1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <trace/events/block.h> 9 #include "nvme.h" 10 11 static bool multipath = true; 12 module_param(multipath, bool, 0444); 13 MODULE_PARM_DESC(multipath, 14 "turn on native support for multiple controllers per subsystem"); 15 16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 17 { 18 struct nvme_ns_head *h; 19 20 lockdep_assert_held(&subsys->lock); 21 list_for_each_entry(h, &subsys->nsheads, entry) 22 if (h->disk) 23 blk_mq_unfreeze_queue(h->disk->queue); 24 } 25 26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 27 { 28 struct nvme_ns_head *h; 29 30 lockdep_assert_held(&subsys->lock); 31 list_for_each_entry(h, &subsys->nsheads, entry) 32 if (h->disk) 33 blk_mq_freeze_queue_wait(h->disk->queue); 34 } 35 36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 37 { 38 struct nvme_ns_head *h; 39 40 lockdep_assert_held(&subsys->lock); 41 list_for_each_entry(h, &subsys->nsheads, entry) 42 if (h->disk) 43 blk_freeze_queue_start(h->disk->queue); 44 } 45 46 /* 47 * If multipathing is enabled we need to always use the subsystem instance 48 * number for numbering our devices to avoid conflicts between subsystems that 49 * have multiple controllers and thus use the multipath-aware subsystem node 50 * and those that have a single controller and use the controller node 51 * directly. 52 */ 53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags) 54 { 55 if (!multipath) 56 return false; 57 if (!ns->head->disk) { 58 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance, 59 ns->head->instance); 60 return true; 61 } 62 sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance, 63 ns->ctrl->instance, ns->head->instance); 64 *flags = GENHD_FL_HIDDEN; 65 return true; 66 } 67 68 void nvme_failover_req(struct request *req) 69 { 70 struct nvme_ns *ns = req->q->queuedata; 71 u16 status = nvme_req(req)->status & 0x7ff; 72 unsigned long flags; 73 struct bio *bio; 74 75 nvme_mpath_clear_current_path(ns); 76 77 /* 78 * If we got back an ANA error, we know the controller is alive but not 79 * ready to serve this namespace. Kick of a re-read of the ANA 80 * information page, and just try any other available path for now. 81 */ 82 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { 83 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 84 queue_work(nvme_wq, &ns->ctrl->ana_work); 85 } 86 87 spin_lock_irqsave(&ns->head->requeue_lock, flags); 88 for (bio = req->bio; bio; bio = bio->bi_next) 89 bio_set_dev(bio, ns->head->disk->part0); 90 blk_steal_bios(&ns->head->requeue_list, req); 91 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 92 93 blk_mq_end_request(req, 0); 94 kblockd_schedule_work(&ns->head->requeue_work); 95 } 96 97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 98 { 99 struct nvme_ns *ns; 100 101 down_read(&ctrl->namespaces_rwsem); 102 list_for_each_entry(ns, &ctrl->namespaces, list) { 103 if (ns->head->disk) 104 kblockd_schedule_work(&ns->head->requeue_work); 105 } 106 up_read(&ctrl->namespaces_rwsem); 107 } 108 109 static const char *nvme_ana_state_names[] = { 110 [0] = "invalid state", 111 [NVME_ANA_OPTIMIZED] = "optimized", 112 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 113 [NVME_ANA_INACCESSIBLE] = "inaccessible", 114 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 115 [NVME_ANA_CHANGE] = "change", 116 }; 117 118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 119 { 120 struct nvme_ns_head *head = ns->head; 121 bool changed = false; 122 int node; 123 124 if (!head) 125 goto out; 126 127 for_each_node(node) { 128 if (ns == rcu_access_pointer(head->current_path[node])) { 129 rcu_assign_pointer(head->current_path[node], NULL); 130 changed = true; 131 } 132 } 133 out: 134 return changed; 135 } 136 137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 138 { 139 struct nvme_ns *ns; 140 141 mutex_lock(&ctrl->scan_lock); 142 down_read(&ctrl->namespaces_rwsem); 143 list_for_each_entry(ns, &ctrl->namespaces, list) 144 if (nvme_mpath_clear_current_path(ns)) 145 kblockd_schedule_work(&ns->head->requeue_work); 146 up_read(&ctrl->namespaces_rwsem); 147 mutex_unlock(&ctrl->scan_lock); 148 } 149 150 void nvme_mpath_revalidate_paths(struct nvme_ns *ns) 151 { 152 struct nvme_ns_head *head = ns->head; 153 sector_t capacity = get_capacity(head->disk); 154 int node; 155 156 list_for_each_entry_rcu(ns, &head->list, siblings) { 157 if (capacity != get_capacity(ns->disk)) 158 clear_bit(NVME_NS_READY, &ns->flags); 159 } 160 161 for_each_node(node) 162 rcu_assign_pointer(head->current_path[node], NULL); 163 } 164 165 static bool nvme_path_is_disabled(struct nvme_ns *ns) 166 { 167 /* 168 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 169 * still be able to complete assuming that the controller is connected. 170 * Otherwise it will fail immediately and return to the requeue list. 171 */ 172 if (ns->ctrl->state != NVME_CTRL_LIVE && 173 ns->ctrl->state != NVME_CTRL_DELETING) 174 return true; 175 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 176 !test_bit(NVME_NS_READY, &ns->flags)) 177 return true; 178 return false; 179 } 180 181 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 182 { 183 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 184 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 185 186 list_for_each_entry_rcu(ns, &head->list, siblings) { 187 if (nvme_path_is_disabled(ns)) 188 continue; 189 190 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 191 distance = node_distance(node, ns->ctrl->numa_node); 192 else 193 distance = LOCAL_DISTANCE; 194 195 switch (ns->ana_state) { 196 case NVME_ANA_OPTIMIZED: 197 if (distance < found_distance) { 198 found_distance = distance; 199 found = ns; 200 } 201 break; 202 case NVME_ANA_NONOPTIMIZED: 203 if (distance < fallback_distance) { 204 fallback_distance = distance; 205 fallback = ns; 206 } 207 break; 208 default: 209 break; 210 } 211 } 212 213 if (!found) 214 found = fallback; 215 if (found) 216 rcu_assign_pointer(head->current_path[node], found); 217 return found; 218 } 219 220 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 221 struct nvme_ns *ns) 222 { 223 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 224 siblings); 225 if (ns) 226 return ns; 227 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 228 } 229 230 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 231 int node, struct nvme_ns *old) 232 { 233 struct nvme_ns *ns, *found = NULL; 234 235 if (list_is_singular(&head->list)) { 236 if (nvme_path_is_disabled(old)) 237 return NULL; 238 return old; 239 } 240 241 for (ns = nvme_next_ns(head, old); 242 ns && ns != old; 243 ns = nvme_next_ns(head, ns)) { 244 if (nvme_path_is_disabled(ns)) 245 continue; 246 247 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 248 found = ns; 249 goto out; 250 } 251 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 252 found = ns; 253 } 254 255 /* 256 * The loop above skips the current path for round-robin semantics. 257 * Fall back to the current path if either: 258 * - no other optimized path found and current is optimized, 259 * - no other usable path found and current is usable. 260 */ 261 if (!nvme_path_is_disabled(old) && 262 (old->ana_state == NVME_ANA_OPTIMIZED || 263 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) 264 return old; 265 266 if (!found) 267 return NULL; 268 out: 269 rcu_assign_pointer(head->current_path[node], found); 270 return found; 271 } 272 273 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 274 { 275 return ns->ctrl->state == NVME_CTRL_LIVE && 276 ns->ana_state == NVME_ANA_OPTIMIZED; 277 } 278 279 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 280 { 281 int node = numa_node_id(); 282 struct nvme_ns *ns; 283 284 ns = srcu_dereference(head->current_path[node], &head->srcu); 285 if (unlikely(!ns)) 286 return __nvme_find_path(head, node); 287 288 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 289 return nvme_round_robin_path(head, node, ns); 290 if (unlikely(!nvme_path_is_optimized(ns))) 291 return __nvme_find_path(head, node); 292 return ns; 293 } 294 295 static bool nvme_available_path(struct nvme_ns_head *head) 296 { 297 struct nvme_ns *ns; 298 299 list_for_each_entry_rcu(ns, &head->list, siblings) { 300 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) 301 continue; 302 switch (ns->ctrl->state) { 303 case NVME_CTRL_LIVE: 304 case NVME_CTRL_RESETTING: 305 case NVME_CTRL_CONNECTING: 306 /* fallthru */ 307 return true; 308 default: 309 break; 310 } 311 } 312 return false; 313 } 314 315 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio) 316 { 317 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; 318 struct device *dev = disk_to_dev(head->disk); 319 struct nvme_ns *ns; 320 blk_qc_t ret = BLK_QC_T_NONE; 321 int srcu_idx; 322 323 /* 324 * The namespace might be going away and the bio might be moved to a 325 * different queue via blk_steal_bios(), so we need to use the bio_split 326 * pool from the original queue to allocate the bvecs from. 327 */ 328 blk_queue_split(&bio); 329 330 srcu_idx = srcu_read_lock(&head->srcu); 331 ns = nvme_find_path(head); 332 if (likely(ns)) { 333 bio_set_dev(bio, ns->disk->part0); 334 bio->bi_opf |= REQ_NVME_MPATH; 335 trace_block_bio_remap(bio, disk_devt(ns->head->disk), 336 bio->bi_iter.bi_sector); 337 ret = submit_bio_noacct(bio); 338 } else if (nvme_available_path(head)) { 339 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 340 341 spin_lock_irq(&head->requeue_lock); 342 bio_list_add(&head->requeue_list, bio); 343 spin_unlock_irq(&head->requeue_lock); 344 } else { 345 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 346 347 bio->bi_status = BLK_STS_IOERR; 348 bio_endio(bio); 349 } 350 351 srcu_read_unlock(&head->srcu, srcu_idx); 352 return ret; 353 } 354 355 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 356 { 357 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data)) 358 return -ENXIO; 359 return 0; 360 } 361 362 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 363 { 364 nvme_put_ns_head(disk->private_data); 365 } 366 367 #ifdef CONFIG_BLK_DEV_ZONED 368 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, 369 unsigned int nr_zones, report_zones_cb cb, void *data) 370 { 371 struct nvme_ns_head *head = disk->private_data; 372 struct nvme_ns *ns; 373 int srcu_idx, ret = -EWOULDBLOCK; 374 375 srcu_idx = srcu_read_lock(&head->srcu); 376 ns = nvme_find_path(head); 377 if (ns) 378 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); 379 srcu_read_unlock(&head->srcu, srcu_idx); 380 return ret; 381 } 382 #else 383 #define nvme_ns_head_report_zones NULL 384 #endif /* CONFIG_BLK_DEV_ZONED */ 385 386 const struct block_device_operations nvme_ns_head_ops = { 387 .owner = THIS_MODULE, 388 .submit_bio = nvme_ns_head_submit_bio, 389 .open = nvme_ns_head_open, 390 .release = nvme_ns_head_release, 391 .ioctl = nvme_ns_head_ioctl, 392 .getgeo = nvme_getgeo, 393 .report_zones = nvme_ns_head_report_zones, 394 .pr_ops = &nvme_pr_ops, 395 }; 396 397 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) 398 { 399 return container_of(cdev, struct nvme_ns_head, cdev); 400 } 401 402 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) 403 { 404 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) 405 return -ENXIO; 406 return 0; 407 } 408 409 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) 410 { 411 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); 412 return 0; 413 } 414 415 static const struct file_operations nvme_ns_head_chr_fops = { 416 .owner = THIS_MODULE, 417 .open = nvme_ns_head_chr_open, 418 .release = nvme_ns_head_chr_release, 419 .unlocked_ioctl = nvme_ns_head_chr_ioctl, 420 .compat_ioctl = compat_ptr_ioctl, 421 }; 422 423 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) 424 { 425 int ret; 426 427 head->cdev_device.parent = &head->subsys->dev; 428 ret = dev_set_name(&head->cdev_device, "ng%dn%d", 429 head->subsys->instance, head->instance); 430 if (ret) 431 return ret; 432 ret = nvme_cdev_add(&head->cdev, &head->cdev_device, 433 &nvme_ns_head_chr_fops, THIS_MODULE); 434 return ret; 435 } 436 437 static void nvme_requeue_work(struct work_struct *work) 438 { 439 struct nvme_ns_head *head = 440 container_of(work, struct nvme_ns_head, requeue_work); 441 struct bio *bio, *next; 442 443 spin_lock_irq(&head->requeue_lock); 444 next = bio_list_get(&head->requeue_list); 445 spin_unlock_irq(&head->requeue_lock); 446 447 while ((bio = next) != NULL) { 448 next = bio->bi_next; 449 bio->bi_next = NULL; 450 451 submit_bio_noacct(bio); 452 } 453 } 454 455 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 456 { 457 bool vwc = false; 458 459 mutex_init(&head->lock); 460 bio_list_init(&head->requeue_list); 461 spin_lock_init(&head->requeue_lock); 462 INIT_WORK(&head->requeue_work, nvme_requeue_work); 463 464 /* 465 * Add a multipath node if the subsystems supports multiple controllers. 466 * We also do this for private namespaces as the namespace sharing data could 467 * change after a rescan. 468 */ 469 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath) 470 return 0; 471 472 head->disk = blk_alloc_disk(ctrl->numa_node); 473 if (!head->disk) 474 return -ENOMEM; 475 head->disk->fops = &nvme_ns_head_ops; 476 head->disk->private_data = head; 477 sprintf(head->disk->disk_name, "nvme%dn%d", 478 ctrl->subsys->instance, head->instance); 479 480 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue); 481 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue); 482 483 /* set to a default value of 512 until the disk is validated */ 484 blk_queue_logical_block_size(head->disk->queue, 512); 485 blk_set_stacking_limits(&head->disk->queue->limits); 486 487 /* we need to propagate up the VMC settings */ 488 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 489 vwc = true; 490 blk_queue_write_cache(head->disk->queue, vwc, vwc); 491 return 0; 492 } 493 494 static void nvme_mpath_set_live(struct nvme_ns *ns) 495 { 496 struct nvme_ns_head *head = ns->head; 497 498 if (!head->disk) 499 return; 500 501 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 502 device_add_disk(&head->subsys->dev, head->disk, 503 nvme_ns_id_attr_groups); 504 nvme_add_ns_head_cdev(head); 505 } 506 507 mutex_lock(&head->lock); 508 if (nvme_path_is_optimized(ns)) { 509 int node, srcu_idx; 510 511 srcu_idx = srcu_read_lock(&head->srcu); 512 for_each_node(node) 513 __nvme_find_path(head, node); 514 srcu_read_unlock(&head->srcu, srcu_idx); 515 } 516 mutex_unlock(&head->lock); 517 518 synchronize_srcu(&head->srcu); 519 kblockd_schedule_work(&head->requeue_work); 520 } 521 522 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 523 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 524 void *)) 525 { 526 void *base = ctrl->ana_log_buf; 527 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 528 int error, i; 529 530 lockdep_assert_held(&ctrl->ana_lock); 531 532 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 533 struct nvme_ana_group_desc *desc = base + offset; 534 u32 nr_nsids; 535 size_t nsid_buf_size; 536 537 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 538 return -EINVAL; 539 540 nr_nsids = le32_to_cpu(desc->nnsids); 541 nsid_buf_size = nr_nsids * sizeof(__le32); 542 543 if (WARN_ON_ONCE(desc->grpid == 0)) 544 return -EINVAL; 545 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 546 return -EINVAL; 547 if (WARN_ON_ONCE(desc->state == 0)) 548 return -EINVAL; 549 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 550 return -EINVAL; 551 552 offset += sizeof(*desc); 553 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 554 return -EINVAL; 555 556 error = cb(ctrl, desc, data); 557 if (error) 558 return error; 559 560 offset += nsid_buf_size; 561 } 562 563 return 0; 564 } 565 566 static inline bool nvme_state_is_live(enum nvme_ana_state state) 567 { 568 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 569 } 570 571 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 572 struct nvme_ns *ns) 573 { 574 ns->ana_grpid = le32_to_cpu(desc->grpid); 575 ns->ana_state = desc->state; 576 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 577 578 if (nvme_state_is_live(ns->ana_state)) 579 nvme_mpath_set_live(ns); 580 } 581 582 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 583 struct nvme_ana_group_desc *desc, void *data) 584 { 585 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 586 unsigned *nr_change_groups = data; 587 struct nvme_ns *ns; 588 589 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 590 le32_to_cpu(desc->grpid), 591 nvme_ana_state_names[desc->state]); 592 593 if (desc->state == NVME_ANA_CHANGE) 594 (*nr_change_groups)++; 595 596 if (!nr_nsids) 597 return 0; 598 599 down_read(&ctrl->namespaces_rwsem); 600 list_for_each_entry(ns, &ctrl->namespaces, list) { 601 unsigned nsid; 602 again: 603 nsid = le32_to_cpu(desc->nsids[n]); 604 if (ns->head->ns_id < nsid) 605 continue; 606 if (ns->head->ns_id == nsid) 607 nvme_update_ns_ana_state(desc, ns); 608 if (++n == nr_nsids) 609 break; 610 if (ns->head->ns_id > nsid) 611 goto again; 612 } 613 up_read(&ctrl->namespaces_rwsem); 614 return 0; 615 } 616 617 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 618 { 619 u32 nr_change_groups = 0; 620 int error; 621 622 mutex_lock(&ctrl->ana_lock); 623 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 624 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 625 if (error) { 626 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 627 goto out_unlock; 628 } 629 630 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 631 nvme_update_ana_state); 632 if (error) 633 goto out_unlock; 634 635 /* 636 * In theory we should have an ANATT timer per group as they might enter 637 * the change state at different times. But that is a lot of overhead 638 * just to protect against a target that keeps entering new changes 639 * states while never finishing previous ones. But we'll still 640 * eventually time out once all groups are in change state, so this 641 * isn't a big deal. 642 * 643 * We also double the ANATT value to provide some slack for transports 644 * or AEN processing overhead. 645 */ 646 if (nr_change_groups) 647 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 648 else 649 del_timer_sync(&ctrl->anatt_timer); 650 out_unlock: 651 mutex_unlock(&ctrl->ana_lock); 652 return error; 653 } 654 655 static void nvme_ana_work(struct work_struct *work) 656 { 657 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 658 659 if (ctrl->state != NVME_CTRL_LIVE) 660 return; 661 662 nvme_read_ana_log(ctrl); 663 } 664 665 static void nvme_anatt_timeout(struct timer_list *t) 666 { 667 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 668 669 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 670 nvme_reset_ctrl(ctrl); 671 } 672 673 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 674 { 675 if (!nvme_ctrl_use_ana(ctrl)) 676 return; 677 del_timer_sync(&ctrl->anatt_timer); 678 cancel_work_sync(&ctrl->ana_work); 679 } 680 681 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 682 struct device_attribute subsys_attr_##_name = \ 683 __ATTR(_name, _mode, _show, _store) 684 685 static const char *nvme_iopolicy_names[] = { 686 [NVME_IOPOLICY_NUMA] = "numa", 687 [NVME_IOPOLICY_RR] = "round-robin", 688 }; 689 690 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 691 struct device_attribute *attr, char *buf) 692 { 693 struct nvme_subsystem *subsys = 694 container_of(dev, struct nvme_subsystem, dev); 695 696 return sysfs_emit(buf, "%s\n", 697 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 698 } 699 700 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 701 struct device_attribute *attr, const char *buf, size_t count) 702 { 703 struct nvme_subsystem *subsys = 704 container_of(dev, struct nvme_subsystem, dev); 705 int i; 706 707 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 708 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 709 WRITE_ONCE(subsys->iopolicy, i); 710 return count; 711 } 712 } 713 714 return -EINVAL; 715 } 716 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 717 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 718 719 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 720 char *buf) 721 { 722 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 723 } 724 DEVICE_ATTR_RO(ana_grpid); 725 726 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 727 char *buf) 728 { 729 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 730 731 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 732 } 733 DEVICE_ATTR_RO(ana_state); 734 735 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 736 struct nvme_ana_group_desc *desc, void *data) 737 { 738 struct nvme_ana_group_desc *dst = data; 739 740 if (desc->grpid != dst->grpid) 741 return 0; 742 743 *dst = *desc; 744 return -ENXIO; /* just break out of the loop */ 745 } 746 747 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 748 { 749 if (nvme_ctrl_use_ana(ns->ctrl)) { 750 struct nvme_ana_group_desc desc = { 751 .grpid = id->anagrpid, 752 .state = 0, 753 }; 754 755 mutex_lock(&ns->ctrl->ana_lock); 756 ns->ana_grpid = le32_to_cpu(id->anagrpid); 757 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 758 mutex_unlock(&ns->ctrl->ana_lock); 759 if (desc.state) { 760 /* found the group desc: update */ 761 nvme_update_ns_ana_state(&desc, ns); 762 } else { 763 /* group desc not found: trigger a re-read */ 764 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 765 queue_work(nvme_wq, &ns->ctrl->ana_work); 766 } 767 } else { 768 ns->ana_state = NVME_ANA_OPTIMIZED; 769 nvme_mpath_set_live(ns); 770 } 771 772 if (blk_queue_stable_writes(ns->queue) && ns->head->disk) 773 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, 774 ns->head->disk->queue); 775 #ifdef CONFIG_BLK_DEV_ZONED 776 if (blk_queue_is_zoned(ns->queue) && ns->head->disk) 777 ns->head->disk->queue->nr_zones = ns->queue->nr_zones; 778 #endif 779 } 780 781 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) 782 { 783 if (!head->disk) 784 return; 785 kblockd_schedule_work(&head->requeue_work); 786 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 787 nvme_cdev_del(&head->cdev, &head->cdev_device); 788 del_gendisk(head->disk); 789 } 790 } 791 792 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 793 { 794 if (!head->disk) 795 return; 796 blk_set_queue_dying(head->disk->queue); 797 /* make sure all pending bios are cleaned up */ 798 kblockd_schedule_work(&head->requeue_work); 799 flush_work(&head->requeue_work); 800 blk_cleanup_disk(head->disk); 801 } 802 803 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) 804 { 805 mutex_init(&ctrl->ana_lock); 806 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 807 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 808 } 809 810 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 811 { 812 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; 813 size_t ana_log_size; 814 int error = 0; 815 816 /* check if multipath is enabled and we have the capability */ 817 if (!multipath || !ctrl->subsys || 818 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 819 return 0; 820 821 if (!ctrl->max_namespaces || 822 ctrl->max_namespaces > le32_to_cpu(id->nn)) { 823 dev_err(ctrl->device, 824 "Invalid MNAN value %u\n", ctrl->max_namespaces); 825 return -EINVAL; 826 } 827 828 ctrl->anacap = id->anacap; 829 ctrl->anatt = id->anatt; 830 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 831 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 832 833 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 834 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + 835 ctrl->max_namespaces * sizeof(__le32); 836 if (ana_log_size > max_transfer_size) { 837 dev_err(ctrl->device, 838 "ANA log page size (%zd) larger than MDTS (%zd).\n", 839 ana_log_size, max_transfer_size); 840 dev_err(ctrl->device, "disabling ANA support.\n"); 841 goto out_uninit; 842 } 843 if (ana_log_size > ctrl->ana_log_size) { 844 nvme_mpath_stop(ctrl); 845 kfree(ctrl->ana_log_buf); 846 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL); 847 if (!ctrl->ana_log_buf) 848 return -ENOMEM; 849 } 850 ctrl->ana_log_size = ana_log_size; 851 error = nvme_read_ana_log(ctrl); 852 if (error) 853 goto out_uninit; 854 return 0; 855 856 out_uninit: 857 nvme_mpath_uninit(ctrl); 858 return error; 859 } 860 861 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 862 { 863 kfree(ctrl->ana_log_buf); 864 ctrl->ana_log_buf = NULL; 865 } 866