xref: /openbmc/linux/drivers/nvme/host/fc.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 enum nvme_fc_queue_flags {
23 	NVME_FC_Q_CONNECTED = 0,
24 	NVME_FC_Q_LIVE,
25 };
26 
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
28 
29 struct nvme_fc_queue {
30 	struct nvme_fc_ctrl	*ctrl;
31 	struct device		*dev;
32 	struct blk_mq_hw_ctx	*hctx;
33 	void			*lldd_handle;
34 	size_t			cmnd_capsule_len;
35 	u32			qnum;
36 	u32			rqcnt;
37 	u32			seqno;
38 
39 	u64			connection_id;
40 	atomic_t		csn;
41 
42 	unsigned long		flags;
43 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
44 
45 enum nvme_fcop_flags {
46 	FCOP_FLAGS_TERMIO	= (1 << 0),
47 	FCOP_FLAGS_AEN		= (1 << 1),
48 };
49 
50 struct nvmefc_ls_req_op {
51 	struct nvmefc_ls_req	ls_req;
52 
53 	struct nvme_fc_rport	*rport;
54 	struct nvme_fc_queue	*queue;
55 	struct request		*rq;
56 	u32			flags;
57 
58 	int			ls_error;
59 	struct completion	ls_done;
60 	struct list_head	lsreq_list;	/* rport->ls_req_list */
61 	bool			req_queued;
62 };
63 
64 enum nvme_fcpop_state {
65 	FCPOP_STATE_UNINIT	= 0,
66 	FCPOP_STATE_IDLE	= 1,
67 	FCPOP_STATE_ACTIVE	= 2,
68 	FCPOP_STATE_ABORTED	= 3,
69 	FCPOP_STATE_COMPLETE	= 4,
70 };
71 
72 struct nvme_fc_fcp_op {
73 	struct nvme_request	nreq;		/*
74 						 * nvme/host/core.c
75 						 * requires this to be
76 						 * the 1st element in the
77 						 * private structure
78 						 * associated with the
79 						 * request.
80 						 */
81 	struct nvmefc_fcp_req	fcp_req;
82 
83 	struct nvme_fc_ctrl	*ctrl;
84 	struct nvme_fc_queue	*queue;
85 	struct request		*rq;
86 
87 	atomic_t		state;
88 	u32			flags;
89 	u32			rqno;
90 	u32			nents;
91 
92 	struct nvme_fc_cmd_iu	cmd_iu;
93 	struct nvme_fc_ersp_iu	rsp_iu;
94 };
95 
96 struct nvme_fcp_op_w_sgl {
97 	struct nvme_fc_fcp_op	op;
98 	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
99 	uint8_t			priv[0];
100 };
101 
102 struct nvme_fc_lport {
103 	struct nvme_fc_local_port	localport;
104 
105 	struct ida			endp_cnt;
106 	struct list_head		port_list;	/* nvme_fc_port_list */
107 	struct list_head		endp_list;
108 	struct device			*dev;	/* physical device for dma */
109 	struct nvme_fc_port_template	*ops;
110 	struct kref			ref;
111 	atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
113 
114 struct nvme_fc_rport {
115 	struct nvme_fc_remote_port	remoteport;
116 
117 	struct list_head		endp_list; /* for lport->endp_list */
118 	struct list_head		ctrl_list;
119 	struct list_head		ls_req_list;
120 	struct list_head		disc_list;
121 	struct device			*dev;	/* physical device for dma */
122 	struct nvme_fc_lport		*lport;
123 	spinlock_t			lock;
124 	struct kref			ref;
125 	atomic_t                        act_ctrl_cnt;
126 	unsigned long			dev_loss_end;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 enum nvme_fcctrl_flags {
130 	FCCTRL_TERMIO		= (1 << 0),
131 };
132 
133 struct nvme_fc_ctrl {
134 	spinlock_t		lock;
135 	struct nvme_fc_queue	*queues;
136 	struct device		*dev;
137 	struct nvme_fc_lport	*lport;
138 	struct nvme_fc_rport	*rport;
139 	u32			cnum;
140 
141 	bool			ioq_live;
142 	bool			assoc_active;
143 	atomic_t		err_work_active;
144 	u64			association_id;
145 
146 	struct list_head	ctrl_list;	/* rport->ctrl_list */
147 
148 	struct blk_mq_tag_set	admin_tag_set;
149 	struct blk_mq_tag_set	tag_set;
150 
151 	struct delayed_work	connect_work;
152 	struct work_struct	err_work;
153 
154 	struct kref		ref;
155 	u32			flags;
156 	u32			iocnt;
157 	wait_queue_head_t	ioabort_wait;
158 
159 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
160 
161 	struct nvme_ctrl	ctrl;
162 };
163 
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169 
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173 	return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175 
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179 	return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181 
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187 
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193 
194 
195 
196 /* *************************** Globals **************************** */
197 
198 
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200 
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204 
205 static struct workqueue_struct *nvme_fc_wq;
206 
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
209 
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct device *fc_udev_device;
215 
216 
217 /* *********************** FC-NVME Port Management ************************ */
218 
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 			struct nvme_fc_queue *, unsigned int);
221 
222 static void
223 nvme_fc_free_lport(struct kref *ref)
224 {
225 	struct nvme_fc_lport *lport =
226 		container_of(ref, struct nvme_fc_lport, ref);
227 	unsigned long flags;
228 
229 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 	WARN_ON(!list_empty(&lport->endp_list));
231 
232 	/* remove from transport list */
233 	spin_lock_irqsave(&nvme_fc_lock, flags);
234 	list_del(&lport->port_list);
235 	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236 		complete(&nvme_fc_unload_proceed);
237 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
238 
239 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 	ida_destroy(&lport->endp_cnt);
241 
242 	put_device(lport->dev);
243 
244 	kfree(lport);
245 }
246 
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250 	kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252 
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256 	return kref_get_unless_zero(&lport->ref);
257 }
258 
259 
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 			struct nvme_fc_port_template *ops,
263 			struct device *dev)
264 {
265 	struct nvme_fc_lport *lport;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&nvme_fc_lock, flags);
269 
270 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 		if (lport->localport.node_name != pinfo->node_name ||
272 		    lport->localport.port_name != pinfo->port_name)
273 			continue;
274 
275 		if (lport->dev != dev) {
276 			lport = ERR_PTR(-EXDEV);
277 			goto out_done;
278 		}
279 
280 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 			lport = ERR_PTR(-EEXIST);
282 			goto out_done;
283 		}
284 
285 		if (!nvme_fc_lport_get(lport)) {
286 			/*
287 			 * fails if ref cnt already 0. If so,
288 			 * act as if lport already deleted
289 			 */
290 			lport = NULL;
291 			goto out_done;
292 		}
293 
294 		/* resume the lport */
295 
296 		lport->ops = ops;
297 		lport->localport.port_role = pinfo->port_role;
298 		lport->localport.port_id = pinfo->port_id;
299 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
300 
301 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
302 
303 		return lport;
304 	}
305 
306 	lport = NULL;
307 
308 out_done:
309 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
310 
311 	return lport;
312 }
313 
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @portptr:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 			struct nvme_fc_port_template *template,
334 			struct device *dev,
335 			struct nvme_fc_local_port **portptr)
336 {
337 	struct nvme_fc_lport *newrec;
338 	unsigned long flags;
339 	int ret, idx;
340 
341 	if (!template->localport_delete || !template->remoteport_delete ||
342 	    !template->ls_req || !template->fcp_io ||
343 	    !template->ls_abort || !template->fcp_abort ||
344 	    !template->max_hw_queues || !template->max_sgl_segments ||
345 	    !template->max_dif_sgl_segments || !template->dma_boundary ||
346 	    !template->module) {
347 		ret = -EINVAL;
348 		goto out_reghost_failed;
349 	}
350 
351 	/*
352 	 * look to see if there is already a localport that had been
353 	 * deregistered and in the process of waiting for all the
354 	 * references to fully be removed.  If the references haven't
355 	 * expired, we can simply re-enable the localport. Remoteports
356 	 * and controller reconnections should resume naturally.
357 	 */
358 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
359 
360 	/* found an lport, but something about its state is bad */
361 	if (IS_ERR(newrec)) {
362 		ret = PTR_ERR(newrec);
363 		goto out_reghost_failed;
364 
365 	/* found existing lport, which was resumed */
366 	} else if (newrec) {
367 		*portptr = &newrec->localport;
368 		return 0;
369 	}
370 
371 	/* nothing found - allocate a new localport struct */
372 
373 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
374 			 GFP_KERNEL);
375 	if (!newrec) {
376 		ret = -ENOMEM;
377 		goto out_reghost_failed;
378 	}
379 
380 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
381 	if (idx < 0) {
382 		ret = -ENOSPC;
383 		goto out_fail_kfree;
384 	}
385 
386 	if (!get_device(dev) && dev) {
387 		ret = -ENODEV;
388 		goto out_ida_put;
389 	}
390 
391 	INIT_LIST_HEAD(&newrec->port_list);
392 	INIT_LIST_HEAD(&newrec->endp_list);
393 	kref_init(&newrec->ref);
394 	atomic_set(&newrec->act_rport_cnt, 0);
395 	newrec->ops = template;
396 	newrec->dev = dev;
397 	ida_init(&newrec->endp_cnt);
398 	newrec->localport.private = &newrec[1];
399 	newrec->localport.node_name = pinfo->node_name;
400 	newrec->localport.port_name = pinfo->port_name;
401 	newrec->localport.port_role = pinfo->port_role;
402 	newrec->localport.port_id = pinfo->port_id;
403 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
404 	newrec->localport.port_num = idx;
405 
406 	spin_lock_irqsave(&nvme_fc_lock, flags);
407 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
408 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
409 
410 	if (dev)
411 		dma_set_seg_boundary(dev, template->dma_boundary);
412 
413 	*portptr = &newrec->localport;
414 	return 0;
415 
416 out_ida_put:
417 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
418 out_fail_kfree:
419 	kfree(newrec);
420 out_reghost_failed:
421 	*portptr = NULL;
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
426 
427 /**
428  * nvme_fc_unregister_localport - transport entry point called by an
429  *                              LLDD to deregister/remove a previously
430  *                              registered a NVME host FC port.
431  * @portptr: pointer to the (registered) local port that is to be deregistered.
432  *
433  * Returns:
434  * a completion status. Must be 0 upon success; a negative errno
435  * (ex: -ENXIO) upon failure.
436  */
437 int
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
441 	unsigned long flags;
442 
443 	if (!portptr)
444 		return -EINVAL;
445 
446 	spin_lock_irqsave(&nvme_fc_lock, flags);
447 
448 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
450 		return -EINVAL;
451 	}
452 	portptr->port_state = FC_OBJSTATE_DELETED;
453 
454 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
455 
456 	if (atomic_read(&lport->act_rport_cnt) == 0)
457 		lport->ops->localport_delete(&lport->localport);
458 
459 	nvme_fc_lport_put(lport);
460 
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464 
465 /*
466  * TRADDR strings, per FC-NVME are fixed format:
467  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468  * udev event will only differ by prefix of what field is
469  * being specified:
470  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471  *  19 + 43 + null_fudge = 64 characters
472  */
473 #define FCNVME_TRADDR_LENGTH		64
474 
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477 		struct nvme_fc_rport *rport)
478 {
479 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
480 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
481 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482 
483 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484 		return;
485 
486 	snprintf(hostaddr, sizeof(hostaddr),
487 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488 		lport->localport.node_name, lport->localport.port_name);
489 	snprintf(tgtaddr, sizeof(tgtaddr),
490 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491 		rport->remoteport.node_name, rport->remoteport.port_name);
492 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494 
495 static void
496 nvme_fc_free_rport(struct kref *ref)
497 {
498 	struct nvme_fc_rport *rport =
499 		container_of(ref, struct nvme_fc_rport, ref);
500 	struct nvme_fc_lport *lport =
501 			localport_to_lport(rport->remoteport.localport);
502 	unsigned long flags;
503 
504 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505 	WARN_ON(!list_empty(&rport->ctrl_list));
506 
507 	/* remove from lport list */
508 	spin_lock_irqsave(&nvme_fc_lock, flags);
509 	list_del(&rport->endp_list);
510 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
511 
512 	WARN_ON(!list_empty(&rport->disc_list));
513 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
514 
515 	kfree(rport);
516 
517 	nvme_fc_lport_put(lport);
518 }
519 
520 static void
521 nvme_fc_rport_put(struct nvme_fc_rport *rport)
522 {
523 	kref_put(&rport->ref, nvme_fc_free_rport);
524 }
525 
526 static int
527 nvme_fc_rport_get(struct nvme_fc_rport *rport)
528 {
529 	return kref_get_unless_zero(&rport->ref);
530 }
531 
532 static void
533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
534 {
535 	switch (ctrl->ctrl.state) {
536 	case NVME_CTRL_NEW:
537 	case NVME_CTRL_CONNECTING:
538 		/*
539 		 * As all reconnects were suppressed, schedule a
540 		 * connect.
541 		 */
542 		dev_info(ctrl->ctrl.device,
543 			"NVME-FC{%d}: connectivity re-established. "
544 			"Attempting reconnect\n", ctrl->cnum);
545 
546 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
547 		break;
548 
549 	case NVME_CTRL_RESETTING:
550 		/*
551 		 * Controller is already in the process of terminating the
552 		 * association. No need to do anything further. The reconnect
553 		 * step will naturally occur after the reset completes.
554 		 */
555 		break;
556 
557 	default:
558 		/* no action to take - let it delete */
559 		break;
560 	}
561 }
562 
563 static struct nvme_fc_rport *
564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
565 				struct nvme_fc_port_info *pinfo)
566 {
567 	struct nvme_fc_rport *rport;
568 	struct nvme_fc_ctrl *ctrl;
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&nvme_fc_lock, flags);
572 
573 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
574 		if (rport->remoteport.node_name != pinfo->node_name ||
575 		    rport->remoteport.port_name != pinfo->port_name)
576 			continue;
577 
578 		if (!nvme_fc_rport_get(rport)) {
579 			rport = ERR_PTR(-ENOLCK);
580 			goto out_done;
581 		}
582 
583 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
584 
585 		spin_lock_irqsave(&rport->lock, flags);
586 
587 		/* has it been unregistered */
588 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
589 			/* means lldd called us twice */
590 			spin_unlock_irqrestore(&rport->lock, flags);
591 			nvme_fc_rport_put(rport);
592 			return ERR_PTR(-ESTALE);
593 		}
594 
595 		rport->remoteport.port_role = pinfo->port_role;
596 		rport->remoteport.port_id = pinfo->port_id;
597 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
598 		rport->dev_loss_end = 0;
599 
600 		/*
601 		 * kick off a reconnect attempt on all associations to the
602 		 * remote port. A successful reconnects will resume i/o.
603 		 */
604 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
605 			nvme_fc_resume_controller(ctrl);
606 
607 		spin_unlock_irqrestore(&rport->lock, flags);
608 
609 		return rport;
610 	}
611 
612 	rport = NULL;
613 
614 out_done:
615 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
616 
617 	return rport;
618 }
619 
620 static inline void
621 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
622 			struct nvme_fc_port_info *pinfo)
623 {
624 	if (pinfo->dev_loss_tmo)
625 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
626 	else
627 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
628 }
629 
630 /**
631  * nvme_fc_register_remoteport - transport entry point called by an
632  *                              LLDD to register the existence of a NVME
633  *                              subsystem FC port on its fabric.
634  * @localport: pointer to the (registered) local port that the remote
635  *             subsystem port is connected to.
636  * @pinfo:     pointer to information about the port to be registered
637  * @portptr:   pointer to a remote port pointer. Upon success, the routine
638  *             will allocate a nvme_fc_remote_port structure and place its
639  *             address in the remote port pointer. Upon failure, remote port
640  *             pointer will be set to 0.
641  *
642  * Returns:
643  * a completion status. Must be 0 upon success; a negative errno
644  * (ex: -ENXIO) upon failure.
645  */
646 int
647 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
648 				struct nvme_fc_port_info *pinfo,
649 				struct nvme_fc_remote_port **portptr)
650 {
651 	struct nvme_fc_lport *lport = localport_to_lport(localport);
652 	struct nvme_fc_rport *newrec;
653 	unsigned long flags;
654 	int ret, idx;
655 
656 	if (!nvme_fc_lport_get(lport)) {
657 		ret = -ESHUTDOWN;
658 		goto out_reghost_failed;
659 	}
660 
661 	/*
662 	 * look to see if there is already a remoteport that is waiting
663 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
664 	 * If so, transition to it and reconnect.
665 	 */
666 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
667 
668 	/* found an rport, but something about its state is bad */
669 	if (IS_ERR(newrec)) {
670 		ret = PTR_ERR(newrec);
671 		goto out_lport_put;
672 
673 	/* found existing rport, which was resumed */
674 	} else if (newrec) {
675 		nvme_fc_lport_put(lport);
676 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
677 		nvme_fc_signal_discovery_scan(lport, newrec);
678 		*portptr = &newrec->remoteport;
679 		return 0;
680 	}
681 
682 	/* nothing found - allocate a new remoteport struct */
683 
684 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
685 			 GFP_KERNEL);
686 	if (!newrec) {
687 		ret = -ENOMEM;
688 		goto out_lport_put;
689 	}
690 
691 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
692 	if (idx < 0) {
693 		ret = -ENOSPC;
694 		goto out_kfree_rport;
695 	}
696 
697 	INIT_LIST_HEAD(&newrec->endp_list);
698 	INIT_LIST_HEAD(&newrec->ctrl_list);
699 	INIT_LIST_HEAD(&newrec->ls_req_list);
700 	INIT_LIST_HEAD(&newrec->disc_list);
701 	kref_init(&newrec->ref);
702 	atomic_set(&newrec->act_ctrl_cnt, 0);
703 	spin_lock_init(&newrec->lock);
704 	newrec->remoteport.localport = &lport->localport;
705 	newrec->dev = lport->dev;
706 	newrec->lport = lport;
707 	newrec->remoteport.private = &newrec[1];
708 	newrec->remoteport.port_role = pinfo->port_role;
709 	newrec->remoteport.node_name = pinfo->node_name;
710 	newrec->remoteport.port_name = pinfo->port_name;
711 	newrec->remoteport.port_id = pinfo->port_id;
712 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
713 	newrec->remoteport.port_num = idx;
714 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
715 
716 	spin_lock_irqsave(&nvme_fc_lock, flags);
717 	list_add_tail(&newrec->endp_list, &lport->endp_list);
718 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
719 
720 	nvme_fc_signal_discovery_scan(lport, newrec);
721 
722 	*portptr = &newrec->remoteport;
723 	return 0;
724 
725 out_kfree_rport:
726 	kfree(newrec);
727 out_lport_put:
728 	nvme_fc_lport_put(lport);
729 out_reghost_failed:
730 	*portptr = NULL;
731 	return ret;
732 }
733 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
734 
735 static int
736 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
737 {
738 	struct nvmefc_ls_req_op *lsop;
739 	unsigned long flags;
740 
741 restart:
742 	spin_lock_irqsave(&rport->lock, flags);
743 
744 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
745 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
746 			lsop->flags |= FCOP_FLAGS_TERMIO;
747 			spin_unlock_irqrestore(&rport->lock, flags);
748 			rport->lport->ops->ls_abort(&rport->lport->localport,
749 						&rport->remoteport,
750 						&lsop->ls_req);
751 			goto restart;
752 		}
753 	}
754 	spin_unlock_irqrestore(&rport->lock, flags);
755 
756 	return 0;
757 }
758 
759 static void
760 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
761 {
762 	dev_info(ctrl->ctrl.device,
763 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
764 		"Reconnect", ctrl->cnum);
765 
766 	switch (ctrl->ctrl.state) {
767 	case NVME_CTRL_NEW:
768 	case NVME_CTRL_LIVE:
769 		/*
770 		 * Schedule a controller reset. The reset will terminate the
771 		 * association and schedule the reconnect timer.  Reconnects
772 		 * will be attempted until either the ctlr_loss_tmo
773 		 * (max_retries * connect_delay) expires or the remoteport's
774 		 * dev_loss_tmo expires.
775 		 */
776 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
777 			dev_warn(ctrl->ctrl.device,
778 				"NVME-FC{%d}: Couldn't schedule reset.\n",
779 				ctrl->cnum);
780 			nvme_delete_ctrl(&ctrl->ctrl);
781 		}
782 		break;
783 
784 	case NVME_CTRL_CONNECTING:
785 		/*
786 		 * The association has already been terminated and the
787 		 * controller is attempting reconnects.  No need to do anything
788 		 * futher.  Reconnects will be attempted until either the
789 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
790 		 * remoteport's dev_loss_tmo expires.
791 		 */
792 		break;
793 
794 	case NVME_CTRL_RESETTING:
795 		/*
796 		 * Controller is already in the process of terminating the
797 		 * association.  No need to do anything further. The reconnect
798 		 * step will kick in naturally after the association is
799 		 * terminated.
800 		 */
801 		break;
802 
803 	case NVME_CTRL_DELETING:
804 	default:
805 		/* no action to take - let it delete */
806 		break;
807 	}
808 }
809 
810 /**
811  * nvme_fc_unregister_remoteport - transport entry point called by an
812  *                              LLDD to deregister/remove a previously
813  *                              registered a NVME subsystem FC port.
814  * @portptr: pointer to the (registered) remote port that is to be
815  *           deregistered.
816  *
817  * Returns:
818  * a completion status. Must be 0 upon success; a negative errno
819  * (ex: -ENXIO) upon failure.
820  */
821 int
822 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
823 {
824 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
825 	struct nvme_fc_ctrl *ctrl;
826 	unsigned long flags;
827 
828 	if (!portptr)
829 		return -EINVAL;
830 
831 	spin_lock_irqsave(&rport->lock, flags);
832 
833 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
834 		spin_unlock_irqrestore(&rport->lock, flags);
835 		return -EINVAL;
836 	}
837 	portptr->port_state = FC_OBJSTATE_DELETED;
838 
839 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
840 
841 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
842 		/* if dev_loss_tmo==0, dev loss is immediate */
843 		if (!portptr->dev_loss_tmo) {
844 			dev_warn(ctrl->ctrl.device,
845 				"NVME-FC{%d}: controller connectivity lost.\n",
846 				ctrl->cnum);
847 			nvme_delete_ctrl(&ctrl->ctrl);
848 		} else
849 			nvme_fc_ctrl_connectivity_loss(ctrl);
850 	}
851 
852 	spin_unlock_irqrestore(&rport->lock, flags);
853 
854 	nvme_fc_abort_lsops(rport);
855 
856 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
857 		rport->lport->ops->remoteport_delete(portptr);
858 
859 	/*
860 	 * release the reference, which will allow, if all controllers
861 	 * go away, which should only occur after dev_loss_tmo occurs,
862 	 * for the rport to be torn down.
863 	 */
864 	nvme_fc_rport_put(rport);
865 
866 	return 0;
867 }
868 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
869 
870 /**
871  * nvme_fc_rescan_remoteport - transport entry point called by an
872  *                              LLDD to request a nvme device rescan.
873  * @remoteport: pointer to the (registered) remote port that is to be
874  *              rescanned.
875  *
876  * Returns: N/A
877  */
878 void
879 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
880 {
881 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
882 
883 	nvme_fc_signal_discovery_scan(rport->lport, rport);
884 }
885 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
886 
887 int
888 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
889 			u32 dev_loss_tmo)
890 {
891 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
892 	unsigned long flags;
893 
894 	spin_lock_irqsave(&rport->lock, flags);
895 
896 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
897 		spin_unlock_irqrestore(&rport->lock, flags);
898 		return -EINVAL;
899 	}
900 
901 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
902 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
903 
904 	spin_unlock_irqrestore(&rport->lock, flags);
905 
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
909 
910 
911 /* *********************** FC-NVME DMA Handling **************************** */
912 
913 /*
914  * The fcloop device passes in a NULL device pointer. Real LLD's will
915  * pass in a valid device pointer. If NULL is passed to the dma mapping
916  * routines, depending on the platform, it may or may not succeed, and
917  * may crash.
918  *
919  * As such:
920  * Wrapper all the dma routines and check the dev pointer.
921  *
922  * If simple mappings (return just a dma address, we'll noop them,
923  * returning a dma address of 0.
924  *
925  * On more complex mappings (dma_map_sg), a pseudo routine fills
926  * in the scatter list, setting all dma addresses to 0.
927  */
928 
929 static inline dma_addr_t
930 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
931 		enum dma_data_direction dir)
932 {
933 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
934 }
935 
936 static inline int
937 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
938 {
939 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
940 }
941 
942 static inline void
943 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
944 	enum dma_data_direction dir)
945 {
946 	if (dev)
947 		dma_unmap_single(dev, addr, size, dir);
948 }
949 
950 static inline void
951 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
952 		enum dma_data_direction dir)
953 {
954 	if (dev)
955 		dma_sync_single_for_cpu(dev, addr, size, dir);
956 }
957 
958 static inline void
959 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
960 		enum dma_data_direction dir)
961 {
962 	if (dev)
963 		dma_sync_single_for_device(dev, addr, size, dir);
964 }
965 
966 /* pseudo dma_map_sg call */
967 static int
968 fc_map_sg(struct scatterlist *sg, int nents)
969 {
970 	struct scatterlist *s;
971 	int i;
972 
973 	WARN_ON(nents == 0 || sg[0].length == 0);
974 
975 	for_each_sg(sg, s, nents, i) {
976 		s->dma_address = 0L;
977 #ifdef CONFIG_NEED_SG_DMA_LENGTH
978 		s->dma_length = s->length;
979 #endif
980 	}
981 	return nents;
982 }
983 
984 static inline int
985 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
986 		enum dma_data_direction dir)
987 {
988 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
989 }
990 
991 static inline void
992 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
993 		enum dma_data_direction dir)
994 {
995 	if (dev)
996 		dma_unmap_sg(dev, sg, nents, dir);
997 }
998 
999 /* *********************** FC-NVME LS Handling **************************** */
1000 
1001 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1002 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1003 
1004 
1005 static void
1006 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1007 {
1008 	struct nvme_fc_rport *rport = lsop->rport;
1009 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1010 	unsigned long flags;
1011 
1012 	spin_lock_irqsave(&rport->lock, flags);
1013 
1014 	if (!lsop->req_queued) {
1015 		spin_unlock_irqrestore(&rport->lock, flags);
1016 		return;
1017 	}
1018 
1019 	list_del(&lsop->lsreq_list);
1020 
1021 	lsop->req_queued = false;
1022 
1023 	spin_unlock_irqrestore(&rport->lock, flags);
1024 
1025 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1026 				  (lsreq->rqstlen + lsreq->rsplen),
1027 				  DMA_BIDIRECTIONAL);
1028 
1029 	nvme_fc_rport_put(rport);
1030 }
1031 
1032 static int
1033 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1034 		struct nvmefc_ls_req_op *lsop,
1035 		void (*done)(struct nvmefc_ls_req *req, int status))
1036 {
1037 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1038 	unsigned long flags;
1039 	int ret = 0;
1040 
1041 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1042 		return -ECONNREFUSED;
1043 
1044 	if (!nvme_fc_rport_get(rport))
1045 		return -ESHUTDOWN;
1046 
1047 	lsreq->done = done;
1048 	lsop->rport = rport;
1049 	lsop->req_queued = false;
1050 	INIT_LIST_HEAD(&lsop->lsreq_list);
1051 	init_completion(&lsop->ls_done);
1052 
1053 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1054 				  lsreq->rqstlen + lsreq->rsplen,
1055 				  DMA_BIDIRECTIONAL);
1056 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1057 		ret = -EFAULT;
1058 		goto out_putrport;
1059 	}
1060 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1061 
1062 	spin_lock_irqsave(&rport->lock, flags);
1063 
1064 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1065 
1066 	lsop->req_queued = true;
1067 
1068 	spin_unlock_irqrestore(&rport->lock, flags);
1069 
1070 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1071 					&rport->remoteport, lsreq);
1072 	if (ret)
1073 		goto out_unlink;
1074 
1075 	return 0;
1076 
1077 out_unlink:
1078 	lsop->ls_error = ret;
1079 	spin_lock_irqsave(&rport->lock, flags);
1080 	lsop->req_queued = false;
1081 	list_del(&lsop->lsreq_list);
1082 	spin_unlock_irqrestore(&rport->lock, flags);
1083 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1084 				  (lsreq->rqstlen + lsreq->rsplen),
1085 				  DMA_BIDIRECTIONAL);
1086 out_putrport:
1087 	nvme_fc_rport_put(rport);
1088 
1089 	return ret;
1090 }
1091 
1092 static void
1093 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1094 {
1095 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1096 
1097 	lsop->ls_error = status;
1098 	complete(&lsop->ls_done);
1099 }
1100 
1101 static int
1102 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1103 {
1104 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1105 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1106 	int ret;
1107 
1108 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1109 
1110 	if (!ret) {
1111 		/*
1112 		 * No timeout/not interruptible as we need the struct
1113 		 * to exist until the lldd calls us back. Thus mandate
1114 		 * wait until driver calls back. lldd responsible for
1115 		 * the timeout action
1116 		 */
1117 		wait_for_completion(&lsop->ls_done);
1118 
1119 		__nvme_fc_finish_ls_req(lsop);
1120 
1121 		ret = lsop->ls_error;
1122 	}
1123 
1124 	if (ret)
1125 		return ret;
1126 
1127 	/* ACC or RJT payload ? */
1128 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1129 		return -ENXIO;
1130 
1131 	return 0;
1132 }
1133 
1134 static int
1135 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1136 		struct nvmefc_ls_req_op *lsop,
1137 		void (*done)(struct nvmefc_ls_req *req, int status))
1138 {
1139 	/* don't wait for completion */
1140 
1141 	return __nvme_fc_send_ls_req(rport, lsop, done);
1142 }
1143 
1144 /* Validation Error indexes into the string table below */
1145 enum {
1146 	VERR_NO_ERROR		= 0,
1147 	VERR_LSACC		= 1,
1148 	VERR_LSDESC_RQST	= 2,
1149 	VERR_LSDESC_RQST_LEN	= 3,
1150 	VERR_ASSOC_ID		= 4,
1151 	VERR_ASSOC_ID_LEN	= 5,
1152 	VERR_CONN_ID		= 6,
1153 	VERR_CONN_ID_LEN	= 7,
1154 	VERR_CR_ASSOC		= 8,
1155 	VERR_CR_ASSOC_ACC_LEN	= 9,
1156 	VERR_CR_CONN		= 10,
1157 	VERR_CR_CONN_ACC_LEN	= 11,
1158 	VERR_DISCONN		= 12,
1159 	VERR_DISCONN_ACC_LEN	= 13,
1160 };
1161 
1162 static char *validation_errors[] = {
1163 	"OK",
1164 	"Not LS_ACC",
1165 	"Not LSDESC_RQST",
1166 	"Bad LSDESC_RQST Length",
1167 	"Not Association ID",
1168 	"Bad Association ID Length",
1169 	"Not Connection ID",
1170 	"Bad Connection ID Length",
1171 	"Not CR_ASSOC Rqst",
1172 	"Bad CR_ASSOC ACC Length",
1173 	"Not CR_CONN Rqst",
1174 	"Bad CR_CONN ACC Length",
1175 	"Not Disconnect Rqst",
1176 	"Bad Disconnect ACC Length",
1177 };
1178 
1179 static int
1180 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1181 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1182 {
1183 	struct nvmefc_ls_req_op *lsop;
1184 	struct nvmefc_ls_req *lsreq;
1185 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1186 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1187 	int ret, fcret = 0;
1188 
1189 	lsop = kzalloc((sizeof(*lsop) +
1190 			 ctrl->lport->ops->lsrqst_priv_sz +
1191 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1192 	if (!lsop) {
1193 		ret = -ENOMEM;
1194 		goto out_no_memory;
1195 	}
1196 	lsreq = &lsop->ls_req;
1197 
1198 	lsreq->private = (void *)&lsop[1];
1199 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1200 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1201 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1202 
1203 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1204 	assoc_rqst->desc_list_len =
1205 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206 
1207 	assoc_rqst->assoc_cmd.desc_tag =
1208 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1209 	assoc_rqst->assoc_cmd.desc_len =
1210 			fcnvme_lsdesc_len(
1211 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1212 
1213 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1214 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1215 	/* Linux supports only Dynamic controllers */
1216 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1217 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1218 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1219 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1220 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1221 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1222 
1223 	lsop->queue = queue;
1224 	lsreq->rqstaddr = assoc_rqst;
1225 	lsreq->rqstlen = sizeof(*assoc_rqst);
1226 	lsreq->rspaddr = assoc_acc;
1227 	lsreq->rsplen = sizeof(*assoc_acc);
1228 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1229 
1230 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1231 	if (ret)
1232 		goto out_free_buffer;
1233 
1234 	/* process connect LS completion */
1235 
1236 	/* validate the ACC response */
1237 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1238 		fcret = VERR_LSACC;
1239 	else if (assoc_acc->hdr.desc_list_len !=
1240 			fcnvme_lsdesc_len(
1241 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1242 		fcret = VERR_CR_ASSOC_ACC_LEN;
1243 	else if (assoc_acc->hdr.rqst.desc_tag !=
1244 			cpu_to_be32(FCNVME_LSDESC_RQST))
1245 		fcret = VERR_LSDESC_RQST;
1246 	else if (assoc_acc->hdr.rqst.desc_len !=
1247 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1248 		fcret = VERR_LSDESC_RQST_LEN;
1249 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1250 		fcret = VERR_CR_ASSOC;
1251 	else if (assoc_acc->associd.desc_tag !=
1252 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1253 		fcret = VERR_ASSOC_ID;
1254 	else if (assoc_acc->associd.desc_len !=
1255 			fcnvme_lsdesc_len(
1256 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1257 		fcret = VERR_ASSOC_ID_LEN;
1258 	else if (assoc_acc->connectid.desc_tag !=
1259 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1260 		fcret = VERR_CONN_ID;
1261 	else if (assoc_acc->connectid.desc_len !=
1262 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1263 		fcret = VERR_CONN_ID_LEN;
1264 
1265 	if (fcret) {
1266 		ret = -EBADF;
1267 		dev_err(ctrl->dev,
1268 			"q %d Create Association LS failed: %s\n",
1269 			queue->qnum, validation_errors[fcret]);
1270 	} else {
1271 		ctrl->association_id =
1272 			be64_to_cpu(assoc_acc->associd.association_id);
1273 		queue->connection_id =
1274 			be64_to_cpu(assoc_acc->connectid.connection_id);
1275 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1276 	}
1277 
1278 out_free_buffer:
1279 	kfree(lsop);
1280 out_no_memory:
1281 	if (ret)
1282 		dev_err(ctrl->dev,
1283 			"queue %d connect admin queue failed (%d).\n",
1284 			queue->qnum, ret);
1285 	return ret;
1286 }
1287 
1288 static int
1289 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1290 			u16 qsize, u16 ersp_ratio)
1291 {
1292 	struct nvmefc_ls_req_op *lsop;
1293 	struct nvmefc_ls_req *lsreq;
1294 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1295 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1296 	int ret, fcret = 0;
1297 
1298 	lsop = kzalloc((sizeof(*lsop) +
1299 			 ctrl->lport->ops->lsrqst_priv_sz +
1300 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1301 	if (!lsop) {
1302 		ret = -ENOMEM;
1303 		goto out_no_memory;
1304 	}
1305 	lsreq = &lsop->ls_req;
1306 
1307 	lsreq->private = (void *)&lsop[1];
1308 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1309 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1310 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1311 
1312 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1313 	conn_rqst->desc_list_len = cpu_to_be32(
1314 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1315 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1316 
1317 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1318 	conn_rqst->associd.desc_len =
1319 			fcnvme_lsdesc_len(
1320 				sizeof(struct fcnvme_lsdesc_assoc_id));
1321 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1322 	conn_rqst->connect_cmd.desc_tag =
1323 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1324 	conn_rqst->connect_cmd.desc_len =
1325 			fcnvme_lsdesc_len(
1326 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1327 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1328 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1329 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1330 
1331 	lsop->queue = queue;
1332 	lsreq->rqstaddr = conn_rqst;
1333 	lsreq->rqstlen = sizeof(*conn_rqst);
1334 	lsreq->rspaddr = conn_acc;
1335 	lsreq->rsplen = sizeof(*conn_acc);
1336 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1337 
1338 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1339 	if (ret)
1340 		goto out_free_buffer;
1341 
1342 	/* process connect LS completion */
1343 
1344 	/* validate the ACC response */
1345 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1346 		fcret = VERR_LSACC;
1347 	else if (conn_acc->hdr.desc_list_len !=
1348 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1349 		fcret = VERR_CR_CONN_ACC_LEN;
1350 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1351 		fcret = VERR_LSDESC_RQST;
1352 	else if (conn_acc->hdr.rqst.desc_len !=
1353 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1354 		fcret = VERR_LSDESC_RQST_LEN;
1355 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1356 		fcret = VERR_CR_CONN;
1357 	else if (conn_acc->connectid.desc_tag !=
1358 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1359 		fcret = VERR_CONN_ID;
1360 	else if (conn_acc->connectid.desc_len !=
1361 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1362 		fcret = VERR_CONN_ID_LEN;
1363 
1364 	if (fcret) {
1365 		ret = -EBADF;
1366 		dev_err(ctrl->dev,
1367 			"q %d Create I/O Connection LS failed: %s\n",
1368 			queue->qnum, validation_errors[fcret]);
1369 	} else {
1370 		queue->connection_id =
1371 			be64_to_cpu(conn_acc->connectid.connection_id);
1372 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1373 	}
1374 
1375 out_free_buffer:
1376 	kfree(lsop);
1377 out_no_memory:
1378 	if (ret)
1379 		dev_err(ctrl->dev,
1380 			"queue %d connect I/O queue failed (%d).\n",
1381 			queue->qnum, ret);
1382 	return ret;
1383 }
1384 
1385 static void
1386 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1387 {
1388 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1389 
1390 	__nvme_fc_finish_ls_req(lsop);
1391 
1392 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1393 
1394 	kfree(lsop);
1395 }
1396 
1397 /*
1398  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1399  * the FC-NVME Association.  Terminating the association also
1400  * terminates the FC-NVME connections (per queue, both admin and io
1401  * queues) that are part of the association. E.g. things are torn
1402  * down, and the related FC-NVME Association ID and Connection IDs
1403  * become invalid.
1404  *
1405  * The behavior of the fc-nvme initiator is such that it's
1406  * understanding of the association and connections will implicitly
1407  * be torn down. The action is implicit as it may be due to a loss of
1408  * connectivity with the fc-nvme target, so you may never get a
1409  * response even if you tried.  As such, the action of this routine
1410  * is to asynchronously send the LS, ignore any results of the LS, and
1411  * continue on with terminating the association. If the fc-nvme target
1412  * is present and receives the LS, it too can tear down.
1413  */
1414 static void
1415 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1416 {
1417 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1418 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1419 	struct nvmefc_ls_req_op *lsop;
1420 	struct nvmefc_ls_req *lsreq;
1421 	int ret;
1422 
1423 	lsop = kzalloc((sizeof(*lsop) +
1424 			 ctrl->lport->ops->lsrqst_priv_sz +
1425 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1426 			GFP_KERNEL);
1427 	if (!lsop)
1428 		/* couldn't sent it... too bad */
1429 		return;
1430 
1431 	lsreq = &lsop->ls_req;
1432 
1433 	lsreq->private = (void *)&lsop[1];
1434 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1435 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1436 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1437 
1438 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1439 	discon_rqst->desc_list_len = cpu_to_be32(
1440 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1441 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1442 
1443 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1444 	discon_rqst->associd.desc_len =
1445 			fcnvme_lsdesc_len(
1446 				sizeof(struct fcnvme_lsdesc_assoc_id));
1447 
1448 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1449 
1450 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1451 						FCNVME_LSDESC_DISCONN_CMD);
1452 	discon_rqst->discon_cmd.desc_len =
1453 			fcnvme_lsdesc_len(
1454 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1455 
1456 	lsreq->rqstaddr = discon_rqst;
1457 	lsreq->rqstlen = sizeof(*discon_rqst);
1458 	lsreq->rspaddr = discon_acc;
1459 	lsreq->rsplen = sizeof(*discon_acc);
1460 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1461 
1462 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463 				nvme_fc_disconnect_assoc_done);
1464 	if (ret)
1465 		kfree(lsop);
1466 }
1467 
1468 
1469 /* *********************** NVME Ctrl Routines **************************** */
1470 
1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472 
1473 static void
1474 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1475 		struct nvme_fc_fcp_op *op)
1476 {
1477 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1478 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1479 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1480 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1481 
1482 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1483 }
1484 
1485 static void
1486 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1487 		unsigned int hctx_idx)
1488 {
1489 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1490 
1491 	return __nvme_fc_exit_request(set->driver_data, op);
1492 }
1493 
1494 static int
1495 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1496 {
1497 	unsigned long flags;
1498 	int opstate;
1499 
1500 	spin_lock_irqsave(&ctrl->lock, flags);
1501 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1502 	if (opstate != FCPOP_STATE_ACTIVE)
1503 		atomic_set(&op->state, opstate);
1504 	else if (ctrl->flags & FCCTRL_TERMIO)
1505 		ctrl->iocnt++;
1506 	spin_unlock_irqrestore(&ctrl->lock, flags);
1507 
1508 	if (opstate != FCPOP_STATE_ACTIVE)
1509 		return -ECANCELED;
1510 
1511 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1512 					&ctrl->rport->remoteport,
1513 					op->queue->lldd_handle,
1514 					&op->fcp_req);
1515 
1516 	return 0;
1517 }
1518 
1519 static void
1520 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1521 {
1522 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1523 	int i;
1524 
1525 	/* ensure we've initialized the ops once */
1526 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1527 		return;
1528 
1529 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1530 		__nvme_fc_abort_op(ctrl, aen_op);
1531 }
1532 
1533 static inline void
1534 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1535 		struct nvme_fc_fcp_op *op, int opstate)
1536 {
1537 	unsigned long flags;
1538 
1539 	if (opstate == FCPOP_STATE_ABORTED) {
1540 		spin_lock_irqsave(&ctrl->lock, flags);
1541 		if (ctrl->flags & FCCTRL_TERMIO) {
1542 			if (!--ctrl->iocnt)
1543 				wake_up(&ctrl->ioabort_wait);
1544 		}
1545 		spin_unlock_irqrestore(&ctrl->lock, flags);
1546 	}
1547 }
1548 
1549 static void
1550 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1551 {
1552 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1553 	struct request *rq = op->rq;
1554 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1555 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1556 	struct nvme_fc_queue *queue = op->queue;
1557 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1558 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1559 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1560 	union nvme_result result;
1561 	bool terminate_assoc = true;
1562 	int opstate;
1563 
1564 	/*
1565 	 * WARNING:
1566 	 * The current linux implementation of a nvme controller
1567 	 * allocates a single tag set for all io queues and sizes
1568 	 * the io queues to fully hold all possible tags. Thus, the
1569 	 * implementation does not reference or care about the sqhd
1570 	 * value as it never needs to use the sqhd/sqtail pointers
1571 	 * for submission pacing.
1572 	 *
1573 	 * This affects the FC-NVME implementation in two ways:
1574 	 * 1) As the value doesn't matter, we don't need to waste
1575 	 *    cycles extracting it from ERSPs and stamping it in the
1576 	 *    cases where the transport fabricates CQEs on successful
1577 	 *    completions.
1578 	 * 2) The FC-NVME implementation requires that delivery of
1579 	 *    ERSP completions are to go back to the nvme layer in order
1580 	 *    relative to the rsn, such that the sqhd value will always
1581 	 *    be "in order" for the nvme layer. As the nvme layer in
1582 	 *    linux doesn't care about sqhd, there's no need to return
1583 	 *    them in order.
1584 	 *
1585 	 * Additionally:
1586 	 * As the core nvme layer in linux currently does not look at
1587 	 * every field in the cqe - in cases where the FC transport must
1588 	 * fabricate a CQE, the following fields will not be set as they
1589 	 * are not referenced:
1590 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1591 	 *
1592 	 * Failure or error of an individual i/o, in a transport
1593 	 * detected fashion unrelated to the nvme completion status,
1594 	 * potentially cause the initiator and target sides to get out
1595 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1596 	 * Per FC-NVME spec, failure of an individual command requires
1597 	 * the connection to be terminated, which in turn requires the
1598 	 * association to be terminated.
1599 	 */
1600 
1601 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1602 
1603 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1604 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1605 
1606 	if (opstate == FCPOP_STATE_ABORTED)
1607 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1608 	else if (freq->status) {
1609 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1610 		dev_info(ctrl->ctrl.device,
1611 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1612 			ctrl->cnum, freq->status);
1613 	}
1614 
1615 	/*
1616 	 * For the linux implementation, if we have an unsuccesful
1617 	 * status, they blk-mq layer can typically be called with the
1618 	 * non-zero status and the content of the cqe isn't important.
1619 	 */
1620 	if (status)
1621 		goto done;
1622 
1623 	/*
1624 	 * command completed successfully relative to the wire
1625 	 * protocol. However, validate anything received and
1626 	 * extract the status and result from the cqe (create it
1627 	 * where necessary).
1628 	 */
1629 
1630 	switch (freq->rcv_rsplen) {
1631 
1632 	case 0:
1633 	case NVME_FC_SIZEOF_ZEROS_RSP:
1634 		/*
1635 		 * No response payload or 12 bytes of payload (which
1636 		 * should all be zeros) are considered successful and
1637 		 * no payload in the CQE by the transport.
1638 		 */
1639 		if (freq->transferred_length !=
1640 		    be32_to_cpu(op->cmd_iu.data_len)) {
1641 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1642 			dev_info(ctrl->ctrl.device,
1643 				"NVME-FC{%d}: io failed due to bad transfer "
1644 				"length: %d vs expected %d\n",
1645 				ctrl->cnum, freq->transferred_length,
1646 				be32_to_cpu(op->cmd_iu.data_len));
1647 			goto done;
1648 		}
1649 		result.u64 = 0;
1650 		break;
1651 
1652 	case sizeof(struct nvme_fc_ersp_iu):
1653 		/*
1654 		 * The ERSP IU contains a full completion with CQE.
1655 		 * Validate ERSP IU and look at cqe.
1656 		 */
1657 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1658 					(freq->rcv_rsplen / 4) ||
1659 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1660 					freq->transferred_length ||
1661 			     op->rsp_iu.ersp_result ||
1662 			     sqe->common.command_id != cqe->command_id)) {
1663 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1664 			dev_info(ctrl->ctrl.device,
1665 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1666 				"iu len %d, xfr len %d vs %d, status code "
1667 				"%d, cmdid %d vs %d\n",
1668 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1669 				be32_to_cpu(op->rsp_iu.xfrd_len),
1670 				freq->transferred_length,
1671 				op->rsp_iu.ersp_result,
1672 				sqe->common.command_id,
1673 				cqe->command_id);
1674 			goto done;
1675 		}
1676 		result = cqe->result;
1677 		status = cqe->status;
1678 		break;
1679 
1680 	default:
1681 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1682 		dev_info(ctrl->ctrl.device,
1683 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1684 			"len %d\n",
1685 			ctrl->cnum, freq->rcv_rsplen);
1686 		goto done;
1687 	}
1688 
1689 	terminate_assoc = false;
1690 
1691 done:
1692 	if (op->flags & FCOP_FLAGS_AEN) {
1693 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1694 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1695 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1696 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1697 		nvme_fc_ctrl_put(ctrl);
1698 		goto check_error;
1699 	}
1700 
1701 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1702 	nvme_end_request(rq, status, result);
1703 
1704 check_error:
1705 	if (terminate_assoc)
1706 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1707 }
1708 
1709 static int
1710 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1711 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1712 		struct request *rq, u32 rqno)
1713 {
1714 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1715 		container_of(op, typeof(*op_w_sgl), op);
1716 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1717 	int ret = 0;
1718 
1719 	memset(op, 0, sizeof(*op));
1720 	op->fcp_req.cmdaddr = &op->cmd_iu;
1721 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1722 	op->fcp_req.rspaddr = &op->rsp_iu;
1723 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1724 	op->fcp_req.done = nvme_fc_fcpio_done;
1725 	op->ctrl = ctrl;
1726 	op->queue = queue;
1727 	op->rq = rq;
1728 	op->rqno = rqno;
1729 
1730 	cmdiu->format_id = NVME_CMD_FORMAT_ID;
1731 	cmdiu->fc_id = NVME_CMD_FC_ID;
1732 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1733 	if (queue->qnum)
1734 		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1735 					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1736 	else
1737 		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1738 
1739 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1740 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1741 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1742 		dev_err(ctrl->dev,
1743 			"FCP Op failed - cmdiu dma mapping failed.\n");
1744 		ret = EFAULT;
1745 		goto out_on_error;
1746 	}
1747 
1748 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1749 				&op->rsp_iu, sizeof(op->rsp_iu),
1750 				DMA_FROM_DEVICE);
1751 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1752 		dev_err(ctrl->dev,
1753 			"FCP Op failed - rspiu dma mapping failed.\n");
1754 		ret = EFAULT;
1755 	}
1756 
1757 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1758 out_on_error:
1759 	return ret;
1760 }
1761 
1762 static int
1763 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1764 		unsigned int hctx_idx, unsigned int numa_node)
1765 {
1766 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1767 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1768 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1769 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1770 	int res;
1771 
1772 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1773 	if (res)
1774 		return res;
1775 	op->op.fcp_req.first_sgl = &op->sgl[0];
1776 	op->op.fcp_req.private = &op->priv[0];
1777 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1778 	return res;
1779 }
1780 
1781 static int
1782 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1783 {
1784 	struct nvme_fc_fcp_op *aen_op;
1785 	struct nvme_fc_cmd_iu *cmdiu;
1786 	struct nvme_command *sqe;
1787 	void *private;
1788 	int i, ret;
1789 
1790 	aen_op = ctrl->aen_ops;
1791 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1792 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1793 						GFP_KERNEL);
1794 		if (!private)
1795 			return -ENOMEM;
1796 
1797 		cmdiu = &aen_op->cmd_iu;
1798 		sqe = &cmdiu->sqe;
1799 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1800 				aen_op, (struct request *)NULL,
1801 				(NVME_AQ_BLK_MQ_DEPTH + i));
1802 		if (ret) {
1803 			kfree(private);
1804 			return ret;
1805 		}
1806 
1807 		aen_op->flags = FCOP_FLAGS_AEN;
1808 		aen_op->fcp_req.private = private;
1809 
1810 		memset(sqe, 0, sizeof(*sqe));
1811 		sqe->common.opcode = nvme_admin_async_event;
1812 		/* Note: core layer may overwrite the sqe.command_id value */
1813 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1814 	}
1815 	return 0;
1816 }
1817 
1818 static void
1819 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1820 {
1821 	struct nvme_fc_fcp_op *aen_op;
1822 	int i;
1823 
1824 	aen_op = ctrl->aen_ops;
1825 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1826 		if (!aen_op->fcp_req.private)
1827 			continue;
1828 
1829 		__nvme_fc_exit_request(ctrl, aen_op);
1830 
1831 		kfree(aen_op->fcp_req.private);
1832 		aen_op->fcp_req.private = NULL;
1833 	}
1834 }
1835 
1836 static inline void
1837 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1838 		unsigned int qidx)
1839 {
1840 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1841 
1842 	hctx->driver_data = queue;
1843 	queue->hctx = hctx;
1844 }
1845 
1846 static int
1847 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1848 		unsigned int hctx_idx)
1849 {
1850 	struct nvme_fc_ctrl *ctrl = data;
1851 
1852 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1853 
1854 	return 0;
1855 }
1856 
1857 static int
1858 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1859 		unsigned int hctx_idx)
1860 {
1861 	struct nvme_fc_ctrl *ctrl = data;
1862 
1863 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1864 
1865 	return 0;
1866 }
1867 
1868 static void
1869 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1870 {
1871 	struct nvme_fc_queue *queue;
1872 
1873 	queue = &ctrl->queues[idx];
1874 	memset(queue, 0, sizeof(*queue));
1875 	queue->ctrl = ctrl;
1876 	queue->qnum = idx;
1877 	atomic_set(&queue->csn, 0);
1878 	queue->dev = ctrl->dev;
1879 
1880 	if (idx > 0)
1881 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1882 	else
1883 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1884 
1885 	/*
1886 	 * Considered whether we should allocate buffers for all SQEs
1887 	 * and CQEs and dma map them - mapping their respective entries
1888 	 * into the request structures (kernel vm addr and dma address)
1889 	 * thus the driver could use the buffers/mappings directly.
1890 	 * It only makes sense if the LLDD would use them for its
1891 	 * messaging api. It's very unlikely most adapter api's would use
1892 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1893 	 * structures were used instead.
1894 	 */
1895 }
1896 
1897 /*
1898  * This routine terminates a queue at the transport level.
1899  * The transport has already ensured that all outstanding ios on
1900  * the queue have been terminated.
1901  * The transport will send a Disconnect LS request to terminate
1902  * the queue's connection. Termination of the admin queue will also
1903  * terminate the association at the target.
1904  */
1905 static void
1906 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1907 {
1908 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1909 		return;
1910 
1911 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1912 	/*
1913 	 * Current implementation never disconnects a single queue.
1914 	 * It always terminates a whole association. So there is never
1915 	 * a disconnect(queue) LS sent to the target.
1916 	 */
1917 
1918 	queue->connection_id = 0;
1919 	atomic_set(&queue->csn, 0);
1920 }
1921 
1922 static void
1923 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1924 	struct nvme_fc_queue *queue, unsigned int qidx)
1925 {
1926 	if (ctrl->lport->ops->delete_queue)
1927 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1928 				queue->lldd_handle);
1929 	queue->lldd_handle = NULL;
1930 }
1931 
1932 static void
1933 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1934 {
1935 	int i;
1936 
1937 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1938 		nvme_fc_free_queue(&ctrl->queues[i]);
1939 }
1940 
1941 static int
1942 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1943 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1944 {
1945 	int ret = 0;
1946 
1947 	queue->lldd_handle = NULL;
1948 	if (ctrl->lport->ops->create_queue)
1949 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1950 				qidx, qsize, &queue->lldd_handle);
1951 
1952 	return ret;
1953 }
1954 
1955 static void
1956 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1957 {
1958 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1959 	int i;
1960 
1961 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1962 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1963 }
1964 
1965 static int
1966 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1967 {
1968 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1969 	int i, ret;
1970 
1971 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1972 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1973 		if (ret)
1974 			goto delete_queues;
1975 	}
1976 
1977 	return 0;
1978 
1979 delete_queues:
1980 	for (; i >= 0; i--)
1981 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1982 	return ret;
1983 }
1984 
1985 static int
1986 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1987 {
1988 	int i, ret = 0;
1989 
1990 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1991 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1992 					(qsize / 5));
1993 		if (ret)
1994 			break;
1995 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1996 		if (ret)
1997 			break;
1998 
1999 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2000 	}
2001 
2002 	return ret;
2003 }
2004 
2005 static void
2006 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2007 {
2008 	int i;
2009 
2010 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2011 		nvme_fc_init_queue(ctrl, i);
2012 }
2013 
2014 static void
2015 nvme_fc_ctrl_free(struct kref *ref)
2016 {
2017 	struct nvme_fc_ctrl *ctrl =
2018 		container_of(ref, struct nvme_fc_ctrl, ref);
2019 	struct nvme_fc_lport *lport = ctrl->lport;
2020 	unsigned long flags;
2021 
2022 	if (ctrl->ctrl.tagset) {
2023 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2024 		blk_mq_free_tag_set(&ctrl->tag_set);
2025 	}
2026 
2027 	/* remove from rport list */
2028 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2029 	list_del(&ctrl->ctrl_list);
2030 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2031 
2032 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2033 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2034 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2035 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2036 
2037 	kfree(ctrl->queues);
2038 
2039 	put_device(ctrl->dev);
2040 	nvme_fc_rport_put(ctrl->rport);
2041 
2042 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2043 	if (ctrl->ctrl.opts)
2044 		nvmf_free_options(ctrl->ctrl.opts);
2045 	kfree(ctrl);
2046 	module_put(lport->ops->module);
2047 }
2048 
2049 static void
2050 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2051 {
2052 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2053 }
2054 
2055 static int
2056 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2057 {
2058 	return kref_get_unless_zero(&ctrl->ref);
2059 }
2060 
2061 /*
2062  * All accesses from nvme core layer done - can now free the
2063  * controller. Called after last nvme_put_ctrl() call
2064  */
2065 static void
2066 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2067 {
2068 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2069 
2070 	WARN_ON(nctrl != &ctrl->ctrl);
2071 
2072 	nvme_fc_ctrl_put(ctrl);
2073 }
2074 
2075 static void
2076 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2077 {
2078 	int active;
2079 
2080 	/*
2081 	 * if an error (io timeout, etc) while (re)connecting,
2082 	 * it's an error on creating the new association.
2083 	 * Start the error recovery thread if it hasn't already
2084 	 * been started. It is expected there could be multiple
2085 	 * ios hitting this path before things are cleaned up.
2086 	 */
2087 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2088 		active = atomic_xchg(&ctrl->err_work_active, 1);
2089 		if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2090 			atomic_set(&ctrl->err_work_active, 0);
2091 			WARN_ON(1);
2092 		}
2093 		return;
2094 	}
2095 
2096 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2097 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2098 		return;
2099 
2100 	dev_warn(ctrl->ctrl.device,
2101 		"NVME-FC{%d}: transport association error detected: %s\n",
2102 		ctrl->cnum, errmsg);
2103 	dev_warn(ctrl->ctrl.device,
2104 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2105 
2106 	nvme_reset_ctrl(&ctrl->ctrl);
2107 }
2108 
2109 static enum blk_eh_timer_return
2110 nvme_fc_timeout(struct request *rq, bool reserved)
2111 {
2112 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2113 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2114 
2115 	/*
2116 	 * we can't individually ABTS an io without affecting the queue,
2117 	 * thus killing the queue, and thus the association.
2118 	 * So resolve by performing a controller reset, which will stop
2119 	 * the host/io stack, terminate the association on the link,
2120 	 * and recreate an association on the link.
2121 	 */
2122 	nvme_fc_error_recovery(ctrl, "io timeout error");
2123 
2124 	/*
2125 	 * the io abort has been initiated. Have the reset timer
2126 	 * restarted and the abort completion will complete the io
2127 	 * shortly. Avoids a synchronous wait while the abort finishes.
2128 	 */
2129 	return BLK_EH_RESET_TIMER;
2130 }
2131 
2132 static int
2133 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2134 		struct nvme_fc_fcp_op *op)
2135 {
2136 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2137 	int ret;
2138 
2139 	freq->sg_cnt = 0;
2140 
2141 	if (!blk_rq_nr_phys_segments(rq))
2142 		return 0;
2143 
2144 	freq->sg_table.sgl = freq->first_sgl;
2145 	ret = sg_alloc_table_chained(&freq->sg_table,
2146 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2147 			NVME_INLINE_SG_CNT);
2148 	if (ret)
2149 		return -ENOMEM;
2150 
2151 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2152 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2153 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2154 				op->nents, rq_dma_dir(rq));
2155 	if (unlikely(freq->sg_cnt <= 0)) {
2156 		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2157 		freq->sg_cnt = 0;
2158 		return -EFAULT;
2159 	}
2160 
2161 	/*
2162 	 * TODO: blk_integrity_rq(rq)  for DIF
2163 	 */
2164 	return 0;
2165 }
2166 
2167 static void
2168 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2169 		struct nvme_fc_fcp_op *op)
2170 {
2171 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2172 
2173 	if (!freq->sg_cnt)
2174 		return;
2175 
2176 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2177 			rq_dma_dir(rq));
2178 
2179 	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2180 
2181 	freq->sg_cnt = 0;
2182 }
2183 
2184 /*
2185  * In FC, the queue is a logical thing. At transport connect, the target
2186  * creates its "queue" and returns a handle that is to be given to the
2187  * target whenever it posts something to the corresponding SQ.  When an
2188  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2189  * command contained within the SQE, an io, and assigns a FC exchange
2190  * to it. The SQE and the associated SQ handle are sent in the initial
2191  * CMD IU sents on the exchange. All transfers relative to the io occur
2192  * as part of the exchange.  The CQE is the last thing for the io,
2193  * which is transferred (explicitly or implicitly) with the RSP IU
2194  * sent on the exchange. After the CQE is received, the FC exchange is
2195  * terminaed and the Exchange may be used on a different io.
2196  *
2197  * The transport to LLDD api has the transport making a request for a
2198  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2199  * resource and transfers the command. The LLDD will then process all
2200  * steps to complete the io. Upon completion, the transport done routine
2201  * is called.
2202  *
2203  * So - while the operation is outstanding to the LLDD, there is a link
2204  * level FC exchange resource that is also outstanding. This must be
2205  * considered in all cleanup operations.
2206  */
2207 static blk_status_t
2208 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2209 	struct nvme_fc_fcp_op *op, u32 data_len,
2210 	enum nvmefc_fcp_datadir	io_dir)
2211 {
2212 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2213 	struct nvme_command *sqe = &cmdiu->sqe;
2214 	int ret, opstate;
2215 
2216 	/*
2217 	 * before attempting to send the io, check to see if we believe
2218 	 * the target device is present
2219 	 */
2220 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2221 		return BLK_STS_RESOURCE;
2222 
2223 	if (!nvme_fc_ctrl_get(ctrl))
2224 		return BLK_STS_IOERR;
2225 
2226 	/* format the FC-NVME CMD IU and fcp_req */
2227 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2228 	cmdiu->data_len = cpu_to_be32(data_len);
2229 	switch (io_dir) {
2230 	case NVMEFC_FCP_WRITE:
2231 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2232 		break;
2233 	case NVMEFC_FCP_READ:
2234 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2235 		break;
2236 	case NVMEFC_FCP_NODATA:
2237 		cmdiu->flags = 0;
2238 		break;
2239 	}
2240 	op->fcp_req.payload_length = data_len;
2241 	op->fcp_req.io_dir = io_dir;
2242 	op->fcp_req.transferred_length = 0;
2243 	op->fcp_req.rcv_rsplen = 0;
2244 	op->fcp_req.status = NVME_SC_SUCCESS;
2245 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2246 
2247 	/*
2248 	 * validate per fabric rules, set fields mandated by fabric spec
2249 	 * as well as those by FC-NVME spec.
2250 	 */
2251 	WARN_ON_ONCE(sqe->common.metadata);
2252 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2253 
2254 	/*
2255 	 * format SQE DPTR field per FC-NVME rules:
2256 	 *    type=0x5     Transport SGL Data Block Descriptor
2257 	 *    subtype=0xA  Transport-specific value
2258 	 *    address=0
2259 	 *    length=length of the data series
2260 	 */
2261 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2262 					NVME_SGL_FMT_TRANSPORT_A;
2263 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2264 	sqe->rw.dptr.sgl.addr = 0;
2265 
2266 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2267 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2268 		if (ret < 0) {
2269 			nvme_cleanup_cmd(op->rq);
2270 			nvme_fc_ctrl_put(ctrl);
2271 			if (ret == -ENOMEM || ret == -EAGAIN)
2272 				return BLK_STS_RESOURCE;
2273 			return BLK_STS_IOERR;
2274 		}
2275 	}
2276 
2277 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2278 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2279 
2280 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2281 
2282 	if (!(op->flags & FCOP_FLAGS_AEN))
2283 		blk_mq_start_request(op->rq);
2284 
2285 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2286 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2287 					&ctrl->rport->remoteport,
2288 					queue->lldd_handle, &op->fcp_req);
2289 
2290 	if (ret) {
2291 		/*
2292 		 * If the lld fails to send the command is there an issue with
2293 		 * the csn value?  If the command that fails is the Connect,
2294 		 * no - as the connection won't be live.  If it is a command
2295 		 * post-connect, it's possible a gap in csn may be created.
2296 		 * Does this matter?  As Linux initiators don't send fused
2297 		 * commands, no.  The gap would exist, but as there's nothing
2298 		 * that depends on csn order to be delivered on the target
2299 		 * side, it shouldn't hurt.  It would be difficult for a
2300 		 * target to even detect the csn gap as it has no idea when the
2301 		 * cmd with the csn was supposed to arrive.
2302 		 */
2303 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2304 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2305 
2306 		if (!(op->flags & FCOP_FLAGS_AEN))
2307 			nvme_fc_unmap_data(ctrl, op->rq, op);
2308 
2309 		nvme_cleanup_cmd(op->rq);
2310 		nvme_fc_ctrl_put(ctrl);
2311 
2312 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2313 				ret != -EBUSY)
2314 			return BLK_STS_IOERR;
2315 
2316 		return BLK_STS_RESOURCE;
2317 	}
2318 
2319 	return BLK_STS_OK;
2320 }
2321 
2322 static blk_status_t
2323 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2324 			const struct blk_mq_queue_data *bd)
2325 {
2326 	struct nvme_ns *ns = hctx->queue->queuedata;
2327 	struct nvme_fc_queue *queue = hctx->driver_data;
2328 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2329 	struct request *rq = bd->rq;
2330 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2331 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2332 	struct nvme_command *sqe = &cmdiu->sqe;
2333 	enum nvmefc_fcp_datadir	io_dir;
2334 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2335 	u32 data_len;
2336 	blk_status_t ret;
2337 
2338 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2339 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2340 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2341 
2342 	ret = nvme_setup_cmd(ns, rq, sqe);
2343 	if (ret)
2344 		return ret;
2345 
2346 	/*
2347 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2348 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2349 	 * there is no actual payload to be transferred.
2350 	 * To get it right, key data transmission on there being 1 or
2351 	 * more physical segments in the sg list. If there is no
2352 	 * physical segments, there is no payload.
2353 	 */
2354 	if (blk_rq_nr_phys_segments(rq)) {
2355 		data_len = blk_rq_payload_bytes(rq);
2356 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2357 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2358 	} else {
2359 		data_len = 0;
2360 		io_dir = NVMEFC_FCP_NODATA;
2361 	}
2362 
2363 
2364 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2365 }
2366 
2367 static void
2368 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2369 {
2370 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2371 	struct nvme_fc_fcp_op *aen_op;
2372 	unsigned long flags;
2373 	bool terminating = false;
2374 	blk_status_t ret;
2375 
2376 	spin_lock_irqsave(&ctrl->lock, flags);
2377 	if (ctrl->flags & FCCTRL_TERMIO)
2378 		terminating = true;
2379 	spin_unlock_irqrestore(&ctrl->lock, flags);
2380 
2381 	if (terminating)
2382 		return;
2383 
2384 	aen_op = &ctrl->aen_ops[0];
2385 
2386 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2387 					NVMEFC_FCP_NODATA);
2388 	if (ret)
2389 		dev_err(ctrl->ctrl.device,
2390 			"failed async event work\n");
2391 }
2392 
2393 static void
2394 nvme_fc_complete_rq(struct request *rq)
2395 {
2396 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2397 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2398 
2399 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2400 
2401 	nvme_fc_unmap_data(ctrl, rq, op);
2402 	nvme_complete_rq(rq);
2403 	nvme_fc_ctrl_put(ctrl);
2404 }
2405 
2406 /*
2407  * This routine is used by the transport when it needs to find active
2408  * io on a queue that is to be terminated. The transport uses
2409  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2410  * this routine to kill them on a 1 by 1 basis.
2411  *
2412  * As FC allocates FC exchange for each io, the transport must contact
2413  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2414  * After terminating the exchange the LLDD will call the transport's
2415  * normal io done path for the request, but it will have an aborted
2416  * status. The done path will return the io request back to the block
2417  * layer with an error status.
2418  */
2419 static bool
2420 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2421 {
2422 	struct nvme_ctrl *nctrl = data;
2423 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2424 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2425 
2426 	__nvme_fc_abort_op(ctrl, op);
2427 	return true;
2428 }
2429 
2430 
2431 static const struct blk_mq_ops nvme_fc_mq_ops = {
2432 	.queue_rq	= nvme_fc_queue_rq,
2433 	.complete	= nvme_fc_complete_rq,
2434 	.init_request	= nvme_fc_init_request,
2435 	.exit_request	= nvme_fc_exit_request,
2436 	.init_hctx	= nvme_fc_init_hctx,
2437 	.timeout	= nvme_fc_timeout,
2438 };
2439 
2440 static int
2441 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2442 {
2443 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2444 	unsigned int nr_io_queues;
2445 	int ret;
2446 
2447 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2448 				ctrl->lport->ops->max_hw_queues);
2449 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2450 	if (ret) {
2451 		dev_info(ctrl->ctrl.device,
2452 			"set_queue_count failed: %d\n", ret);
2453 		return ret;
2454 	}
2455 
2456 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2457 	if (!nr_io_queues)
2458 		return 0;
2459 
2460 	nvme_fc_init_io_queues(ctrl);
2461 
2462 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2463 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2464 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2465 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2466 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2467 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2468 	ctrl->tag_set.cmd_size =
2469 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2470 			    ctrl->lport->ops->fcprqst_priv_sz);
2471 	ctrl->tag_set.driver_data = ctrl;
2472 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2473 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2474 
2475 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2476 	if (ret)
2477 		return ret;
2478 
2479 	ctrl->ctrl.tagset = &ctrl->tag_set;
2480 
2481 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2482 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2483 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2484 		goto out_free_tag_set;
2485 	}
2486 
2487 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2488 	if (ret)
2489 		goto out_cleanup_blk_queue;
2490 
2491 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2492 	if (ret)
2493 		goto out_delete_hw_queues;
2494 
2495 	ctrl->ioq_live = true;
2496 
2497 	return 0;
2498 
2499 out_delete_hw_queues:
2500 	nvme_fc_delete_hw_io_queues(ctrl);
2501 out_cleanup_blk_queue:
2502 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2503 out_free_tag_set:
2504 	blk_mq_free_tag_set(&ctrl->tag_set);
2505 	nvme_fc_free_io_queues(ctrl);
2506 
2507 	/* force put free routine to ignore io queues */
2508 	ctrl->ctrl.tagset = NULL;
2509 
2510 	return ret;
2511 }
2512 
2513 static int
2514 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2515 {
2516 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2517 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2518 	unsigned int nr_io_queues;
2519 	int ret;
2520 
2521 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2522 				ctrl->lport->ops->max_hw_queues);
2523 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2524 	if (ret) {
2525 		dev_info(ctrl->ctrl.device,
2526 			"set_queue_count failed: %d\n", ret);
2527 		return ret;
2528 	}
2529 
2530 	if (!nr_io_queues && prior_ioq_cnt) {
2531 		dev_info(ctrl->ctrl.device,
2532 			"Fail Reconnect: At least 1 io queue "
2533 			"required (was %d)\n", prior_ioq_cnt);
2534 		return -ENOSPC;
2535 	}
2536 
2537 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2538 	/* check for io queues existing */
2539 	if (ctrl->ctrl.queue_count == 1)
2540 		return 0;
2541 
2542 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2543 	if (ret)
2544 		goto out_free_io_queues;
2545 
2546 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2547 	if (ret)
2548 		goto out_delete_hw_queues;
2549 
2550 	if (prior_ioq_cnt != nr_io_queues)
2551 		dev_info(ctrl->ctrl.device,
2552 			"reconnect: revising io queue count from %d to %d\n",
2553 			prior_ioq_cnt, nr_io_queues);
2554 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2555 
2556 	return 0;
2557 
2558 out_delete_hw_queues:
2559 	nvme_fc_delete_hw_io_queues(ctrl);
2560 out_free_io_queues:
2561 	nvme_fc_free_io_queues(ctrl);
2562 	return ret;
2563 }
2564 
2565 static void
2566 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2567 {
2568 	struct nvme_fc_lport *lport = rport->lport;
2569 
2570 	atomic_inc(&lport->act_rport_cnt);
2571 }
2572 
2573 static void
2574 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2575 {
2576 	struct nvme_fc_lport *lport = rport->lport;
2577 	u32 cnt;
2578 
2579 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2580 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2581 		lport->ops->localport_delete(&lport->localport);
2582 }
2583 
2584 static int
2585 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2586 {
2587 	struct nvme_fc_rport *rport = ctrl->rport;
2588 	u32 cnt;
2589 
2590 	if (ctrl->assoc_active)
2591 		return 1;
2592 
2593 	ctrl->assoc_active = true;
2594 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2595 	if (cnt == 1)
2596 		nvme_fc_rport_active_on_lport(rport);
2597 
2598 	return 0;
2599 }
2600 
2601 static int
2602 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2603 {
2604 	struct nvme_fc_rport *rport = ctrl->rport;
2605 	struct nvme_fc_lport *lport = rport->lport;
2606 	u32 cnt;
2607 
2608 	/* ctrl->assoc_active=false will be set independently */
2609 
2610 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2611 	if (cnt == 0) {
2612 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2613 			lport->ops->remoteport_delete(&rport->remoteport);
2614 		nvme_fc_rport_inactive_on_lport(rport);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /*
2621  * This routine restarts the controller on the host side, and
2622  * on the link side, recreates the controller association.
2623  */
2624 static int
2625 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2626 {
2627 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2628 	int ret;
2629 	bool changed;
2630 
2631 	++ctrl->ctrl.nr_reconnects;
2632 
2633 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2634 		return -ENODEV;
2635 
2636 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2637 		return -ENOTUNIQ;
2638 
2639 	dev_info(ctrl->ctrl.device,
2640 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
2641 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
2642 		ctrl->cnum, ctrl->lport->localport.port_name,
2643 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2644 
2645 	/*
2646 	 * Create the admin queue
2647 	 */
2648 
2649 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2650 				NVME_AQ_DEPTH);
2651 	if (ret)
2652 		goto out_free_queue;
2653 
2654 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2655 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2656 	if (ret)
2657 		goto out_delete_hw_queue;
2658 
2659 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2660 	if (ret)
2661 		goto out_disconnect_admin_queue;
2662 
2663 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2664 
2665 	/*
2666 	 * Check controller capabilities
2667 	 *
2668 	 * todo:- add code to check if ctrl attributes changed from
2669 	 * prior connection values
2670 	 */
2671 
2672 	ret = nvme_enable_ctrl(&ctrl->ctrl);
2673 	if (ret)
2674 		goto out_disconnect_admin_queue;
2675 
2676 	ctrl->ctrl.max_hw_sectors =
2677 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2678 
2679 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2680 
2681 	ret = nvme_init_identify(&ctrl->ctrl);
2682 	if (ret)
2683 		goto out_disconnect_admin_queue;
2684 
2685 	/* sanity checks */
2686 
2687 	/* FC-NVME does not have other data in the capsule */
2688 	if (ctrl->ctrl.icdoff) {
2689 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2690 				ctrl->ctrl.icdoff);
2691 		goto out_disconnect_admin_queue;
2692 	}
2693 
2694 	/* FC-NVME supports normal SGL Data Block Descriptors */
2695 
2696 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2697 		/* warn if maxcmd is lower than queue_size */
2698 		dev_warn(ctrl->ctrl.device,
2699 			"queue_size %zu > ctrl maxcmd %u, reducing "
2700 			"to maxcmd\n",
2701 			opts->queue_size, ctrl->ctrl.maxcmd);
2702 		opts->queue_size = ctrl->ctrl.maxcmd;
2703 	}
2704 
2705 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2706 		/* warn if sqsize is lower than queue_size */
2707 		dev_warn(ctrl->ctrl.device,
2708 			"queue_size %zu > ctrl sqsize %u, reducing "
2709 			"to sqsize\n",
2710 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2711 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2712 	}
2713 
2714 	ret = nvme_fc_init_aen_ops(ctrl);
2715 	if (ret)
2716 		goto out_term_aen_ops;
2717 
2718 	/*
2719 	 * Create the io queues
2720 	 */
2721 
2722 	if (ctrl->ctrl.queue_count > 1) {
2723 		if (!ctrl->ioq_live)
2724 			ret = nvme_fc_create_io_queues(ctrl);
2725 		else
2726 			ret = nvme_fc_recreate_io_queues(ctrl);
2727 		if (ret)
2728 			goto out_term_aen_ops;
2729 	}
2730 
2731 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2732 
2733 	ctrl->ctrl.nr_reconnects = 0;
2734 
2735 	if (changed)
2736 		nvme_start_ctrl(&ctrl->ctrl);
2737 
2738 	return 0;	/* Success */
2739 
2740 out_term_aen_ops:
2741 	nvme_fc_term_aen_ops(ctrl);
2742 out_disconnect_admin_queue:
2743 	/* send a Disconnect(association) LS to fc-nvme target */
2744 	nvme_fc_xmt_disconnect_assoc(ctrl);
2745 	ctrl->association_id = 0;
2746 out_delete_hw_queue:
2747 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2748 out_free_queue:
2749 	nvme_fc_free_queue(&ctrl->queues[0]);
2750 	ctrl->assoc_active = false;
2751 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2752 
2753 	return ret;
2754 }
2755 
2756 /*
2757  * This routine stops operation of the controller on the host side.
2758  * On the host os stack side: Admin and IO queues are stopped,
2759  *   outstanding ios on them terminated via FC ABTS.
2760  * On the link side: the association is terminated.
2761  */
2762 static void
2763 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2764 {
2765 	unsigned long flags;
2766 
2767 	if (!ctrl->assoc_active)
2768 		return;
2769 	ctrl->assoc_active = false;
2770 
2771 	spin_lock_irqsave(&ctrl->lock, flags);
2772 	ctrl->flags |= FCCTRL_TERMIO;
2773 	ctrl->iocnt = 0;
2774 	spin_unlock_irqrestore(&ctrl->lock, flags);
2775 
2776 	/*
2777 	 * If io queues are present, stop them and terminate all outstanding
2778 	 * ios on them. As FC allocates FC exchange for each io, the
2779 	 * transport must contact the LLDD to terminate the exchange,
2780 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2781 	 * to tell us what io's are busy and invoke a transport routine
2782 	 * to kill them with the LLDD.  After terminating the exchange
2783 	 * the LLDD will call the transport's normal io done path, but it
2784 	 * will have an aborted status. The done path will return the
2785 	 * io requests back to the block layer as part of normal completions
2786 	 * (but with error status).
2787 	 */
2788 	if (ctrl->ctrl.queue_count > 1) {
2789 		nvme_stop_queues(&ctrl->ctrl);
2790 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2791 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2792 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2793 	}
2794 
2795 	/*
2796 	 * Other transports, which don't have link-level contexts bound
2797 	 * to sqe's, would try to gracefully shutdown the controller by
2798 	 * writing the registers for shutdown and polling (call
2799 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2800 	 * just aborted and we will wait on those contexts, and given
2801 	 * there was no indication of how live the controlelr is on the
2802 	 * link, don't send more io to create more contexts for the
2803 	 * shutdown. Let the controller fail via keepalive failure if
2804 	 * its still present.
2805 	 */
2806 
2807 	/*
2808 	 * clean up the admin queue. Same thing as above.
2809 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2810 	 * terminate the exchanges.
2811 	 */
2812 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2813 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2814 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2815 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2816 
2817 	/* kill the aens as they are a separate path */
2818 	nvme_fc_abort_aen_ops(ctrl);
2819 
2820 	/* wait for all io that had to be aborted */
2821 	spin_lock_irq(&ctrl->lock);
2822 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2823 	ctrl->flags &= ~FCCTRL_TERMIO;
2824 	spin_unlock_irq(&ctrl->lock);
2825 
2826 	nvme_fc_term_aen_ops(ctrl);
2827 
2828 	/*
2829 	 * send a Disconnect(association) LS to fc-nvme target
2830 	 * Note: could have been sent at top of process, but
2831 	 * cleaner on link traffic if after the aborts complete.
2832 	 * Note: if association doesn't exist, association_id will be 0
2833 	 */
2834 	if (ctrl->association_id)
2835 		nvme_fc_xmt_disconnect_assoc(ctrl);
2836 
2837 	ctrl->association_id = 0;
2838 
2839 	if (ctrl->ctrl.tagset) {
2840 		nvme_fc_delete_hw_io_queues(ctrl);
2841 		nvme_fc_free_io_queues(ctrl);
2842 	}
2843 
2844 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2845 	nvme_fc_free_queue(&ctrl->queues[0]);
2846 
2847 	/* re-enable the admin_q so anything new can fast fail */
2848 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2849 
2850 	/* resume the io queues so that things will fast fail */
2851 	nvme_start_queues(&ctrl->ctrl);
2852 
2853 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2854 }
2855 
2856 static void
2857 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2858 {
2859 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2860 
2861 	cancel_work_sync(&ctrl->err_work);
2862 	cancel_delayed_work_sync(&ctrl->connect_work);
2863 	/*
2864 	 * kill the association on the link side.  this will block
2865 	 * waiting for io to terminate
2866 	 */
2867 	nvme_fc_delete_association(ctrl);
2868 }
2869 
2870 static void
2871 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2872 {
2873 	struct nvme_fc_rport *rport = ctrl->rport;
2874 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2875 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2876 	bool recon = true;
2877 
2878 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2879 		return;
2880 
2881 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2882 		dev_info(ctrl->ctrl.device,
2883 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2884 			ctrl->cnum, status);
2885 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2886 		recon = false;
2887 
2888 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2889 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2890 			dev_info(ctrl->ctrl.device,
2891 				"NVME-FC{%d}: Reconnect attempt in %ld "
2892 				"seconds\n",
2893 				ctrl->cnum, recon_delay / HZ);
2894 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2895 			recon_delay = rport->dev_loss_end - jiffies;
2896 
2897 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2898 	} else {
2899 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2900 			dev_warn(ctrl->ctrl.device,
2901 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2902 				"reached.\n",
2903 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2904 		else
2905 			dev_warn(ctrl->ctrl.device,
2906 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2907 				"while waiting for remoteport connectivity.\n",
2908 				ctrl->cnum, portptr->dev_loss_tmo);
2909 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2910 	}
2911 }
2912 
2913 static void
2914 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2915 {
2916 	/*
2917 	 * if state is connecting - the error occurred as part of a
2918 	 * reconnect attempt. The create_association error paths will
2919 	 * clean up any outstanding io.
2920 	 *
2921 	 * if it's a different state - ensure all pending io is
2922 	 * terminated. Given this can delay while waiting for the
2923 	 * aborted io to return, we recheck adapter state below
2924 	 * before changing state.
2925 	 */
2926 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2927 		nvme_stop_keep_alive(&ctrl->ctrl);
2928 
2929 		/* will block will waiting for io to terminate */
2930 		nvme_fc_delete_association(ctrl);
2931 	}
2932 
2933 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2934 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2935 		dev_err(ctrl->ctrl.device,
2936 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2937 			"to CONNECTING\n", ctrl->cnum);
2938 }
2939 
2940 static void
2941 nvme_fc_reset_ctrl_work(struct work_struct *work)
2942 {
2943 	struct nvme_fc_ctrl *ctrl =
2944 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2945 	int ret;
2946 
2947 	__nvme_fc_terminate_io(ctrl);
2948 
2949 	nvme_stop_ctrl(&ctrl->ctrl);
2950 
2951 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2952 		ret = nvme_fc_create_association(ctrl);
2953 	else
2954 		ret = -ENOTCONN;
2955 
2956 	if (ret)
2957 		nvme_fc_reconnect_or_delete(ctrl, ret);
2958 	else
2959 		dev_info(ctrl->ctrl.device,
2960 			"NVME-FC{%d}: controller reset complete\n",
2961 			ctrl->cnum);
2962 }
2963 
2964 static void
2965 nvme_fc_connect_err_work(struct work_struct *work)
2966 {
2967 	struct nvme_fc_ctrl *ctrl =
2968 			container_of(work, struct nvme_fc_ctrl, err_work);
2969 
2970 	__nvme_fc_terminate_io(ctrl);
2971 
2972 	atomic_set(&ctrl->err_work_active, 0);
2973 
2974 	/*
2975 	 * Rescheduling the connection after recovering
2976 	 * from the io error is left to the reconnect work
2977 	 * item, which is what should have stalled waiting on
2978 	 * the io that had the error that scheduled this work.
2979 	 */
2980 }
2981 
2982 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2983 	.name			= "fc",
2984 	.module			= THIS_MODULE,
2985 	.flags			= NVME_F_FABRICS,
2986 	.reg_read32		= nvmf_reg_read32,
2987 	.reg_read64		= nvmf_reg_read64,
2988 	.reg_write32		= nvmf_reg_write32,
2989 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2990 	.submit_async_event	= nvme_fc_submit_async_event,
2991 	.delete_ctrl		= nvme_fc_delete_ctrl,
2992 	.get_address		= nvmf_get_address,
2993 };
2994 
2995 static void
2996 nvme_fc_connect_ctrl_work(struct work_struct *work)
2997 {
2998 	int ret;
2999 
3000 	struct nvme_fc_ctrl *ctrl =
3001 			container_of(to_delayed_work(work),
3002 				struct nvme_fc_ctrl, connect_work);
3003 
3004 	ret = nvme_fc_create_association(ctrl);
3005 	if (ret)
3006 		nvme_fc_reconnect_or_delete(ctrl, ret);
3007 	else
3008 		dev_info(ctrl->ctrl.device,
3009 			"NVME-FC{%d}: controller connect complete\n",
3010 			ctrl->cnum);
3011 }
3012 
3013 
3014 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3015 	.queue_rq	= nvme_fc_queue_rq,
3016 	.complete	= nvme_fc_complete_rq,
3017 	.init_request	= nvme_fc_init_request,
3018 	.exit_request	= nvme_fc_exit_request,
3019 	.init_hctx	= nvme_fc_init_admin_hctx,
3020 	.timeout	= nvme_fc_timeout,
3021 };
3022 
3023 
3024 /*
3025  * Fails a controller request if it matches an existing controller
3026  * (association) with the same tuple:
3027  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3028  *
3029  * The ports don't need to be compared as they are intrinsically
3030  * already matched by the port pointers supplied.
3031  */
3032 static bool
3033 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3034 		struct nvmf_ctrl_options *opts)
3035 {
3036 	struct nvme_fc_ctrl *ctrl;
3037 	unsigned long flags;
3038 	bool found = false;
3039 
3040 	spin_lock_irqsave(&rport->lock, flags);
3041 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3042 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3043 		if (found)
3044 			break;
3045 	}
3046 	spin_unlock_irqrestore(&rport->lock, flags);
3047 
3048 	return found;
3049 }
3050 
3051 static struct nvme_ctrl *
3052 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3053 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3054 {
3055 	struct nvme_fc_ctrl *ctrl;
3056 	unsigned long flags;
3057 	int ret, idx;
3058 
3059 	if (!(rport->remoteport.port_role &
3060 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3061 		ret = -EBADR;
3062 		goto out_fail;
3063 	}
3064 
3065 	if (!opts->duplicate_connect &&
3066 	    nvme_fc_existing_controller(rport, opts)) {
3067 		ret = -EALREADY;
3068 		goto out_fail;
3069 	}
3070 
3071 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3072 	if (!ctrl) {
3073 		ret = -ENOMEM;
3074 		goto out_fail;
3075 	}
3076 
3077 	if (!try_module_get(lport->ops->module)) {
3078 		ret = -EUNATCH;
3079 		goto out_free_ctrl;
3080 	}
3081 
3082 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3083 	if (idx < 0) {
3084 		ret = -ENOSPC;
3085 		goto out_mod_put;
3086 	}
3087 
3088 	ctrl->ctrl.opts = opts;
3089 	ctrl->ctrl.nr_reconnects = 0;
3090 	if (lport->dev)
3091 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3092 	else
3093 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3094 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3095 	ctrl->lport = lport;
3096 	ctrl->rport = rport;
3097 	ctrl->dev = lport->dev;
3098 	ctrl->cnum = idx;
3099 	ctrl->ioq_live = false;
3100 	ctrl->assoc_active = false;
3101 	atomic_set(&ctrl->err_work_active, 0);
3102 	init_waitqueue_head(&ctrl->ioabort_wait);
3103 
3104 	get_device(ctrl->dev);
3105 	kref_init(&ctrl->ref);
3106 
3107 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3108 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3109 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3110 	spin_lock_init(&ctrl->lock);
3111 
3112 	/* io queue count */
3113 	ctrl->ctrl.queue_count = min_t(unsigned int,
3114 				opts->nr_io_queues,
3115 				lport->ops->max_hw_queues);
3116 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3117 
3118 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3119 	ctrl->ctrl.kato = opts->kato;
3120 	ctrl->ctrl.cntlid = 0xffff;
3121 
3122 	ret = -ENOMEM;
3123 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3124 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3125 	if (!ctrl->queues)
3126 		goto out_free_ida;
3127 
3128 	nvme_fc_init_queue(ctrl, 0);
3129 
3130 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3131 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3132 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3133 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3134 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3135 	ctrl->admin_tag_set.cmd_size =
3136 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3137 			    ctrl->lport->ops->fcprqst_priv_sz);
3138 	ctrl->admin_tag_set.driver_data = ctrl;
3139 	ctrl->admin_tag_set.nr_hw_queues = 1;
3140 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3141 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3142 
3143 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3144 	if (ret)
3145 		goto out_free_queues;
3146 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3147 
3148 	ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3149 	if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3150 		ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3151 		goto out_free_admin_tag_set;
3152 	}
3153 
3154 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3155 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3156 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3157 		goto out_cleanup_fabrics_q;
3158 	}
3159 
3160 	/*
3161 	 * Would have been nice to init io queues tag set as well.
3162 	 * However, we require interaction from the controller
3163 	 * for max io queue count before we can do so.
3164 	 * Defer this to the connect path.
3165 	 */
3166 
3167 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3168 	if (ret)
3169 		goto out_cleanup_admin_q;
3170 
3171 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3172 
3173 	spin_lock_irqsave(&rport->lock, flags);
3174 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3175 	spin_unlock_irqrestore(&rport->lock, flags);
3176 
3177 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3178 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3179 		dev_err(ctrl->ctrl.device,
3180 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3181 		goto fail_ctrl;
3182 	}
3183 
3184 	nvme_get_ctrl(&ctrl->ctrl);
3185 
3186 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3187 		nvme_put_ctrl(&ctrl->ctrl);
3188 		dev_err(ctrl->ctrl.device,
3189 			"NVME-FC{%d}: failed to schedule initial connect\n",
3190 			ctrl->cnum);
3191 		goto fail_ctrl;
3192 	}
3193 
3194 	flush_delayed_work(&ctrl->connect_work);
3195 
3196 	dev_info(ctrl->ctrl.device,
3197 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3198 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3199 
3200 	return &ctrl->ctrl;
3201 
3202 fail_ctrl:
3203 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3204 	cancel_work_sync(&ctrl->ctrl.reset_work);
3205 	cancel_work_sync(&ctrl->err_work);
3206 	cancel_delayed_work_sync(&ctrl->connect_work);
3207 
3208 	ctrl->ctrl.opts = NULL;
3209 
3210 	/* initiate nvme ctrl ref counting teardown */
3211 	nvme_uninit_ctrl(&ctrl->ctrl);
3212 
3213 	/* Remove core ctrl ref. */
3214 	nvme_put_ctrl(&ctrl->ctrl);
3215 
3216 	/* as we're past the point where we transition to the ref
3217 	 * counting teardown path, if we return a bad pointer here,
3218 	 * the calling routine, thinking it's prior to the
3219 	 * transition, will do an rport put. Since the teardown
3220 	 * path also does a rport put, we do an extra get here to
3221 	 * so proper order/teardown happens.
3222 	 */
3223 	nvme_fc_rport_get(rport);
3224 
3225 	return ERR_PTR(-EIO);
3226 
3227 out_cleanup_admin_q:
3228 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3229 out_cleanup_fabrics_q:
3230 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3231 out_free_admin_tag_set:
3232 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3233 out_free_queues:
3234 	kfree(ctrl->queues);
3235 out_free_ida:
3236 	put_device(ctrl->dev);
3237 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3238 out_mod_put:
3239 	module_put(lport->ops->module);
3240 out_free_ctrl:
3241 	kfree(ctrl);
3242 out_fail:
3243 	/* exit via here doesn't follow ctlr ref points */
3244 	return ERR_PTR(ret);
3245 }
3246 
3247 
3248 struct nvmet_fc_traddr {
3249 	u64	nn;
3250 	u64	pn;
3251 };
3252 
3253 static int
3254 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3255 {
3256 	u64 token64;
3257 
3258 	if (match_u64(sstr, &token64))
3259 		return -EINVAL;
3260 	*val = token64;
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * This routine validates and extracts the WWN's from the TRADDR string.
3267  * As kernel parsers need the 0x to determine number base, universally
3268  * build string to parse with 0x prefix before parsing name strings.
3269  */
3270 static int
3271 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3272 {
3273 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3274 	substring_t wwn = { name, &name[sizeof(name)-1] };
3275 	int nnoffset, pnoffset;
3276 
3277 	/* validate if string is one of the 2 allowed formats */
3278 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3279 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3280 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3281 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3282 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3283 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3284 						NVME_FC_TRADDR_OXNNLEN;
3285 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3286 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3287 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3288 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3289 		nnoffset = NVME_FC_TRADDR_NNLEN;
3290 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3291 	} else
3292 		goto out_einval;
3293 
3294 	name[0] = '0';
3295 	name[1] = 'x';
3296 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3297 
3298 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3299 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3300 		goto out_einval;
3301 
3302 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3303 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3304 		goto out_einval;
3305 
3306 	return 0;
3307 
3308 out_einval:
3309 	pr_warn("%s: bad traddr string\n", __func__);
3310 	return -EINVAL;
3311 }
3312 
3313 static struct nvme_ctrl *
3314 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3315 {
3316 	struct nvme_fc_lport *lport;
3317 	struct nvme_fc_rport *rport;
3318 	struct nvme_ctrl *ctrl;
3319 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3320 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3321 	unsigned long flags;
3322 	int ret;
3323 
3324 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3325 	if (ret || !raddr.nn || !raddr.pn)
3326 		return ERR_PTR(-EINVAL);
3327 
3328 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3329 	if (ret || !laddr.nn || !laddr.pn)
3330 		return ERR_PTR(-EINVAL);
3331 
3332 	/* find the host and remote ports to connect together */
3333 	spin_lock_irqsave(&nvme_fc_lock, flags);
3334 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3335 		if (lport->localport.node_name != laddr.nn ||
3336 		    lport->localport.port_name != laddr.pn)
3337 			continue;
3338 
3339 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3340 			if (rport->remoteport.node_name != raddr.nn ||
3341 			    rport->remoteport.port_name != raddr.pn)
3342 				continue;
3343 
3344 			/* if fail to get reference fall through. Will error */
3345 			if (!nvme_fc_rport_get(rport))
3346 				break;
3347 
3348 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3349 
3350 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3351 			if (IS_ERR(ctrl))
3352 				nvme_fc_rport_put(rport);
3353 			return ctrl;
3354 		}
3355 	}
3356 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3357 
3358 	pr_warn("%s: %s - %s combination not found\n",
3359 		__func__, opts->traddr, opts->host_traddr);
3360 	return ERR_PTR(-ENOENT);
3361 }
3362 
3363 
3364 static struct nvmf_transport_ops nvme_fc_transport = {
3365 	.name		= "fc",
3366 	.module		= THIS_MODULE,
3367 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3368 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3369 	.create_ctrl	= nvme_fc_create_ctrl,
3370 };
3371 
3372 /* Arbitrary successive failures max. With lots of subsystems could be high */
3373 #define DISCOVERY_MAX_FAIL	20
3374 
3375 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3376 		struct device_attribute *attr, const char *buf, size_t count)
3377 {
3378 	unsigned long flags;
3379 	LIST_HEAD(local_disc_list);
3380 	struct nvme_fc_lport *lport;
3381 	struct nvme_fc_rport *rport;
3382 	int failcnt = 0;
3383 
3384 	spin_lock_irqsave(&nvme_fc_lock, flags);
3385 restart:
3386 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3387 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3388 			if (!nvme_fc_lport_get(lport))
3389 				continue;
3390 			if (!nvme_fc_rport_get(rport)) {
3391 				/*
3392 				 * This is a temporary condition. Upon restart
3393 				 * this rport will be gone from the list.
3394 				 *
3395 				 * Revert the lport put and retry.  Anything
3396 				 * added to the list already will be skipped (as
3397 				 * they are no longer list_empty).  Loops should
3398 				 * resume at rports that were not yet seen.
3399 				 */
3400 				nvme_fc_lport_put(lport);
3401 
3402 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3403 					goto restart;
3404 
3405 				pr_err("nvme_discovery: too many reference "
3406 				       "failures\n");
3407 				goto process_local_list;
3408 			}
3409 			if (list_empty(&rport->disc_list))
3410 				list_add_tail(&rport->disc_list,
3411 					      &local_disc_list);
3412 		}
3413 	}
3414 
3415 process_local_list:
3416 	while (!list_empty(&local_disc_list)) {
3417 		rport = list_first_entry(&local_disc_list,
3418 					 struct nvme_fc_rport, disc_list);
3419 		list_del_init(&rport->disc_list);
3420 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3421 
3422 		lport = rport->lport;
3423 		/* signal discovery. Won't hurt if it repeats */
3424 		nvme_fc_signal_discovery_scan(lport, rport);
3425 		nvme_fc_rport_put(rport);
3426 		nvme_fc_lport_put(lport);
3427 
3428 		spin_lock_irqsave(&nvme_fc_lock, flags);
3429 	}
3430 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3431 
3432 	return count;
3433 }
3434 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3435 
3436 static struct attribute *nvme_fc_attrs[] = {
3437 	&dev_attr_nvme_discovery.attr,
3438 	NULL
3439 };
3440 
3441 static struct attribute_group nvme_fc_attr_group = {
3442 	.attrs = nvme_fc_attrs,
3443 };
3444 
3445 static const struct attribute_group *nvme_fc_attr_groups[] = {
3446 	&nvme_fc_attr_group,
3447 	NULL
3448 };
3449 
3450 static struct class fc_class = {
3451 	.name = "fc",
3452 	.dev_groups = nvme_fc_attr_groups,
3453 	.owner = THIS_MODULE,
3454 };
3455 
3456 static int __init nvme_fc_init_module(void)
3457 {
3458 	int ret;
3459 
3460 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3461 	if (!nvme_fc_wq)
3462 		return -ENOMEM;
3463 
3464 	/*
3465 	 * NOTE:
3466 	 * It is expected that in the future the kernel will combine
3467 	 * the FC-isms that are currently under scsi and now being
3468 	 * added to by NVME into a new standalone FC class. The SCSI
3469 	 * and NVME protocols and their devices would be under this
3470 	 * new FC class.
3471 	 *
3472 	 * As we need something to post FC-specific udev events to,
3473 	 * specifically for nvme probe events, start by creating the
3474 	 * new device class.  When the new standalone FC class is
3475 	 * put in place, this code will move to a more generic
3476 	 * location for the class.
3477 	 */
3478 	ret = class_register(&fc_class);
3479 	if (ret) {
3480 		pr_err("couldn't register class fc\n");
3481 		goto out_destroy_wq;
3482 	}
3483 
3484 	/*
3485 	 * Create a device for the FC-centric udev events
3486 	 */
3487 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3488 				"fc_udev_device");
3489 	if (IS_ERR(fc_udev_device)) {
3490 		pr_err("couldn't create fc_udev device!\n");
3491 		ret = PTR_ERR(fc_udev_device);
3492 		goto out_destroy_class;
3493 	}
3494 
3495 	ret = nvmf_register_transport(&nvme_fc_transport);
3496 	if (ret)
3497 		goto out_destroy_device;
3498 
3499 	return 0;
3500 
3501 out_destroy_device:
3502 	device_destroy(&fc_class, MKDEV(0, 0));
3503 out_destroy_class:
3504 	class_unregister(&fc_class);
3505 out_destroy_wq:
3506 	destroy_workqueue(nvme_fc_wq);
3507 
3508 	return ret;
3509 }
3510 
3511 static void
3512 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3513 {
3514 	struct nvme_fc_ctrl *ctrl;
3515 
3516 	spin_lock(&rport->lock);
3517 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3518 		dev_warn(ctrl->ctrl.device,
3519 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3520 			ctrl->cnum);
3521 		nvme_delete_ctrl(&ctrl->ctrl);
3522 	}
3523 	spin_unlock(&rport->lock);
3524 }
3525 
3526 static void
3527 nvme_fc_cleanup_for_unload(void)
3528 {
3529 	struct nvme_fc_lport *lport;
3530 	struct nvme_fc_rport *rport;
3531 
3532 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3533 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3534 			nvme_fc_delete_controllers(rport);
3535 		}
3536 	}
3537 }
3538 
3539 static void __exit nvme_fc_exit_module(void)
3540 {
3541 	unsigned long flags;
3542 	bool need_cleanup = false;
3543 
3544 	spin_lock_irqsave(&nvme_fc_lock, flags);
3545 	nvme_fc_waiting_to_unload = true;
3546 	if (!list_empty(&nvme_fc_lport_list)) {
3547 		need_cleanup = true;
3548 		nvme_fc_cleanup_for_unload();
3549 	}
3550 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3551 	if (need_cleanup) {
3552 		pr_info("%s: waiting for ctlr deletes\n", __func__);
3553 		wait_for_completion(&nvme_fc_unload_proceed);
3554 		pr_info("%s: ctrl deletes complete\n", __func__);
3555 	}
3556 
3557 	nvmf_unregister_transport(&nvme_fc_transport);
3558 
3559 	ida_destroy(&nvme_fc_local_port_cnt);
3560 	ida_destroy(&nvme_fc_ctrl_cnt);
3561 
3562 	device_destroy(&fc_class, MKDEV(0, 0));
3563 	class_unregister(&fc_class);
3564 	destroy_workqueue(nvme_fc_wq);
3565 }
3566 
3567 module_init(nvme_fc_init_module);
3568 module_exit(nvme_fc_exit_module);
3569 
3570 MODULE_LICENSE("GPL v2");
3571