1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include <scsi/scsi_transport_fc.h> 18 19 /* *************************** Data Structures/Defines ****************** */ 20 21 22 enum nvme_fc_queue_flags { 23 NVME_FC_Q_CONNECTED = 0, 24 NVME_FC_Q_LIVE, 25 }; 26 27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 28 29 struct nvme_fc_queue { 30 struct nvme_fc_ctrl *ctrl; 31 struct device *dev; 32 struct blk_mq_hw_ctx *hctx; 33 void *lldd_handle; 34 size_t cmnd_capsule_len; 35 u32 qnum; 36 u32 rqcnt; 37 u32 seqno; 38 39 u64 connection_id; 40 atomic_t csn; 41 42 unsigned long flags; 43 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 44 45 enum nvme_fcop_flags { 46 FCOP_FLAGS_TERMIO = (1 << 0), 47 FCOP_FLAGS_AEN = (1 << 1), 48 }; 49 50 struct nvmefc_ls_req_op { 51 struct nvmefc_ls_req ls_req; 52 53 struct nvme_fc_rport *rport; 54 struct nvme_fc_queue *queue; 55 struct request *rq; 56 u32 flags; 57 58 int ls_error; 59 struct completion ls_done; 60 struct list_head lsreq_list; /* rport->ls_req_list */ 61 bool req_queued; 62 }; 63 64 enum nvme_fcpop_state { 65 FCPOP_STATE_UNINIT = 0, 66 FCPOP_STATE_IDLE = 1, 67 FCPOP_STATE_ACTIVE = 2, 68 FCPOP_STATE_ABORTED = 3, 69 FCPOP_STATE_COMPLETE = 4, 70 }; 71 72 struct nvme_fc_fcp_op { 73 struct nvme_request nreq; /* 74 * nvme/host/core.c 75 * requires this to be 76 * the 1st element in the 77 * private structure 78 * associated with the 79 * request. 80 */ 81 struct nvmefc_fcp_req fcp_req; 82 83 struct nvme_fc_ctrl *ctrl; 84 struct nvme_fc_queue *queue; 85 struct request *rq; 86 87 atomic_t state; 88 u32 flags; 89 u32 rqno; 90 u32 nents; 91 92 struct nvme_fc_cmd_iu cmd_iu; 93 struct nvme_fc_ersp_iu rsp_iu; 94 }; 95 96 struct nvme_fcp_op_w_sgl { 97 struct nvme_fc_fcp_op op; 98 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 99 uint8_t priv[0]; 100 }; 101 102 struct nvme_fc_lport { 103 struct nvme_fc_local_port localport; 104 105 struct ida endp_cnt; 106 struct list_head port_list; /* nvme_fc_port_list */ 107 struct list_head endp_list; 108 struct device *dev; /* physical device for dma */ 109 struct nvme_fc_port_template *ops; 110 struct kref ref; 111 atomic_t act_rport_cnt; 112 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 113 114 struct nvme_fc_rport { 115 struct nvme_fc_remote_port remoteport; 116 117 struct list_head endp_list; /* for lport->endp_list */ 118 struct list_head ctrl_list; 119 struct list_head ls_req_list; 120 struct list_head disc_list; 121 struct device *dev; /* physical device for dma */ 122 struct nvme_fc_lport *lport; 123 spinlock_t lock; 124 struct kref ref; 125 atomic_t act_ctrl_cnt; 126 unsigned long dev_loss_end; 127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 128 129 enum nvme_fcctrl_flags { 130 FCCTRL_TERMIO = (1 << 0), 131 }; 132 133 struct nvme_fc_ctrl { 134 spinlock_t lock; 135 struct nvme_fc_queue *queues; 136 struct device *dev; 137 struct nvme_fc_lport *lport; 138 struct nvme_fc_rport *rport; 139 u32 cnum; 140 141 bool ioq_live; 142 bool assoc_active; 143 atomic_t err_work_active; 144 u64 association_id; 145 146 struct list_head ctrl_list; /* rport->ctrl_list */ 147 148 struct blk_mq_tag_set admin_tag_set; 149 struct blk_mq_tag_set tag_set; 150 151 struct delayed_work connect_work; 152 struct work_struct err_work; 153 154 struct kref ref; 155 u32 flags; 156 u32 iocnt; 157 wait_queue_head_t ioabort_wait; 158 159 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 160 161 struct nvme_ctrl ctrl; 162 }; 163 164 static inline struct nvme_fc_ctrl * 165 to_fc_ctrl(struct nvme_ctrl *ctrl) 166 { 167 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 168 } 169 170 static inline struct nvme_fc_lport * 171 localport_to_lport(struct nvme_fc_local_port *portptr) 172 { 173 return container_of(portptr, struct nvme_fc_lport, localport); 174 } 175 176 static inline struct nvme_fc_rport * 177 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 178 { 179 return container_of(portptr, struct nvme_fc_rport, remoteport); 180 } 181 182 static inline struct nvmefc_ls_req_op * 183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 184 { 185 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 186 } 187 188 static inline struct nvme_fc_fcp_op * 189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 190 { 191 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 192 } 193 194 195 196 /* *************************** Globals **************************** */ 197 198 199 static DEFINE_SPINLOCK(nvme_fc_lock); 200 201 static LIST_HEAD(nvme_fc_lport_list); 202 static DEFINE_IDA(nvme_fc_local_port_cnt); 203 static DEFINE_IDA(nvme_fc_ctrl_cnt); 204 205 static struct workqueue_struct *nvme_fc_wq; 206 207 static bool nvme_fc_waiting_to_unload; 208 static DECLARE_COMPLETION(nvme_fc_unload_proceed); 209 210 /* 211 * These items are short-term. They will eventually be moved into 212 * a generic FC class. See comments in module init. 213 */ 214 static struct device *fc_udev_device; 215 216 217 /* *********************** FC-NVME Port Management ************************ */ 218 219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 220 struct nvme_fc_queue *, unsigned int); 221 222 static void 223 nvme_fc_free_lport(struct kref *ref) 224 { 225 struct nvme_fc_lport *lport = 226 container_of(ref, struct nvme_fc_lport, ref); 227 unsigned long flags; 228 229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 230 WARN_ON(!list_empty(&lport->endp_list)); 231 232 /* remove from transport list */ 233 spin_lock_irqsave(&nvme_fc_lock, flags); 234 list_del(&lport->port_list); 235 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) 236 complete(&nvme_fc_unload_proceed); 237 spin_unlock_irqrestore(&nvme_fc_lock, flags); 238 239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 240 ida_destroy(&lport->endp_cnt); 241 242 put_device(lport->dev); 243 244 kfree(lport); 245 } 246 247 static void 248 nvme_fc_lport_put(struct nvme_fc_lport *lport) 249 { 250 kref_put(&lport->ref, nvme_fc_free_lport); 251 } 252 253 static int 254 nvme_fc_lport_get(struct nvme_fc_lport *lport) 255 { 256 return kref_get_unless_zero(&lport->ref); 257 } 258 259 260 static struct nvme_fc_lport * 261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 262 struct nvme_fc_port_template *ops, 263 struct device *dev) 264 { 265 struct nvme_fc_lport *lport; 266 unsigned long flags; 267 268 spin_lock_irqsave(&nvme_fc_lock, flags); 269 270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 271 if (lport->localport.node_name != pinfo->node_name || 272 lport->localport.port_name != pinfo->port_name) 273 continue; 274 275 if (lport->dev != dev) { 276 lport = ERR_PTR(-EXDEV); 277 goto out_done; 278 } 279 280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 281 lport = ERR_PTR(-EEXIST); 282 goto out_done; 283 } 284 285 if (!nvme_fc_lport_get(lport)) { 286 /* 287 * fails if ref cnt already 0. If so, 288 * act as if lport already deleted 289 */ 290 lport = NULL; 291 goto out_done; 292 } 293 294 /* resume the lport */ 295 296 lport->ops = ops; 297 lport->localport.port_role = pinfo->port_role; 298 lport->localport.port_id = pinfo->port_id; 299 lport->localport.port_state = FC_OBJSTATE_ONLINE; 300 301 spin_unlock_irqrestore(&nvme_fc_lock, flags); 302 303 return lport; 304 } 305 306 lport = NULL; 307 308 out_done: 309 spin_unlock_irqrestore(&nvme_fc_lock, flags); 310 311 return lport; 312 } 313 314 /** 315 * nvme_fc_register_localport - transport entry point called by an 316 * LLDD to register the existence of a NVME 317 * host FC port. 318 * @pinfo: pointer to information about the port to be registered 319 * @template: LLDD entrypoints and operational parameters for the port 320 * @dev: physical hardware device node port corresponds to. Will be 321 * used for DMA mappings 322 * @portptr: pointer to a local port pointer. Upon success, the routine 323 * will allocate a nvme_fc_local_port structure and place its 324 * address in the local port pointer. Upon failure, local port 325 * pointer will be set to 0. 326 * 327 * Returns: 328 * a completion status. Must be 0 upon success; a negative errno 329 * (ex: -ENXIO) upon failure. 330 */ 331 int 332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 333 struct nvme_fc_port_template *template, 334 struct device *dev, 335 struct nvme_fc_local_port **portptr) 336 { 337 struct nvme_fc_lport *newrec; 338 unsigned long flags; 339 int ret, idx; 340 341 if (!template->localport_delete || !template->remoteport_delete || 342 !template->ls_req || !template->fcp_io || 343 !template->ls_abort || !template->fcp_abort || 344 !template->max_hw_queues || !template->max_sgl_segments || 345 !template->max_dif_sgl_segments || !template->dma_boundary) { 346 ret = -EINVAL; 347 goto out_reghost_failed; 348 } 349 350 /* 351 * look to see if there is already a localport that had been 352 * deregistered and in the process of waiting for all the 353 * references to fully be removed. If the references haven't 354 * expired, we can simply re-enable the localport. Remoteports 355 * and controller reconnections should resume naturally. 356 */ 357 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 358 359 /* found an lport, but something about its state is bad */ 360 if (IS_ERR(newrec)) { 361 ret = PTR_ERR(newrec); 362 goto out_reghost_failed; 363 364 /* found existing lport, which was resumed */ 365 } else if (newrec) { 366 *portptr = &newrec->localport; 367 return 0; 368 } 369 370 /* nothing found - allocate a new localport struct */ 371 372 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 373 GFP_KERNEL); 374 if (!newrec) { 375 ret = -ENOMEM; 376 goto out_reghost_failed; 377 } 378 379 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 380 if (idx < 0) { 381 ret = -ENOSPC; 382 goto out_fail_kfree; 383 } 384 385 if (!get_device(dev) && dev) { 386 ret = -ENODEV; 387 goto out_ida_put; 388 } 389 390 INIT_LIST_HEAD(&newrec->port_list); 391 INIT_LIST_HEAD(&newrec->endp_list); 392 kref_init(&newrec->ref); 393 atomic_set(&newrec->act_rport_cnt, 0); 394 newrec->ops = template; 395 newrec->dev = dev; 396 ida_init(&newrec->endp_cnt); 397 newrec->localport.private = &newrec[1]; 398 newrec->localport.node_name = pinfo->node_name; 399 newrec->localport.port_name = pinfo->port_name; 400 newrec->localport.port_role = pinfo->port_role; 401 newrec->localport.port_id = pinfo->port_id; 402 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 403 newrec->localport.port_num = idx; 404 405 spin_lock_irqsave(&nvme_fc_lock, flags); 406 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 407 spin_unlock_irqrestore(&nvme_fc_lock, flags); 408 409 if (dev) 410 dma_set_seg_boundary(dev, template->dma_boundary); 411 412 *portptr = &newrec->localport; 413 return 0; 414 415 out_ida_put: 416 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 417 out_fail_kfree: 418 kfree(newrec); 419 out_reghost_failed: 420 *portptr = NULL; 421 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 425 426 /** 427 * nvme_fc_unregister_localport - transport entry point called by an 428 * LLDD to deregister/remove a previously 429 * registered a NVME host FC port. 430 * @portptr: pointer to the (registered) local port that is to be deregistered. 431 * 432 * Returns: 433 * a completion status. Must be 0 upon success; a negative errno 434 * (ex: -ENXIO) upon failure. 435 */ 436 int 437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 438 { 439 struct nvme_fc_lport *lport = localport_to_lport(portptr); 440 unsigned long flags; 441 442 if (!portptr) 443 return -EINVAL; 444 445 spin_lock_irqsave(&nvme_fc_lock, flags); 446 447 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 448 spin_unlock_irqrestore(&nvme_fc_lock, flags); 449 return -EINVAL; 450 } 451 portptr->port_state = FC_OBJSTATE_DELETED; 452 453 spin_unlock_irqrestore(&nvme_fc_lock, flags); 454 455 if (atomic_read(&lport->act_rport_cnt) == 0) 456 lport->ops->localport_delete(&lport->localport); 457 458 nvme_fc_lport_put(lport); 459 460 return 0; 461 } 462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 463 464 /* 465 * TRADDR strings, per FC-NVME are fixed format: 466 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 467 * udev event will only differ by prefix of what field is 468 * being specified: 469 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 470 * 19 + 43 + null_fudge = 64 characters 471 */ 472 #define FCNVME_TRADDR_LENGTH 64 473 474 static void 475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 476 struct nvme_fc_rport *rport) 477 { 478 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 479 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 480 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 481 482 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 483 return; 484 485 snprintf(hostaddr, sizeof(hostaddr), 486 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 487 lport->localport.node_name, lport->localport.port_name); 488 snprintf(tgtaddr, sizeof(tgtaddr), 489 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 490 rport->remoteport.node_name, rport->remoteport.port_name); 491 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 492 } 493 494 static void 495 nvme_fc_free_rport(struct kref *ref) 496 { 497 struct nvme_fc_rport *rport = 498 container_of(ref, struct nvme_fc_rport, ref); 499 struct nvme_fc_lport *lport = 500 localport_to_lport(rport->remoteport.localport); 501 unsigned long flags; 502 503 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 504 WARN_ON(!list_empty(&rport->ctrl_list)); 505 506 /* remove from lport list */ 507 spin_lock_irqsave(&nvme_fc_lock, flags); 508 list_del(&rport->endp_list); 509 spin_unlock_irqrestore(&nvme_fc_lock, flags); 510 511 WARN_ON(!list_empty(&rport->disc_list)); 512 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 513 514 kfree(rport); 515 516 nvme_fc_lport_put(lport); 517 } 518 519 static void 520 nvme_fc_rport_put(struct nvme_fc_rport *rport) 521 { 522 kref_put(&rport->ref, nvme_fc_free_rport); 523 } 524 525 static int 526 nvme_fc_rport_get(struct nvme_fc_rport *rport) 527 { 528 return kref_get_unless_zero(&rport->ref); 529 } 530 531 static void 532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 533 { 534 switch (ctrl->ctrl.state) { 535 case NVME_CTRL_NEW: 536 case NVME_CTRL_CONNECTING: 537 /* 538 * As all reconnects were suppressed, schedule a 539 * connect. 540 */ 541 dev_info(ctrl->ctrl.device, 542 "NVME-FC{%d}: connectivity re-established. " 543 "Attempting reconnect\n", ctrl->cnum); 544 545 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 546 break; 547 548 case NVME_CTRL_RESETTING: 549 /* 550 * Controller is already in the process of terminating the 551 * association. No need to do anything further. The reconnect 552 * step will naturally occur after the reset completes. 553 */ 554 break; 555 556 default: 557 /* no action to take - let it delete */ 558 break; 559 } 560 } 561 562 static struct nvme_fc_rport * 563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 564 struct nvme_fc_port_info *pinfo) 565 { 566 struct nvme_fc_rport *rport; 567 struct nvme_fc_ctrl *ctrl; 568 unsigned long flags; 569 570 spin_lock_irqsave(&nvme_fc_lock, flags); 571 572 list_for_each_entry(rport, &lport->endp_list, endp_list) { 573 if (rport->remoteport.node_name != pinfo->node_name || 574 rport->remoteport.port_name != pinfo->port_name) 575 continue; 576 577 if (!nvme_fc_rport_get(rport)) { 578 rport = ERR_PTR(-ENOLCK); 579 goto out_done; 580 } 581 582 spin_unlock_irqrestore(&nvme_fc_lock, flags); 583 584 spin_lock_irqsave(&rport->lock, flags); 585 586 /* has it been unregistered */ 587 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 588 /* means lldd called us twice */ 589 spin_unlock_irqrestore(&rport->lock, flags); 590 nvme_fc_rport_put(rport); 591 return ERR_PTR(-ESTALE); 592 } 593 594 rport->remoteport.port_role = pinfo->port_role; 595 rport->remoteport.port_id = pinfo->port_id; 596 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 597 rport->dev_loss_end = 0; 598 599 /* 600 * kick off a reconnect attempt on all associations to the 601 * remote port. A successful reconnects will resume i/o. 602 */ 603 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 604 nvme_fc_resume_controller(ctrl); 605 606 spin_unlock_irqrestore(&rport->lock, flags); 607 608 return rport; 609 } 610 611 rport = NULL; 612 613 out_done: 614 spin_unlock_irqrestore(&nvme_fc_lock, flags); 615 616 return rport; 617 } 618 619 static inline void 620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 621 struct nvme_fc_port_info *pinfo) 622 { 623 if (pinfo->dev_loss_tmo) 624 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 625 else 626 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 627 } 628 629 /** 630 * nvme_fc_register_remoteport - transport entry point called by an 631 * LLDD to register the existence of a NVME 632 * subsystem FC port on its fabric. 633 * @localport: pointer to the (registered) local port that the remote 634 * subsystem port is connected to. 635 * @pinfo: pointer to information about the port to be registered 636 * @portptr: pointer to a remote port pointer. Upon success, the routine 637 * will allocate a nvme_fc_remote_port structure and place its 638 * address in the remote port pointer. Upon failure, remote port 639 * pointer will be set to 0. 640 * 641 * Returns: 642 * a completion status. Must be 0 upon success; a negative errno 643 * (ex: -ENXIO) upon failure. 644 */ 645 int 646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 647 struct nvme_fc_port_info *pinfo, 648 struct nvme_fc_remote_port **portptr) 649 { 650 struct nvme_fc_lport *lport = localport_to_lport(localport); 651 struct nvme_fc_rport *newrec; 652 unsigned long flags; 653 int ret, idx; 654 655 if (!nvme_fc_lport_get(lport)) { 656 ret = -ESHUTDOWN; 657 goto out_reghost_failed; 658 } 659 660 /* 661 * look to see if there is already a remoteport that is waiting 662 * for a reconnect (within dev_loss_tmo) with the same WWN's. 663 * If so, transition to it and reconnect. 664 */ 665 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 666 667 /* found an rport, but something about its state is bad */ 668 if (IS_ERR(newrec)) { 669 ret = PTR_ERR(newrec); 670 goto out_lport_put; 671 672 /* found existing rport, which was resumed */ 673 } else if (newrec) { 674 nvme_fc_lport_put(lport); 675 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 676 nvme_fc_signal_discovery_scan(lport, newrec); 677 *portptr = &newrec->remoteport; 678 return 0; 679 } 680 681 /* nothing found - allocate a new remoteport struct */ 682 683 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 684 GFP_KERNEL); 685 if (!newrec) { 686 ret = -ENOMEM; 687 goto out_lport_put; 688 } 689 690 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 691 if (idx < 0) { 692 ret = -ENOSPC; 693 goto out_kfree_rport; 694 } 695 696 INIT_LIST_HEAD(&newrec->endp_list); 697 INIT_LIST_HEAD(&newrec->ctrl_list); 698 INIT_LIST_HEAD(&newrec->ls_req_list); 699 INIT_LIST_HEAD(&newrec->disc_list); 700 kref_init(&newrec->ref); 701 atomic_set(&newrec->act_ctrl_cnt, 0); 702 spin_lock_init(&newrec->lock); 703 newrec->remoteport.localport = &lport->localport; 704 newrec->dev = lport->dev; 705 newrec->lport = lport; 706 newrec->remoteport.private = &newrec[1]; 707 newrec->remoteport.port_role = pinfo->port_role; 708 newrec->remoteport.node_name = pinfo->node_name; 709 newrec->remoteport.port_name = pinfo->port_name; 710 newrec->remoteport.port_id = pinfo->port_id; 711 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 712 newrec->remoteport.port_num = idx; 713 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 714 715 spin_lock_irqsave(&nvme_fc_lock, flags); 716 list_add_tail(&newrec->endp_list, &lport->endp_list); 717 spin_unlock_irqrestore(&nvme_fc_lock, flags); 718 719 nvme_fc_signal_discovery_scan(lport, newrec); 720 721 *portptr = &newrec->remoteport; 722 return 0; 723 724 out_kfree_rport: 725 kfree(newrec); 726 out_lport_put: 727 nvme_fc_lport_put(lport); 728 out_reghost_failed: 729 *portptr = NULL; 730 return ret; 731 } 732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 733 734 static int 735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 736 { 737 struct nvmefc_ls_req_op *lsop; 738 unsigned long flags; 739 740 restart: 741 spin_lock_irqsave(&rport->lock, flags); 742 743 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 744 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 745 lsop->flags |= FCOP_FLAGS_TERMIO; 746 spin_unlock_irqrestore(&rport->lock, flags); 747 rport->lport->ops->ls_abort(&rport->lport->localport, 748 &rport->remoteport, 749 &lsop->ls_req); 750 goto restart; 751 } 752 } 753 spin_unlock_irqrestore(&rport->lock, flags); 754 755 return 0; 756 } 757 758 static void 759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 760 { 761 dev_info(ctrl->ctrl.device, 762 "NVME-FC{%d}: controller connectivity lost. Awaiting " 763 "Reconnect", ctrl->cnum); 764 765 switch (ctrl->ctrl.state) { 766 case NVME_CTRL_NEW: 767 case NVME_CTRL_LIVE: 768 /* 769 * Schedule a controller reset. The reset will terminate the 770 * association and schedule the reconnect timer. Reconnects 771 * will be attempted until either the ctlr_loss_tmo 772 * (max_retries * connect_delay) expires or the remoteport's 773 * dev_loss_tmo expires. 774 */ 775 if (nvme_reset_ctrl(&ctrl->ctrl)) { 776 dev_warn(ctrl->ctrl.device, 777 "NVME-FC{%d}: Couldn't schedule reset.\n", 778 ctrl->cnum); 779 nvme_delete_ctrl(&ctrl->ctrl); 780 } 781 break; 782 783 case NVME_CTRL_CONNECTING: 784 /* 785 * The association has already been terminated and the 786 * controller is attempting reconnects. No need to do anything 787 * futher. Reconnects will be attempted until either the 788 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 789 * remoteport's dev_loss_tmo expires. 790 */ 791 break; 792 793 case NVME_CTRL_RESETTING: 794 /* 795 * Controller is already in the process of terminating the 796 * association. No need to do anything further. The reconnect 797 * step will kick in naturally after the association is 798 * terminated. 799 */ 800 break; 801 802 case NVME_CTRL_DELETING: 803 default: 804 /* no action to take - let it delete */ 805 break; 806 } 807 } 808 809 /** 810 * nvme_fc_unregister_remoteport - transport entry point called by an 811 * LLDD to deregister/remove a previously 812 * registered a NVME subsystem FC port. 813 * @portptr: pointer to the (registered) remote port that is to be 814 * deregistered. 815 * 816 * Returns: 817 * a completion status. Must be 0 upon success; a negative errno 818 * (ex: -ENXIO) upon failure. 819 */ 820 int 821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 822 { 823 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 824 struct nvme_fc_ctrl *ctrl; 825 unsigned long flags; 826 827 if (!portptr) 828 return -EINVAL; 829 830 spin_lock_irqsave(&rport->lock, flags); 831 832 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 833 spin_unlock_irqrestore(&rport->lock, flags); 834 return -EINVAL; 835 } 836 portptr->port_state = FC_OBJSTATE_DELETED; 837 838 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 839 840 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 841 /* if dev_loss_tmo==0, dev loss is immediate */ 842 if (!portptr->dev_loss_tmo) { 843 dev_warn(ctrl->ctrl.device, 844 "NVME-FC{%d}: controller connectivity lost.\n", 845 ctrl->cnum); 846 nvme_delete_ctrl(&ctrl->ctrl); 847 } else 848 nvme_fc_ctrl_connectivity_loss(ctrl); 849 } 850 851 spin_unlock_irqrestore(&rport->lock, flags); 852 853 nvme_fc_abort_lsops(rport); 854 855 if (atomic_read(&rport->act_ctrl_cnt) == 0) 856 rport->lport->ops->remoteport_delete(portptr); 857 858 /* 859 * release the reference, which will allow, if all controllers 860 * go away, which should only occur after dev_loss_tmo occurs, 861 * for the rport to be torn down. 862 */ 863 nvme_fc_rport_put(rport); 864 865 return 0; 866 } 867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 868 869 /** 870 * nvme_fc_rescan_remoteport - transport entry point called by an 871 * LLDD to request a nvme device rescan. 872 * @remoteport: pointer to the (registered) remote port that is to be 873 * rescanned. 874 * 875 * Returns: N/A 876 */ 877 void 878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 879 { 880 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 881 882 nvme_fc_signal_discovery_scan(rport->lport, rport); 883 } 884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 885 886 int 887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 888 u32 dev_loss_tmo) 889 { 890 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 891 unsigned long flags; 892 893 spin_lock_irqsave(&rport->lock, flags); 894 895 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 896 spin_unlock_irqrestore(&rport->lock, flags); 897 return -EINVAL; 898 } 899 900 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 901 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 902 903 spin_unlock_irqrestore(&rport->lock, flags); 904 905 return 0; 906 } 907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 908 909 910 /* *********************** FC-NVME DMA Handling **************************** */ 911 912 /* 913 * The fcloop device passes in a NULL device pointer. Real LLD's will 914 * pass in a valid device pointer. If NULL is passed to the dma mapping 915 * routines, depending on the platform, it may or may not succeed, and 916 * may crash. 917 * 918 * As such: 919 * Wrapper all the dma routines and check the dev pointer. 920 * 921 * If simple mappings (return just a dma address, we'll noop them, 922 * returning a dma address of 0. 923 * 924 * On more complex mappings (dma_map_sg), a pseudo routine fills 925 * in the scatter list, setting all dma addresses to 0. 926 */ 927 928 static inline dma_addr_t 929 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 930 enum dma_data_direction dir) 931 { 932 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 933 } 934 935 static inline int 936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 937 { 938 return dev ? dma_mapping_error(dev, dma_addr) : 0; 939 } 940 941 static inline void 942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 943 enum dma_data_direction dir) 944 { 945 if (dev) 946 dma_unmap_single(dev, addr, size, dir); 947 } 948 949 static inline void 950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 951 enum dma_data_direction dir) 952 { 953 if (dev) 954 dma_sync_single_for_cpu(dev, addr, size, dir); 955 } 956 957 static inline void 958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 959 enum dma_data_direction dir) 960 { 961 if (dev) 962 dma_sync_single_for_device(dev, addr, size, dir); 963 } 964 965 /* pseudo dma_map_sg call */ 966 static int 967 fc_map_sg(struct scatterlist *sg, int nents) 968 { 969 struct scatterlist *s; 970 int i; 971 972 WARN_ON(nents == 0 || sg[0].length == 0); 973 974 for_each_sg(sg, s, nents, i) { 975 s->dma_address = 0L; 976 #ifdef CONFIG_NEED_SG_DMA_LENGTH 977 s->dma_length = s->length; 978 #endif 979 } 980 return nents; 981 } 982 983 static inline int 984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 985 enum dma_data_direction dir) 986 { 987 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 988 } 989 990 static inline void 991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 992 enum dma_data_direction dir) 993 { 994 if (dev) 995 dma_unmap_sg(dev, sg, nents, dir); 996 } 997 998 /* *********************** FC-NVME LS Handling **************************** */ 999 1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1002 1003 1004 static void 1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1006 { 1007 struct nvme_fc_rport *rport = lsop->rport; 1008 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1009 unsigned long flags; 1010 1011 spin_lock_irqsave(&rport->lock, flags); 1012 1013 if (!lsop->req_queued) { 1014 spin_unlock_irqrestore(&rport->lock, flags); 1015 return; 1016 } 1017 1018 list_del(&lsop->lsreq_list); 1019 1020 lsop->req_queued = false; 1021 1022 spin_unlock_irqrestore(&rport->lock, flags); 1023 1024 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1025 (lsreq->rqstlen + lsreq->rsplen), 1026 DMA_BIDIRECTIONAL); 1027 1028 nvme_fc_rport_put(rport); 1029 } 1030 1031 static int 1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1033 struct nvmefc_ls_req_op *lsop, 1034 void (*done)(struct nvmefc_ls_req *req, int status)) 1035 { 1036 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1037 unsigned long flags; 1038 int ret = 0; 1039 1040 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1041 return -ECONNREFUSED; 1042 1043 if (!nvme_fc_rport_get(rport)) 1044 return -ESHUTDOWN; 1045 1046 lsreq->done = done; 1047 lsop->rport = rport; 1048 lsop->req_queued = false; 1049 INIT_LIST_HEAD(&lsop->lsreq_list); 1050 init_completion(&lsop->ls_done); 1051 1052 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1053 lsreq->rqstlen + lsreq->rsplen, 1054 DMA_BIDIRECTIONAL); 1055 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1056 ret = -EFAULT; 1057 goto out_putrport; 1058 } 1059 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1060 1061 spin_lock_irqsave(&rport->lock, flags); 1062 1063 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1064 1065 lsop->req_queued = true; 1066 1067 spin_unlock_irqrestore(&rport->lock, flags); 1068 1069 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1070 &rport->remoteport, lsreq); 1071 if (ret) 1072 goto out_unlink; 1073 1074 return 0; 1075 1076 out_unlink: 1077 lsop->ls_error = ret; 1078 spin_lock_irqsave(&rport->lock, flags); 1079 lsop->req_queued = false; 1080 list_del(&lsop->lsreq_list); 1081 spin_unlock_irqrestore(&rport->lock, flags); 1082 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1083 (lsreq->rqstlen + lsreq->rsplen), 1084 DMA_BIDIRECTIONAL); 1085 out_putrport: 1086 nvme_fc_rport_put(rport); 1087 1088 return ret; 1089 } 1090 1091 static void 1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1093 { 1094 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1095 1096 lsop->ls_error = status; 1097 complete(&lsop->ls_done); 1098 } 1099 1100 static int 1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1102 { 1103 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1104 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1105 int ret; 1106 1107 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1108 1109 if (!ret) { 1110 /* 1111 * No timeout/not interruptible as we need the struct 1112 * to exist until the lldd calls us back. Thus mandate 1113 * wait until driver calls back. lldd responsible for 1114 * the timeout action 1115 */ 1116 wait_for_completion(&lsop->ls_done); 1117 1118 __nvme_fc_finish_ls_req(lsop); 1119 1120 ret = lsop->ls_error; 1121 } 1122 1123 if (ret) 1124 return ret; 1125 1126 /* ACC or RJT payload ? */ 1127 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1128 return -ENXIO; 1129 1130 return 0; 1131 } 1132 1133 static int 1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1135 struct nvmefc_ls_req_op *lsop, 1136 void (*done)(struct nvmefc_ls_req *req, int status)) 1137 { 1138 /* don't wait for completion */ 1139 1140 return __nvme_fc_send_ls_req(rport, lsop, done); 1141 } 1142 1143 /* Validation Error indexes into the string table below */ 1144 enum { 1145 VERR_NO_ERROR = 0, 1146 VERR_LSACC = 1, 1147 VERR_LSDESC_RQST = 2, 1148 VERR_LSDESC_RQST_LEN = 3, 1149 VERR_ASSOC_ID = 4, 1150 VERR_ASSOC_ID_LEN = 5, 1151 VERR_CONN_ID = 6, 1152 VERR_CONN_ID_LEN = 7, 1153 VERR_CR_ASSOC = 8, 1154 VERR_CR_ASSOC_ACC_LEN = 9, 1155 VERR_CR_CONN = 10, 1156 VERR_CR_CONN_ACC_LEN = 11, 1157 VERR_DISCONN = 12, 1158 VERR_DISCONN_ACC_LEN = 13, 1159 }; 1160 1161 static char *validation_errors[] = { 1162 "OK", 1163 "Not LS_ACC", 1164 "Not LSDESC_RQST", 1165 "Bad LSDESC_RQST Length", 1166 "Not Association ID", 1167 "Bad Association ID Length", 1168 "Not Connection ID", 1169 "Bad Connection ID Length", 1170 "Not CR_ASSOC Rqst", 1171 "Bad CR_ASSOC ACC Length", 1172 "Not CR_CONN Rqst", 1173 "Bad CR_CONN ACC Length", 1174 "Not Disconnect Rqst", 1175 "Bad Disconnect ACC Length", 1176 }; 1177 1178 static int 1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1180 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1181 { 1182 struct nvmefc_ls_req_op *lsop; 1183 struct nvmefc_ls_req *lsreq; 1184 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1185 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1186 int ret, fcret = 0; 1187 1188 lsop = kzalloc((sizeof(*lsop) + 1189 ctrl->lport->ops->lsrqst_priv_sz + 1190 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1191 if (!lsop) { 1192 ret = -ENOMEM; 1193 goto out_no_memory; 1194 } 1195 lsreq = &lsop->ls_req; 1196 1197 lsreq->private = (void *)&lsop[1]; 1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1199 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1200 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1201 1202 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1203 assoc_rqst->desc_list_len = 1204 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1205 1206 assoc_rqst->assoc_cmd.desc_tag = 1207 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1208 assoc_rqst->assoc_cmd.desc_len = 1209 fcnvme_lsdesc_len( 1210 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1211 1212 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1213 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1214 /* Linux supports only Dynamic controllers */ 1215 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1216 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1217 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1218 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1219 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1220 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1221 1222 lsop->queue = queue; 1223 lsreq->rqstaddr = assoc_rqst; 1224 lsreq->rqstlen = sizeof(*assoc_rqst); 1225 lsreq->rspaddr = assoc_acc; 1226 lsreq->rsplen = sizeof(*assoc_acc); 1227 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1228 1229 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1230 if (ret) 1231 goto out_free_buffer; 1232 1233 /* process connect LS completion */ 1234 1235 /* validate the ACC response */ 1236 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1237 fcret = VERR_LSACC; 1238 else if (assoc_acc->hdr.desc_list_len != 1239 fcnvme_lsdesc_len( 1240 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1241 fcret = VERR_CR_ASSOC_ACC_LEN; 1242 else if (assoc_acc->hdr.rqst.desc_tag != 1243 cpu_to_be32(FCNVME_LSDESC_RQST)) 1244 fcret = VERR_LSDESC_RQST; 1245 else if (assoc_acc->hdr.rqst.desc_len != 1246 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1247 fcret = VERR_LSDESC_RQST_LEN; 1248 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1249 fcret = VERR_CR_ASSOC; 1250 else if (assoc_acc->associd.desc_tag != 1251 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1252 fcret = VERR_ASSOC_ID; 1253 else if (assoc_acc->associd.desc_len != 1254 fcnvme_lsdesc_len( 1255 sizeof(struct fcnvme_lsdesc_assoc_id))) 1256 fcret = VERR_ASSOC_ID_LEN; 1257 else if (assoc_acc->connectid.desc_tag != 1258 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1259 fcret = VERR_CONN_ID; 1260 else if (assoc_acc->connectid.desc_len != 1261 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1262 fcret = VERR_CONN_ID_LEN; 1263 1264 if (fcret) { 1265 ret = -EBADF; 1266 dev_err(ctrl->dev, 1267 "q %d Create Association LS failed: %s\n", 1268 queue->qnum, validation_errors[fcret]); 1269 } else { 1270 ctrl->association_id = 1271 be64_to_cpu(assoc_acc->associd.association_id); 1272 queue->connection_id = 1273 be64_to_cpu(assoc_acc->connectid.connection_id); 1274 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1275 } 1276 1277 out_free_buffer: 1278 kfree(lsop); 1279 out_no_memory: 1280 if (ret) 1281 dev_err(ctrl->dev, 1282 "queue %d connect admin queue failed (%d).\n", 1283 queue->qnum, ret); 1284 return ret; 1285 } 1286 1287 static int 1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1289 u16 qsize, u16 ersp_ratio) 1290 { 1291 struct nvmefc_ls_req_op *lsop; 1292 struct nvmefc_ls_req *lsreq; 1293 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1294 struct fcnvme_ls_cr_conn_acc *conn_acc; 1295 int ret, fcret = 0; 1296 1297 lsop = kzalloc((sizeof(*lsop) + 1298 ctrl->lport->ops->lsrqst_priv_sz + 1299 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1300 if (!lsop) { 1301 ret = -ENOMEM; 1302 goto out_no_memory; 1303 } 1304 lsreq = &lsop->ls_req; 1305 1306 lsreq->private = (void *)&lsop[1]; 1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1308 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1309 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1310 1311 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1312 conn_rqst->desc_list_len = cpu_to_be32( 1313 sizeof(struct fcnvme_lsdesc_assoc_id) + 1314 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1315 1316 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1317 conn_rqst->associd.desc_len = 1318 fcnvme_lsdesc_len( 1319 sizeof(struct fcnvme_lsdesc_assoc_id)); 1320 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1321 conn_rqst->connect_cmd.desc_tag = 1322 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1323 conn_rqst->connect_cmd.desc_len = 1324 fcnvme_lsdesc_len( 1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1326 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1327 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1328 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1329 1330 lsop->queue = queue; 1331 lsreq->rqstaddr = conn_rqst; 1332 lsreq->rqstlen = sizeof(*conn_rqst); 1333 lsreq->rspaddr = conn_acc; 1334 lsreq->rsplen = sizeof(*conn_acc); 1335 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1336 1337 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1338 if (ret) 1339 goto out_free_buffer; 1340 1341 /* process connect LS completion */ 1342 1343 /* validate the ACC response */ 1344 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1345 fcret = VERR_LSACC; 1346 else if (conn_acc->hdr.desc_list_len != 1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1348 fcret = VERR_CR_CONN_ACC_LEN; 1349 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1350 fcret = VERR_LSDESC_RQST; 1351 else if (conn_acc->hdr.rqst.desc_len != 1352 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1353 fcret = VERR_LSDESC_RQST_LEN; 1354 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1355 fcret = VERR_CR_CONN; 1356 else if (conn_acc->connectid.desc_tag != 1357 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1358 fcret = VERR_CONN_ID; 1359 else if (conn_acc->connectid.desc_len != 1360 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1361 fcret = VERR_CONN_ID_LEN; 1362 1363 if (fcret) { 1364 ret = -EBADF; 1365 dev_err(ctrl->dev, 1366 "q %d Create I/O Connection LS failed: %s\n", 1367 queue->qnum, validation_errors[fcret]); 1368 } else { 1369 queue->connection_id = 1370 be64_to_cpu(conn_acc->connectid.connection_id); 1371 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1372 } 1373 1374 out_free_buffer: 1375 kfree(lsop); 1376 out_no_memory: 1377 if (ret) 1378 dev_err(ctrl->dev, 1379 "queue %d connect I/O queue failed (%d).\n", 1380 queue->qnum, ret); 1381 return ret; 1382 } 1383 1384 static void 1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1386 { 1387 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1388 1389 __nvme_fc_finish_ls_req(lsop); 1390 1391 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1392 1393 kfree(lsop); 1394 } 1395 1396 /* 1397 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1398 * the FC-NVME Association. Terminating the association also 1399 * terminates the FC-NVME connections (per queue, both admin and io 1400 * queues) that are part of the association. E.g. things are torn 1401 * down, and the related FC-NVME Association ID and Connection IDs 1402 * become invalid. 1403 * 1404 * The behavior of the fc-nvme initiator is such that it's 1405 * understanding of the association and connections will implicitly 1406 * be torn down. The action is implicit as it may be due to a loss of 1407 * connectivity with the fc-nvme target, so you may never get a 1408 * response even if you tried. As such, the action of this routine 1409 * is to asynchronously send the LS, ignore any results of the LS, and 1410 * continue on with terminating the association. If the fc-nvme target 1411 * is present and receives the LS, it too can tear down. 1412 */ 1413 static void 1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1415 { 1416 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1417 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1418 struct nvmefc_ls_req_op *lsop; 1419 struct nvmefc_ls_req *lsreq; 1420 int ret; 1421 1422 lsop = kzalloc((sizeof(*lsop) + 1423 ctrl->lport->ops->lsrqst_priv_sz + 1424 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1425 GFP_KERNEL); 1426 if (!lsop) 1427 /* couldn't sent it... too bad */ 1428 return; 1429 1430 lsreq = &lsop->ls_req; 1431 1432 lsreq->private = (void *)&lsop[1]; 1433 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *) 1434 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1435 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1436 1437 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC; 1438 discon_rqst->desc_list_len = cpu_to_be32( 1439 sizeof(struct fcnvme_lsdesc_assoc_id) + 1440 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1441 1442 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1443 discon_rqst->associd.desc_len = 1444 fcnvme_lsdesc_len( 1445 sizeof(struct fcnvme_lsdesc_assoc_id)); 1446 1447 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1448 1449 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1450 FCNVME_LSDESC_DISCONN_CMD); 1451 discon_rqst->discon_cmd.desc_len = 1452 fcnvme_lsdesc_len( 1453 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1454 1455 lsreq->rqstaddr = discon_rqst; 1456 lsreq->rqstlen = sizeof(*discon_rqst); 1457 lsreq->rspaddr = discon_acc; 1458 lsreq->rsplen = sizeof(*discon_acc); 1459 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1460 1461 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1462 nvme_fc_disconnect_assoc_done); 1463 if (ret) 1464 kfree(lsop); 1465 } 1466 1467 1468 /* *********************** NVME Ctrl Routines **************************** */ 1469 1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1471 1472 static void 1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1474 struct nvme_fc_fcp_op *op) 1475 { 1476 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1477 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1478 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1479 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1480 1481 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1482 } 1483 1484 static void 1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1486 unsigned int hctx_idx) 1487 { 1488 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1489 1490 return __nvme_fc_exit_request(set->driver_data, op); 1491 } 1492 1493 static int 1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1495 { 1496 unsigned long flags; 1497 int opstate; 1498 1499 spin_lock_irqsave(&ctrl->lock, flags); 1500 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1501 if (opstate != FCPOP_STATE_ACTIVE) 1502 atomic_set(&op->state, opstate); 1503 else if (ctrl->flags & FCCTRL_TERMIO) 1504 ctrl->iocnt++; 1505 spin_unlock_irqrestore(&ctrl->lock, flags); 1506 1507 if (opstate != FCPOP_STATE_ACTIVE) 1508 return -ECANCELED; 1509 1510 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1511 &ctrl->rport->remoteport, 1512 op->queue->lldd_handle, 1513 &op->fcp_req); 1514 1515 return 0; 1516 } 1517 1518 static void 1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1520 { 1521 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1522 int i; 1523 1524 /* ensure we've initialized the ops once */ 1525 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1526 return; 1527 1528 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1529 __nvme_fc_abort_op(ctrl, aen_op); 1530 } 1531 1532 static inline void 1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1534 struct nvme_fc_fcp_op *op, int opstate) 1535 { 1536 unsigned long flags; 1537 1538 if (opstate == FCPOP_STATE_ABORTED) { 1539 spin_lock_irqsave(&ctrl->lock, flags); 1540 if (ctrl->flags & FCCTRL_TERMIO) { 1541 if (!--ctrl->iocnt) 1542 wake_up(&ctrl->ioabort_wait); 1543 } 1544 spin_unlock_irqrestore(&ctrl->lock, flags); 1545 } 1546 } 1547 1548 static void 1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1550 { 1551 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1552 struct request *rq = op->rq; 1553 struct nvmefc_fcp_req *freq = &op->fcp_req; 1554 struct nvme_fc_ctrl *ctrl = op->ctrl; 1555 struct nvme_fc_queue *queue = op->queue; 1556 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1557 struct nvme_command *sqe = &op->cmd_iu.sqe; 1558 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1559 union nvme_result result; 1560 bool terminate_assoc = true; 1561 int opstate; 1562 1563 /* 1564 * WARNING: 1565 * The current linux implementation of a nvme controller 1566 * allocates a single tag set for all io queues and sizes 1567 * the io queues to fully hold all possible tags. Thus, the 1568 * implementation does not reference or care about the sqhd 1569 * value as it never needs to use the sqhd/sqtail pointers 1570 * for submission pacing. 1571 * 1572 * This affects the FC-NVME implementation in two ways: 1573 * 1) As the value doesn't matter, we don't need to waste 1574 * cycles extracting it from ERSPs and stamping it in the 1575 * cases where the transport fabricates CQEs on successful 1576 * completions. 1577 * 2) The FC-NVME implementation requires that delivery of 1578 * ERSP completions are to go back to the nvme layer in order 1579 * relative to the rsn, such that the sqhd value will always 1580 * be "in order" for the nvme layer. As the nvme layer in 1581 * linux doesn't care about sqhd, there's no need to return 1582 * them in order. 1583 * 1584 * Additionally: 1585 * As the core nvme layer in linux currently does not look at 1586 * every field in the cqe - in cases where the FC transport must 1587 * fabricate a CQE, the following fields will not be set as they 1588 * are not referenced: 1589 * cqe.sqid, cqe.sqhd, cqe.command_id 1590 * 1591 * Failure or error of an individual i/o, in a transport 1592 * detected fashion unrelated to the nvme completion status, 1593 * potentially cause the initiator and target sides to get out 1594 * of sync on SQ head/tail (aka outstanding io count allowed). 1595 * Per FC-NVME spec, failure of an individual command requires 1596 * the connection to be terminated, which in turn requires the 1597 * association to be terminated. 1598 */ 1599 1600 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1601 1602 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1603 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1604 1605 if (opstate == FCPOP_STATE_ABORTED) 1606 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1607 else if (freq->status) { 1608 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1609 dev_info(ctrl->ctrl.device, 1610 "NVME-FC{%d}: io failed due to lldd error %d\n", 1611 ctrl->cnum, freq->status); 1612 } 1613 1614 /* 1615 * For the linux implementation, if we have an unsuccesful 1616 * status, they blk-mq layer can typically be called with the 1617 * non-zero status and the content of the cqe isn't important. 1618 */ 1619 if (status) 1620 goto done; 1621 1622 /* 1623 * command completed successfully relative to the wire 1624 * protocol. However, validate anything received and 1625 * extract the status and result from the cqe (create it 1626 * where necessary). 1627 */ 1628 1629 switch (freq->rcv_rsplen) { 1630 1631 case 0: 1632 case NVME_FC_SIZEOF_ZEROS_RSP: 1633 /* 1634 * No response payload or 12 bytes of payload (which 1635 * should all be zeros) are considered successful and 1636 * no payload in the CQE by the transport. 1637 */ 1638 if (freq->transferred_length != 1639 be32_to_cpu(op->cmd_iu.data_len)) { 1640 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1641 dev_info(ctrl->ctrl.device, 1642 "NVME-FC{%d}: io failed due to bad transfer " 1643 "length: %d vs expected %d\n", 1644 ctrl->cnum, freq->transferred_length, 1645 be32_to_cpu(op->cmd_iu.data_len)); 1646 goto done; 1647 } 1648 result.u64 = 0; 1649 break; 1650 1651 case sizeof(struct nvme_fc_ersp_iu): 1652 /* 1653 * The ERSP IU contains a full completion with CQE. 1654 * Validate ERSP IU and look at cqe. 1655 */ 1656 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1657 (freq->rcv_rsplen / 4) || 1658 be32_to_cpu(op->rsp_iu.xfrd_len) != 1659 freq->transferred_length || 1660 op->rsp_iu.ersp_result || 1661 sqe->common.command_id != cqe->command_id)) { 1662 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1663 dev_info(ctrl->ctrl.device, 1664 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 1665 "iu len %d, xfr len %d vs %d, status code " 1666 "%d, cmdid %d vs %d\n", 1667 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 1668 be32_to_cpu(op->rsp_iu.xfrd_len), 1669 freq->transferred_length, 1670 op->rsp_iu.ersp_result, 1671 sqe->common.command_id, 1672 cqe->command_id); 1673 goto done; 1674 } 1675 result = cqe->result; 1676 status = cqe->status; 1677 break; 1678 1679 default: 1680 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1681 dev_info(ctrl->ctrl.device, 1682 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 1683 "len %d\n", 1684 ctrl->cnum, freq->rcv_rsplen); 1685 goto done; 1686 } 1687 1688 terminate_assoc = false; 1689 1690 done: 1691 if (op->flags & FCOP_FLAGS_AEN) { 1692 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1693 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1694 atomic_set(&op->state, FCPOP_STATE_IDLE); 1695 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1696 nvme_fc_ctrl_put(ctrl); 1697 goto check_error; 1698 } 1699 1700 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1701 nvme_end_request(rq, status, result); 1702 1703 check_error: 1704 if (terminate_assoc) 1705 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1706 } 1707 1708 static int 1709 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1710 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1711 struct request *rq, u32 rqno) 1712 { 1713 struct nvme_fcp_op_w_sgl *op_w_sgl = 1714 container_of(op, typeof(*op_w_sgl), op); 1715 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1716 int ret = 0; 1717 1718 memset(op, 0, sizeof(*op)); 1719 op->fcp_req.cmdaddr = &op->cmd_iu; 1720 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1721 op->fcp_req.rspaddr = &op->rsp_iu; 1722 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1723 op->fcp_req.done = nvme_fc_fcpio_done; 1724 op->ctrl = ctrl; 1725 op->queue = queue; 1726 op->rq = rq; 1727 op->rqno = rqno; 1728 1729 cmdiu->format_id = NVME_CMD_FORMAT_ID; 1730 cmdiu->fc_id = NVME_CMD_FC_ID; 1731 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1732 if (queue->qnum) 1733 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 1734 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 1735 else 1736 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 1737 1738 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1739 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1740 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1741 dev_err(ctrl->dev, 1742 "FCP Op failed - cmdiu dma mapping failed.\n"); 1743 ret = EFAULT; 1744 goto out_on_error; 1745 } 1746 1747 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1748 &op->rsp_iu, sizeof(op->rsp_iu), 1749 DMA_FROM_DEVICE); 1750 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1751 dev_err(ctrl->dev, 1752 "FCP Op failed - rspiu dma mapping failed.\n"); 1753 ret = EFAULT; 1754 } 1755 1756 atomic_set(&op->state, FCPOP_STATE_IDLE); 1757 out_on_error: 1758 return ret; 1759 } 1760 1761 static int 1762 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1763 unsigned int hctx_idx, unsigned int numa_node) 1764 { 1765 struct nvme_fc_ctrl *ctrl = set->driver_data; 1766 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 1767 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1768 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1769 int res; 1770 1771 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 1772 if (res) 1773 return res; 1774 op->op.fcp_req.first_sgl = &op->sgl[0]; 1775 op->op.fcp_req.private = &op->priv[0]; 1776 nvme_req(rq)->ctrl = &ctrl->ctrl; 1777 return res; 1778 } 1779 1780 static int 1781 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1782 { 1783 struct nvme_fc_fcp_op *aen_op; 1784 struct nvme_fc_cmd_iu *cmdiu; 1785 struct nvme_command *sqe; 1786 void *private; 1787 int i, ret; 1788 1789 aen_op = ctrl->aen_ops; 1790 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1791 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1792 GFP_KERNEL); 1793 if (!private) 1794 return -ENOMEM; 1795 1796 cmdiu = &aen_op->cmd_iu; 1797 sqe = &cmdiu->sqe; 1798 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1799 aen_op, (struct request *)NULL, 1800 (NVME_AQ_BLK_MQ_DEPTH + i)); 1801 if (ret) { 1802 kfree(private); 1803 return ret; 1804 } 1805 1806 aen_op->flags = FCOP_FLAGS_AEN; 1807 aen_op->fcp_req.private = private; 1808 1809 memset(sqe, 0, sizeof(*sqe)); 1810 sqe->common.opcode = nvme_admin_async_event; 1811 /* Note: core layer may overwrite the sqe.command_id value */ 1812 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1813 } 1814 return 0; 1815 } 1816 1817 static void 1818 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1819 { 1820 struct nvme_fc_fcp_op *aen_op; 1821 int i; 1822 1823 aen_op = ctrl->aen_ops; 1824 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1825 if (!aen_op->fcp_req.private) 1826 continue; 1827 1828 __nvme_fc_exit_request(ctrl, aen_op); 1829 1830 kfree(aen_op->fcp_req.private); 1831 aen_op->fcp_req.private = NULL; 1832 } 1833 } 1834 1835 static inline void 1836 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1837 unsigned int qidx) 1838 { 1839 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1840 1841 hctx->driver_data = queue; 1842 queue->hctx = hctx; 1843 } 1844 1845 static int 1846 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1847 unsigned int hctx_idx) 1848 { 1849 struct nvme_fc_ctrl *ctrl = data; 1850 1851 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1852 1853 return 0; 1854 } 1855 1856 static int 1857 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1858 unsigned int hctx_idx) 1859 { 1860 struct nvme_fc_ctrl *ctrl = data; 1861 1862 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1863 1864 return 0; 1865 } 1866 1867 static void 1868 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1869 { 1870 struct nvme_fc_queue *queue; 1871 1872 queue = &ctrl->queues[idx]; 1873 memset(queue, 0, sizeof(*queue)); 1874 queue->ctrl = ctrl; 1875 queue->qnum = idx; 1876 atomic_set(&queue->csn, 0); 1877 queue->dev = ctrl->dev; 1878 1879 if (idx > 0) 1880 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1881 else 1882 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1883 1884 /* 1885 * Considered whether we should allocate buffers for all SQEs 1886 * and CQEs and dma map them - mapping their respective entries 1887 * into the request structures (kernel vm addr and dma address) 1888 * thus the driver could use the buffers/mappings directly. 1889 * It only makes sense if the LLDD would use them for its 1890 * messaging api. It's very unlikely most adapter api's would use 1891 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1892 * structures were used instead. 1893 */ 1894 } 1895 1896 /* 1897 * This routine terminates a queue at the transport level. 1898 * The transport has already ensured that all outstanding ios on 1899 * the queue have been terminated. 1900 * The transport will send a Disconnect LS request to terminate 1901 * the queue's connection. Termination of the admin queue will also 1902 * terminate the association at the target. 1903 */ 1904 static void 1905 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1906 { 1907 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1908 return; 1909 1910 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 1911 /* 1912 * Current implementation never disconnects a single queue. 1913 * It always terminates a whole association. So there is never 1914 * a disconnect(queue) LS sent to the target. 1915 */ 1916 1917 queue->connection_id = 0; 1918 atomic_set(&queue->csn, 0); 1919 } 1920 1921 static void 1922 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1923 struct nvme_fc_queue *queue, unsigned int qidx) 1924 { 1925 if (ctrl->lport->ops->delete_queue) 1926 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1927 queue->lldd_handle); 1928 queue->lldd_handle = NULL; 1929 } 1930 1931 static void 1932 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1933 { 1934 int i; 1935 1936 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1937 nvme_fc_free_queue(&ctrl->queues[i]); 1938 } 1939 1940 static int 1941 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1942 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1943 { 1944 int ret = 0; 1945 1946 queue->lldd_handle = NULL; 1947 if (ctrl->lport->ops->create_queue) 1948 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1949 qidx, qsize, &queue->lldd_handle); 1950 1951 return ret; 1952 } 1953 1954 static void 1955 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1956 { 1957 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1958 int i; 1959 1960 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1961 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1962 } 1963 1964 static int 1965 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1966 { 1967 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1968 int i, ret; 1969 1970 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1971 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1972 if (ret) 1973 goto delete_queues; 1974 } 1975 1976 return 0; 1977 1978 delete_queues: 1979 for (; i >= 0; i--) 1980 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1981 return ret; 1982 } 1983 1984 static int 1985 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1986 { 1987 int i, ret = 0; 1988 1989 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 1990 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 1991 (qsize / 5)); 1992 if (ret) 1993 break; 1994 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); 1995 if (ret) 1996 break; 1997 1998 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 1999 } 2000 2001 return ret; 2002 } 2003 2004 static void 2005 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2006 { 2007 int i; 2008 2009 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2010 nvme_fc_init_queue(ctrl, i); 2011 } 2012 2013 static void 2014 nvme_fc_ctrl_free(struct kref *ref) 2015 { 2016 struct nvme_fc_ctrl *ctrl = 2017 container_of(ref, struct nvme_fc_ctrl, ref); 2018 unsigned long flags; 2019 2020 if (ctrl->ctrl.tagset) { 2021 blk_cleanup_queue(ctrl->ctrl.connect_q); 2022 blk_mq_free_tag_set(&ctrl->tag_set); 2023 } 2024 2025 /* remove from rport list */ 2026 spin_lock_irqsave(&ctrl->rport->lock, flags); 2027 list_del(&ctrl->ctrl_list); 2028 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2029 2030 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2031 blk_cleanup_queue(ctrl->ctrl.admin_q); 2032 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 2033 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2034 2035 kfree(ctrl->queues); 2036 2037 put_device(ctrl->dev); 2038 nvme_fc_rport_put(ctrl->rport); 2039 2040 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2041 if (ctrl->ctrl.opts) 2042 nvmf_free_options(ctrl->ctrl.opts); 2043 kfree(ctrl); 2044 } 2045 2046 static void 2047 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2048 { 2049 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2050 } 2051 2052 static int 2053 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2054 { 2055 return kref_get_unless_zero(&ctrl->ref); 2056 } 2057 2058 /* 2059 * All accesses from nvme core layer done - can now free the 2060 * controller. Called after last nvme_put_ctrl() call 2061 */ 2062 static void 2063 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2064 { 2065 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2066 2067 WARN_ON(nctrl != &ctrl->ctrl); 2068 2069 nvme_fc_ctrl_put(ctrl); 2070 } 2071 2072 static void 2073 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2074 { 2075 int active; 2076 2077 /* 2078 * if an error (io timeout, etc) while (re)connecting, 2079 * it's an error on creating the new association. 2080 * Start the error recovery thread if it hasn't already 2081 * been started. It is expected there could be multiple 2082 * ios hitting this path before things are cleaned up. 2083 */ 2084 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2085 active = atomic_xchg(&ctrl->err_work_active, 1); 2086 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) { 2087 atomic_set(&ctrl->err_work_active, 0); 2088 WARN_ON(1); 2089 } 2090 return; 2091 } 2092 2093 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2094 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2095 return; 2096 2097 dev_warn(ctrl->ctrl.device, 2098 "NVME-FC{%d}: transport association error detected: %s\n", 2099 ctrl->cnum, errmsg); 2100 dev_warn(ctrl->ctrl.device, 2101 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2102 2103 nvme_reset_ctrl(&ctrl->ctrl); 2104 } 2105 2106 static enum blk_eh_timer_return 2107 nvme_fc_timeout(struct request *rq, bool reserved) 2108 { 2109 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2110 struct nvme_fc_ctrl *ctrl = op->ctrl; 2111 2112 /* 2113 * we can't individually ABTS an io without affecting the queue, 2114 * thus killing the queue, and thus the association. 2115 * So resolve by performing a controller reset, which will stop 2116 * the host/io stack, terminate the association on the link, 2117 * and recreate an association on the link. 2118 */ 2119 nvme_fc_error_recovery(ctrl, "io timeout error"); 2120 2121 /* 2122 * the io abort has been initiated. Have the reset timer 2123 * restarted and the abort completion will complete the io 2124 * shortly. Avoids a synchronous wait while the abort finishes. 2125 */ 2126 return BLK_EH_RESET_TIMER; 2127 } 2128 2129 static int 2130 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2131 struct nvme_fc_fcp_op *op) 2132 { 2133 struct nvmefc_fcp_req *freq = &op->fcp_req; 2134 int ret; 2135 2136 freq->sg_cnt = 0; 2137 2138 if (!blk_rq_nr_phys_segments(rq)) 2139 return 0; 2140 2141 freq->sg_table.sgl = freq->first_sgl; 2142 ret = sg_alloc_table_chained(&freq->sg_table, 2143 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2144 NVME_INLINE_SG_CNT); 2145 if (ret) 2146 return -ENOMEM; 2147 2148 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2149 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2150 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2151 op->nents, rq_dma_dir(rq)); 2152 if (unlikely(freq->sg_cnt <= 0)) { 2153 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2154 freq->sg_cnt = 0; 2155 return -EFAULT; 2156 } 2157 2158 /* 2159 * TODO: blk_integrity_rq(rq) for DIF 2160 */ 2161 return 0; 2162 } 2163 2164 static void 2165 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2166 struct nvme_fc_fcp_op *op) 2167 { 2168 struct nvmefc_fcp_req *freq = &op->fcp_req; 2169 2170 if (!freq->sg_cnt) 2171 return; 2172 2173 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2174 rq_dma_dir(rq)); 2175 2176 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2177 2178 freq->sg_cnt = 0; 2179 } 2180 2181 /* 2182 * In FC, the queue is a logical thing. At transport connect, the target 2183 * creates its "queue" and returns a handle that is to be given to the 2184 * target whenever it posts something to the corresponding SQ. When an 2185 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2186 * command contained within the SQE, an io, and assigns a FC exchange 2187 * to it. The SQE and the associated SQ handle are sent in the initial 2188 * CMD IU sents on the exchange. All transfers relative to the io occur 2189 * as part of the exchange. The CQE is the last thing for the io, 2190 * which is transferred (explicitly or implicitly) with the RSP IU 2191 * sent on the exchange. After the CQE is received, the FC exchange is 2192 * terminaed and the Exchange may be used on a different io. 2193 * 2194 * The transport to LLDD api has the transport making a request for a 2195 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2196 * resource and transfers the command. The LLDD will then process all 2197 * steps to complete the io. Upon completion, the transport done routine 2198 * is called. 2199 * 2200 * So - while the operation is outstanding to the LLDD, there is a link 2201 * level FC exchange resource that is also outstanding. This must be 2202 * considered in all cleanup operations. 2203 */ 2204 static blk_status_t 2205 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2206 struct nvme_fc_fcp_op *op, u32 data_len, 2207 enum nvmefc_fcp_datadir io_dir) 2208 { 2209 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2210 struct nvme_command *sqe = &cmdiu->sqe; 2211 int ret, opstate; 2212 2213 /* 2214 * before attempting to send the io, check to see if we believe 2215 * the target device is present 2216 */ 2217 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2218 return BLK_STS_RESOURCE; 2219 2220 if (!nvme_fc_ctrl_get(ctrl)) 2221 return BLK_STS_IOERR; 2222 2223 /* format the FC-NVME CMD IU and fcp_req */ 2224 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2225 cmdiu->data_len = cpu_to_be32(data_len); 2226 switch (io_dir) { 2227 case NVMEFC_FCP_WRITE: 2228 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2229 break; 2230 case NVMEFC_FCP_READ: 2231 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2232 break; 2233 case NVMEFC_FCP_NODATA: 2234 cmdiu->flags = 0; 2235 break; 2236 } 2237 op->fcp_req.payload_length = data_len; 2238 op->fcp_req.io_dir = io_dir; 2239 op->fcp_req.transferred_length = 0; 2240 op->fcp_req.rcv_rsplen = 0; 2241 op->fcp_req.status = NVME_SC_SUCCESS; 2242 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2243 2244 /* 2245 * validate per fabric rules, set fields mandated by fabric spec 2246 * as well as those by FC-NVME spec. 2247 */ 2248 WARN_ON_ONCE(sqe->common.metadata); 2249 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2250 2251 /* 2252 * format SQE DPTR field per FC-NVME rules: 2253 * type=0x5 Transport SGL Data Block Descriptor 2254 * subtype=0xA Transport-specific value 2255 * address=0 2256 * length=length of the data series 2257 */ 2258 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2259 NVME_SGL_FMT_TRANSPORT_A; 2260 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2261 sqe->rw.dptr.sgl.addr = 0; 2262 2263 if (!(op->flags & FCOP_FLAGS_AEN)) { 2264 ret = nvme_fc_map_data(ctrl, op->rq, op); 2265 if (ret < 0) { 2266 nvme_cleanup_cmd(op->rq); 2267 nvme_fc_ctrl_put(ctrl); 2268 if (ret == -ENOMEM || ret == -EAGAIN) 2269 return BLK_STS_RESOURCE; 2270 return BLK_STS_IOERR; 2271 } 2272 } 2273 2274 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2275 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2276 2277 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2278 2279 if (!(op->flags & FCOP_FLAGS_AEN)) 2280 blk_mq_start_request(op->rq); 2281 2282 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2283 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2284 &ctrl->rport->remoteport, 2285 queue->lldd_handle, &op->fcp_req); 2286 2287 if (ret) { 2288 /* 2289 * If the lld fails to send the command is there an issue with 2290 * the csn value? If the command that fails is the Connect, 2291 * no - as the connection won't be live. If it is a command 2292 * post-connect, it's possible a gap in csn may be created. 2293 * Does this matter? As Linux initiators don't send fused 2294 * commands, no. The gap would exist, but as there's nothing 2295 * that depends on csn order to be delivered on the target 2296 * side, it shouldn't hurt. It would be difficult for a 2297 * target to even detect the csn gap as it has no idea when the 2298 * cmd with the csn was supposed to arrive. 2299 */ 2300 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2301 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2302 2303 if (!(op->flags & FCOP_FLAGS_AEN)) 2304 nvme_fc_unmap_data(ctrl, op->rq, op); 2305 2306 nvme_cleanup_cmd(op->rq); 2307 nvme_fc_ctrl_put(ctrl); 2308 2309 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2310 ret != -EBUSY) 2311 return BLK_STS_IOERR; 2312 2313 return BLK_STS_RESOURCE; 2314 } 2315 2316 return BLK_STS_OK; 2317 } 2318 2319 static blk_status_t 2320 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2321 const struct blk_mq_queue_data *bd) 2322 { 2323 struct nvme_ns *ns = hctx->queue->queuedata; 2324 struct nvme_fc_queue *queue = hctx->driver_data; 2325 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2326 struct request *rq = bd->rq; 2327 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2328 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2329 struct nvme_command *sqe = &cmdiu->sqe; 2330 enum nvmefc_fcp_datadir io_dir; 2331 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2332 u32 data_len; 2333 blk_status_t ret; 2334 2335 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2336 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2337 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2338 2339 ret = nvme_setup_cmd(ns, rq, sqe); 2340 if (ret) 2341 return ret; 2342 2343 /* 2344 * nvme core doesn't quite treat the rq opaquely. Commands such 2345 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2346 * there is no actual payload to be transferred. 2347 * To get it right, key data transmission on there being 1 or 2348 * more physical segments in the sg list. If there is no 2349 * physical segments, there is no payload. 2350 */ 2351 if (blk_rq_nr_phys_segments(rq)) { 2352 data_len = blk_rq_payload_bytes(rq); 2353 io_dir = ((rq_data_dir(rq) == WRITE) ? 2354 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2355 } else { 2356 data_len = 0; 2357 io_dir = NVMEFC_FCP_NODATA; 2358 } 2359 2360 2361 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2362 } 2363 2364 static void 2365 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2366 { 2367 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2368 struct nvme_fc_fcp_op *aen_op; 2369 unsigned long flags; 2370 bool terminating = false; 2371 blk_status_t ret; 2372 2373 spin_lock_irqsave(&ctrl->lock, flags); 2374 if (ctrl->flags & FCCTRL_TERMIO) 2375 terminating = true; 2376 spin_unlock_irqrestore(&ctrl->lock, flags); 2377 2378 if (terminating) 2379 return; 2380 2381 aen_op = &ctrl->aen_ops[0]; 2382 2383 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2384 NVMEFC_FCP_NODATA); 2385 if (ret) 2386 dev_err(ctrl->ctrl.device, 2387 "failed async event work\n"); 2388 } 2389 2390 static void 2391 nvme_fc_complete_rq(struct request *rq) 2392 { 2393 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2394 struct nvme_fc_ctrl *ctrl = op->ctrl; 2395 2396 atomic_set(&op->state, FCPOP_STATE_IDLE); 2397 2398 nvme_fc_unmap_data(ctrl, rq, op); 2399 nvme_complete_rq(rq); 2400 nvme_fc_ctrl_put(ctrl); 2401 } 2402 2403 /* 2404 * This routine is used by the transport when it needs to find active 2405 * io on a queue that is to be terminated. The transport uses 2406 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2407 * this routine to kill them on a 1 by 1 basis. 2408 * 2409 * As FC allocates FC exchange for each io, the transport must contact 2410 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2411 * After terminating the exchange the LLDD will call the transport's 2412 * normal io done path for the request, but it will have an aborted 2413 * status. The done path will return the io request back to the block 2414 * layer with an error status. 2415 */ 2416 static bool 2417 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2418 { 2419 struct nvme_ctrl *nctrl = data; 2420 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2421 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2422 2423 __nvme_fc_abort_op(ctrl, op); 2424 return true; 2425 } 2426 2427 2428 static const struct blk_mq_ops nvme_fc_mq_ops = { 2429 .queue_rq = nvme_fc_queue_rq, 2430 .complete = nvme_fc_complete_rq, 2431 .init_request = nvme_fc_init_request, 2432 .exit_request = nvme_fc_exit_request, 2433 .init_hctx = nvme_fc_init_hctx, 2434 .timeout = nvme_fc_timeout, 2435 }; 2436 2437 static int 2438 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2439 { 2440 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2441 unsigned int nr_io_queues; 2442 int ret; 2443 2444 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2445 ctrl->lport->ops->max_hw_queues); 2446 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2447 if (ret) { 2448 dev_info(ctrl->ctrl.device, 2449 "set_queue_count failed: %d\n", ret); 2450 return ret; 2451 } 2452 2453 ctrl->ctrl.queue_count = nr_io_queues + 1; 2454 if (!nr_io_queues) 2455 return 0; 2456 2457 nvme_fc_init_io_queues(ctrl); 2458 2459 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2460 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2461 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2462 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2463 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 2464 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2465 ctrl->tag_set.cmd_size = 2466 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 2467 ctrl->lport->ops->fcprqst_priv_sz); 2468 ctrl->tag_set.driver_data = ctrl; 2469 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2470 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2471 2472 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2473 if (ret) 2474 return ret; 2475 2476 ctrl->ctrl.tagset = &ctrl->tag_set; 2477 2478 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2479 if (IS_ERR(ctrl->ctrl.connect_q)) { 2480 ret = PTR_ERR(ctrl->ctrl.connect_q); 2481 goto out_free_tag_set; 2482 } 2483 2484 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2485 if (ret) 2486 goto out_cleanup_blk_queue; 2487 2488 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2489 if (ret) 2490 goto out_delete_hw_queues; 2491 2492 ctrl->ioq_live = true; 2493 2494 return 0; 2495 2496 out_delete_hw_queues: 2497 nvme_fc_delete_hw_io_queues(ctrl); 2498 out_cleanup_blk_queue: 2499 blk_cleanup_queue(ctrl->ctrl.connect_q); 2500 out_free_tag_set: 2501 blk_mq_free_tag_set(&ctrl->tag_set); 2502 nvme_fc_free_io_queues(ctrl); 2503 2504 /* force put free routine to ignore io queues */ 2505 ctrl->ctrl.tagset = NULL; 2506 2507 return ret; 2508 } 2509 2510 static int 2511 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2512 { 2513 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2514 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2515 unsigned int nr_io_queues; 2516 int ret; 2517 2518 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2519 ctrl->lport->ops->max_hw_queues); 2520 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2521 if (ret) { 2522 dev_info(ctrl->ctrl.device, 2523 "set_queue_count failed: %d\n", ret); 2524 return ret; 2525 } 2526 2527 if (!nr_io_queues && prior_ioq_cnt) { 2528 dev_info(ctrl->ctrl.device, 2529 "Fail Reconnect: At least 1 io queue " 2530 "required (was %d)\n", prior_ioq_cnt); 2531 return -ENOSPC; 2532 } 2533 2534 ctrl->ctrl.queue_count = nr_io_queues + 1; 2535 /* check for io queues existing */ 2536 if (ctrl->ctrl.queue_count == 1) 2537 return 0; 2538 2539 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2540 if (ret) 2541 goto out_free_io_queues; 2542 2543 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2544 if (ret) 2545 goto out_delete_hw_queues; 2546 2547 if (prior_ioq_cnt != nr_io_queues) 2548 dev_info(ctrl->ctrl.device, 2549 "reconnect: revising io queue count from %d to %d\n", 2550 prior_ioq_cnt, nr_io_queues); 2551 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2552 2553 return 0; 2554 2555 out_delete_hw_queues: 2556 nvme_fc_delete_hw_io_queues(ctrl); 2557 out_free_io_queues: 2558 nvme_fc_free_io_queues(ctrl); 2559 return ret; 2560 } 2561 2562 static void 2563 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2564 { 2565 struct nvme_fc_lport *lport = rport->lport; 2566 2567 atomic_inc(&lport->act_rport_cnt); 2568 } 2569 2570 static void 2571 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2572 { 2573 struct nvme_fc_lport *lport = rport->lport; 2574 u32 cnt; 2575 2576 cnt = atomic_dec_return(&lport->act_rport_cnt); 2577 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2578 lport->ops->localport_delete(&lport->localport); 2579 } 2580 2581 static int 2582 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2583 { 2584 struct nvme_fc_rport *rport = ctrl->rport; 2585 u32 cnt; 2586 2587 if (ctrl->assoc_active) 2588 return 1; 2589 2590 ctrl->assoc_active = true; 2591 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2592 if (cnt == 1) 2593 nvme_fc_rport_active_on_lport(rport); 2594 2595 return 0; 2596 } 2597 2598 static int 2599 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2600 { 2601 struct nvme_fc_rport *rport = ctrl->rport; 2602 struct nvme_fc_lport *lport = rport->lport; 2603 u32 cnt; 2604 2605 /* ctrl->assoc_active=false will be set independently */ 2606 2607 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2608 if (cnt == 0) { 2609 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2610 lport->ops->remoteport_delete(&rport->remoteport); 2611 nvme_fc_rport_inactive_on_lport(rport); 2612 } 2613 2614 return 0; 2615 } 2616 2617 /* 2618 * This routine restarts the controller on the host side, and 2619 * on the link side, recreates the controller association. 2620 */ 2621 static int 2622 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2623 { 2624 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2625 int ret; 2626 bool changed; 2627 2628 ++ctrl->ctrl.nr_reconnects; 2629 2630 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2631 return -ENODEV; 2632 2633 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2634 return -ENOTUNIQ; 2635 2636 dev_info(ctrl->ctrl.device, 2637 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 2638 " rport wwpn 0x%016llx: NQN \"%s\"\n", 2639 ctrl->cnum, ctrl->lport->localport.port_name, 2640 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 2641 2642 /* 2643 * Create the admin queue 2644 */ 2645 2646 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2647 NVME_AQ_DEPTH); 2648 if (ret) 2649 goto out_free_queue; 2650 2651 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2652 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 2653 if (ret) 2654 goto out_delete_hw_queue; 2655 2656 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2657 if (ret) 2658 goto out_disconnect_admin_queue; 2659 2660 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2661 2662 /* 2663 * Check controller capabilities 2664 * 2665 * todo:- add code to check if ctrl attributes changed from 2666 * prior connection values 2667 */ 2668 2669 ret = nvme_enable_ctrl(&ctrl->ctrl); 2670 if (ret) 2671 goto out_disconnect_admin_queue; 2672 2673 ctrl->ctrl.max_hw_sectors = 2674 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2675 2676 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2677 2678 ret = nvme_init_identify(&ctrl->ctrl); 2679 if (ret) 2680 goto out_disconnect_admin_queue; 2681 2682 /* sanity checks */ 2683 2684 /* FC-NVME does not have other data in the capsule */ 2685 if (ctrl->ctrl.icdoff) { 2686 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2687 ctrl->ctrl.icdoff); 2688 goto out_disconnect_admin_queue; 2689 } 2690 2691 /* FC-NVME supports normal SGL Data Block Descriptors */ 2692 2693 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2694 /* warn if maxcmd is lower than queue_size */ 2695 dev_warn(ctrl->ctrl.device, 2696 "queue_size %zu > ctrl maxcmd %u, reducing " 2697 "to maxcmd\n", 2698 opts->queue_size, ctrl->ctrl.maxcmd); 2699 opts->queue_size = ctrl->ctrl.maxcmd; 2700 } 2701 2702 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 2703 /* warn if sqsize is lower than queue_size */ 2704 dev_warn(ctrl->ctrl.device, 2705 "queue_size %zu > ctrl sqsize %u, reducing " 2706 "to sqsize\n", 2707 opts->queue_size, ctrl->ctrl.sqsize + 1); 2708 opts->queue_size = ctrl->ctrl.sqsize + 1; 2709 } 2710 2711 ret = nvme_fc_init_aen_ops(ctrl); 2712 if (ret) 2713 goto out_term_aen_ops; 2714 2715 /* 2716 * Create the io queues 2717 */ 2718 2719 if (ctrl->ctrl.queue_count > 1) { 2720 if (!ctrl->ioq_live) 2721 ret = nvme_fc_create_io_queues(ctrl); 2722 else 2723 ret = nvme_fc_recreate_io_queues(ctrl); 2724 if (ret) 2725 goto out_term_aen_ops; 2726 } 2727 2728 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2729 2730 ctrl->ctrl.nr_reconnects = 0; 2731 2732 if (changed) 2733 nvme_start_ctrl(&ctrl->ctrl); 2734 2735 return 0; /* Success */ 2736 2737 out_term_aen_ops: 2738 nvme_fc_term_aen_ops(ctrl); 2739 out_disconnect_admin_queue: 2740 /* send a Disconnect(association) LS to fc-nvme target */ 2741 nvme_fc_xmt_disconnect_assoc(ctrl); 2742 ctrl->association_id = 0; 2743 out_delete_hw_queue: 2744 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2745 out_free_queue: 2746 nvme_fc_free_queue(&ctrl->queues[0]); 2747 ctrl->assoc_active = false; 2748 nvme_fc_ctlr_inactive_on_rport(ctrl); 2749 2750 return ret; 2751 } 2752 2753 /* 2754 * This routine stops operation of the controller on the host side. 2755 * On the host os stack side: Admin and IO queues are stopped, 2756 * outstanding ios on them terminated via FC ABTS. 2757 * On the link side: the association is terminated. 2758 */ 2759 static void 2760 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2761 { 2762 unsigned long flags; 2763 2764 if (!ctrl->assoc_active) 2765 return; 2766 ctrl->assoc_active = false; 2767 2768 spin_lock_irqsave(&ctrl->lock, flags); 2769 ctrl->flags |= FCCTRL_TERMIO; 2770 ctrl->iocnt = 0; 2771 spin_unlock_irqrestore(&ctrl->lock, flags); 2772 2773 /* 2774 * If io queues are present, stop them and terminate all outstanding 2775 * ios on them. As FC allocates FC exchange for each io, the 2776 * transport must contact the LLDD to terminate the exchange, 2777 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2778 * to tell us what io's are busy and invoke a transport routine 2779 * to kill them with the LLDD. After terminating the exchange 2780 * the LLDD will call the transport's normal io done path, but it 2781 * will have an aborted status. The done path will return the 2782 * io requests back to the block layer as part of normal completions 2783 * (but with error status). 2784 */ 2785 if (ctrl->ctrl.queue_count > 1) { 2786 nvme_stop_queues(&ctrl->ctrl); 2787 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2788 nvme_fc_terminate_exchange, &ctrl->ctrl); 2789 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2790 } 2791 2792 /* 2793 * Other transports, which don't have link-level contexts bound 2794 * to sqe's, would try to gracefully shutdown the controller by 2795 * writing the registers for shutdown and polling (call 2796 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2797 * just aborted and we will wait on those contexts, and given 2798 * there was no indication of how live the controlelr is on the 2799 * link, don't send more io to create more contexts for the 2800 * shutdown. Let the controller fail via keepalive failure if 2801 * its still present. 2802 */ 2803 2804 /* 2805 * clean up the admin queue. Same thing as above. 2806 * use blk_mq_tagset_busy_itr() and the transport routine to 2807 * terminate the exchanges. 2808 */ 2809 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2810 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2811 nvme_fc_terminate_exchange, &ctrl->ctrl); 2812 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2813 2814 /* kill the aens as they are a separate path */ 2815 nvme_fc_abort_aen_ops(ctrl); 2816 2817 /* wait for all io that had to be aborted */ 2818 spin_lock_irq(&ctrl->lock); 2819 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2820 ctrl->flags &= ~FCCTRL_TERMIO; 2821 spin_unlock_irq(&ctrl->lock); 2822 2823 nvme_fc_term_aen_ops(ctrl); 2824 2825 /* 2826 * send a Disconnect(association) LS to fc-nvme target 2827 * Note: could have been sent at top of process, but 2828 * cleaner on link traffic if after the aborts complete. 2829 * Note: if association doesn't exist, association_id will be 0 2830 */ 2831 if (ctrl->association_id) 2832 nvme_fc_xmt_disconnect_assoc(ctrl); 2833 2834 ctrl->association_id = 0; 2835 2836 if (ctrl->ctrl.tagset) { 2837 nvme_fc_delete_hw_io_queues(ctrl); 2838 nvme_fc_free_io_queues(ctrl); 2839 } 2840 2841 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2842 nvme_fc_free_queue(&ctrl->queues[0]); 2843 2844 /* re-enable the admin_q so anything new can fast fail */ 2845 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2846 2847 /* resume the io queues so that things will fast fail */ 2848 nvme_start_queues(&ctrl->ctrl); 2849 2850 nvme_fc_ctlr_inactive_on_rport(ctrl); 2851 } 2852 2853 static void 2854 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2855 { 2856 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2857 2858 cancel_work_sync(&ctrl->err_work); 2859 cancel_delayed_work_sync(&ctrl->connect_work); 2860 /* 2861 * kill the association on the link side. this will block 2862 * waiting for io to terminate 2863 */ 2864 nvme_fc_delete_association(ctrl); 2865 } 2866 2867 static void 2868 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2869 { 2870 struct nvme_fc_rport *rport = ctrl->rport; 2871 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2872 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2873 bool recon = true; 2874 2875 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 2876 return; 2877 2878 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2879 dev_info(ctrl->ctrl.device, 2880 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2881 ctrl->cnum, status); 2882 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2883 recon = false; 2884 2885 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2886 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2887 dev_info(ctrl->ctrl.device, 2888 "NVME-FC{%d}: Reconnect attempt in %ld " 2889 "seconds\n", 2890 ctrl->cnum, recon_delay / HZ); 2891 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2892 recon_delay = rport->dev_loss_end - jiffies; 2893 2894 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2895 } else { 2896 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2897 dev_warn(ctrl->ctrl.device, 2898 "NVME-FC{%d}: Max reconnect attempts (%d) " 2899 "reached.\n", 2900 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2901 else 2902 dev_warn(ctrl->ctrl.device, 2903 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2904 "while waiting for remoteport connectivity.\n", 2905 ctrl->cnum, portptr->dev_loss_tmo); 2906 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2907 } 2908 } 2909 2910 static void 2911 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) 2912 { 2913 /* 2914 * if state is connecting - the error occurred as part of a 2915 * reconnect attempt. The create_association error paths will 2916 * clean up any outstanding io. 2917 * 2918 * if it's a different state - ensure all pending io is 2919 * terminated. Given this can delay while waiting for the 2920 * aborted io to return, we recheck adapter state below 2921 * before changing state. 2922 */ 2923 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 2924 nvme_stop_keep_alive(&ctrl->ctrl); 2925 2926 /* will block will waiting for io to terminate */ 2927 nvme_fc_delete_association(ctrl); 2928 } 2929 2930 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING && 2931 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 2932 dev_err(ctrl->ctrl.device, 2933 "NVME-FC{%d}: error_recovery: Couldn't change state " 2934 "to CONNECTING\n", ctrl->cnum); 2935 } 2936 2937 static void 2938 nvme_fc_reset_ctrl_work(struct work_struct *work) 2939 { 2940 struct nvme_fc_ctrl *ctrl = 2941 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2942 int ret; 2943 2944 __nvme_fc_terminate_io(ctrl); 2945 2946 nvme_stop_ctrl(&ctrl->ctrl); 2947 2948 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 2949 ret = nvme_fc_create_association(ctrl); 2950 else 2951 ret = -ENOTCONN; 2952 2953 if (ret) 2954 nvme_fc_reconnect_or_delete(ctrl, ret); 2955 else 2956 dev_info(ctrl->ctrl.device, 2957 "NVME-FC{%d}: controller reset complete\n", 2958 ctrl->cnum); 2959 } 2960 2961 static void 2962 nvme_fc_connect_err_work(struct work_struct *work) 2963 { 2964 struct nvme_fc_ctrl *ctrl = 2965 container_of(work, struct nvme_fc_ctrl, err_work); 2966 2967 __nvme_fc_terminate_io(ctrl); 2968 2969 atomic_set(&ctrl->err_work_active, 0); 2970 2971 /* 2972 * Rescheduling the connection after recovering 2973 * from the io error is left to the reconnect work 2974 * item, which is what should have stalled waiting on 2975 * the io that had the error that scheduled this work. 2976 */ 2977 } 2978 2979 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 2980 .name = "fc", 2981 .module = THIS_MODULE, 2982 .flags = NVME_F_FABRICS, 2983 .reg_read32 = nvmf_reg_read32, 2984 .reg_read64 = nvmf_reg_read64, 2985 .reg_write32 = nvmf_reg_write32, 2986 .free_ctrl = nvme_fc_nvme_ctrl_freed, 2987 .submit_async_event = nvme_fc_submit_async_event, 2988 .delete_ctrl = nvme_fc_delete_ctrl, 2989 .get_address = nvmf_get_address, 2990 }; 2991 2992 static void 2993 nvme_fc_connect_ctrl_work(struct work_struct *work) 2994 { 2995 int ret; 2996 2997 struct nvme_fc_ctrl *ctrl = 2998 container_of(to_delayed_work(work), 2999 struct nvme_fc_ctrl, connect_work); 3000 3001 ret = nvme_fc_create_association(ctrl); 3002 if (ret) 3003 nvme_fc_reconnect_or_delete(ctrl, ret); 3004 else 3005 dev_info(ctrl->ctrl.device, 3006 "NVME-FC{%d}: controller connect complete\n", 3007 ctrl->cnum); 3008 } 3009 3010 3011 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3012 .queue_rq = nvme_fc_queue_rq, 3013 .complete = nvme_fc_complete_rq, 3014 .init_request = nvme_fc_init_request, 3015 .exit_request = nvme_fc_exit_request, 3016 .init_hctx = nvme_fc_init_admin_hctx, 3017 .timeout = nvme_fc_timeout, 3018 }; 3019 3020 3021 /* 3022 * Fails a controller request if it matches an existing controller 3023 * (association) with the same tuple: 3024 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3025 * 3026 * The ports don't need to be compared as they are intrinsically 3027 * already matched by the port pointers supplied. 3028 */ 3029 static bool 3030 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3031 struct nvmf_ctrl_options *opts) 3032 { 3033 struct nvme_fc_ctrl *ctrl; 3034 unsigned long flags; 3035 bool found = false; 3036 3037 spin_lock_irqsave(&rport->lock, flags); 3038 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3039 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3040 if (found) 3041 break; 3042 } 3043 spin_unlock_irqrestore(&rport->lock, flags); 3044 3045 return found; 3046 } 3047 3048 static struct nvme_ctrl * 3049 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3050 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3051 { 3052 struct nvme_fc_ctrl *ctrl; 3053 unsigned long flags; 3054 int ret, idx; 3055 3056 if (!(rport->remoteport.port_role & 3057 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3058 ret = -EBADR; 3059 goto out_fail; 3060 } 3061 3062 if (!opts->duplicate_connect && 3063 nvme_fc_existing_controller(rport, opts)) { 3064 ret = -EALREADY; 3065 goto out_fail; 3066 } 3067 3068 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3069 if (!ctrl) { 3070 ret = -ENOMEM; 3071 goto out_fail; 3072 } 3073 3074 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3075 if (idx < 0) { 3076 ret = -ENOSPC; 3077 goto out_free_ctrl; 3078 } 3079 3080 ctrl->ctrl.opts = opts; 3081 ctrl->ctrl.nr_reconnects = 0; 3082 if (lport->dev) 3083 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3084 else 3085 ctrl->ctrl.numa_node = NUMA_NO_NODE; 3086 INIT_LIST_HEAD(&ctrl->ctrl_list); 3087 ctrl->lport = lport; 3088 ctrl->rport = rport; 3089 ctrl->dev = lport->dev; 3090 ctrl->cnum = idx; 3091 ctrl->ioq_live = false; 3092 ctrl->assoc_active = false; 3093 atomic_set(&ctrl->err_work_active, 0); 3094 init_waitqueue_head(&ctrl->ioabort_wait); 3095 3096 get_device(ctrl->dev); 3097 kref_init(&ctrl->ref); 3098 3099 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3100 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3101 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work); 3102 spin_lock_init(&ctrl->lock); 3103 3104 /* io queue count */ 3105 ctrl->ctrl.queue_count = min_t(unsigned int, 3106 opts->nr_io_queues, 3107 lport->ops->max_hw_queues); 3108 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3109 3110 ctrl->ctrl.sqsize = opts->queue_size - 1; 3111 ctrl->ctrl.kato = opts->kato; 3112 ctrl->ctrl.cntlid = 0xffff; 3113 3114 ret = -ENOMEM; 3115 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3116 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3117 if (!ctrl->queues) 3118 goto out_free_ida; 3119 3120 nvme_fc_init_queue(ctrl, 0); 3121 3122 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3123 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3124 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3125 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3126 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 3127 ctrl->admin_tag_set.cmd_size = 3128 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 3129 ctrl->lport->ops->fcprqst_priv_sz); 3130 ctrl->admin_tag_set.driver_data = ctrl; 3131 ctrl->admin_tag_set.nr_hw_queues = 1; 3132 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3133 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3134 3135 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3136 if (ret) 3137 goto out_free_queues; 3138 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3139 3140 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3141 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 3142 ret = PTR_ERR(ctrl->ctrl.fabrics_q); 3143 goto out_free_admin_tag_set; 3144 } 3145 3146 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3147 if (IS_ERR(ctrl->ctrl.admin_q)) { 3148 ret = PTR_ERR(ctrl->ctrl.admin_q); 3149 goto out_cleanup_fabrics_q; 3150 } 3151 3152 /* 3153 * Would have been nice to init io queues tag set as well. 3154 * However, we require interaction from the controller 3155 * for max io queue count before we can do so. 3156 * Defer this to the connect path. 3157 */ 3158 3159 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3160 if (ret) 3161 goto out_cleanup_admin_q; 3162 3163 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3164 3165 spin_lock_irqsave(&rport->lock, flags); 3166 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3167 spin_unlock_irqrestore(&rport->lock, flags); 3168 3169 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3170 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3171 dev_err(ctrl->ctrl.device, 3172 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3173 goto fail_ctrl; 3174 } 3175 3176 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3177 dev_err(ctrl->ctrl.device, 3178 "NVME-FC{%d}: failed to schedule initial connect\n", 3179 ctrl->cnum); 3180 goto fail_ctrl; 3181 } 3182 3183 flush_delayed_work(&ctrl->connect_work); 3184 3185 dev_info(ctrl->ctrl.device, 3186 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3187 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3188 3189 return &ctrl->ctrl; 3190 3191 fail_ctrl: 3192 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3193 cancel_work_sync(&ctrl->ctrl.reset_work); 3194 cancel_work_sync(&ctrl->err_work); 3195 cancel_delayed_work_sync(&ctrl->connect_work); 3196 3197 ctrl->ctrl.opts = NULL; 3198 3199 /* initiate nvme ctrl ref counting teardown */ 3200 nvme_uninit_ctrl(&ctrl->ctrl); 3201 3202 /* Remove core ctrl ref. */ 3203 nvme_put_ctrl(&ctrl->ctrl); 3204 3205 /* as we're past the point where we transition to the ref 3206 * counting teardown path, if we return a bad pointer here, 3207 * the calling routine, thinking it's prior to the 3208 * transition, will do an rport put. Since the teardown 3209 * path also does a rport put, we do an extra get here to 3210 * so proper order/teardown happens. 3211 */ 3212 nvme_fc_rport_get(rport); 3213 3214 return ERR_PTR(-EIO); 3215 3216 out_cleanup_admin_q: 3217 blk_cleanup_queue(ctrl->ctrl.admin_q); 3218 out_cleanup_fabrics_q: 3219 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 3220 out_free_admin_tag_set: 3221 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3222 out_free_queues: 3223 kfree(ctrl->queues); 3224 out_free_ida: 3225 put_device(ctrl->dev); 3226 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3227 out_free_ctrl: 3228 kfree(ctrl); 3229 out_fail: 3230 /* exit via here doesn't follow ctlr ref points */ 3231 return ERR_PTR(ret); 3232 } 3233 3234 3235 struct nvmet_fc_traddr { 3236 u64 nn; 3237 u64 pn; 3238 }; 3239 3240 static int 3241 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3242 { 3243 u64 token64; 3244 3245 if (match_u64(sstr, &token64)) 3246 return -EINVAL; 3247 *val = token64; 3248 3249 return 0; 3250 } 3251 3252 /* 3253 * This routine validates and extracts the WWN's from the TRADDR string. 3254 * As kernel parsers need the 0x to determine number base, universally 3255 * build string to parse with 0x prefix before parsing name strings. 3256 */ 3257 static int 3258 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3259 { 3260 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3261 substring_t wwn = { name, &name[sizeof(name)-1] }; 3262 int nnoffset, pnoffset; 3263 3264 /* validate if string is one of the 2 allowed formats */ 3265 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3266 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3267 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3268 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3269 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3270 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3271 NVME_FC_TRADDR_OXNNLEN; 3272 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3273 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3274 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3275 "pn-", NVME_FC_TRADDR_NNLEN))) { 3276 nnoffset = NVME_FC_TRADDR_NNLEN; 3277 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3278 } else 3279 goto out_einval; 3280 3281 name[0] = '0'; 3282 name[1] = 'x'; 3283 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3284 3285 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3286 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3287 goto out_einval; 3288 3289 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3290 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3291 goto out_einval; 3292 3293 return 0; 3294 3295 out_einval: 3296 pr_warn("%s: bad traddr string\n", __func__); 3297 return -EINVAL; 3298 } 3299 3300 static struct nvme_ctrl * 3301 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3302 { 3303 struct nvme_fc_lport *lport; 3304 struct nvme_fc_rport *rport; 3305 struct nvme_ctrl *ctrl; 3306 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3307 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3308 unsigned long flags; 3309 int ret; 3310 3311 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3312 if (ret || !raddr.nn || !raddr.pn) 3313 return ERR_PTR(-EINVAL); 3314 3315 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3316 if (ret || !laddr.nn || !laddr.pn) 3317 return ERR_PTR(-EINVAL); 3318 3319 /* find the host and remote ports to connect together */ 3320 spin_lock_irqsave(&nvme_fc_lock, flags); 3321 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3322 if (lport->localport.node_name != laddr.nn || 3323 lport->localport.port_name != laddr.pn) 3324 continue; 3325 3326 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3327 if (rport->remoteport.node_name != raddr.nn || 3328 rport->remoteport.port_name != raddr.pn) 3329 continue; 3330 3331 /* if fail to get reference fall through. Will error */ 3332 if (!nvme_fc_rport_get(rport)) 3333 break; 3334 3335 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3336 3337 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3338 if (IS_ERR(ctrl)) 3339 nvme_fc_rport_put(rport); 3340 return ctrl; 3341 } 3342 } 3343 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3344 3345 pr_warn("%s: %s - %s combination not found\n", 3346 __func__, opts->traddr, opts->host_traddr); 3347 return ERR_PTR(-ENOENT); 3348 } 3349 3350 3351 static struct nvmf_transport_ops nvme_fc_transport = { 3352 .name = "fc", 3353 .module = THIS_MODULE, 3354 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3355 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3356 .create_ctrl = nvme_fc_create_ctrl, 3357 }; 3358 3359 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3360 #define DISCOVERY_MAX_FAIL 20 3361 3362 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3363 struct device_attribute *attr, const char *buf, size_t count) 3364 { 3365 unsigned long flags; 3366 LIST_HEAD(local_disc_list); 3367 struct nvme_fc_lport *lport; 3368 struct nvme_fc_rport *rport; 3369 int failcnt = 0; 3370 3371 spin_lock_irqsave(&nvme_fc_lock, flags); 3372 restart: 3373 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3374 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3375 if (!nvme_fc_lport_get(lport)) 3376 continue; 3377 if (!nvme_fc_rport_get(rport)) { 3378 /* 3379 * This is a temporary condition. Upon restart 3380 * this rport will be gone from the list. 3381 * 3382 * Revert the lport put and retry. Anything 3383 * added to the list already will be skipped (as 3384 * they are no longer list_empty). Loops should 3385 * resume at rports that were not yet seen. 3386 */ 3387 nvme_fc_lport_put(lport); 3388 3389 if (failcnt++ < DISCOVERY_MAX_FAIL) 3390 goto restart; 3391 3392 pr_err("nvme_discovery: too many reference " 3393 "failures\n"); 3394 goto process_local_list; 3395 } 3396 if (list_empty(&rport->disc_list)) 3397 list_add_tail(&rport->disc_list, 3398 &local_disc_list); 3399 } 3400 } 3401 3402 process_local_list: 3403 while (!list_empty(&local_disc_list)) { 3404 rport = list_first_entry(&local_disc_list, 3405 struct nvme_fc_rport, disc_list); 3406 list_del_init(&rport->disc_list); 3407 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3408 3409 lport = rport->lport; 3410 /* signal discovery. Won't hurt if it repeats */ 3411 nvme_fc_signal_discovery_scan(lport, rport); 3412 nvme_fc_rport_put(rport); 3413 nvme_fc_lport_put(lport); 3414 3415 spin_lock_irqsave(&nvme_fc_lock, flags); 3416 } 3417 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3418 3419 return count; 3420 } 3421 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3422 3423 static struct attribute *nvme_fc_attrs[] = { 3424 &dev_attr_nvme_discovery.attr, 3425 NULL 3426 }; 3427 3428 static struct attribute_group nvme_fc_attr_group = { 3429 .attrs = nvme_fc_attrs, 3430 }; 3431 3432 static const struct attribute_group *nvme_fc_attr_groups[] = { 3433 &nvme_fc_attr_group, 3434 NULL 3435 }; 3436 3437 static struct class fc_class = { 3438 .name = "fc", 3439 .dev_groups = nvme_fc_attr_groups, 3440 .owner = THIS_MODULE, 3441 }; 3442 3443 static int __init nvme_fc_init_module(void) 3444 { 3445 int ret; 3446 3447 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); 3448 if (!nvme_fc_wq) 3449 return -ENOMEM; 3450 3451 /* 3452 * NOTE: 3453 * It is expected that in the future the kernel will combine 3454 * the FC-isms that are currently under scsi and now being 3455 * added to by NVME into a new standalone FC class. The SCSI 3456 * and NVME protocols and their devices would be under this 3457 * new FC class. 3458 * 3459 * As we need something to post FC-specific udev events to, 3460 * specifically for nvme probe events, start by creating the 3461 * new device class. When the new standalone FC class is 3462 * put in place, this code will move to a more generic 3463 * location for the class. 3464 */ 3465 ret = class_register(&fc_class); 3466 if (ret) { 3467 pr_err("couldn't register class fc\n"); 3468 goto out_destroy_wq; 3469 } 3470 3471 /* 3472 * Create a device for the FC-centric udev events 3473 */ 3474 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3475 "fc_udev_device"); 3476 if (IS_ERR(fc_udev_device)) { 3477 pr_err("couldn't create fc_udev device!\n"); 3478 ret = PTR_ERR(fc_udev_device); 3479 goto out_destroy_class; 3480 } 3481 3482 ret = nvmf_register_transport(&nvme_fc_transport); 3483 if (ret) 3484 goto out_destroy_device; 3485 3486 return 0; 3487 3488 out_destroy_device: 3489 device_destroy(&fc_class, MKDEV(0, 0)); 3490 out_destroy_class: 3491 class_unregister(&fc_class); 3492 out_destroy_wq: 3493 destroy_workqueue(nvme_fc_wq); 3494 3495 return ret; 3496 } 3497 3498 static void 3499 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3500 { 3501 struct nvme_fc_ctrl *ctrl; 3502 3503 spin_lock(&rport->lock); 3504 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3505 dev_warn(ctrl->ctrl.device, 3506 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3507 ctrl->cnum); 3508 nvme_delete_ctrl(&ctrl->ctrl); 3509 } 3510 spin_unlock(&rport->lock); 3511 } 3512 3513 static void 3514 nvme_fc_cleanup_for_unload(void) 3515 { 3516 struct nvme_fc_lport *lport; 3517 struct nvme_fc_rport *rport; 3518 3519 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3520 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3521 nvme_fc_delete_controllers(rport); 3522 } 3523 } 3524 } 3525 3526 static void __exit nvme_fc_exit_module(void) 3527 { 3528 unsigned long flags; 3529 bool need_cleanup = false; 3530 3531 spin_lock_irqsave(&nvme_fc_lock, flags); 3532 nvme_fc_waiting_to_unload = true; 3533 if (!list_empty(&nvme_fc_lport_list)) { 3534 need_cleanup = true; 3535 nvme_fc_cleanup_for_unload(); 3536 } 3537 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3538 if (need_cleanup) { 3539 pr_info("%s: waiting for ctlr deletes\n", __func__); 3540 wait_for_completion(&nvme_fc_unload_proceed); 3541 pr_info("%s: ctrl deletes complete\n", __func__); 3542 } 3543 3544 nvmf_unregister_transport(&nvme_fc_transport); 3545 3546 ida_destroy(&nvme_fc_local_port_cnt); 3547 ida_destroy(&nvme_fc_ctrl_cnt); 3548 3549 device_destroy(&fc_class, MKDEV(0, 0)); 3550 class_unregister(&fc_class); 3551 destroy_workqueue(nvme_fc_wq); 3552 } 3553 3554 module_init(nvme_fc_init_module); 3555 module_exit(nvme_fc_exit_module); 3556 3557 MODULE_LICENSE("GPL v2"); 3558