 272 273 srcu_read_unlock(&head->srcu, srcu_idx); 274 return ret; 275 } 276 277 static void nvme_requeue_work(struct work_struct *work) 278 { 279 struct nvme_ns_head *head = 280 container_of(work, struct nvme_ns_head, requeue_work); 281 struct bio *bio, *next; 282 283 spin_lock_irq(&head->requeue_lock); 284 next = bio_list_get(&head->requeue_list); 285 spin_unlock_irq(&head->requeue_lock); 286 287 while ((bio = next) != NULL) { 288 next = bio->bi_next; 289 bio->bi_next = NULL; 290 291 /* 292 * Reset disk to the mpath node and resubmit to select a new 293 * path. 294 */ 295 bio->bi_disk = head->disk; 296 generic_make_request(bio); 297 } 298 } 299 300 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 301 { 302 struct request_queue *q; 303 bool vwc = false; 304 305 mutex_init(&head->lock); 306 bio_list_init(&head->requeue_list); 307 spin_lock_init(&head->requeue_lock); 308 INIT_WORK(&head->requeue_work, nvme_requeue_work); 309 310 /* 311 * Add a multipath node if the subsystems supports multiple controllers. 312 * We also do this for private namespaces as the namespace sharing data could 313 * change after a rescan. 314 */ 315 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 316 return 0; 317 318 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node); 319 if (!q) 320 goto out; 321 q->queuedata = head; 322 blk_queue_make_request(q, nvme_ns_head_make_request); 323 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 324 /* set to a default value for 512 until disk is validated */ 325 blk_queue_logical_block_size(q, 512); 326 blk_set_stacking_limits(&q->limits); 327 328 /* we need to propagate up the VMC settings */ 329 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 330 vwc = true; 331 blk_queue_write_cache(q, vwc, vwc); 332 333 head->disk = alloc_disk(0); 334 if (!head->disk) 335 goto out_cleanup_queue; 336 head->disk->fops = &nvme_ns_head_ops; 337 head->disk->private_data = head; 338 head->disk->queue = q; 339 head->disk->flags = GENHD_FL_EXT_DEVT; 340 sprintf(head->disk->disk_name, "nvme%dn%d", 341 ctrl->subsys->instance, head->instance); 342 return 0; 343 344 out_cleanup_queue: 345 blk_cleanup_queue(q); 346 out: 347 return -ENOMEM; 348 } 349 350 static void nvme_mpath_set_live(struct nvme_ns *ns) 351 { 352 struct nvme_ns_head *head = ns->head; 353 354 lockdep_assert_held(&ns->head->lock); 355 356 if (!head->disk) 357 return; 358 359 if (!(head->disk->flags & GENHD_FL_UP)) 360 device_add_disk(&head->subsys->dev, head->disk, 361 nvme_ns_id_attr_groups); 362 363 if (nvme_path_is_optimized(ns)) { 364 int node, srcu_idx; 365 366 srcu_idx = srcu_read_lock(&head->srcu); 367 for_each_node(node) 368 __nvme_find_path(head, node); 369 srcu_read_unlock(&head->srcu, srcu_idx); 370 } 371 372 kblockd_schedule_work(&ns->head->requeue_work); 373 } 374 375 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 376 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 377 void *)) 378 { 379 void *base = ctrl->ana_log_buf; 380 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 381 int error, i; 382 383 lockdep_assert_held(&ctrl->ana_lock); 384 385 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 386 struct nvme_ana_group_desc *desc = base + offset; 387 u32 nr_nsids = le32_to_cpu(desc->nnsids); 388 size_t nsid_buf_size = nr_nsids * sizeof(__le32); 389 390 if (WARN_ON_ONCE(desc->grpid == 0)) 391 return -EINVAL; 392 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 393 return -EINVAL; 394 if (WARN_ON_ONCE(desc->state == 0)) 395 return -EINVAL; 396 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 397 return -EINVAL; 398 399 offset += sizeof(*desc); 400 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 401 return -EINVAL; 402 403 error = cb(ctrl, desc, data); 404 if (error) 405 return error; 406 407 offset += nsid_buf_size; 408 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 409 return -EINVAL; 410 } 411 412 return 0; 413 } 414 415 static inline bool nvme_state_is_live(enum nvme_ana_state state) 416 { 417 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 418 } 419 420 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 421 struct nvme_ns *ns) 422 { 423 mutex_lock(&ns->head->lock); 424 ns->ana_grpid = le32_to_cpu(desc->grpid); 425 ns->ana_state = desc->state; 426 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 427 428 if (nvme_state_is_live(ns->ana_state)) 429 nvme_mpath_set_live(ns); 430 mutex_unlock(&ns->head->lock); 431 } 432 433 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 434 struct nvme_ana_group_desc *desc, void *data) 435 { 436 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 437 unsigned *nr_change_groups = data; 438 struct nvme_ns *ns; 439 440 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 441 le32_to_cpu(desc->grpid), 442 nvme_ana_state_names[desc->state]); 443 444 if (desc->state == NVME_ANA_CHANGE) 445 (*nr_change_groups)++; 446 447 if (!nr_nsids) 448 return 0; 449 450 down_write(&ctrl->namespaces_rwsem); 451 list_for_each_entry(ns, &ctrl->namespaces, list) { 452 if (ns->head->ns_id != le32_to_cpu(desc->nsids[n])) 453 continue; 454 nvme_update_ns_ana_state(desc, ns); 455 if (++n == nr_nsids) 456 break; 457 } 458 up_write(&ctrl->namespaces_rwsem); 459 WARN_ON_ONCE(n < nr_nsids); 460 return 0; 461 } 462 463 static int nvme_read_ana_log(struct nvme_ctrl *ctrl, bool groups_only) 464 { 465 u32 nr_change_groups = 0; 466 int error; 467 468 mutex_lock(&ctrl->ana_lock); 469 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 470 groups_only ? NVME_ANA_LOG_RGO : 0, 471 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 472 if (error) { 473 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 474 goto out_unlock; 475 } 476 477 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 478 nvme_update_ana_state); 479 if (error) 480 goto out_unlock; 481 482 /* 483 * In theory we should have an ANATT timer per group as they might enter 484 * the change state at different times. But that is a lot of overhead 485 * just to protect against a target that keeps entering new changes 486 * states while never finishing previous ones. But we'll still 487 * eventually time out once all groups are in change state, so this 488 * isn't a big deal. 489 * 490 * We also double the ANATT value to provide some slack for transports 491 * or AEN processing overhead. 492 */ 493 if (nr_change_groups) 494 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 495 else 496 del_timer_sync(&ctrl->anatt_timer); 497 out_unlock: 498 mutex_unlock(&ctrl->ana_lock); 499 return error; 500 } 501 502 static void nvme_ana_work(struct work_struct *work) 503 { 504 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 505 506 nvme_read_ana_log(ctrl, false); 507 } 508 509 static void nvme_anatt_timeout(struct timer_list *t) 510 { 511 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 512 513 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 514 nvme_reset_ctrl(ctrl); 515 } 516 517 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 518 { 519 if (!nvme_ctrl_use_ana(ctrl)) 520 return; 521 del_timer_sync(&ctrl->anatt_timer); 522 cancel_work_sync(&ctrl->ana_work); 523 } 524 525 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 526 struct device_attribute subsys_attr_##_name = \ 527 __ATTR(_name, _mode, _show, _store) 528 529 static const char *nvme_iopolicy_names[] = { 530 [NVME_IOPOLICY_NUMA] = "numa", 531 [NVME_IOPOLICY_RR] = "round-robin", 532 }; 533 534 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 535 struct device_attribute *attr, char *buf) 536 { 537 struct nvme_subsystem *subsys = 538 container_of(dev, struct nvme_subsystem, dev); 539 540 return sprintf(buf, "%s\n", 541 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 542 } 543 544 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 545 struct device_attribute *attr, const char *buf, size_t count) 546 { 547 struct nvme_subsystem *subsys = 548 container_of(dev, struct nvme_subsystem, dev); 549 int i; 550 551 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 552 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 553 WRITE_ONCE(subsys->iopolicy, i); 554 return count; 555 } 556 } 557 558 return -EINVAL; 559 } 560 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 561 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 562 563 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 564 char *buf) 565 { 566 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 567 } 568 DEVICE_ATTR_RO(ana_grpid); 569 570 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 571 char *buf) 572 { 573 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 574 575 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 576 } 577 DEVICE_ATTR_RO(ana_state); 578 579 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 580 struct nvme_ana_group_desc *desc, void *data) 581 { 582 struct nvme_ns *ns = data; 583 584 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 585 nvme_update_ns_ana_state(desc, ns); 586 return -ENXIO; /* just break out of the loop */ 587 } 588 589 return 0; 590 } 591 592 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 593 { 594 if (nvme_ctrl_use_ana(ns->ctrl)) { 595 mutex_lock(&ns->ctrl->ana_lock); 596 ns->ana_grpid = le32_to_cpu(id->anagrpid); 597 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 598 mutex_unlock(&ns->ctrl->ana_lock); 599 } else { 600 mutex_lock(&ns->head->lock); 601 ns->ana_state = NVME_ANA_OPTIMIZED; 602 nvme_mpath_set_live(ns); 603 mutex_unlock(&ns->head->lock); 604 } 605 } 606 607 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 608 { 609 if (!head->disk) 610 return; 611 if (head->disk->flags & GENHD_FL_UP) 612 del_gendisk(head->disk); 613 blk_set_queue_dying(head->disk->queue); 614 /* make sure all pending bios are cleaned up */ 615 kblockd_schedule_work(&head->requeue_work); 616 flush_work(&head->requeue_work); 617 blk_cleanup_queue(head->disk->queue); 618 put_disk(head->disk); 619 } 620 621 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 622 { 623 int error; 624 625 if (!nvme_ctrl_use_ana(ctrl)) 626 return 0; 627 628 ctrl->anacap = id->anacap; 629 ctrl->anatt = id->anatt; 630 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 631 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 632 633 mutex_init(&ctrl->ana_lock); 634 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 635 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 636 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 637 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 638 639 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 640 dev_err(ctrl->device, 641 "ANA log page size (%zd) larger than MDTS (%d).\n", 642 ctrl->ana_log_size, 643 ctrl->max_hw_sectors << SECTOR_SHIFT); 644 dev_err(ctrl->device, "disabling ANA support.\n"); 645 return 0; 646 } 647 648 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 649 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 650 if (!ctrl->ana_log_buf) { 651 error = -ENOMEM; 652 goto out; 653 } 654 655 error = nvme_read_ana_log(ctrl, true); 656 if (error) 657 goto out_free_ana_log_buf; 658 return 0; 659 out_free_ana_log_buf: 660 kfree(ctrl->ana_log_buf); 661 ctrl->ana_log_buf = NULL; 662 out: 663 return error; 664 } 665 666 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 667 { 668 kfree(ctrl->ana_log_buf); 669 ctrl->ana_log_buf = NULL; 670 } 671 672