1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36 }
37
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 subsys->iopolicy = iopolicy;
51 }
52
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81 }
82
nvme_failover_req(struct request * req)83 void nvme_failover_req(struct request *req)
84 {
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 /*
110 * The alternate request queue that we may end up submitting
111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 * will fail the I/O immediately with EAGAIN to the issuer.
113 * We are not in the issuer context which cannot block. Clear
114 * the flag to avoid spurious EAGAIN I/O failures.
115 */
116 bio->bi_opf &= ~REQ_NOWAIT;
117 }
118 blk_steal_bios(&ns->head->requeue_list, req);
119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121 nvme_req(req)->status = 0;
122 nvme_end_req(req);
123 kblockd_schedule_work(&ns->head->requeue_work);
124 }
125
nvme_mpath_start_request(struct request * rq)126 void nvme_mpath_start_request(struct request *rq)
127 {
128 struct nvme_ns *ns = rq->q->queuedata;
129 struct gendisk *disk = ns->head->disk;
130
131 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
132 return;
133
134 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
135 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
136 jiffies);
137 }
138 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
139
nvme_mpath_end_request(struct request * rq)140 void nvme_mpath_end_request(struct request *rq)
141 {
142 struct nvme_ns *ns = rq->q->queuedata;
143
144 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
145 return;
146 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
147 blk_rq_bytes(rq) >> SECTOR_SHIFT,
148 nvme_req(rq)->start_time);
149 }
150
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)151 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
152 {
153 struct nvme_ns *ns;
154 int srcu_idx;
155
156 srcu_idx = srcu_read_lock(&ctrl->srcu);
157 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
158 if (!ns->head->disk)
159 continue;
160 kblockd_schedule_work(&ns->head->requeue_work);
161 if (ctrl->state == NVME_CTRL_LIVE)
162 disk_uevent(ns->head->disk, KOBJ_CHANGE);
163 }
164 srcu_read_unlock(&ctrl->srcu, srcu_idx);
165 }
166
167 static const char *nvme_ana_state_names[] = {
168 [0] = "invalid state",
169 [NVME_ANA_OPTIMIZED] = "optimized",
170 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
171 [NVME_ANA_INACCESSIBLE] = "inaccessible",
172 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
173 [NVME_ANA_CHANGE] = "change",
174 };
175
nvme_mpath_clear_current_path(struct nvme_ns * ns)176 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
177 {
178 struct nvme_ns_head *head = ns->head;
179 bool changed = false;
180 int node;
181
182 if (!head)
183 goto out;
184
185 for_each_node(node) {
186 if (ns == rcu_access_pointer(head->current_path[node])) {
187 rcu_assign_pointer(head->current_path[node], NULL);
188 changed = true;
189 }
190 }
191 out:
192 return changed;
193 }
194
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)195 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
196 {
197 struct nvme_ns *ns;
198 int srcu_idx;
199
200 srcu_idx = srcu_read_lock(&ctrl->srcu);
201 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
202 nvme_mpath_clear_current_path(ns);
203 kblockd_schedule_work(&ns->head->requeue_work);
204 }
205 srcu_read_unlock(&ctrl->srcu, srcu_idx);
206 }
207
nvme_mpath_revalidate_paths(struct nvme_ns * ns)208 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
209 {
210 struct nvme_ns_head *head = ns->head;
211 sector_t capacity = get_capacity(head->disk);
212 int node;
213 int srcu_idx;
214
215 srcu_idx = srcu_read_lock(&head->srcu);
216 list_for_each_entry_rcu(ns, &head->list, siblings) {
217 if (capacity != get_capacity(ns->disk))
218 clear_bit(NVME_NS_READY, &ns->flags);
219 }
220 srcu_read_unlock(&head->srcu, srcu_idx);
221
222 for_each_node(node)
223 rcu_assign_pointer(head->current_path[node], NULL);
224 kblockd_schedule_work(&head->requeue_work);
225 }
226
nvme_path_is_disabled(struct nvme_ns * ns)227 static bool nvme_path_is_disabled(struct nvme_ns *ns)
228 {
229 /*
230 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
231 * still be able to complete assuming that the controller is connected.
232 * Otherwise it will fail immediately and return to the requeue list.
233 */
234 if (ns->ctrl->state != NVME_CTRL_LIVE &&
235 ns->ctrl->state != NVME_CTRL_DELETING)
236 return true;
237 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
238 !test_bit(NVME_NS_READY, &ns->flags))
239 return true;
240 return false;
241 }
242
__nvme_find_path(struct nvme_ns_head * head,int node)243 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
244 {
245 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
246 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
247
248 list_for_each_entry_rcu(ns, &head->list, siblings) {
249 if (nvme_path_is_disabled(ns))
250 continue;
251
252 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
253 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
254 distance = node_distance(node, ns->ctrl->numa_node);
255 else
256 distance = LOCAL_DISTANCE;
257
258 switch (ns->ana_state) {
259 case NVME_ANA_OPTIMIZED:
260 if (distance < found_distance) {
261 found_distance = distance;
262 found = ns;
263 }
264 break;
265 case NVME_ANA_NONOPTIMIZED:
266 if (distance < fallback_distance) {
267 fallback_distance = distance;
268 fallback = ns;
269 }
270 break;
271 default:
272 break;
273 }
274 }
275
276 if (!found)
277 found = fallback;
278 if (found)
279 rcu_assign_pointer(head->current_path[node], found);
280 return found;
281 }
282
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)283 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
284 struct nvme_ns *ns)
285 {
286 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
287 siblings);
288 if (ns)
289 return ns;
290 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
291 }
292
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)293 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
294 int node, struct nvme_ns *old)
295 {
296 struct nvme_ns *ns, *found = NULL;
297
298 if (list_is_singular(&head->list)) {
299 if (nvme_path_is_disabled(old))
300 return NULL;
301 return old;
302 }
303
304 for (ns = nvme_next_ns(head, old);
305 ns && ns != old;
306 ns = nvme_next_ns(head, ns)) {
307 if (nvme_path_is_disabled(ns))
308 continue;
309
310 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
311 found = ns;
312 goto out;
313 }
314 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
315 found = ns;
316 }
317
318 /*
319 * The loop above skips the current path for round-robin semantics.
320 * Fall back to the current path if either:
321 * - no other optimized path found and current is optimized,
322 * - no other usable path found and current is usable.
323 */
324 if (!nvme_path_is_disabled(old) &&
325 (old->ana_state == NVME_ANA_OPTIMIZED ||
326 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
327 return old;
328
329 if (!found)
330 return NULL;
331 out:
332 rcu_assign_pointer(head->current_path[node], found);
333 return found;
334 }
335
nvme_path_is_optimized(struct nvme_ns * ns)336 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
337 {
338 return ns->ctrl->state == NVME_CTRL_LIVE &&
339 ns->ana_state == NVME_ANA_OPTIMIZED;
340 }
341
nvme_find_path(struct nvme_ns_head * head)342 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
343 {
344 int node = numa_node_id();
345 struct nvme_ns *ns;
346
347 ns = srcu_dereference(head->current_path[node], &head->srcu);
348 if (unlikely(!ns))
349 return __nvme_find_path(head, node);
350
351 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
352 return nvme_round_robin_path(head, node, ns);
353 if (unlikely(!nvme_path_is_optimized(ns)))
354 return __nvme_find_path(head, node);
355 return ns;
356 }
357
nvme_available_path(struct nvme_ns_head * head)358 static bool nvme_available_path(struct nvme_ns_head *head)
359 {
360 struct nvme_ns *ns;
361
362 list_for_each_entry_rcu(ns, &head->list, siblings) {
363 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
364 continue;
365 switch (ns->ctrl->state) {
366 case NVME_CTRL_LIVE:
367 case NVME_CTRL_RESETTING:
368 case NVME_CTRL_CONNECTING:
369 /* fallthru */
370 return true;
371 default:
372 break;
373 }
374 }
375 return false;
376 }
377
nvme_ns_head_submit_bio(struct bio * bio)378 static void nvme_ns_head_submit_bio(struct bio *bio)
379 {
380 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
381 struct device *dev = disk_to_dev(head->disk);
382 struct nvme_ns *ns;
383 int srcu_idx;
384
385 /*
386 * The namespace might be going away and the bio might be moved to a
387 * different queue via blk_steal_bios(), so we need to use the bio_split
388 * pool from the original queue to allocate the bvecs from.
389 */
390 bio = bio_split_to_limits(bio);
391 if (!bio)
392 return;
393
394 srcu_idx = srcu_read_lock(&head->srcu);
395 ns = nvme_find_path(head);
396 if (likely(ns)) {
397 bio_set_dev(bio, ns->disk->part0);
398 bio->bi_opf |= REQ_NVME_MPATH;
399 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
400 bio->bi_iter.bi_sector);
401 submit_bio_noacct(bio);
402 } else if (nvme_available_path(head)) {
403 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
404
405 spin_lock_irq(&head->requeue_lock);
406 bio_list_add(&head->requeue_list, bio);
407 spin_unlock_irq(&head->requeue_lock);
408 } else {
409 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
410
411 bio_io_error(bio);
412 }
413
414 srcu_read_unlock(&head->srcu, srcu_idx);
415 }
416
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)417 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
418 {
419 if (!nvme_tryget_ns_head(disk->private_data))
420 return -ENXIO;
421 return 0;
422 }
423
nvme_ns_head_release(struct gendisk * disk)424 static void nvme_ns_head_release(struct gendisk *disk)
425 {
426 nvme_put_ns_head(disk->private_data);
427 }
428
429 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)430 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
431 unsigned int nr_zones, report_zones_cb cb, void *data)
432 {
433 struct nvme_ns_head *head = disk->private_data;
434 struct nvme_ns *ns;
435 int srcu_idx, ret = -EWOULDBLOCK;
436
437 srcu_idx = srcu_read_lock(&head->srcu);
438 ns = nvme_find_path(head);
439 if (ns)
440 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
441 srcu_read_unlock(&head->srcu, srcu_idx);
442 return ret;
443 }
444 #else
445 #define nvme_ns_head_report_zones NULL
446 #endif /* CONFIG_BLK_DEV_ZONED */
447
448 const struct block_device_operations nvme_ns_head_ops = {
449 .owner = THIS_MODULE,
450 .submit_bio = nvme_ns_head_submit_bio,
451 .open = nvme_ns_head_open,
452 .release = nvme_ns_head_release,
453 .ioctl = nvme_ns_head_ioctl,
454 .compat_ioctl = blkdev_compat_ptr_ioctl,
455 .getgeo = nvme_getgeo,
456 .report_zones = nvme_ns_head_report_zones,
457 .pr_ops = &nvme_pr_ops,
458 };
459
cdev_to_ns_head(struct cdev * cdev)460 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
461 {
462 return container_of(cdev, struct nvme_ns_head, cdev);
463 }
464
nvme_ns_head_chr_open(struct inode * inode,struct file * file)465 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
466 {
467 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
468 return -ENXIO;
469 return 0;
470 }
471
nvme_ns_head_chr_release(struct inode * inode,struct file * file)472 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
473 {
474 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
475 return 0;
476 }
477
478 static const struct file_operations nvme_ns_head_chr_fops = {
479 .owner = THIS_MODULE,
480 .open = nvme_ns_head_chr_open,
481 .release = nvme_ns_head_chr_release,
482 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
483 .compat_ioctl = compat_ptr_ioctl,
484 .uring_cmd = nvme_ns_head_chr_uring_cmd,
485 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
486 };
487
nvme_add_ns_head_cdev(struct nvme_ns_head * head)488 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
489 {
490 int ret;
491
492 head->cdev_device.parent = &head->subsys->dev;
493 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
494 head->subsys->instance, head->instance);
495 if (ret)
496 return ret;
497 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
498 &nvme_ns_head_chr_fops, THIS_MODULE);
499 return ret;
500 }
501
nvme_partition_scan_work(struct work_struct * work)502 static void nvme_partition_scan_work(struct work_struct *work)
503 {
504 struct nvme_ns_head *head =
505 container_of(work, struct nvme_ns_head, partition_scan_work);
506
507 if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
508 &head->disk->state)))
509 return;
510
511 mutex_lock(&head->disk->open_mutex);
512 bdev_disk_changed(head->disk, false);
513 mutex_unlock(&head->disk->open_mutex);
514 }
515
nvme_requeue_work(struct work_struct * work)516 static void nvme_requeue_work(struct work_struct *work)
517 {
518 struct nvme_ns_head *head =
519 container_of(work, struct nvme_ns_head, requeue_work);
520 struct bio *bio, *next;
521
522 spin_lock_irq(&head->requeue_lock);
523 next = bio_list_get(&head->requeue_list);
524 spin_unlock_irq(&head->requeue_lock);
525
526 while ((bio = next) != NULL) {
527 next = bio->bi_next;
528 bio->bi_next = NULL;
529
530 submit_bio_noacct(bio);
531 }
532 }
533
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)534 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
535 {
536 bool vwc = false;
537
538 mutex_init(&head->lock);
539 bio_list_init(&head->requeue_list);
540 spin_lock_init(&head->requeue_lock);
541 INIT_WORK(&head->requeue_work, nvme_requeue_work);
542 INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
543
544 /*
545 * Add a multipath node if the subsystems supports multiple controllers.
546 * We also do this for private namespaces as the namespace sharing flag
547 * could change after a rescan.
548 */
549 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
550 !nvme_is_unique_nsid(ctrl, head) || !multipath)
551 return 0;
552
553 head->disk = blk_alloc_disk(ctrl->numa_node);
554 if (!head->disk)
555 return -ENOMEM;
556 head->disk->fops = &nvme_ns_head_ops;
557 head->disk->private_data = head;
558
559 /*
560 * We need to suppress the partition scan from occuring within the
561 * controller's scan_work context. If a path error occurs here, the IO
562 * will wait until a path becomes available or all paths are torn down,
563 * but that action also occurs within scan_work, so it would deadlock.
564 * Defer the partion scan to a different context that does not block
565 * scan_work.
566 */
567 set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
568 sprintf(head->disk->disk_name, "nvme%dn%d",
569 ctrl->subsys->instance, head->instance);
570
571 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
572 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
573 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
574 /*
575 * This assumes all controllers that refer to a namespace either
576 * support poll queues or not. That is not a strict guarantee,
577 * but if the assumption is wrong the effect is only suboptimal
578 * performance but not correctness problem.
579 */
580 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
581 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
582 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
583
584 /* set to a default value of 512 until the disk is validated */
585 blk_queue_logical_block_size(head->disk->queue, 512);
586 blk_set_stacking_limits(&head->disk->queue->limits);
587 blk_queue_dma_alignment(head->disk->queue, 3);
588
589 /* we need to propagate up the VMC settings */
590 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
591 vwc = true;
592 blk_queue_write_cache(head->disk->queue, vwc, vwc);
593 return 0;
594 }
595
nvme_mpath_set_live(struct nvme_ns * ns)596 static void nvme_mpath_set_live(struct nvme_ns *ns)
597 {
598 struct nvme_ns_head *head = ns->head;
599 int rc;
600
601 if (!head->disk)
602 return;
603
604 /*
605 * test_and_set_bit() is used because it is protecting against two nvme
606 * paths simultaneously calling device_add_disk() on the same namespace
607 * head.
608 */
609 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
610 rc = device_add_disk(&head->subsys->dev, head->disk,
611 nvme_ns_id_attr_groups);
612 if (rc) {
613 clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
614 return;
615 }
616 nvme_add_ns_head_cdev(head);
617 kblockd_schedule_work(&head->partition_scan_work);
618 }
619
620 mutex_lock(&head->lock);
621 if (nvme_path_is_optimized(ns)) {
622 int node, srcu_idx;
623
624 srcu_idx = srcu_read_lock(&head->srcu);
625 for_each_online_node(node)
626 __nvme_find_path(head, node);
627 srcu_read_unlock(&head->srcu, srcu_idx);
628 }
629 mutex_unlock(&head->lock);
630
631 synchronize_srcu(&head->srcu);
632 kblockd_schedule_work(&head->requeue_work);
633 }
634
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))635 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
636 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
637 void *))
638 {
639 void *base = ctrl->ana_log_buf;
640 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
641 int error, i;
642
643 lockdep_assert_held(&ctrl->ana_lock);
644
645 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
646 struct nvme_ana_group_desc *desc = base + offset;
647 u32 nr_nsids;
648 size_t nsid_buf_size;
649
650 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
651 return -EINVAL;
652
653 nr_nsids = le32_to_cpu(desc->nnsids);
654 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
655
656 if (WARN_ON_ONCE(desc->grpid == 0))
657 return -EINVAL;
658 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
659 return -EINVAL;
660 if (WARN_ON_ONCE(desc->state == 0))
661 return -EINVAL;
662 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
663 return -EINVAL;
664
665 offset += sizeof(*desc);
666 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
667 return -EINVAL;
668
669 error = cb(ctrl, desc, data);
670 if (error)
671 return error;
672
673 offset += nsid_buf_size;
674 }
675
676 return 0;
677 }
678
nvme_state_is_live(enum nvme_ana_state state)679 static inline bool nvme_state_is_live(enum nvme_ana_state state)
680 {
681 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
682 }
683
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)684 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
685 struct nvme_ns *ns)
686 {
687 ns->ana_grpid = le32_to_cpu(desc->grpid);
688 ns->ana_state = desc->state;
689 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
690 /*
691 * nvme_mpath_set_live() will trigger I/O to the multipath path device
692 * and in turn to this path device. However we cannot accept this I/O
693 * if the controller is not live. This may deadlock if called from
694 * nvme_mpath_init_identify() and the ctrl will never complete
695 * initialization, preventing I/O from completing. For this case we
696 * will reprocess the ANA log page in nvme_mpath_update() once the
697 * controller is ready.
698 */
699 if (nvme_state_is_live(ns->ana_state) &&
700 ns->ctrl->state == NVME_CTRL_LIVE)
701 nvme_mpath_set_live(ns);
702 }
703
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)704 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
705 struct nvme_ana_group_desc *desc, void *data)
706 {
707 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
708 unsigned *nr_change_groups = data;
709 struct nvme_ns *ns;
710 int srcu_idx;
711
712 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
713 le32_to_cpu(desc->grpid),
714 nvme_ana_state_names[desc->state]);
715
716 if (desc->state == NVME_ANA_CHANGE)
717 (*nr_change_groups)++;
718
719 if (!nr_nsids)
720 return 0;
721
722 srcu_idx = srcu_read_lock(&ctrl->srcu);
723 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
724 unsigned nsid;
725 again:
726 nsid = le32_to_cpu(desc->nsids[n]);
727 if (ns->head->ns_id < nsid)
728 continue;
729 if (ns->head->ns_id == nsid)
730 nvme_update_ns_ana_state(desc, ns);
731 if (++n == nr_nsids)
732 break;
733 if (ns->head->ns_id > nsid)
734 goto again;
735 }
736 srcu_read_unlock(&ctrl->srcu, srcu_idx);
737 return 0;
738 }
739
nvme_read_ana_log(struct nvme_ctrl * ctrl)740 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
741 {
742 u32 nr_change_groups = 0;
743 int error;
744
745 mutex_lock(&ctrl->ana_lock);
746 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
747 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
748 if (error) {
749 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
750 goto out_unlock;
751 }
752
753 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
754 nvme_update_ana_state);
755 if (error)
756 goto out_unlock;
757
758 /*
759 * In theory we should have an ANATT timer per group as they might enter
760 * the change state at different times. But that is a lot of overhead
761 * just to protect against a target that keeps entering new changes
762 * states while never finishing previous ones. But we'll still
763 * eventually time out once all groups are in change state, so this
764 * isn't a big deal.
765 *
766 * We also double the ANATT value to provide some slack for transports
767 * or AEN processing overhead.
768 */
769 if (nr_change_groups)
770 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
771 else
772 del_timer_sync(&ctrl->anatt_timer);
773 out_unlock:
774 mutex_unlock(&ctrl->ana_lock);
775 return error;
776 }
777
nvme_ana_work(struct work_struct * work)778 static void nvme_ana_work(struct work_struct *work)
779 {
780 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
781
782 if (ctrl->state != NVME_CTRL_LIVE)
783 return;
784
785 nvme_read_ana_log(ctrl);
786 }
787
nvme_mpath_update(struct nvme_ctrl * ctrl)788 void nvme_mpath_update(struct nvme_ctrl *ctrl)
789 {
790 u32 nr_change_groups = 0;
791
792 if (!ctrl->ana_log_buf)
793 return;
794
795 mutex_lock(&ctrl->ana_lock);
796 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
797 mutex_unlock(&ctrl->ana_lock);
798 }
799
nvme_anatt_timeout(struct timer_list * t)800 static void nvme_anatt_timeout(struct timer_list *t)
801 {
802 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
803
804 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
805 nvme_reset_ctrl(ctrl);
806 }
807
nvme_mpath_stop(struct nvme_ctrl * ctrl)808 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
809 {
810 if (!nvme_ctrl_use_ana(ctrl))
811 return;
812 del_timer_sync(&ctrl->anatt_timer);
813 cancel_work_sync(&ctrl->ana_work);
814 }
815
816 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
817 struct device_attribute subsys_attr_##_name = \
818 __ATTR(_name, _mode, _show, _store)
819
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
821 struct device_attribute *attr, char *buf)
822 {
823 struct nvme_subsystem *subsys =
824 container_of(dev, struct nvme_subsystem, dev);
825
826 return sysfs_emit(buf, "%s\n",
827 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
828 }
829
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)830 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
831 struct device_attribute *attr, const char *buf, size_t count)
832 {
833 struct nvme_subsystem *subsys =
834 container_of(dev, struct nvme_subsystem, dev);
835 int i;
836
837 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
838 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
839 WRITE_ONCE(subsys->iopolicy, i);
840 return count;
841 }
842 }
843
844 return -EINVAL;
845 }
846 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
847 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
848
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)849 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
850 char *buf)
851 {
852 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
853 }
854 DEVICE_ATTR_RO(ana_grpid);
855
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)856 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
857 char *buf)
858 {
859 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
860
861 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
862 }
863 DEVICE_ATTR_RO(ana_state);
864
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)865 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
866 struct nvme_ana_group_desc *desc, void *data)
867 {
868 struct nvme_ana_group_desc *dst = data;
869
870 if (desc->grpid != dst->grpid)
871 return 0;
872
873 *dst = *desc;
874 return -ENXIO; /* just break out of the loop */
875 }
876
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)877 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
878 {
879 if (nvme_ctrl_use_ana(ns->ctrl)) {
880 struct nvme_ana_group_desc desc = {
881 .grpid = anagrpid,
882 .state = 0,
883 };
884
885 mutex_lock(&ns->ctrl->ana_lock);
886 ns->ana_grpid = le32_to_cpu(anagrpid);
887 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
888 mutex_unlock(&ns->ctrl->ana_lock);
889 if (desc.state) {
890 /* found the group desc: update */
891 nvme_update_ns_ana_state(&desc, ns);
892 } else {
893 /* group desc not found: trigger a re-read */
894 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
895 queue_work(nvme_wq, &ns->ctrl->ana_work);
896 }
897 } else {
898 ns->ana_state = NVME_ANA_OPTIMIZED;
899 nvme_mpath_set_live(ns);
900 }
901
902 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
903 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
904 ns->head->disk->queue);
905 #ifdef CONFIG_BLK_DEV_ZONED
906 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
907 ns->head->disk->nr_zones = ns->disk->nr_zones;
908 #endif
909 }
910
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)911 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
912 {
913 if (!head->disk)
914 return;
915 kblockd_schedule_work(&head->requeue_work);
916 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
917 nvme_cdev_del(&head->cdev, &head->cdev_device);
918 /*
919 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
920 * to allow multipath to fail all I/O.
921 */
922 synchronize_srcu(&head->srcu);
923 kblockd_schedule_work(&head->requeue_work);
924 del_gendisk(head->disk);
925 }
926 }
927
nvme_mpath_remove_disk(struct nvme_ns_head * head)928 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
929 {
930 if (!head->disk)
931 return;
932 /* make sure all pending bios are cleaned up */
933 kblockd_schedule_work(&head->requeue_work);
934 flush_work(&head->requeue_work);
935 flush_work(&head->partition_scan_work);
936 put_disk(head->disk);
937 }
938
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)939 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
940 {
941 mutex_init(&ctrl->ana_lock);
942 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
943 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
944 }
945
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)946 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
947 {
948 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
949 size_t ana_log_size;
950 int error = 0;
951
952 /* check if multipath is enabled and we have the capability */
953 if (!multipath || !ctrl->subsys ||
954 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
955 return 0;
956
957 if (!ctrl->max_namespaces ||
958 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
959 dev_err(ctrl->device,
960 "Invalid MNAN value %u\n", ctrl->max_namespaces);
961 return -EINVAL;
962 }
963
964 ctrl->anacap = id->anacap;
965 ctrl->anatt = id->anatt;
966 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
967 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
968
969 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
970 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
971 ctrl->max_namespaces * sizeof(__le32);
972 if (ana_log_size > max_transfer_size) {
973 dev_err(ctrl->device,
974 "ANA log page size (%zd) larger than MDTS (%zd).\n",
975 ana_log_size, max_transfer_size);
976 dev_err(ctrl->device, "disabling ANA support.\n");
977 goto out_uninit;
978 }
979 if (ana_log_size > ctrl->ana_log_size) {
980 nvme_mpath_stop(ctrl);
981 nvme_mpath_uninit(ctrl);
982 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
983 if (!ctrl->ana_log_buf)
984 return -ENOMEM;
985 }
986 ctrl->ana_log_size = ana_log_size;
987 error = nvme_read_ana_log(ctrl);
988 if (error)
989 goto out_uninit;
990 return 0;
991
992 out_uninit:
993 nvme_mpath_uninit(ctrl);
994 return error;
995 }
996
nvme_mpath_uninit(struct nvme_ctrl * ctrl)997 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
998 {
999 kvfree(ctrl->ana_log_buf);
1000 ctrl->ana_log_buf = NULL;
1001 ctrl->ana_log_size = 0;
1002 }
1003