xref: /openbmc/linux/drivers/nvme/host/fc.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 
23 #include "nvme.h"
24 #include "fabrics.h"
25 #include <linux/nvme-fc-driver.h>
26 #include <linux/nvme-fc.h>
27 
28 
29 /* *************************** Data Structures/Defines ****************** */
30 
31 
32 /*
33  * We handle AEN commands ourselves and don't even let the
34  * block layer know about them.
35  */
36 #define NVME_FC_NR_AEN_COMMANDS	1
37 #define NVME_FC_AQ_BLKMQ_DEPTH	\
38 	(NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
39 #define AEN_CMDID_BASE		(NVME_FC_AQ_BLKMQ_DEPTH + 1)
40 
41 enum nvme_fc_queue_flags {
42 	NVME_FC_Q_CONNECTED = (1 << 0),
43 };
44 
45 #define NVMEFC_QUEUE_DELAY	3		/* ms units */
46 
47 struct nvme_fc_queue {
48 	struct nvme_fc_ctrl	*ctrl;
49 	struct device		*dev;
50 	struct blk_mq_hw_ctx	*hctx;
51 	void			*lldd_handle;
52 	int			queue_size;
53 	size_t			cmnd_capsule_len;
54 	u32			qnum;
55 	u32			rqcnt;
56 	u32			seqno;
57 
58 	u64			connection_id;
59 	atomic_t		csn;
60 
61 	unsigned long		flags;
62 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
63 
64 struct nvmefc_ls_req_op {
65 	struct nvmefc_ls_req	ls_req;
66 
67 	struct nvme_fc_ctrl	*ctrl;
68 	struct nvme_fc_queue	*queue;
69 	struct request		*rq;
70 
71 	int			ls_error;
72 	struct completion	ls_done;
73 	struct list_head	lsreq_list;	/* ctrl->ls_req_list */
74 	bool			req_queued;
75 };
76 
77 enum nvme_fcpop_state {
78 	FCPOP_STATE_UNINIT	= 0,
79 	FCPOP_STATE_IDLE	= 1,
80 	FCPOP_STATE_ACTIVE	= 2,
81 	FCPOP_STATE_ABORTED	= 3,
82 };
83 
84 struct nvme_fc_fcp_op {
85 	struct nvme_request	nreq;		/*
86 						 * nvme/host/core.c
87 						 * requires this to be
88 						 * the 1st element in the
89 						 * private structure
90 						 * associated with the
91 						 * request.
92 						 */
93 	struct nvmefc_fcp_req	fcp_req;
94 
95 	struct nvme_fc_ctrl	*ctrl;
96 	struct nvme_fc_queue	*queue;
97 	struct request		*rq;
98 
99 	atomic_t		state;
100 	u32			rqno;
101 	u32			nents;
102 
103 	struct nvme_fc_cmd_iu	cmd_iu;
104 	struct nvme_fc_ersp_iu	rsp_iu;
105 };
106 
107 struct nvme_fc_lport {
108 	struct nvme_fc_local_port	localport;
109 
110 	struct ida			endp_cnt;
111 	struct list_head		port_list;	/* nvme_fc_port_list */
112 	struct list_head		endp_list;
113 	struct device			*dev;	/* physical device for dma */
114 	struct nvme_fc_port_template	*ops;
115 	struct kref			ref;
116 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
117 
118 struct nvme_fc_rport {
119 	struct nvme_fc_remote_port	remoteport;
120 
121 	struct list_head		endp_list; /* for lport->endp_list */
122 	struct list_head		ctrl_list;
123 	spinlock_t			lock;
124 	struct kref			ref;
125 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
126 
127 enum nvme_fcctrl_state {
128 	FCCTRL_INIT		= 0,
129 	FCCTRL_ACTIVE		= 1,
130 };
131 
132 struct nvme_fc_ctrl {
133 	spinlock_t		lock;
134 	struct nvme_fc_queue	*queues;
135 	u32			queue_count;
136 
137 	struct device		*dev;
138 	struct nvme_fc_lport	*lport;
139 	struct nvme_fc_rport	*rport;
140 	u32			cnum;
141 
142 	u64			association_id;
143 
144 	u64			cap;
145 
146 	struct list_head	ctrl_list;	/* rport->ctrl_list */
147 	struct list_head	ls_req_list;
148 
149 	struct blk_mq_tag_set	admin_tag_set;
150 	struct blk_mq_tag_set	tag_set;
151 
152 	struct work_struct	delete_work;
153 	struct kref		ref;
154 	int			state;
155 
156 	struct nvme_fc_fcp_op	aen_ops[NVME_FC_NR_AEN_COMMANDS];
157 
158 	struct nvme_ctrl	ctrl;
159 };
160 
161 static inline struct nvme_fc_ctrl *
162 to_fc_ctrl(struct nvme_ctrl *ctrl)
163 {
164 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
165 }
166 
167 static inline struct nvme_fc_lport *
168 localport_to_lport(struct nvme_fc_local_port *portptr)
169 {
170 	return container_of(portptr, struct nvme_fc_lport, localport);
171 }
172 
173 static inline struct nvme_fc_rport *
174 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
175 {
176 	return container_of(portptr, struct nvme_fc_rport, remoteport);
177 }
178 
179 static inline struct nvmefc_ls_req_op *
180 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
181 {
182 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
183 }
184 
185 static inline struct nvme_fc_fcp_op *
186 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
187 {
188 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
189 }
190 
191 
192 
193 /* *************************** Globals **************************** */
194 
195 
196 static DEFINE_SPINLOCK(nvme_fc_lock);
197 
198 static LIST_HEAD(nvme_fc_lport_list);
199 static DEFINE_IDA(nvme_fc_local_port_cnt);
200 static DEFINE_IDA(nvme_fc_ctrl_cnt);
201 
202 static struct workqueue_struct *nvme_fc_wq;
203 
204 
205 
206 /* *********************** FC-NVME Port Management ************************ */
207 
208 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
209 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
210 			struct nvme_fc_queue *, unsigned int);
211 
212 
213 /**
214  * nvme_fc_register_localport - transport entry point called by an
215  *                              LLDD to register the existence of a NVME
216  *                              host FC port.
217  * @pinfo:     pointer to information about the port to be registered
218  * @template:  LLDD entrypoints and operational parameters for the port
219  * @dev:       physical hardware device node port corresponds to. Will be
220  *             used for DMA mappings
221  * @lport_p:   pointer to a local port pointer. Upon success, the routine
222  *             will allocate a nvme_fc_local_port structure and place its
223  *             address in the local port pointer. Upon failure, local port
224  *             pointer will be set to 0.
225  *
226  * Returns:
227  * a completion status. Must be 0 upon success; a negative errno
228  * (ex: -ENXIO) upon failure.
229  */
230 int
231 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
232 			struct nvme_fc_port_template *template,
233 			struct device *dev,
234 			struct nvme_fc_local_port **portptr)
235 {
236 	struct nvme_fc_lport *newrec;
237 	unsigned long flags;
238 	int ret, idx;
239 
240 	if (!template->localport_delete || !template->remoteport_delete ||
241 	    !template->ls_req || !template->fcp_io ||
242 	    !template->ls_abort || !template->fcp_abort ||
243 	    !template->max_hw_queues || !template->max_sgl_segments ||
244 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
245 		ret = -EINVAL;
246 		goto out_reghost_failed;
247 	}
248 
249 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
250 			 GFP_KERNEL);
251 	if (!newrec) {
252 		ret = -ENOMEM;
253 		goto out_reghost_failed;
254 	}
255 
256 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
257 	if (idx < 0) {
258 		ret = -ENOSPC;
259 		goto out_fail_kfree;
260 	}
261 
262 	if (!get_device(dev) && dev) {
263 		ret = -ENODEV;
264 		goto out_ida_put;
265 	}
266 
267 	INIT_LIST_HEAD(&newrec->port_list);
268 	INIT_LIST_HEAD(&newrec->endp_list);
269 	kref_init(&newrec->ref);
270 	newrec->ops = template;
271 	newrec->dev = dev;
272 	ida_init(&newrec->endp_cnt);
273 	newrec->localport.private = &newrec[1];
274 	newrec->localport.node_name = pinfo->node_name;
275 	newrec->localport.port_name = pinfo->port_name;
276 	newrec->localport.port_role = pinfo->port_role;
277 	newrec->localport.port_id = pinfo->port_id;
278 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
279 	newrec->localport.port_num = idx;
280 
281 	spin_lock_irqsave(&nvme_fc_lock, flags);
282 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
283 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
284 
285 	if (dev)
286 		dma_set_seg_boundary(dev, template->dma_boundary);
287 
288 	*portptr = &newrec->localport;
289 	return 0;
290 
291 out_ida_put:
292 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
293 out_fail_kfree:
294 	kfree(newrec);
295 out_reghost_failed:
296 	*portptr = NULL;
297 
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
301 
302 static void
303 nvme_fc_free_lport(struct kref *ref)
304 {
305 	struct nvme_fc_lport *lport =
306 		container_of(ref, struct nvme_fc_lport, ref);
307 	unsigned long flags;
308 
309 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
310 	WARN_ON(!list_empty(&lport->endp_list));
311 
312 	/* remove from transport list */
313 	spin_lock_irqsave(&nvme_fc_lock, flags);
314 	list_del(&lport->port_list);
315 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
316 
317 	/* let the LLDD know we've finished tearing it down */
318 	lport->ops->localport_delete(&lport->localport);
319 
320 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
321 	ida_destroy(&lport->endp_cnt);
322 
323 	put_device(lport->dev);
324 
325 	kfree(lport);
326 }
327 
328 static void
329 nvme_fc_lport_put(struct nvme_fc_lport *lport)
330 {
331 	kref_put(&lport->ref, nvme_fc_free_lport);
332 }
333 
334 static int
335 nvme_fc_lport_get(struct nvme_fc_lport *lport)
336 {
337 	return kref_get_unless_zero(&lport->ref);
338 }
339 
340 /**
341  * nvme_fc_unregister_localport - transport entry point called by an
342  *                              LLDD to deregister/remove a previously
343  *                              registered a NVME host FC port.
344  * @localport: pointer to the (registered) local port that is to be
345  *             deregistered.
346  *
347  * Returns:
348  * a completion status. Must be 0 upon success; a negative errno
349  * (ex: -ENXIO) upon failure.
350  */
351 int
352 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
353 {
354 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
355 	unsigned long flags;
356 
357 	if (!portptr)
358 		return -EINVAL;
359 
360 	spin_lock_irqsave(&nvme_fc_lock, flags);
361 
362 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
363 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
364 		return -EINVAL;
365 	}
366 	portptr->port_state = FC_OBJSTATE_DELETED;
367 
368 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
369 
370 	nvme_fc_lport_put(lport);
371 
372 	return 0;
373 }
374 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
375 
376 /**
377  * nvme_fc_register_remoteport - transport entry point called by an
378  *                              LLDD to register the existence of a NVME
379  *                              subsystem FC port on its fabric.
380  * @localport: pointer to the (registered) local port that the remote
381  *             subsystem port is connected to.
382  * @pinfo:     pointer to information about the port to be registered
383  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
384  *             will allocate a nvme_fc_remote_port structure and place its
385  *             address in the remote port pointer. Upon failure, remote port
386  *             pointer will be set to 0.
387  *
388  * Returns:
389  * a completion status. Must be 0 upon success; a negative errno
390  * (ex: -ENXIO) upon failure.
391  */
392 int
393 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
394 				struct nvme_fc_port_info *pinfo,
395 				struct nvme_fc_remote_port **portptr)
396 {
397 	struct nvme_fc_lport *lport = localport_to_lport(localport);
398 	struct nvme_fc_rport *newrec;
399 	unsigned long flags;
400 	int ret, idx;
401 
402 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
403 			 GFP_KERNEL);
404 	if (!newrec) {
405 		ret = -ENOMEM;
406 		goto out_reghost_failed;
407 	}
408 
409 	if (!nvme_fc_lport_get(lport)) {
410 		ret = -ESHUTDOWN;
411 		goto out_kfree_rport;
412 	}
413 
414 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
415 	if (idx < 0) {
416 		ret = -ENOSPC;
417 		goto out_lport_put;
418 	}
419 
420 	INIT_LIST_HEAD(&newrec->endp_list);
421 	INIT_LIST_HEAD(&newrec->ctrl_list);
422 	kref_init(&newrec->ref);
423 	spin_lock_init(&newrec->lock);
424 	newrec->remoteport.localport = &lport->localport;
425 	newrec->remoteport.private = &newrec[1];
426 	newrec->remoteport.port_role = pinfo->port_role;
427 	newrec->remoteport.node_name = pinfo->node_name;
428 	newrec->remoteport.port_name = pinfo->port_name;
429 	newrec->remoteport.port_id = pinfo->port_id;
430 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
431 	newrec->remoteport.port_num = idx;
432 
433 	spin_lock_irqsave(&nvme_fc_lock, flags);
434 	list_add_tail(&newrec->endp_list, &lport->endp_list);
435 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
436 
437 	*portptr = &newrec->remoteport;
438 	return 0;
439 
440 out_lport_put:
441 	nvme_fc_lport_put(lport);
442 out_kfree_rport:
443 	kfree(newrec);
444 out_reghost_failed:
445 	*portptr = NULL;
446 	return ret;
447 
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
450 
451 static void
452 nvme_fc_free_rport(struct kref *ref)
453 {
454 	struct nvme_fc_rport *rport =
455 		container_of(ref, struct nvme_fc_rport, ref);
456 	struct nvme_fc_lport *lport =
457 			localport_to_lport(rport->remoteport.localport);
458 	unsigned long flags;
459 
460 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
461 	WARN_ON(!list_empty(&rport->ctrl_list));
462 
463 	/* remove from lport list */
464 	spin_lock_irqsave(&nvme_fc_lock, flags);
465 	list_del(&rport->endp_list);
466 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
467 
468 	/* let the LLDD know we've finished tearing it down */
469 	lport->ops->remoteport_delete(&rport->remoteport);
470 
471 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
472 
473 	kfree(rport);
474 
475 	nvme_fc_lport_put(lport);
476 }
477 
478 static void
479 nvme_fc_rport_put(struct nvme_fc_rport *rport)
480 {
481 	kref_put(&rport->ref, nvme_fc_free_rport);
482 }
483 
484 static int
485 nvme_fc_rport_get(struct nvme_fc_rport *rport)
486 {
487 	return kref_get_unless_zero(&rport->ref);
488 }
489 
490 /**
491  * nvme_fc_unregister_remoteport - transport entry point called by an
492  *                              LLDD to deregister/remove a previously
493  *                              registered a NVME subsystem FC port.
494  * @remoteport: pointer to the (registered) remote port that is to be
495  *              deregistered.
496  *
497  * Returns:
498  * a completion status. Must be 0 upon success; a negative errno
499  * (ex: -ENXIO) upon failure.
500  */
501 int
502 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
503 {
504 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
505 	struct nvme_fc_ctrl *ctrl;
506 	unsigned long flags;
507 
508 	if (!portptr)
509 		return -EINVAL;
510 
511 	spin_lock_irqsave(&rport->lock, flags);
512 
513 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
514 		spin_unlock_irqrestore(&rport->lock, flags);
515 		return -EINVAL;
516 	}
517 	portptr->port_state = FC_OBJSTATE_DELETED;
518 
519 	/* tear down all associations to the remote port */
520 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
521 		__nvme_fc_del_ctrl(ctrl);
522 
523 	spin_unlock_irqrestore(&rport->lock, flags);
524 
525 	nvme_fc_rport_put(rport);
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
529 
530 
531 /* *********************** FC-NVME DMA Handling **************************** */
532 
533 /*
534  * The fcloop device passes in a NULL device pointer. Real LLD's will
535  * pass in a valid device pointer. If NULL is passed to the dma mapping
536  * routines, depending on the platform, it may or may not succeed, and
537  * may crash.
538  *
539  * As such:
540  * Wrapper all the dma routines and check the dev pointer.
541  *
542  * If simple mappings (return just a dma address, we'll noop them,
543  * returning a dma address of 0.
544  *
545  * On more complex mappings (dma_map_sg), a pseudo routine fills
546  * in the scatter list, setting all dma addresses to 0.
547  */
548 
549 static inline dma_addr_t
550 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
551 		enum dma_data_direction dir)
552 {
553 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
554 }
555 
556 static inline int
557 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
558 {
559 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
560 }
561 
562 static inline void
563 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
564 	enum dma_data_direction dir)
565 {
566 	if (dev)
567 		dma_unmap_single(dev, addr, size, dir);
568 }
569 
570 static inline void
571 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
572 		enum dma_data_direction dir)
573 {
574 	if (dev)
575 		dma_sync_single_for_cpu(dev, addr, size, dir);
576 }
577 
578 static inline void
579 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
580 		enum dma_data_direction dir)
581 {
582 	if (dev)
583 		dma_sync_single_for_device(dev, addr, size, dir);
584 }
585 
586 /* pseudo dma_map_sg call */
587 static int
588 fc_map_sg(struct scatterlist *sg, int nents)
589 {
590 	struct scatterlist *s;
591 	int i;
592 
593 	WARN_ON(nents == 0 || sg[0].length == 0);
594 
595 	for_each_sg(sg, s, nents, i) {
596 		s->dma_address = 0L;
597 #ifdef CONFIG_NEED_SG_DMA_LENGTH
598 		s->dma_length = s->length;
599 #endif
600 	}
601 	return nents;
602 }
603 
604 static inline int
605 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
606 		enum dma_data_direction dir)
607 {
608 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
609 }
610 
611 static inline void
612 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
613 		enum dma_data_direction dir)
614 {
615 	if (dev)
616 		dma_unmap_sg(dev, sg, nents, dir);
617 }
618 
619 
620 /* *********************** FC-NVME LS Handling **************************** */
621 
622 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
623 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
624 
625 
626 static void
627 __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
628 		struct nvmefc_ls_req_op *lsop)
629 {
630 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&ctrl->lock, flags);
634 
635 	if (!lsop->req_queued) {
636 		spin_unlock_irqrestore(&ctrl->lock, flags);
637 		return;
638 	}
639 
640 	list_del(&lsop->lsreq_list);
641 
642 	lsop->req_queued = false;
643 
644 	spin_unlock_irqrestore(&ctrl->lock, flags);
645 
646 	fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
647 				  (lsreq->rqstlen + lsreq->rsplen),
648 				  DMA_BIDIRECTIONAL);
649 
650 	nvme_fc_ctrl_put(ctrl);
651 }
652 
653 static int
654 __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
655 		struct nvmefc_ls_req_op *lsop,
656 		void (*done)(struct nvmefc_ls_req *req, int status))
657 {
658 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
659 	unsigned long flags;
660 	int ret;
661 
662 	if (!nvme_fc_ctrl_get(ctrl))
663 		return -ESHUTDOWN;
664 
665 	lsreq->done = done;
666 	lsop->ctrl = ctrl;
667 	lsop->req_queued = false;
668 	INIT_LIST_HEAD(&lsop->lsreq_list);
669 	init_completion(&lsop->ls_done);
670 
671 	lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
672 				  lsreq->rqstlen + lsreq->rsplen,
673 				  DMA_BIDIRECTIONAL);
674 	if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
675 		nvme_fc_ctrl_put(ctrl);
676 		dev_err(ctrl->dev,
677 			"els request command failed EFAULT.\n");
678 		return -EFAULT;
679 	}
680 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
681 
682 	spin_lock_irqsave(&ctrl->lock, flags);
683 
684 	list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
685 
686 	lsop->req_queued = true;
687 
688 	spin_unlock_irqrestore(&ctrl->lock, flags);
689 
690 	ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
691 					&ctrl->rport->remoteport, lsreq);
692 	if (ret)
693 		lsop->ls_error = ret;
694 
695 	return ret;
696 }
697 
698 static void
699 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
700 {
701 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
702 
703 	lsop->ls_error = status;
704 	complete(&lsop->ls_done);
705 }
706 
707 static int
708 nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
709 {
710 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
711 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
712 	int ret;
713 
714 	ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
715 
716 	if (!ret)
717 		/*
718 		 * No timeout/not interruptible as we need the struct
719 		 * to exist until the lldd calls us back. Thus mandate
720 		 * wait until driver calls back. lldd responsible for
721 		 * the timeout action
722 		 */
723 		wait_for_completion(&lsop->ls_done);
724 
725 	__nvme_fc_finish_ls_req(ctrl, lsop);
726 
727 	if (ret) {
728 		dev_err(ctrl->dev,
729 			"ls request command failed (%d).\n", ret);
730 		return ret;
731 	}
732 
733 	/* ACC or RJT payload ? */
734 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
735 		return -ENXIO;
736 
737 	return 0;
738 }
739 
740 static void
741 nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
742 		struct nvmefc_ls_req_op *lsop,
743 		void (*done)(struct nvmefc_ls_req *req, int status))
744 {
745 	int ret;
746 
747 	ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
748 
749 	/* don't wait for completion */
750 
751 	if (ret)
752 		done(&lsop->ls_req, ret);
753 }
754 
755 /* Validation Error indexes into the string table below */
756 enum {
757 	VERR_NO_ERROR		= 0,
758 	VERR_LSACC		= 1,
759 	VERR_LSDESC_RQST	= 2,
760 	VERR_LSDESC_RQST_LEN	= 3,
761 	VERR_ASSOC_ID		= 4,
762 	VERR_ASSOC_ID_LEN	= 5,
763 	VERR_CONN_ID		= 6,
764 	VERR_CONN_ID_LEN	= 7,
765 	VERR_CR_ASSOC		= 8,
766 	VERR_CR_ASSOC_ACC_LEN	= 9,
767 	VERR_CR_CONN		= 10,
768 	VERR_CR_CONN_ACC_LEN	= 11,
769 	VERR_DISCONN		= 12,
770 	VERR_DISCONN_ACC_LEN	= 13,
771 };
772 
773 static char *validation_errors[] = {
774 	"OK",
775 	"Not LS_ACC",
776 	"Not LSDESC_RQST",
777 	"Bad LSDESC_RQST Length",
778 	"Not Association ID",
779 	"Bad Association ID Length",
780 	"Not Connection ID",
781 	"Bad Connection ID Length",
782 	"Not CR_ASSOC Rqst",
783 	"Bad CR_ASSOC ACC Length",
784 	"Not CR_CONN Rqst",
785 	"Bad CR_CONN ACC Length",
786 	"Not Disconnect Rqst",
787 	"Bad Disconnect ACC Length",
788 };
789 
790 static int
791 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
792 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
793 {
794 	struct nvmefc_ls_req_op *lsop;
795 	struct nvmefc_ls_req *lsreq;
796 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
797 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
798 	int ret, fcret = 0;
799 
800 	lsop = kzalloc((sizeof(*lsop) +
801 			 ctrl->lport->ops->lsrqst_priv_sz +
802 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
803 	if (!lsop) {
804 		ret = -ENOMEM;
805 		goto out_no_memory;
806 	}
807 	lsreq = &lsop->ls_req;
808 
809 	lsreq->private = (void *)&lsop[1];
810 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
811 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
812 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
813 
814 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
815 	assoc_rqst->desc_list_len =
816 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
817 
818 	assoc_rqst->assoc_cmd.desc_tag =
819 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
820 	assoc_rqst->assoc_cmd.desc_len =
821 			fcnvme_lsdesc_len(
822 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
823 
824 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
825 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
826 	/* Linux supports only Dynamic controllers */
827 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
828 	memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
829 		min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
830 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
831 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
832 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
833 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
834 
835 	lsop->queue = queue;
836 	lsreq->rqstaddr = assoc_rqst;
837 	lsreq->rqstlen = sizeof(*assoc_rqst);
838 	lsreq->rspaddr = assoc_acc;
839 	lsreq->rsplen = sizeof(*assoc_acc);
840 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
841 
842 	ret = nvme_fc_send_ls_req(ctrl, lsop);
843 	if (ret)
844 		goto out_free_buffer;
845 
846 	/* process connect LS completion */
847 
848 	/* validate the ACC response */
849 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
850 		fcret = VERR_LSACC;
851 	if (assoc_acc->hdr.desc_list_len !=
852 			fcnvme_lsdesc_len(
853 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
854 		fcret = VERR_CR_ASSOC_ACC_LEN;
855 	if (assoc_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
856 		fcret = VERR_LSDESC_RQST;
857 	else if (assoc_acc->hdr.rqst.desc_len !=
858 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
859 		fcret = VERR_LSDESC_RQST_LEN;
860 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
861 		fcret = VERR_CR_ASSOC;
862 	else if (assoc_acc->associd.desc_tag !=
863 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
864 		fcret = VERR_ASSOC_ID;
865 	else if (assoc_acc->associd.desc_len !=
866 			fcnvme_lsdesc_len(
867 				sizeof(struct fcnvme_lsdesc_assoc_id)))
868 		fcret = VERR_ASSOC_ID_LEN;
869 	else if (assoc_acc->connectid.desc_tag !=
870 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
871 		fcret = VERR_CONN_ID;
872 	else if (assoc_acc->connectid.desc_len !=
873 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
874 		fcret = VERR_CONN_ID_LEN;
875 
876 	if (fcret) {
877 		ret = -EBADF;
878 		dev_err(ctrl->dev,
879 			"q %d connect failed: %s\n",
880 			queue->qnum, validation_errors[fcret]);
881 	} else {
882 		ctrl->association_id =
883 			be64_to_cpu(assoc_acc->associd.association_id);
884 		queue->connection_id =
885 			be64_to_cpu(assoc_acc->connectid.connection_id);
886 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
887 	}
888 
889 out_free_buffer:
890 	kfree(lsop);
891 out_no_memory:
892 	if (ret)
893 		dev_err(ctrl->dev,
894 			"queue %d connect admin queue failed (%d).\n",
895 			queue->qnum, ret);
896 	return ret;
897 }
898 
899 static int
900 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
901 			u16 qsize, u16 ersp_ratio)
902 {
903 	struct nvmefc_ls_req_op *lsop;
904 	struct nvmefc_ls_req *lsreq;
905 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
906 	struct fcnvme_ls_cr_conn_acc *conn_acc;
907 	int ret, fcret = 0;
908 
909 	lsop = kzalloc((sizeof(*lsop) +
910 			 ctrl->lport->ops->lsrqst_priv_sz +
911 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
912 	if (!lsop) {
913 		ret = -ENOMEM;
914 		goto out_no_memory;
915 	}
916 	lsreq = &lsop->ls_req;
917 
918 	lsreq->private = (void *)&lsop[1];
919 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
920 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
921 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
922 
923 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
924 	conn_rqst->desc_list_len = cpu_to_be32(
925 				sizeof(struct fcnvme_lsdesc_assoc_id) +
926 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
927 
928 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
929 	conn_rqst->associd.desc_len =
930 			fcnvme_lsdesc_len(
931 				sizeof(struct fcnvme_lsdesc_assoc_id));
932 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
933 	conn_rqst->connect_cmd.desc_tag =
934 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
935 	conn_rqst->connect_cmd.desc_len =
936 			fcnvme_lsdesc_len(
937 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
938 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
939 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
940 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
941 
942 	lsop->queue = queue;
943 	lsreq->rqstaddr = conn_rqst;
944 	lsreq->rqstlen = sizeof(*conn_rqst);
945 	lsreq->rspaddr = conn_acc;
946 	lsreq->rsplen = sizeof(*conn_acc);
947 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
948 
949 	ret = nvme_fc_send_ls_req(ctrl, lsop);
950 	if (ret)
951 		goto out_free_buffer;
952 
953 	/* process connect LS completion */
954 
955 	/* validate the ACC response */
956 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
957 		fcret = VERR_LSACC;
958 	if (conn_acc->hdr.desc_list_len !=
959 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
960 		fcret = VERR_CR_CONN_ACC_LEN;
961 	if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
962 		fcret = VERR_LSDESC_RQST;
963 	else if (conn_acc->hdr.rqst.desc_len !=
964 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
965 		fcret = VERR_LSDESC_RQST_LEN;
966 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
967 		fcret = VERR_CR_CONN;
968 	else if (conn_acc->connectid.desc_tag !=
969 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
970 		fcret = VERR_CONN_ID;
971 	else if (conn_acc->connectid.desc_len !=
972 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
973 		fcret = VERR_CONN_ID_LEN;
974 
975 	if (fcret) {
976 		ret = -EBADF;
977 		dev_err(ctrl->dev,
978 			"q %d connect failed: %s\n",
979 			queue->qnum, validation_errors[fcret]);
980 	} else {
981 		queue->connection_id =
982 			be64_to_cpu(conn_acc->connectid.connection_id);
983 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
984 	}
985 
986 out_free_buffer:
987 	kfree(lsop);
988 out_no_memory:
989 	if (ret)
990 		dev_err(ctrl->dev,
991 			"queue %d connect command failed (%d).\n",
992 			queue->qnum, ret);
993 	return ret;
994 }
995 
996 static void
997 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
998 {
999 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1000 	struct nvme_fc_ctrl *ctrl = lsop->ctrl;
1001 
1002 	__nvme_fc_finish_ls_req(ctrl, lsop);
1003 
1004 	if (status)
1005 		dev_err(ctrl->dev,
1006 			"disconnect assoc ls request command failed (%d).\n",
1007 			status);
1008 
1009 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1010 
1011 	kfree(lsop);
1012 }
1013 
1014 /*
1015  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1016  * the FC-NVME Association.  Terminating the association also
1017  * terminates the FC-NVME connections (per queue, both admin and io
1018  * queues) that are part of the association. E.g. things are torn
1019  * down, and the related FC-NVME Association ID and Connection IDs
1020  * become invalid.
1021  *
1022  * The behavior of the fc-nvme initiator is such that it's
1023  * understanding of the association and connections will implicitly
1024  * be torn down. The action is implicit as it may be due to a loss of
1025  * connectivity with the fc-nvme target, so you may never get a
1026  * response even if you tried.  As such, the action of this routine
1027  * is to asynchronously send the LS, ignore any results of the LS, and
1028  * continue on with terminating the association. If the fc-nvme target
1029  * is present and receives the LS, it too can tear down.
1030  */
1031 static void
1032 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1033 {
1034 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1035 	struct fcnvme_ls_disconnect_acc *discon_acc;
1036 	struct nvmefc_ls_req_op *lsop;
1037 	struct nvmefc_ls_req *lsreq;
1038 
1039 	lsop = kzalloc((sizeof(*lsop) +
1040 			 ctrl->lport->ops->lsrqst_priv_sz +
1041 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1042 			GFP_KERNEL);
1043 	if (!lsop)
1044 		/* couldn't sent it... too bad */
1045 		return;
1046 
1047 	lsreq = &lsop->ls_req;
1048 
1049 	lsreq->private = (void *)&lsop[1];
1050 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1051 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1052 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1053 
1054 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1055 	discon_rqst->desc_list_len = cpu_to_be32(
1056 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1057 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1058 
1059 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1060 	discon_rqst->associd.desc_len =
1061 			fcnvme_lsdesc_len(
1062 				sizeof(struct fcnvme_lsdesc_assoc_id));
1063 
1064 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1065 
1066 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1067 						FCNVME_LSDESC_DISCONN_CMD);
1068 	discon_rqst->discon_cmd.desc_len =
1069 			fcnvme_lsdesc_len(
1070 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1071 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1072 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1073 
1074 	lsreq->rqstaddr = discon_rqst;
1075 	lsreq->rqstlen = sizeof(*discon_rqst);
1076 	lsreq->rspaddr = discon_acc;
1077 	lsreq->rsplen = sizeof(*discon_acc);
1078 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1079 
1080 	nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
1081 
1082 	/* only meaningful part to terminating the association */
1083 	ctrl->association_id = 0;
1084 }
1085 
1086 
1087 /* *********************** NVME Ctrl Routines **************************** */
1088 
1089 
1090 static int
1091 nvme_fc_reinit_request(void *data, struct request *rq)
1092 {
1093 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1094 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1095 
1096 	memset(cmdiu, 0, sizeof(*cmdiu));
1097 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1098 	cmdiu->fc_id = NVME_CMD_FC_ID;
1099 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1100 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1101 
1102 	return 0;
1103 }
1104 
1105 static void
1106 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1107 		struct nvme_fc_fcp_op *op)
1108 {
1109 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1110 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1111 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1112 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1113 
1114 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1115 }
1116 
1117 static void
1118 nvme_fc_exit_request(void *data, struct request *rq,
1119 				unsigned int hctx_idx, unsigned int rq_idx)
1120 {
1121 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1122 
1123 	return __nvme_fc_exit_request(data, op);
1124 }
1125 
1126 static void
1127 nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1128 {
1129 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1130 	int i;
1131 
1132 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1133 		if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1134 			continue;
1135 		__nvme_fc_exit_request(ctrl, aen_op);
1136 		nvme_fc_ctrl_put(ctrl);
1137 	}
1138 }
1139 
1140 void
1141 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1142 {
1143 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1144 	struct request *rq = op->rq;
1145 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1146 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1147 	struct nvme_fc_queue *queue = op->queue;
1148 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1149 	u16 status;
1150 
1151 	/*
1152 	 * WARNING:
1153 	 * The current linux implementation of a nvme controller
1154 	 * allocates a single tag set for all io queues and sizes
1155 	 * the io queues to fully hold all possible tags. Thus, the
1156 	 * implementation does not reference or care about the sqhd
1157 	 * value as it never needs to use the sqhd/sqtail pointers
1158 	 * for submission pacing.
1159 	 *
1160 	 * This affects the FC-NVME implementation in two ways:
1161 	 * 1) As the value doesn't matter, we don't need to waste
1162 	 *    cycles extracting it from ERSPs and stamping it in the
1163 	 *    cases where the transport fabricates CQEs on successful
1164 	 *    completions.
1165 	 * 2) The FC-NVME implementation requires that delivery of
1166 	 *    ERSP completions are to go back to the nvme layer in order
1167 	 *    relative to the rsn, such that the sqhd value will always
1168 	 *    be "in order" for the nvme layer. As the nvme layer in
1169 	 *    linux doesn't care about sqhd, there's no need to return
1170 	 *    them in order.
1171 	 *
1172 	 * Additionally:
1173 	 * As the core nvme layer in linux currently does not look at
1174 	 * every field in the cqe - in cases where the FC transport must
1175 	 * fabricate a CQE, the following fields will not be set as they
1176 	 * are not referenced:
1177 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1178 	 */
1179 
1180 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1181 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1182 
1183 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1184 		status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1185 	else
1186 		status = freq->status;
1187 
1188 	/*
1189 	 * For the linux implementation, if we have an unsuccesful
1190 	 * status, they blk-mq layer can typically be called with the
1191 	 * non-zero status and the content of the cqe isn't important.
1192 	 */
1193 	if (status)
1194 		goto done;
1195 
1196 	/*
1197 	 * command completed successfully relative to the wire
1198 	 * protocol. However, validate anything received and
1199 	 * extract the status and result from the cqe (create it
1200 	 * where necessary).
1201 	 */
1202 
1203 	switch (freq->rcv_rsplen) {
1204 
1205 	case 0:
1206 	case NVME_FC_SIZEOF_ZEROS_RSP:
1207 		/*
1208 		 * No response payload or 12 bytes of payload (which
1209 		 * should all be zeros) are considered successful and
1210 		 * no payload in the CQE by the transport.
1211 		 */
1212 		if (freq->transferred_length !=
1213 			be32_to_cpu(op->cmd_iu.data_len)) {
1214 			status = -EIO;
1215 			goto done;
1216 		}
1217 		op->nreq.result.u64 = 0;
1218 		break;
1219 
1220 	case sizeof(struct nvme_fc_ersp_iu):
1221 		/*
1222 		 * The ERSP IU contains a full completion with CQE.
1223 		 * Validate ERSP IU and look at cqe.
1224 		 */
1225 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1226 					(freq->rcv_rsplen / 4) ||
1227 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1228 					freq->transferred_length ||
1229 			     op->rqno != le16_to_cpu(cqe->command_id))) {
1230 			status = -EIO;
1231 			goto done;
1232 		}
1233 		op->nreq.result = cqe->result;
1234 		status = le16_to_cpu(cqe->status) >> 1;
1235 		break;
1236 
1237 	default:
1238 		status = -EIO;
1239 		goto done;
1240 	}
1241 
1242 done:
1243 	if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1244 		nvme_complete_async_event(&queue->ctrl->ctrl, status,
1245 					&op->nreq.result);
1246 		nvme_fc_ctrl_put(ctrl);
1247 		return;
1248 	}
1249 
1250 	blk_mq_complete_request(rq, status);
1251 }
1252 
1253 static int
1254 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1255 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1256 		struct request *rq, u32 rqno)
1257 {
1258 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1259 	int ret = 0;
1260 
1261 	memset(op, 0, sizeof(*op));
1262 	op->fcp_req.cmdaddr = &op->cmd_iu;
1263 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1264 	op->fcp_req.rspaddr = &op->rsp_iu;
1265 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1266 	op->fcp_req.done = nvme_fc_fcpio_done;
1267 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1268 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1269 	op->ctrl = ctrl;
1270 	op->queue = queue;
1271 	op->rq = rq;
1272 	op->rqno = rqno;
1273 
1274 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1275 	cmdiu->fc_id = NVME_CMD_FC_ID;
1276 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1277 
1278 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1279 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1280 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1281 		dev_err(ctrl->dev,
1282 			"FCP Op failed - cmdiu dma mapping failed.\n");
1283 		ret = EFAULT;
1284 		goto out_on_error;
1285 	}
1286 
1287 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1288 				&op->rsp_iu, sizeof(op->rsp_iu),
1289 				DMA_FROM_DEVICE);
1290 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1291 		dev_err(ctrl->dev,
1292 			"FCP Op failed - rspiu dma mapping failed.\n");
1293 		ret = EFAULT;
1294 	}
1295 
1296 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1297 out_on_error:
1298 	return ret;
1299 }
1300 
1301 static int
1302 nvme_fc_init_request(void *data, struct request *rq,
1303 				unsigned int hctx_idx, unsigned int rq_idx,
1304 				unsigned int numa_node)
1305 {
1306 	struct nvme_fc_ctrl *ctrl = data;
1307 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1308 	struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1309 
1310 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1311 }
1312 
1313 static int
1314 nvme_fc_init_admin_request(void *data, struct request *rq,
1315 				unsigned int hctx_idx, unsigned int rq_idx,
1316 				unsigned int numa_node)
1317 {
1318 	struct nvme_fc_ctrl *ctrl = data;
1319 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1320 	struct nvme_fc_queue *queue = &ctrl->queues[0];
1321 
1322 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1323 }
1324 
1325 static int
1326 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1327 {
1328 	struct nvme_fc_fcp_op *aen_op;
1329 	struct nvme_fc_cmd_iu *cmdiu;
1330 	struct nvme_command *sqe;
1331 	int i, ret;
1332 
1333 	aen_op = ctrl->aen_ops;
1334 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1335 		cmdiu = &aen_op->cmd_iu;
1336 		sqe = &cmdiu->sqe;
1337 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1338 				aen_op, (struct request *)NULL,
1339 				(AEN_CMDID_BASE + i));
1340 		if (ret)
1341 			return ret;
1342 
1343 		memset(sqe, 0, sizeof(*sqe));
1344 		sqe->common.opcode = nvme_admin_async_event;
1345 		sqe->common.command_id = AEN_CMDID_BASE + i;
1346 	}
1347 	return 0;
1348 }
1349 
1350 
1351 static inline void
1352 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1353 		unsigned int qidx)
1354 {
1355 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1356 
1357 	hctx->driver_data = queue;
1358 	queue->hctx = hctx;
1359 }
1360 
1361 static int
1362 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1363 		unsigned int hctx_idx)
1364 {
1365 	struct nvme_fc_ctrl *ctrl = data;
1366 
1367 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1368 
1369 	return 0;
1370 }
1371 
1372 static int
1373 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1374 		unsigned int hctx_idx)
1375 {
1376 	struct nvme_fc_ctrl *ctrl = data;
1377 
1378 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1379 
1380 	return 0;
1381 }
1382 
1383 static void
1384 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1385 {
1386 	struct nvme_fc_queue *queue;
1387 
1388 	queue = &ctrl->queues[idx];
1389 	memset(queue, 0, sizeof(*queue));
1390 	queue->ctrl = ctrl;
1391 	queue->qnum = idx;
1392 	atomic_set(&queue->csn, 1);
1393 	queue->dev = ctrl->dev;
1394 
1395 	if (idx > 0)
1396 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1397 	else
1398 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1399 
1400 	queue->queue_size = queue_size;
1401 
1402 	/*
1403 	 * Considered whether we should allocate buffers for all SQEs
1404 	 * and CQEs and dma map them - mapping their respective entries
1405 	 * into the request structures (kernel vm addr and dma address)
1406 	 * thus the driver could use the buffers/mappings directly.
1407 	 * It only makes sense if the LLDD would use them for its
1408 	 * messaging api. It's very unlikely most adapter api's would use
1409 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1410 	 * structures were used instead.
1411 	 */
1412 }
1413 
1414 /*
1415  * This routine terminates a queue at the transport level.
1416  * The transport has already ensured that all outstanding ios on
1417  * the queue have been terminated.
1418  * The transport will send a Disconnect LS request to terminate
1419  * the queue's connection. Termination of the admin queue will also
1420  * terminate the association at the target.
1421  */
1422 static void
1423 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1424 {
1425 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1426 		return;
1427 
1428 	/*
1429 	 * Current implementation never disconnects a single queue.
1430 	 * It always terminates a whole association. So there is never
1431 	 * a disconnect(queue) LS sent to the target.
1432 	 */
1433 
1434 	queue->connection_id = 0;
1435 	clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1436 }
1437 
1438 static void
1439 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1440 	struct nvme_fc_queue *queue, unsigned int qidx)
1441 {
1442 	if (ctrl->lport->ops->delete_queue)
1443 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1444 				queue->lldd_handle);
1445 	queue->lldd_handle = NULL;
1446 }
1447 
1448 static void
1449 nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1450 {
1451 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1452 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1453 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1454 	nvme_fc_free_queue(&ctrl->queues[0]);
1455 }
1456 
1457 static void
1458 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1459 {
1460 	int i;
1461 
1462 	for (i = 1; i < ctrl->queue_count; i++)
1463 		nvme_fc_free_queue(&ctrl->queues[i]);
1464 }
1465 
1466 static int
1467 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1468 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1469 {
1470 	int ret = 0;
1471 
1472 	queue->lldd_handle = NULL;
1473 	if (ctrl->lport->ops->create_queue)
1474 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1475 				qidx, qsize, &queue->lldd_handle);
1476 
1477 	return ret;
1478 }
1479 
1480 static void
1481 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1482 {
1483 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1484 	int i;
1485 
1486 	for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1487 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1488 }
1489 
1490 static int
1491 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1492 {
1493 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1494 	int i, ret;
1495 
1496 	for (i = 1; i < ctrl->queue_count; i++, queue++) {
1497 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1498 		if (ret)
1499 			goto delete_queues;
1500 	}
1501 
1502 	return 0;
1503 
1504 delete_queues:
1505 	for (; i >= 0; i--)
1506 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1507 	return ret;
1508 }
1509 
1510 static int
1511 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1512 {
1513 	int i, ret = 0;
1514 
1515 	for (i = 1; i < ctrl->queue_count; i++) {
1516 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1517 					(qsize / 5));
1518 		if (ret)
1519 			break;
1520 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1521 		if (ret)
1522 			break;
1523 	}
1524 
1525 	return ret;
1526 }
1527 
1528 static void
1529 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1530 {
1531 	int i;
1532 
1533 	for (i = 1; i < ctrl->queue_count; i++)
1534 		nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1535 }
1536 
1537 static void
1538 nvme_fc_ctrl_free(struct kref *ref)
1539 {
1540 	struct nvme_fc_ctrl *ctrl =
1541 		container_of(ref, struct nvme_fc_ctrl, ref);
1542 	unsigned long flags;
1543 
1544 	if (ctrl->state != FCCTRL_INIT) {
1545 		/* remove from rport list */
1546 		spin_lock_irqsave(&ctrl->rport->lock, flags);
1547 		list_del(&ctrl->ctrl_list);
1548 		spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1549 	}
1550 
1551 	put_device(ctrl->dev);
1552 	nvme_fc_rport_put(ctrl->rport);
1553 
1554 	kfree(ctrl->queues);
1555 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1556 	nvmf_free_options(ctrl->ctrl.opts);
1557 	kfree(ctrl);
1558 }
1559 
1560 static void
1561 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1562 {
1563 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1564 }
1565 
1566 static int
1567 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1568 {
1569 	return kref_get_unless_zero(&ctrl->ref);
1570 }
1571 
1572 /*
1573  * All accesses from nvme core layer done - can now free the
1574  * controller. Called after last nvme_put_ctrl() call
1575  */
1576 static void
1577 nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1578 {
1579 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1580 
1581 	WARN_ON(nctrl != &ctrl->ctrl);
1582 
1583 	/*
1584 	 * Tear down the association, which will generate link
1585 	 * traffic to terminate connections
1586 	 */
1587 
1588 	if (ctrl->state != FCCTRL_INIT) {
1589 		/* send a Disconnect(association) LS to fc-nvme target */
1590 		nvme_fc_xmt_disconnect_assoc(ctrl);
1591 
1592 		if (ctrl->ctrl.tagset) {
1593 			blk_cleanup_queue(ctrl->ctrl.connect_q);
1594 			blk_mq_free_tag_set(&ctrl->tag_set);
1595 			nvme_fc_delete_hw_io_queues(ctrl);
1596 			nvme_fc_free_io_queues(ctrl);
1597 		}
1598 
1599 		nvme_fc_exit_aen_ops(ctrl);
1600 
1601 		nvme_fc_destroy_admin_queue(ctrl);
1602 	}
1603 
1604 	nvme_fc_ctrl_put(ctrl);
1605 }
1606 
1607 
1608 static int
1609 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1610 {
1611 	int state;
1612 
1613 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1614 	if (state != FCPOP_STATE_ACTIVE) {
1615 		atomic_set(&op->state, state);
1616 		return -ECANCELED; /* fail */
1617 	}
1618 
1619 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1620 					&ctrl->rport->remoteport,
1621 					op->queue->lldd_handle,
1622 					&op->fcp_req);
1623 
1624 	return 0;
1625 }
1626 
1627 enum blk_eh_timer_return
1628 nvme_fc_timeout(struct request *rq, bool reserved)
1629 {
1630 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1631 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1632 	int ret;
1633 
1634 	if (reserved)
1635 		return BLK_EH_RESET_TIMER;
1636 
1637 	ret = __nvme_fc_abort_op(ctrl, op);
1638 	if (ret)
1639 		/* io wasn't active to abort consider it done */
1640 		return BLK_EH_HANDLED;
1641 
1642 	/*
1643 	 * TODO: force a controller reset
1644 	 *   when that happens, queues will be torn down and outstanding
1645 	 *   ios will be terminated, and the above abort, on a single io
1646 	 *   will no longer be needed.
1647 	 */
1648 
1649 	return BLK_EH_HANDLED;
1650 }
1651 
1652 static int
1653 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1654 		struct nvme_fc_fcp_op *op)
1655 {
1656 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1657 	enum dma_data_direction dir;
1658 	int ret;
1659 
1660 	freq->sg_cnt = 0;
1661 
1662 	if (!blk_rq_payload_bytes(rq))
1663 		return 0;
1664 
1665 	freq->sg_table.sgl = freq->first_sgl;
1666 	ret = sg_alloc_table_chained(&freq->sg_table,
1667 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1668 	if (ret)
1669 		return -ENOMEM;
1670 
1671 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1672 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1673 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1674 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1675 				op->nents, dir);
1676 	if (unlikely(freq->sg_cnt <= 0)) {
1677 		sg_free_table_chained(&freq->sg_table, true);
1678 		freq->sg_cnt = 0;
1679 		return -EFAULT;
1680 	}
1681 
1682 	/*
1683 	 * TODO: blk_integrity_rq(rq)  for DIF
1684 	 */
1685 	return 0;
1686 }
1687 
1688 static void
1689 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1690 		struct nvme_fc_fcp_op *op)
1691 {
1692 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1693 
1694 	if (!freq->sg_cnt)
1695 		return;
1696 
1697 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1698 				((rq_data_dir(rq) == WRITE) ?
1699 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
1700 
1701 	nvme_cleanup_cmd(rq);
1702 
1703 	sg_free_table_chained(&freq->sg_table, true);
1704 
1705 	freq->sg_cnt = 0;
1706 }
1707 
1708 /*
1709  * In FC, the queue is a logical thing. At transport connect, the target
1710  * creates its "queue" and returns a handle that is to be given to the
1711  * target whenever it posts something to the corresponding SQ.  When an
1712  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1713  * command contained within the SQE, an io, and assigns a FC exchange
1714  * to it. The SQE and the associated SQ handle are sent in the initial
1715  * CMD IU sents on the exchange. All transfers relative to the io occur
1716  * as part of the exchange.  The CQE is the last thing for the io,
1717  * which is transferred (explicitly or implicitly) with the RSP IU
1718  * sent on the exchange. After the CQE is received, the FC exchange is
1719  * terminaed and the Exchange may be used on a different io.
1720  *
1721  * The transport to LLDD api has the transport making a request for a
1722  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1723  * resource and transfers the command. The LLDD will then process all
1724  * steps to complete the io. Upon completion, the transport done routine
1725  * is called.
1726  *
1727  * So - while the operation is outstanding to the LLDD, there is a link
1728  * level FC exchange resource that is also outstanding. This must be
1729  * considered in all cleanup operations.
1730  */
1731 static int
1732 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1733 	struct nvme_fc_fcp_op *op, u32 data_len,
1734 	enum nvmefc_fcp_datadir	io_dir)
1735 {
1736 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1737 	struct nvme_command *sqe = &cmdiu->sqe;
1738 	u32 csn;
1739 	int ret;
1740 
1741 	if (!nvme_fc_ctrl_get(ctrl))
1742 		return BLK_MQ_RQ_QUEUE_ERROR;
1743 
1744 	/* format the FC-NVME CMD IU and fcp_req */
1745 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1746 	csn = atomic_inc_return(&queue->csn);
1747 	cmdiu->csn = cpu_to_be32(csn);
1748 	cmdiu->data_len = cpu_to_be32(data_len);
1749 	switch (io_dir) {
1750 	case NVMEFC_FCP_WRITE:
1751 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1752 		break;
1753 	case NVMEFC_FCP_READ:
1754 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1755 		break;
1756 	case NVMEFC_FCP_NODATA:
1757 		cmdiu->flags = 0;
1758 		break;
1759 	}
1760 	op->fcp_req.payload_length = data_len;
1761 	op->fcp_req.io_dir = io_dir;
1762 	op->fcp_req.transferred_length = 0;
1763 	op->fcp_req.rcv_rsplen = 0;
1764 	op->fcp_req.status = 0;
1765 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1766 
1767 	/*
1768 	 * validate per fabric rules, set fields mandated by fabric spec
1769 	 * as well as those by FC-NVME spec.
1770 	 */
1771 	WARN_ON_ONCE(sqe->common.metadata);
1772 	WARN_ON_ONCE(sqe->common.dptr.prp1);
1773 	WARN_ON_ONCE(sqe->common.dptr.prp2);
1774 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
1775 
1776 	/*
1777 	 * format SQE DPTR field per FC-NVME rules
1778 	 *    type=data block descr; subtype=offset;
1779 	 *    offset is currently 0.
1780 	 */
1781 	sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1782 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1783 	sqe->rw.dptr.sgl.addr = 0;
1784 
1785 	/* odd that we set the command_id - should come from nvme-fabrics */
1786 	WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1787 
1788 	if (op->rq) {				/* skipped on aens */
1789 		ret = nvme_fc_map_data(ctrl, op->rq, op);
1790 		if (ret < 0) {
1791 			dev_err(queue->ctrl->ctrl.device,
1792 			     "Failed to map data (%d)\n", ret);
1793 			nvme_cleanup_cmd(op->rq);
1794 			nvme_fc_ctrl_put(ctrl);
1795 			return (ret == -ENOMEM || ret == -EAGAIN) ?
1796 				BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1797 		}
1798 	}
1799 
1800 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1801 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
1802 
1803 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1804 
1805 	if (op->rq)
1806 		blk_mq_start_request(op->rq);
1807 
1808 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1809 					&ctrl->rport->remoteport,
1810 					queue->lldd_handle, &op->fcp_req);
1811 
1812 	if (ret) {
1813 		dev_err(ctrl->dev,
1814 			"Send nvme command failed - lldd returned %d.\n", ret);
1815 
1816 		if (op->rq) {			/* normal request */
1817 			nvme_fc_unmap_data(ctrl, op->rq, op);
1818 			nvme_cleanup_cmd(op->rq);
1819 		}
1820 		/* else - aen. no cleanup needed */
1821 
1822 		nvme_fc_ctrl_put(ctrl);
1823 
1824 		if (ret != -EBUSY)
1825 			return BLK_MQ_RQ_QUEUE_ERROR;
1826 
1827 		if (op->rq) {
1828 			blk_mq_stop_hw_queues(op->rq->q);
1829 			blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1830 		}
1831 		return BLK_MQ_RQ_QUEUE_BUSY;
1832 	}
1833 
1834 	return BLK_MQ_RQ_QUEUE_OK;
1835 }
1836 
1837 static int
1838 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1839 			const struct blk_mq_queue_data *bd)
1840 {
1841 	struct nvme_ns *ns = hctx->queue->queuedata;
1842 	struct nvme_fc_queue *queue = hctx->driver_data;
1843 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
1844 	struct request *rq = bd->rq;
1845 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1846 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1847 	struct nvme_command *sqe = &cmdiu->sqe;
1848 	enum nvmefc_fcp_datadir	io_dir;
1849 	u32 data_len;
1850 	int ret;
1851 
1852 	ret = nvme_setup_cmd(ns, rq, sqe);
1853 	if (ret)
1854 		return ret;
1855 
1856 	data_len = blk_rq_payload_bytes(rq);
1857 	if (data_len)
1858 		io_dir = ((rq_data_dir(rq) == WRITE) ?
1859 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1860 	else
1861 		io_dir = NVMEFC_FCP_NODATA;
1862 
1863 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1864 }
1865 
1866 static struct blk_mq_tags *
1867 nvme_fc_tagset(struct nvme_fc_queue *queue)
1868 {
1869 	if (queue->qnum == 0)
1870 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
1871 
1872 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
1873 }
1874 
1875 static int
1876 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1877 
1878 {
1879 	struct nvme_fc_queue *queue = hctx->driver_data;
1880 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
1881 	struct request *req;
1882 	struct nvme_fc_fcp_op *op;
1883 
1884 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1885 	if (!req) {
1886 		dev_err(queue->ctrl->ctrl.device,
1887 			 "tag 0x%x on QNum %#x not found\n",
1888 			tag, queue->qnum);
1889 		return 0;
1890 	}
1891 
1892 	op = blk_mq_rq_to_pdu(req);
1893 
1894 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1895 		 (ctrl->lport->ops->poll_queue))
1896 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1897 						 queue->lldd_handle);
1898 
1899 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1900 }
1901 
1902 static void
1903 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1904 {
1905 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1906 	struct nvme_fc_fcp_op *aen_op;
1907 	int ret;
1908 
1909 	if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1910 		return;
1911 
1912 	aen_op = &ctrl->aen_ops[aer_idx];
1913 
1914 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1915 					NVMEFC_FCP_NODATA);
1916 	if (ret)
1917 		dev_err(ctrl->ctrl.device,
1918 			"failed async event work [%d]\n", aer_idx);
1919 }
1920 
1921 static void
1922 nvme_fc_complete_rq(struct request *rq)
1923 {
1924 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1925 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1926 	int error = 0, state;
1927 
1928 	state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1929 
1930 	nvme_cleanup_cmd(rq);
1931 
1932 	nvme_fc_unmap_data(ctrl, rq, op);
1933 
1934 	if (unlikely(rq->errors)) {
1935 		if (nvme_req_needs_retry(rq, rq->errors)) {
1936 			nvme_requeue_req(rq);
1937 			return;
1938 		}
1939 
1940 		if (blk_rq_is_passthrough(rq))
1941 			error = rq->errors;
1942 		else
1943 			error = nvme_error_status(rq->errors);
1944 	}
1945 
1946 	nvme_fc_ctrl_put(ctrl);
1947 
1948 	blk_mq_end_request(rq, error);
1949 }
1950 
1951 static struct blk_mq_ops nvme_fc_mq_ops = {
1952 	.queue_rq	= nvme_fc_queue_rq,
1953 	.complete	= nvme_fc_complete_rq,
1954 	.init_request	= nvme_fc_init_request,
1955 	.exit_request	= nvme_fc_exit_request,
1956 	.reinit_request	= nvme_fc_reinit_request,
1957 	.init_hctx	= nvme_fc_init_hctx,
1958 	.poll		= nvme_fc_poll,
1959 	.timeout	= nvme_fc_timeout,
1960 };
1961 
1962 static struct blk_mq_ops nvme_fc_admin_mq_ops = {
1963 	.queue_rq	= nvme_fc_queue_rq,
1964 	.complete	= nvme_fc_complete_rq,
1965 	.init_request	= nvme_fc_init_admin_request,
1966 	.exit_request	= nvme_fc_exit_request,
1967 	.reinit_request	= nvme_fc_reinit_request,
1968 	.init_hctx	= nvme_fc_init_admin_hctx,
1969 	.timeout	= nvme_fc_timeout,
1970 };
1971 
1972 static int
1973 nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
1974 {
1975 	u32 segs;
1976 	int error;
1977 
1978 	nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
1979 
1980 	error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
1981 				NVME_FC_AQ_BLKMQ_DEPTH,
1982 				(NVME_FC_AQ_BLKMQ_DEPTH / 4));
1983 	if (error)
1984 		return error;
1985 
1986 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1987 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
1988 	ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
1989 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
1990 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1991 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
1992 					(SG_CHUNK_SIZE *
1993 						sizeof(struct scatterlist)) +
1994 					ctrl->lport->ops->fcprqst_priv_sz;
1995 	ctrl->admin_tag_set.driver_data = ctrl;
1996 	ctrl->admin_tag_set.nr_hw_queues = 1;
1997 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1998 
1999 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2000 	if (error)
2001 		goto out_free_queue;
2002 
2003 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2004 	if (IS_ERR(ctrl->ctrl.admin_q)) {
2005 		error = PTR_ERR(ctrl->ctrl.admin_q);
2006 		goto out_free_tagset;
2007 	}
2008 
2009 	error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2010 				NVME_FC_AQ_BLKMQ_DEPTH);
2011 	if (error)
2012 		goto out_cleanup_queue;
2013 
2014 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
2015 	if (error)
2016 		goto out_delete_hw_queue;
2017 
2018 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2019 	if (error) {
2020 		dev_err(ctrl->ctrl.device,
2021 			"prop_get NVME_REG_CAP failed\n");
2022 		goto out_delete_hw_queue;
2023 	}
2024 
2025 	ctrl->ctrl.sqsize =
2026 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2027 
2028 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2029 	if (error)
2030 		goto out_delete_hw_queue;
2031 
2032 	segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2033 			ctrl->lport->ops->max_sgl_segments);
2034 	ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2035 
2036 	error = nvme_init_identify(&ctrl->ctrl);
2037 	if (error)
2038 		goto out_delete_hw_queue;
2039 
2040 	nvme_start_keep_alive(&ctrl->ctrl);
2041 
2042 	return 0;
2043 
2044 out_delete_hw_queue:
2045 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2046 out_cleanup_queue:
2047 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2048 out_free_tagset:
2049 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2050 out_free_queue:
2051 	nvme_fc_free_queue(&ctrl->queues[0]);
2052 	return error;
2053 }
2054 
2055 /*
2056  * This routine is used by the transport when it needs to find active
2057  * io on a queue that is to be terminated. The transport uses
2058  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2059  * this routine to kill them on a 1 by 1 basis.
2060  *
2061  * As FC allocates FC exchange for each io, the transport must contact
2062  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2063  * After terminating the exchange the LLDD will call the transport's
2064  * normal io done path for the request, but it will have an aborted
2065  * status. The done path will return the io request back to the block
2066  * layer with an error status.
2067  */
2068 static void
2069 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2070 {
2071 	struct nvme_ctrl *nctrl = data;
2072 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2073 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2074 int status;
2075 
2076 	if (!blk_mq_request_started(req))
2077 		return;
2078 
2079 	/* this performs an ABTS-LS on the FC exchange for the io */
2080 	status = __nvme_fc_abort_op(ctrl, op);
2081 	/*
2082 	 * if __nvme_fc_abort_op failed: io wasn't active to abort
2083 	 * consider it done. Assume completion path already completing
2084 	 * in parallel
2085 	 */
2086 	if (status)
2087 		/* io wasn't active to abort consider it done */
2088 		/* assume completion path already completing in parallel */
2089 		return;
2090 }
2091 
2092 
2093 /*
2094  * This routine stops operation of the controller. Admin and IO queues
2095  * are stopped, outstanding ios on them terminated, and the nvme ctrl
2096  * is shutdown.
2097  */
2098 static void
2099 nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2100 {
2101 	/*
2102 	 * If io queues are present, stop them and terminate all outstanding
2103 	 * ios on them. As FC allocates FC exchange for each io, the
2104 	 * transport must contact the LLDD to terminate the exchange,
2105 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2106 	 * to tell us what io's are busy and invoke a transport routine
2107 	 * to kill them with the LLDD.  After terminating the exchange
2108 	 * the LLDD will call the transport's normal io done path, but it
2109 	 * will have an aborted status. The done path will return the
2110 	 * io requests back to the block layer as part of normal completions
2111 	 * (but with error status).
2112 	 */
2113 	if (ctrl->queue_count > 1) {
2114 		nvme_stop_queues(&ctrl->ctrl);
2115 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2116 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2117 	}
2118 
2119 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2120 		nvme_shutdown_ctrl(&ctrl->ctrl);
2121 
2122 	/*
2123 	 * now clean up the admin queue. Same thing as above.
2124 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2125 	 * terminate the exchanges.
2126 	 */
2127 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2128 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2129 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2130 }
2131 
2132 /*
2133  * Called to teardown an association.
2134  * May be called with association fully in place or partially in place.
2135  */
2136 static void
2137 __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2138 {
2139 	nvme_stop_keep_alive(&ctrl->ctrl);
2140 
2141 	/* stop and terminate ios on admin and io queues */
2142 	nvme_fc_shutdown_ctrl(ctrl);
2143 
2144 	/*
2145 	 * tear down the controller
2146 	 * This will result in the last reference on the nvme ctrl to
2147 	 * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2148 	 * From there, the transport will tear down it's logical queues and
2149 	 * association.
2150 	 */
2151 	nvme_uninit_ctrl(&ctrl->ctrl);
2152 
2153 	nvme_put_ctrl(&ctrl->ctrl);
2154 }
2155 
2156 static void
2157 nvme_fc_del_ctrl_work(struct work_struct *work)
2158 {
2159 	struct nvme_fc_ctrl *ctrl =
2160 			container_of(work, struct nvme_fc_ctrl, delete_work);
2161 
2162 	__nvme_fc_remove_ctrl(ctrl);
2163 }
2164 
2165 static int
2166 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2167 {
2168 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2169 		return -EBUSY;
2170 
2171 	if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2172 		return -EBUSY;
2173 
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Request from nvme core layer to delete the controller
2179  */
2180 static int
2181 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2182 {
2183 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2184 	struct nvme_fc_rport *rport = ctrl->rport;
2185 	unsigned long flags;
2186 	int ret;
2187 
2188 	spin_lock_irqsave(&rport->lock, flags);
2189 	ret = __nvme_fc_del_ctrl(ctrl);
2190 	spin_unlock_irqrestore(&rport->lock, flags);
2191 	if (ret)
2192 		return ret;
2193 
2194 	flush_work(&ctrl->delete_work);
2195 
2196 	return 0;
2197 }
2198 
2199 static int
2200 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2201 {
2202 	return -EIO;
2203 }
2204 
2205 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2206 	.name			= "fc",
2207 	.module			= THIS_MODULE,
2208 	.is_fabrics		= true,
2209 	.reg_read32		= nvmf_reg_read32,
2210 	.reg_read64		= nvmf_reg_read64,
2211 	.reg_write32		= nvmf_reg_write32,
2212 	.reset_ctrl		= nvme_fc_reset_nvme_ctrl,
2213 	.free_ctrl		= nvme_fc_free_nvme_ctrl,
2214 	.submit_async_event	= nvme_fc_submit_async_event,
2215 	.delete_ctrl		= nvme_fc_del_nvme_ctrl,
2216 	.get_subsysnqn		= nvmf_get_subsysnqn,
2217 	.get_address		= nvmf_get_address,
2218 };
2219 
2220 static int
2221 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2222 {
2223 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2224 	int ret;
2225 
2226 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2227 	if (ret) {
2228 		dev_info(ctrl->ctrl.device,
2229 			"set_queue_count failed: %d\n", ret);
2230 		return ret;
2231 	}
2232 
2233 	ctrl->queue_count = opts->nr_io_queues + 1;
2234 	if (!opts->nr_io_queues)
2235 		return 0;
2236 
2237 	dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2238 			opts->nr_io_queues);
2239 
2240 	nvme_fc_init_io_queues(ctrl);
2241 
2242 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2243 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2244 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2245 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2246 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2247 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2248 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2249 					(SG_CHUNK_SIZE *
2250 						sizeof(struct scatterlist)) +
2251 					ctrl->lport->ops->fcprqst_priv_sz;
2252 	ctrl->tag_set.driver_data = ctrl;
2253 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2254 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2255 
2256 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2257 	if (ret)
2258 		return ret;
2259 
2260 	ctrl->ctrl.tagset = &ctrl->tag_set;
2261 
2262 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2263 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2264 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2265 		goto out_free_tag_set;
2266 	}
2267 
2268 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2269 	if (ret)
2270 		goto out_cleanup_blk_queue;
2271 
2272 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2273 	if (ret)
2274 		goto out_delete_hw_queues;
2275 
2276 	return 0;
2277 
2278 out_delete_hw_queues:
2279 	nvme_fc_delete_hw_io_queues(ctrl);
2280 out_cleanup_blk_queue:
2281 	nvme_stop_keep_alive(&ctrl->ctrl);
2282 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2283 out_free_tag_set:
2284 	blk_mq_free_tag_set(&ctrl->tag_set);
2285 	nvme_fc_free_io_queues(ctrl);
2286 
2287 	/* force put free routine to ignore io queues */
2288 	ctrl->ctrl.tagset = NULL;
2289 
2290 	return ret;
2291 }
2292 
2293 
2294 static struct nvme_ctrl *
2295 __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2296 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2297 {
2298 	struct nvme_fc_ctrl *ctrl;
2299 	unsigned long flags;
2300 	int ret, idx;
2301 	bool changed;
2302 
2303 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2304 	if (!ctrl) {
2305 		ret = -ENOMEM;
2306 		goto out_fail;
2307 	}
2308 
2309 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2310 	if (idx < 0) {
2311 		ret = -ENOSPC;
2312 		goto out_free_ctrl;
2313 	}
2314 
2315 	ctrl->ctrl.opts = opts;
2316 	INIT_LIST_HEAD(&ctrl->ctrl_list);
2317 	INIT_LIST_HEAD(&ctrl->ls_req_list);
2318 	ctrl->lport = lport;
2319 	ctrl->rport = rport;
2320 	ctrl->dev = lport->dev;
2321 	ctrl->state = FCCTRL_INIT;
2322 	ctrl->cnum = idx;
2323 
2324 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2325 	if (ret)
2326 		goto out_free_ida;
2327 
2328 	get_device(ctrl->dev);
2329 	kref_init(&ctrl->ref);
2330 
2331 	INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2332 	spin_lock_init(&ctrl->lock);
2333 
2334 	/* io queue count */
2335 	ctrl->queue_count = min_t(unsigned int,
2336 				opts->nr_io_queues,
2337 				lport->ops->max_hw_queues);
2338 	opts->nr_io_queues = ctrl->queue_count;	/* so opts has valid value */
2339 	ctrl->queue_count++;	/* +1 for admin queue */
2340 
2341 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2342 	ctrl->ctrl.kato = opts->kato;
2343 
2344 	ret = -ENOMEM;
2345 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2346 				GFP_KERNEL);
2347 	if (!ctrl->queues)
2348 		goto out_uninit_ctrl;
2349 
2350 	ret = nvme_fc_configure_admin_queue(ctrl);
2351 	if (ret)
2352 		goto out_uninit_ctrl;
2353 
2354 	/* sanity checks */
2355 
2356 	/* FC-NVME does not have other data in the capsule */
2357 	if (ctrl->ctrl.icdoff) {
2358 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2359 				ctrl->ctrl.icdoff);
2360 		goto out_remove_admin_queue;
2361 	}
2362 
2363 	/* FC-NVME supports normal SGL Data Block Descriptors */
2364 
2365 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2366 		/* warn if maxcmd is lower than queue_size */
2367 		dev_warn(ctrl->ctrl.device,
2368 			"queue_size %zu > ctrl maxcmd %u, reducing "
2369 			"to queue_size\n",
2370 			opts->queue_size, ctrl->ctrl.maxcmd);
2371 		opts->queue_size = ctrl->ctrl.maxcmd;
2372 	}
2373 
2374 	ret = nvme_fc_init_aen_ops(ctrl);
2375 	if (ret)
2376 		goto out_exit_aen_ops;
2377 
2378 	if (ctrl->queue_count > 1) {
2379 		ret = nvme_fc_create_io_queues(ctrl);
2380 		if (ret)
2381 			goto out_exit_aen_ops;
2382 	}
2383 
2384 	spin_lock_irqsave(&ctrl->lock, flags);
2385 	ctrl->state = FCCTRL_ACTIVE;
2386 	spin_unlock_irqrestore(&ctrl->lock, flags);
2387 
2388 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2389 	WARN_ON_ONCE(!changed);
2390 
2391 	dev_info(ctrl->ctrl.device,
2392 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2393 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2394 
2395 	kref_get(&ctrl->ctrl.kref);
2396 
2397 	spin_lock_irqsave(&rport->lock, flags);
2398 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2399 	spin_unlock_irqrestore(&rport->lock, flags);
2400 
2401 	if (opts->nr_io_queues) {
2402 		nvme_queue_scan(&ctrl->ctrl);
2403 		nvme_queue_async_events(&ctrl->ctrl);
2404 	}
2405 
2406 	return &ctrl->ctrl;
2407 
2408 out_exit_aen_ops:
2409 	nvme_fc_exit_aen_ops(ctrl);
2410 out_remove_admin_queue:
2411 	/* send a Disconnect(association) LS to fc-nvme target */
2412 	nvme_fc_xmt_disconnect_assoc(ctrl);
2413 	nvme_stop_keep_alive(&ctrl->ctrl);
2414 	nvme_fc_destroy_admin_queue(ctrl);
2415 out_uninit_ctrl:
2416 	nvme_uninit_ctrl(&ctrl->ctrl);
2417 	nvme_put_ctrl(&ctrl->ctrl);
2418 	if (ret > 0)
2419 		ret = -EIO;
2420 	/* exit via here will follow ctlr ref point callbacks to free */
2421 	return ERR_PTR(ret);
2422 
2423 out_free_ida:
2424 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2425 out_free_ctrl:
2426 	kfree(ctrl);
2427 out_fail:
2428 	nvme_fc_rport_put(rport);
2429 	/* exit via here doesn't follow ctlr ref points */
2430 	return ERR_PTR(ret);
2431 }
2432 
2433 enum {
2434 	FCT_TRADDR_ERR		= 0,
2435 	FCT_TRADDR_WWNN		= 1 << 0,
2436 	FCT_TRADDR_WWPN		= 1 << 1,
2437 };
2438 
2439 struct nvmet_fc_traddr {
2440 	u64	nn;
2441 	u64	pn;
2442 };
2443 
2444 static const match_table_t traddr_opt_tokens = {
2445 	{ FCT_TRADDR_WWNN,	"nn-%s"		},
2446 	{ FCT_TRADDR_WWPN,	"pn-%s"		},
2447 	{ FCT_TRADDR_ERR,	NULL		}
2448 };
2449 
2450 static int
2451 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2452 {
2453 	substring_t args[MAX_OPT_ARGS];
2454 	char *options, *o, *p;
2455 	int token, ret = 0;
2456 	u64 token64;
2457 
2458 	options = o = kstrdup(buf, GFP_KERNEL);
2459 	if (!options)
2460 		return -ENOMEM;
2461 
2462 	while ((p = strsep(&o, ":\n")) != NULL) {
2463 		if (!*p)
2464 			continue;
2465 
2466 		token = match_token(p, traddr_opt_tokens, args);
2467 		switch (token) {
2468 		case FCT_TRADDR_WWNN:
2469 			if (match_u64(args, &token64)) {
2470 				ret = -EINVAL;
2471 				goto out;
2472 			}
2473 			traddr->nn = token64;
2474 			break;
2475 		case FCT_TRADDR_WWPN:
2476 			if (match_u64(args, &token64)) {
2477 				ret = -EINVAL;
2478 				goto out;
2479 			}
2480 			traddr->pn = token64;
2481 			break;
2482 		default:
2483 			pr_warn("unknown traddr token or missing value '%s'\n",
2484 					p);
2485 			ret = -EINVAL;
2486 			goto out;
2487 		}
2488 	}
2489 
2490 out:
2491 	kfree(options);
2492 	return ret;
2493 }
2494 
2495 static struct nvme_ctrl *
2496 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2497 {
2498 	struct nvme_fc_lport *lport;
2499 	struct nvme_fc_rport *rport;
2500 	struct nvmet_fc_traddr laddr = { 0L, 0L };
2501 	struct nvmet_fc_traddr raddr = { 0L, 0L };
2502 	unsigned long flags;
2503 	int ret;
2504 
2505 	ret = nvme_fc_parse_address(&raddr, opts->traddr);
2506 	if (ret || !raddr.nn || !raddr.pn)
2507 		return ERR_PTR(-EINVAL);
2508 
2509 	ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2510 	if (ret || !laddr.nn || !laddr.pn)
2511 		return ERR_PTR(-EINVAL);
2512 
2513 	/* find the host and remote ports to connect together */
2514 	spin_lock_irqsave(&nvme_fc_lock, flags);
2515 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2516 		if (lport->localport.node_name != laddr.nn ||
2517 		    lport->localport.port_name != laddr.pn)
2518 			continue;
2519 
2520 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
2521 			if (rport->remoteport.node_name != raddr.nn ||
2522 			    rport->remoteport.port_name != raddr.pn)
2523 				continue;
2524 
2525 			/* if fail to get reference fall through. Will error */
2526 			if (!nvme_fc_rport_get(rport))
2527 				break;
2528 
2529 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
2530 
2531 			return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2532 		}
2533 	}
2534 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
2535 
2536 	return ERR_PTR(-ENOENT);
2537 }
2538 
2539 
2540 static struct nvmf_transport_ops nvme_fc_transport = {
2541 	.name		= "fc",
2542 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2543 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY,
2544 	.create_ctrl	= nvme_fc_create_ctrl,
2545 };
2546 
2547 static int __init nvme_fc_init_module(void)
2548 {
2549 	nvme_fc_wq = create_workqueue("nvme_fc_wq");
2550 	if (!nvme_fc_wq)
2551 		return -ENOMEM;
2552 
2553 	return nvmf_register_transport(&nvme_fc_transport);
2554 }
2555 
2556 static void __exit nvme_fc_exit_module(void)
2557 {
2558 	/* sanity check - all lports should be removed */
2559 	if (!list_empty(&nvme_fc_lport_list))
2560 		pr_warn("%s: localport list not empty\n", __func__);
2561 
2562 	nvmf_unregister_transport(&nvme_fc_transport);
2563 
2564 	destroy_workqueue(nvme_fc_wq);
2565 
2566 	ida_destroy(&nvme_fc_local_port_cnt);
2567 	ida_destroy(&nvme_fc_ctrl_cnt);
2568 }
2569 
2570 module_init(nvme_fc_init_module);
2571 module_exit(nvme_fc_exit_module);
2572 
2573 MODULE_LICENSE("GPL v2");
2574