1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 enum nvme_fc_queue_flags { 34 NVME_FC_Q_CONNECTED = 0, 35 NVME_FC_Q_LIVE, 36 }; 37 38 #define NVMEFC_QUEUE_DELAY 3 /* ms units */ 39 40 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 41 42 struct nvme_fc_queue { 43 struct nvme_fc_ctrl *ctrl; 44 struct device *dev; 45 struct blk_mq_hw_ctx *hctx; 46 void *lldd_handle; 47 size_t cmnd_capsule_len; 48 u32 qnum; 49 u32 rqcnt; 50 u32 seqno; 51 52 u64 connection_id; 53 atomic_t csn; 54 55 unsigned long flags; 56 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 57 58 enum nvme_fcop_flags { 59 FCOP_FLAGS_TERMIO = (1 << 0), 60 FCOP_FLAGS_RELEASED = (1 << 1), 61 FCOP_FLAGS_COMPLETE = (1 << 2), 62 FCOP_FLAGS_AEN = (1 << 3), 63 }; 64 65 struct nvmefc_ls_req_op { 66 struct nvmefc_ls_req ls_req; 67 68 struct nvme_fc_rport *rport; 69 struct nvme_fc_queue *queue; 70 struct request *rq; 71 u32 flags; 72 73 int ls_error; 74 struct completion ls_done; 75 struct list_head lsreq_list; /* rport->ls_req_list */ 76 bool req_queued; 77 }; 78 79 enum nvme_fcpop_state { 80 FCPOP_STATE_UNINIT = 0, 81 FCPOP_STATE_IDLE = 1, 82 FCPOP_STATE_ACTIVE = 2, 83 FCPOP_STATE_ABORTED = 3, 84 FCPOP_STATE_COMPLETE = 4, 85 }; 86 87 struct nvme_fc_fcp_op { 88 struct nvme_request nreq; /* 89 * nvme/host/core.c 90 * requires this to be 91 * the 1st element in the 92 * private structure 93 * associated with the 94 * request. 95 */ 96 struct nvmefc_fcp_req fcp_req; 97 98 struct nvme_fc_ctrl *ctrl; 99 struct nvme_fc_queue *queue; 100 struct request *rq; 101 102 atomic_t state; 103 u32 flags; 104 u32 rqno; 105 u32 nents; 106 107 struct nvme_fc_cmd_iu cmd_iu; 108 struct nvme_fc_ersp_iu rsp_iu; 109 }; 110 111 struct nvme_fc_lport { 112 struct nvme_fc_local_port localport; 113 114 struct ida endp_cnt; 115 struct list_head port_list; /* nvme_fc_port_list */ 116 struct list_head endp_list; 117 struct device *dev; /* physical device for dma */ 118 struct nvme_fc_port_template *ops; 119 struct kref ref; 120 atomic_t act_rport_cnt; 121 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 122 123 struct nvme_fc_rport { 124 struct nvme_fc_remote_port remoteport; 125 126 struct list_head endp_list; /* for lport->endp_list */ 127 struct list_head ctrl_list; 128 struct list_head ls_req_list; 129 struct device *dev; /* physical device for dma */ 130 struct nvme_fc_lport *lport; 131 spinlock_t lock; 132 struct kref ref; 133 atomic_t act_ctrl_cnt; 134 unsigned long dev_loss_end; 135 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 136 137 enum nvme_fcctrl_flags { 138 FCCTRL_TERMIO = (1 << 0), 139 }; 140 141 struct nvme_fc_ctrl { 142 spinlock_t lock; 143 struct nvme_fc_queue *queues; 144 struct device *dev; 145 struct nvme_fc_lport *lport; 146 struct nvme_fc_rport *rport; 147 u32 cnum; 148 149 bool assoc_active; 150 u64 association_id; 151 152 struct list_head ctrl_list; /* rport->ctrl_list */ 153 154 struct blk_mq_tag_set admin_tag_set; 155 struct blk_mq_tag_set tag_set; 156 157 struct delayed_work connect_work; 158 159 struct kref ref; 160 u32 flags; 161 u32 iocnt; 162 wait_queue_head_t ioabort_wait; 163 164 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 165 166 struct nvme_ctrl ctrl; 167 }; 168 169 static inline struct nvme_fc_ctrl * 170 to_fc_ctrl(struct nvme_ctrl *ctrl) 171 { 172 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 173 } 174 175 static inline struct nvme_fc_lport * 176 localport_to_lport(struct nvme_fc_local_port *portptr) 177 { 178 return container_of(portptr, struct nvme_fc_lport, localport); 179 } 180 181 static inline struct nvme_fc_rport * 182 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 183 { 184 return container_of(portptr, struct nvme_fc_rport, remoteport); 185 } 186 187 static inline struct nvmefc_ls_req_op * 188 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 189 { 190 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 191 } 192 193 static inline struct nvme_fc_fcp_op * 194 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 195 { 196 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 197 } 198 199 200 201 /* *************************** Globals **************************** */ 202 203 204 static DEFINE_SPINLOCK(nvme_fc_lock); 205 206 static LIST_HEAD(nvme_fc_lport_list); 207 static DEFINE_IDA(nvme_fc_local_port_cnt); 208 static DEFINE_IDA(nvme_fc_ctrl_cnt); 209 210 211 212 /* 213 * These items are short-term. They will eventually be moved into 214 * a generic FC class. See comments in module init. 215 */ 216 static struct class *fc_class; 217 static struct device *fc_udev_device; 218 219 220 /* *********************** FC-NVME Port Management ************************ */ 221 222 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 223 struct nvme_fc_queue *, unsigned int); 224 225 static void 226 nvme_fc_free_lport(struct kref *ref) 227 { 228 struct nvme_fc_lport *lport = 229 container_of(ref, struct nvme_fc_lport, ref); 230 unsigned long flags; 231 232 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 233 WARN_ON(!list_empty(&lport->endp_list)); 234 235 /* remove from transport list */ 236 spin_lock_irqsave(&nvme_fc_lock, flags); 237 list_del(&lport->port_list); 238 spin_unlock_irqrestore(&nvme_fc_lock, flags); 239 240 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 241 ida_destroy(&lport->endp_cnt); 242 243 put_device(lport->dev); 244 245 kfree(lport); 246 } 247 248 static void 249 nvme_fc_lport_put(struct nvme_fc_lport *lport) 250 { 251 kref_put(&lport->ref, nvme_fc_free_lport); 252 } 253 254 static int 255 nvme_fc_lport_get(struct nvme_fc_lport *lport) 256 { 257 return kref_get_unless_zero(&lport->ref); 258 } 259 260 261 static struct nvme_fc_lport * 262 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 263 struct nvme_fc_port_template *ops, 264 struct device *dev) 265 { 266 struct nvme_fc_lport *lport; 267 unsigned long flags; 268 269 spin_lock_irqsave(&nvme_fc_lock, flags); 270 271 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 272 if (lport->localport.node_name != pinfo->node_name || 273 lport->localport.port_name != pinfo->port_name) 274 continue; 275 276 if (lport->dev != dev) { 277 lport = ERR_PTR(-EXDEV); 278 goto out_done; 279 } 280 281 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 282 lport = ERR_PTR(-EEXIST); 283 goto out_done; 284 } 285 286 if (!nvme_fc_lport_get(lport)) { 287 /* 288 * fails if ref cnt already 0. If so, 289 * act as if lport already deleted 290 */ 291 lport = NULL; 292 goto out_done; 293 } 294 295 /* resume the lport */ 296 297 lport->ops = ops; 298 lport->localport.port_role = pinfo->port_role; 299 lport->localport.port_id = pinfo->port_id; 300 lport->localport.port_state = FC_OBJSTATE_ONLINE; 301 302 spin_unlock_irqrestore(&nvme_fc_lock, flags); 303 304 return lport; 305 } 306 307 lport = NULL; 308 309 out_done: 310 spin_unlock_irqrestore(&nvme_fc_lock, flags); 311 312 return lport; 313 } 314 315 /** 316 * nvme_fc_register_localport - transport entry point called by an 317 * LLDD to register the existence of a NVME 318 * host FC port. 319 * @pinfo: pointer to information about the port to be registered 320 * @template: LLDD entrypoints and operational parameters for the port 321 * @dev: physical hardware device node port corresponds to. Will be 322 * used for DMA mappings 323 * @lport_p: pointer to a local port pointer. Upon success, the routine 324 * will allocate a nvme_fc_local_port structure and place its 325 * address in the local port pointer. Upon failure, local port 326 * pointer will be set to 0. 327 * 328 * Returns: 329 * a completion status. Must be 0 upon success; a negative errno 330 * (ex: -ENXIO) upon failure. 331 */ 332 int 333 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 334 struct nvme_fc_port_template *template, 335 struct device *dev, 336 struct nvme_fc_local_port **portptr) 337 { 338 struct nvme_fc_lport *newrec; 339 unsigned long flags; 340 int ret, idx; 341 342 if (!template->localport_delete || !template->remoteport_delete || 343 !template->ls_req || !template->fcp_io || 344 !template->ls_abort || !template->fcp_abort || 345 !template->max_hw_queues || !template->max_sgl_segments || 346 !template->max_dif_sgl_segments || !template->dma_boundary) { 347 ret = -EINVAL; 348 goto out_reghost_failed; 349 } 350 351 /* 352 * look to see if there is already a localport that had been 353 * deregistered and in the process of waiting for all the 354 * references to fully be removed. If the references haven't 355 * expired, we can simply re-enable the localport. Remoteports 356 * and controller reconnections should resume naturally. 357 */ 358 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 359 360 /* found an lport, but something about its state is bad */ 361 if (IS_ERR(newrec)) { 362 ret = PTR_ERR(newrec); 363 goto out_reghost_failed; 364 365 /* found existing lport, which was resumed */ 366 } else if (newrec) { 367 *portptr = &newrec->localport; 368 return 0; 369 } 370 371 /* nothing found - allocate a new localport struct */ 372 373 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 374 GFP_KERNEL); 375 if (!newrec) { 376 ret = -ENOMEM; 377 goto out_reghost_failed; 378 } 379 380 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 381 if (idx < 0) { 382 ret = -ENOSPC; 383 goto out_fail_kfree; 384 } 385 386 if (!get_device(dev) && dev) { 387 ret = -ENODEV; 388 goto out_ida_put; 389 } 390 391 INIT_LIST_HEAD(&newrec->port_list); 392 INIT_LIST_HEAD(&newrec->endp_list); 393 kref_init(&newrec->ref); 394 atomic_set(&newrec->act_rport_cnt, 0); 395 newrec->ops = template; 396 newrec->dev = dev; 397 ida_init(&newrec->endp_cnt); 398 newrec->localport.private = &newrec[1]; 399 newrec->localport.node_name = pinfo->node_name; 400 newrec->localport.port_name = pinfo->port_name; 401 newrec->localport.port_role = pinfo->port_role; 402 newrec->localport.port_id = pinfo->port_id; 403 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 404 newrec->localport.port_num = idx; 405 406 spin_lock_irqsave(&nvme_fc_lock, flags); 407 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 408 spin_unlock_irqrestore(&nvme_fc_lock, flags); 409 410 if (dev) 411 dma_set_seg_boundary(dev, template->dma_boundary); 412 413 *portptr = &newrec->localport; 414 return 0; 415 416 out_ida_put: 417 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 418 out_fail_kfree: 419 kfree(newrec); 420 out_reghost_failed: 421 *portptr = NULL; 422 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 426 427 /** 428 * nvme_fc_unregister_localport - transport entry point called by an 429 * LLDD to deregister/remove a previously 430 * registered a NVME host FC port. 431 * @localport: pointer to the (registered) local port that is to be 432 * deregistered. 433 * 434 * Returns: 435 * a completion status. Must be 0 upon success; a negative errno 436 * (ex: -ENXIO) upon failure. 437 */ 438 int 439 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 440 { 441 struct nvme_fc_lport *lport = localport_to_lport(portptr); 442 unsigned long flags; 443 444 if (!portptr) 445 return -EINVAL; 446 447 spin_lock_irqsave(&nvme_fc_lock, flags); 448 449 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 450 spin_unlock_irqrestore(&nvme_fc_lock, flags); 451 return -EINVAL; 452 } 453 portptr->port_state = FC_OBJSTATE_DELETED; 454 455 spin_unlock_irqrestore(&nvme_fc_lock, flags); 456 457 if (atomic_read(&lport->act_rport_cnt) == 0) 458 lport->ops->localport_delete(&lport->localport); 459 460 nvme_fc_lport_put(lport); 461 462 return 0; 463 } 464 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 465 466 /* 467 * TRADDR strings, per FC-NVME are fixed format: 468 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 469 * udev event will only differ by prefix of what field is 470 * being specified: 471 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 472 * 19 + 43 + null_fudge = 64 characters 473 */ 474 #define FCNVME_TRADDR_LENGTH 64 475 476 static void 477 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 478 struct nvme_fc_rport *rport) 479 { 480 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 481 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 482 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 483 484 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 485 return; 486 487 snprintf(hostaddr, sizeof(hostaddr), 488 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 489 lport->localport.node_name, lport->localport.port_name); 490 snprintf(tgtaddr, sizeof(tgtaddr), 491 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 492 rport->remoteport.node_name, rport->remoteport.port_name); 493 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 494 } 495 496 static void 497 nvme_fc_free_rport(struct kref *ref) 498 { 499 struct nvme_fc_rport *rport = 500 container_of(ref, struct nvme_fc_rport, ref); 501 struct nvme_fc_lport *lport = 502 localport_to_lport(rport->remoteport.localport); 503 unsigned long flags; 504 505 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 506 WARN_ON(!list_empty(&rport->ctrl_list)); 507 508 /* remove from lport list */ 509 spin_lock_irqsave(&nvme_fc_lock, flags); 510 list_del(&rport->endp_list); 511 spin_unlock_irqrestore(&nvme_fc_lock, flags); 512 513 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 514 515 kfree(rport); 516 517 nvme_fc_lport_put(lport); 518 } 519 520 static void 521 nvme_fc_rport_put(struct nvme_fc_rport *rport) 522 { 523 kref_put(&rport->ref, nvme_fc_free_rport); 524 } 525 526 static int 527 nvme_fc_rport_get(struct nvme_fc_rport *rport) 528 { 529 return kref_get_unless_zero(&rport->ref); 530 } 531 532 static void 533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 534 { 535 switch (ctrl->ctrl.state) { 536 case NVME_CTRL_NEW: 537 case NVME_CTRL_RECONNECTING: 538 /* 539 * As all reconnects were suppressed, schedule a 540 * connect. 541 */ 542 dev_info(ctrl->ctrl.device, 543 "NVME-FC{%d}: connectivity re-established. " 544 "Attempting reconnect\n", ctrl->cnum); 545 546 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 547 break; 548 549 case NVME_CTRL_RESETTING: 550 /* 551 * Controller is already in the process of terminating the 552 * association. No need to do anything further. The reconnect 553 * step will naturally occur after the reset completes. 554 */ 555 break; 556 557 default: 558 /* no action to take - let it delete */ 559 break; 560 } 561 } 562 563 static struct nvme_fc_rport * 564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 565 struct nvme_fc_port_info *pinfo) 566 { 567 struct nvme_fc_rport *rport; 568 struct nvme_fc_ctrl *ctrl; 569 unsigned long flags; 570 571 spin_lock_irqsave(&nvme_fc_lock, flags); 572 573 list_for_each_entry(rport, &lport->endp_list, endp_list) { 574 if (rport->remoteport.node_name != pinfo->node_name || 575 rport->remoteport.port_name != pinfo->port_name) 576 continue; 577 578 if (!nvme_fc_rport_get(rport)) { 579 rport = ERR_PTR(-ENOLCK); 580 goto out_done; 581 } 582 583 spin_unlock_irqrestore(&nvme_fc_lock, flags); 584 585 spin_lock_irqsave(&rport->lock, flags); 586 587 /* has it been unregistered */ 588 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 589 /* means lldd called us twice */ 590 spin_unlock_irqrestore(&rport->lock, flags); 591 nvme_fc_rport_put(rport); 592 return ERR_PTR(-ESTALE); 593 } 594 595 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 596 rport->dev_loss_end = 0; 597 598 /* 599 * kick off a reconnect attempt on all associations to the 600 * remote port. A successful reconnects will resume i/o. 601 */ 602 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 603 nvme_fc_resume_controller(ctrl); 604 605 spin_unlock_irqrestore(&rport->lock, flags); 606 607 return rport; 608 } 609 610 rport = NULL; 611 612 out_done: 613 spin_unlock_irqrestore(&nvme_fc_lock, flags); 614 615 return rport; 616 } 617 618 static inline void 619 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 620 struct nvme_fc_port_info *pinfo) 621 { 622 if (pinfo->dev_loss_tmo) 623 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 624 else 625 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 626 } 627 628 /** 629 * nvme_fc_register_remoteport - transport entry point called by an 630 * LLDD to register the existence of a NVME 631 * subsystem FC port on its fabric. 632 * @localport: pointer to the (registered) local port that the remote 633 * subsystem port is connected to. 634 * @pinfo: pointer to information about the port to be registered 635 * @rport_p: pointer to a remote port pointer. Upon success, the routine 636 * will allocate a nvme_fc_remote_port structure and place its 637 * address in the remote port pointer. Upon failure, remote port 638 * pointer will be set to 0. 639 * 640 * Returns: 641 * a completion status. Must be 0 upon success; a negative errno 642 * (ex: -ENXIO) upon failure. 643 */ 644 int 645 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 646 struct nvme_fc_port_info *pinfo, 647 struct nvme_fc_remote_port **portptr) 648 { 649 struct nvme_fc_lport *lport = localport_to_lport(localport); 650 struct nvme_fc_rport *newrec; 651 unsigned long flags; 652 int ret, idx; 653 654 if (!nvme_fc_lport_get(lport)) { 655 ret = -ESHUTDOWN; 656 goto out_reghost_failed; 657 } 658 659 /* 660 * look to see if there is already a remoteport that is waiting 661 * for a reconnect (within dev_loss_tmo) with the same WWN's. 662 * If so, transition to it and reconnect. 663 */ 664 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 665 666 /* found an rport, but something about its state is bad */ 667 if (IS_ERR(newrec)) { 668 ret = PTR_ERR(newrec); 669 goto out_lport_put; 670 671 /* found existing rport, which was resumed */ 672 } else if (newrec) { 673 nvme_fc_lport_put(lport); 674 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 675 nvme_fc_signal_discovery_scan(lport, newrec); 676 *portptr = &newrec->remoteport; 677 return 0; 678 } 679 680 /* nothing found - allocate a new remoteport struct */ 681 682 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 683 GFP_KERNEL); 684 if (!newrec) { 685 ret = -ENOMEM; 686 goto out_lport_put; 687 } 688 689 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 690 if (idx < 0) { 691 ret = -ENOSPC; 692 goto out_kfree_rport; 693 } 694 695 INIT_LIST_HEAD(&newrec->endp_list); 696 INIT_LIST_HEAD(&newrec->ctrl_list); 697 INIT_LIST_HEAD(&newrec->ls_req_list); 698 kref_init(&newrec->ref); 699 atomic_set(&newrec->act_ctrl_cnt, 0); 700 spin_lock_init(&newrec->lock); 701 newrec->remoteport.localport = &lport->localport; 702 newrec->dev = lport->dev; 703 newrec->lport = lport; 704 newrec->remoteport.private = &newrec[1]; 705 newrec->remoteport.port_role = pinfo->port_role; 706 newrec->remoteport.node_name = pinfo->node_name; 707 newrec->remoteport.port_name = pinfo->port_name; 708 newrec->remoteport.port_id = pinfo->port_id; 709 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 710 newrec->remoteport.port_num = idx; 711 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 712 713 spin_lock_irqsave(&nvme_fc_lock, flags); 714 list_add_tail(&newrec->endp_list, &lport->endp_list); 715 spin_unlock_irqrestore(&nvme_fc_lock, flags); 716 717 nvme_fc_signal_discovery_scan(lport, newrec); 718 719 *portptr = &newrec->remoteport; 720 return 0; 721 722 out_kfree_rport: 723 kfree(newrec); 724 out_lport_put: 725 nvme_fc_lport_put(lport); 726 out_reghost_failed: 727 *portptr = NULL; 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 731 732 static int 733 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 734 { 735 struct nvmefc_ls_req_op *lsop; 736 unsigned long flags; 737 738 restart: 739 spin_lock_irqsave(&rport->lock, flags); 740 741 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 742 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 743 lsop->flags |= FCOP_FLAGS_TERMIO; 744 spin_unlock_irqrestore(&rport->lock, flags); 745 rport->lport->ops->ls_abort(&rport->lport->localport, 746 &rport->remoteport, 747 &lsop->ls_req); 748 goto restart; 749 } 750 } 751 spin_unlock_irqrestore(&rport->lock, flags); 752 753 return 0; 754 } 755 756 static void 757 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 758 { 759 dev_info(ctrl->ctrl.device, 760 "NVME-FC{%d}: controller connectivity lost. Awaiting " 761 "Reconnect", ctrl->cnum); 762 763 switch (ctrl->ctrl.state) { 764 case NVME_CTRL_NEW: 765 case NVME_CTRL_LIVE: 766 /* 767 * Schedule a controller reset. The reset will terminate the 768 * association and schedule the reconnect timer. Reconnects 769 * will be attempted until either the ctlr_loss_tmo 770 * (max_retries * connect_delay) expires or the remoteport's 771 * dev_loss_tmo expires. 772 */ 773 if (nvme_reset_ctrl(&ctrl->ctrl)) { 774 dev_warn(ctrl->ctrl.device, 775 "NVME-FC{%d}: Couldn't schedule reset. " 776 "Deleting controller.\n", 777 ctrl->cnum); 778 nvme_delete_ctrl(&ctrl->ctrl); 779 } 780 break; 781 782 case NVME_CTRL_RECONNECTING: 783 /* 784 * The association has already been terminated and the 785 * controller is attempting reconnects. No need to do anything 786 * futher. Reconnects will be attempted until either the 787 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 788 * remoteport's dev_loss_tmo expires. 789 */ 790 break; 791 792 case NVME_CTRL_RESETTING: 793 /* 794 * Controller is already in the process of terminating the 795 * association. No need to do anything further. The reconnect 796 * step will kick in naturally after the association is 797 * terminated. 798 */ 799 break; 800 801 case NVME_CTRL_DELETING: 802 default: 803 /* no action to take - let it delete */ 804 break; 805 } 806 } 807 808 /** 809 * nvme_fc_unregister_remoteport - transport entry point called by an 810 * LLDD to deregister/remove a previously 811 * registered a NVME subsystem FC port. 812 * @remoteport: pointer to the (registered) remote port that is to be 813 * deregistered. 814 * 815 * Returns: 816 * a completion status. Must be 0 upon success; a negative errno 817 * (ex: -ENXIO) upon failure. 818 */ 819 int 820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 821 { 822 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 823 struct nvme_fc_ctrl *ctrl; 824 unsigned long flags; 825 826 if (!portptr) 827 return -EINVAL; 828 829 spin_lock_irqsave(&rport->lock, flags); 830 831 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 832 spin_unlock_irqrestore(&rport->lock, flags); 833 return -EINVAL; 834 } 835 portptr->port_state = FC_OBJSTATE_DELETED; 836 837 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 838 839 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 840 /* if dev_loss_tmo==0, dev loss is immediate */ 841 if (!portptr->dev_loss_tmo) { 842 dev_warn(ctrl->ctrl.device, 843 "NVME-FC{%d}: controller connectivity lost. " 844 "Deleting controller.\n", 845 ctrl->cnum); 846 nvme_delete_ctrl(&ctrl->ctrl); 847 } else 848 nvme_fc_ctrl_connectivity_loss(ctrl); 849 } 850 851 spin_unlock_irqrestore(&rport->lock, flags); 852 853 nvme_fc_abort_lsops(rport); 854 855 if (atomic_read(&rport->act_ctrl_cnt) == 0) 856 rport->lport->ops->remoteport_delete(portptr); 857 858 /* 859 * release the reference, which will allow, if all controllers 860 * go away, which should only occur after dev_loss_tmo occurs, 861 * for the rport to be torn down. 862 */ 863 nvme_fc_rport_put(rport); 864 865 return 0; 866 } 867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 868 869 /** 870 * nvme_fc_rescan_remoteport - transport entry point called by an 871 * LLDD to request a nvme device rescan. 872 * @remoteport: pointer to the (registered) remote port that is to be 873 * rescanned. 874 * 875 * Returns: N/A 876 */ 877 void 878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 879 { 880 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 881 882 nvme_fc_signal_discovery_scan(rport->lport, rport); 883 } 884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 885 886 int 887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 888 u32 dev_loss_tmo) 889 { 890 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 891 unsigned long flags; 892 893 spin_lock_irqsave(&rport->lock, flags); 894 895 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 896 spin_unlock_irqrestore(&rport->lock, flags); 897 return -EINVAL; 898 } 899 900 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 901 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 902 903 spin_unlock_irqrestore(&rport->lock, flags); 904 905 return 0; 906 } 907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 908 909 910 /* *********************** FC-NVME DMA Handling **************************** */ 911 912 /* 913 * The fcloop device passes in a NULL device pointer. Real LLD's will 914 * pass in a valid device pointer. If NULL is passed to the dma mapping 915 * routines, depending on the platform, it may or may not succeed, and 916 * may crash. 917 * 918 * As such: 919 * Wrapper all the dma routines and check the dev pointer. 920 * 921 * If simple mappings (return just a dma address, we'll noop them, 922 * returning a dma address of 0. 923 * 924 * On more complex mappings (dma_map_sg), a pseudo routine fills 925 * in the scatter list, setting all dma addresses to 0. 926 */ 927 928 static inline dma_addr_t 929 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 930 enum dma_data_direction dir) 931 { 932 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 933 } 934 935 static inline int 936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 937 { 938 return dev ? dma_mapping_error(dev, dma_addr) : 0; 939 } 940 941 static inline void 942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 943 enum dma_data_direction dir) 944 { 945 if (dev) 946 dma_unmap_single(dev, addr, size, dir); 947 } 948 949 static inline void 950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 951 enum dma_data_direction dir) 952 { 953 if (dev) 954 dma_sync_single_for_cpu(dev, addr, size, dir); 955 } 956 957 static inline void 958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 959 enum dma_data_direction dir) 960 { 961 if (dev) 962 dma_sync_single_for_device(dev, addr, size, dir); 963 } 964 965 /* pseudo dma_map_sg call */ 966 static int 967 fc_map_sg(struct scatterlist *sg, int nents) 968 { 969 struct scatterlist *s; 970 int i; 971 972 WARN_ON(nents == 0 || sg[0].length == 0); 973 974 for_each_sg(sg, s, nents, i) { 975 s->dma_address = 0L; 976 #ifdef CONFIG_NEED_SG_DMA_LENGTH 977 s->dma_length = s->length; 978 #endif 979 } 980 return nents; 981 } 982 983 static inline int 984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 985 enum dma_data_direction dir) 986 { 987 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 988 } 989 990 static inline void 991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 992 enum dma_data_direction dir) 993 { 994 if (dev) 995 dma_unmap_sg(dev, sg, nents, dir); 996 } 997 998 /* *********************** FC-NVME LS Handling **************************** */ 999 1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1002 1003 1004 static void 1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1006 { 1007 struct nvme_fc_rport *rport = lsop->rport; 1008 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1009 unsigned long flags; 1010 1011 spin_lock_irqsave(&rport->lock, flags); 1012 1013 if (!lsop->req_queued) { 1014 spin_unlock_irqrestore(&rport->lock, flags); 1015 return; 1016 } 1017 1018 list_del(&lsop->lsreq_list); 1019 1020 lsop->req_queued = false; 1021 1022 spin_unlock_irqrestore(&rport->lock, flags); 1023 1024 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1025 (lsreq->rqstlen + lsreq->rsplen), 1026 DMA_BIDIRECTIONAL); 1027 1028 nvme_fc_rport_put(rport); 1029 } 1030 1031 static int 1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1033 struct nvmefc_ls_req_op *lsop, 1034 void (*done)(struct nvmefc_ls_req *req, int status)) 1035 { 1036 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1037 unsigned long flags; 1038 int ret = 0; 1039 1040 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1041 return -ECONNREFUSED; 1042 1043 if (!nvme_fc_rport_get(rport)) 1044 return -ESHUTDOWN; 1045 1046 lsreq->done = done; 1047 lsop->rport = rport; 1048 lsop->req_queued = false; 1049 INIT_LIST_HEAD(&lsop->lsreq_list); 1050 init_completion(&lsop->ls_done); 1051 1052 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1053 lsreq->rqstlen + lsreq->rsplen, 1054 DMA_BIDIRECTIONAL); 1055 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1056 ret = -EFAULT; 1057 goto out_putrport; 1058 } 1059 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1060 1061 spin_lock_irqsave(&rport->lock, flags); 1062 1063 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1064 1065 lsop->req_queued = true; 1066 1067 spin_unlock_irqrestore(&rport->lock, flags); 1068 1069 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1070 &rport->remoteport, lsreq); 1071 if (ret) 1072 goto out_unlink; 1073 1074 return 0; 1075 1076 out_unlink: 1077 lsop->ls_error = ret; 1078 spin_lock_irqsave(&rport->lock, flags); 1079 lsop->req_queued = false; 1080 list_del(&lsop->lsreq_list); 1081 spin_unlock_irqrestore(&rport->lock, flags); 1082 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1083 (lsreq->rqstlen + lsreq->rsplen), 1084 DMA_BIDIRECTIONAL); 1085 out_putrport: 1086 nvme_fc_rport_put(rport); 1087 1088 return ret; 1089 } 1090 1091 static void 1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1093 { 1094 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1095 1096 lsop->ls_error = status; 1097 complete(&lsop->ls_done); 1098 } 1099 1100 static int 1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1102 { 1103 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1104 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1105 int ret; 1106 1107 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1108 1109 if (!ret) { 1110 /* 1111 * No timeout/not interruptible as we need the struct 1112 * to exist until the lldd calls us back. Thus mandate 1113 * wait until driver calls back. lldd responsible for 1114 * the timeout action 1115 */ 1116 wait_for_completion(&lsop->ls_done); 1117 1118 __nvme_fc_finish_ls_req(lsop); 1119 1120 ret = lsop->ls_error; 1121 } 1122 1123 if (ret) 1124 return ret; 1125 1126 /* ACC or RJT payload ? */ 1127 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1128 return -ENXIO; 1129 1130 return 0; 1131 } 1132 1133 static int 1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1135 struct nvmefc_ls_req_op *lsop, 1136 void (*done)(struct nvmefc_ls_req *req, int status)) 1137 { 1138 /* don't wait for completion */ 1139 1140 return __nvme_fc_send_ls_req(rport, lsop, done); 1141 } 1142 1143 /* Validation Error indexes into the string table below */ 1144 enum { 1145 VERR_NO_ERROR = 0, 1146 VERR_LSACC = 1, 1147 VERR_LSDESC_RQST = 2, 1148 VERR_LSDESC_RQST_LEN = 3, 1149 VERR_ASSOC_ID = 4, 1150 VERR_ASSOC_ID_LEN = 5, 1151 VERR_CONN_ID = 6, 1152 VERR_CONN_ID_LEN = 7, 1153 VERR_CR_ASSOC = 8, 1154 VERR_CR_ASSOC_ACC_LEN = 9, 1155 VERR_CR_CONN = 10, 1156 VERR_CR_CONN_ACC_LEN = 11, 1157 VERR_DISCONN = 12, 1158 VERR_DISCONN_ACC_LEN = 13, 1159 }; 1160 1161 static char *validation_errors[] = { 1162 "OK", 1163 "Not LS_ACC", 1164 "Not LSDESC_RQST", 1165 "Bad LSDESC_RQST Length", 1166 "Not Association ID", 1167 "Bad Association ID Length", 1168 "Not Connection ID", 1169 "Bad Connection ID Length", 1170 "Not CR_ASSOC Rqst", 1171 "Bad CR_ASSOC ACC Length", 1172 "Not CR_CONN Rqst", 1173 "Bad CR_CONN ACC Length", 1174 "Not Disconnect Rqst", 1175 "Bad Disconnect ACC Length", 1176 }; 1177 1178 static int 1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1180 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1181 { 1182 struct nvmefc_ls_req_op *lsop; 1183 struct nvmefc_ls_req *lsreq; 1184 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1185 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1186 int ret, fcret = 0; 1187 1188 lsop = kzalloc((sizeof(*lsop) + 1189 ctrl->lport->ops->lsrqst_priv_sz + 1190 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1191 if (!lsop) { 1192 ret = -ENOMEM; 1193 goto out_no_memory; 1194 } 1195 lsreq = &lsop->ls_req; 1196 1197 lsreq->private = (void *)&lsop[1]; 1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1199 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1200 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1201 1202 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1203 assoc_rqst->desc_list_len = 1204 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1205 1206 assoc_rqst->assoc_cmd.desc_tag = 1207 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1208 assoc_rqst->assoc_cmd.desc_len = 1209 fcnvme_lsdesc_len( 1210 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1211 1212 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1213 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); 1214 /* Linux supports only Dynamic controllers */ 1215 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1216 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1217 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1218 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1219 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1220 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1221 1222 lsop->queue = queue; 1223 lsreq->rqstaddr = assoc_rqst; 1224 lsreq->rqstlen = sizeof(*assoc_rqst); 1225 lsreq->rspaddr = assoc_acc; 1226 lsreq->rsplen = sizeof(*assoc_acc); 1227 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1228 1229 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1230 if (ret) 1231 goto out_free_buffer; 1232 1233 /* process connect LS completion */ 1234 1235 /* validate the ACC response */ 1236 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1237 fcret = VERR_LSACC; 1238 else if (assoc_acc->hdr.desc_list_len != 1239 fcnvme_lsdesc_len( 1240 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1241 fcret = VERR_CR_ASSOC_ACC_LEN; 1242 else if (assoc_acc->hdr.rqst.desc_tag != 1243 cpu_to_be32(FCNVME_LSDESC_RQST)) 1244 fcret = VERR_LSDESC_RQST; 1245 else if (assoc_acc->hdr.rqst.desc_len != 1246 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1247 fcret = VERR_LSDESC_RQST_LEN; 1248 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1249 fcret = VERR_CR_ASSOC; 1250 else if (assoc_acc->associd.desc_tag != 1251 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1252 fcret = VERR_ASSOC_ID; 1253 else if (assoc_acc->associd.desc_len != 1254 fcnvme_lsdesc_len( 1255 sizeof(struct fcnvme_lsdesc_assoc_id))) 1256 fcret = VERR_ASSOC_ID_LEN; 1257 else if (assoc_acc->connectid.desc_tag != 1258 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1259 fcret = VERR_CONN_ID; 1260 else if (assoc_acc->connectid.desc_len != 1261 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1262 fcret = VERR_CONN_ID_LEN; 1263 1264 if (fcret) { 1265 ret = -EBADF; 1266 dev_err(ctrl->dev, 1267 "q %d connect failed: %s\n", 1268 queue->qnum, validation_errors[fcret]); 1269 } else { 1270 ctrl->association_id = 1271 be64_to_cpu(assoc_acc->associd.association_id); 1272 queue->connection_id = 1273 be64_to_cpu(assoc_acc->connectid.connection_id); 1274 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1275 } 1276 1277 out_free_buffer: 1278 kfree(lsop); 1279 out_no_memory: 1280 if (ret) 1281 dev_err(ctrl->dev, 1282 "queue %d connect admin queue failed (%d).\n", 1283 queue->qnum, ret); 1284 return ret; 1285 } 1286 1287 static int 1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1289 u16 qsize, u16 ersp_ratio) 1290 { 1291 struct nvmefc_ls_req_op *lsop; 1292 struct nvmefc_ls_req *lsreq; 1293 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1294 struct fcnvme_ls_cr_conn_acc *conn_acc; 1295 int ret, fcret = 0; 1296 1297 lsop = kzalloc((sizeof(*lsop) + 1298 ctrl->lport->ops->lsrqst_priv_sz + 1299 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1300 if (!lsop) { 1301 ret = -ENOMEM; 1302 goto out_no_memory; 1303 } 1304 lsreq = &lsop->ls_req; 1305 1306 lsreq->private = (void *)&lsop[1]; 1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1308 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1309 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1310 1311 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1312 conn_rqst->desc_list_len = cpu_to_be32( 1313 sizeof(struct fcnvme_lsdesc_assoc_id) + 1314 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1315 1316 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1317 conn_rqst->associd.desc_len = 1318 fcnvme_lsdesc_len( 1319 sizeof(struct fcnvme_lsdesc_assoc_id)); 1320 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1321 conn_rqst->connect_cmd.desc_tag = 1322 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1323 conn_rqst->connect_cmd.desc_len = 1324 fcnvme_lsdesc_len( 1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1326 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1327 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1328 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); 1329 1330 lsop->queue = queue; 1331 lsreq->rqstaddr = conn_rqst; 1332 lsreq->rqstlen = sizeof(*conn_rqst); 1333 lsreq->rspaddr = conn_acc; 1334 lsreq->rsplen = sizeof(*conn_acc); 1335 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1336 1337 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1338 if (ret) 1339 goto out_free_buffer; 1340 1341 /* process connect LS completion */ 1342 1343 /* validate the ACC response */ 1344 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1345 fcret = VERR_LSACC; 1346 else if (conn_acc->hdr.desc_list_len != 1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1348 fcret = VERR_CR_CONN_ACC_LEN; 1349 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1350 fcret = VERR_LSDESC_RQST; 1351 else if (conn_acc->hdr.rqst.desc_len != 1352 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1353 fcret = VERR_LSDESC_RQST_LEN; 1354 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1355 fcret = VERR_CR_CONN; 1356 else if (conn_acc->connectid.desc_tag != 1357 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1358 fcret = VERR_CONN_ID; 1359 else if (conn_acc->connectid.desc_len != 1360 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1361 fcret = VERR_CONN_ID_LEN; 1362 1363 if (fcret) { 1364 ret = -EBADF; 1365 dev_err(ctrl->dev, 1366 "q %d connect failed: %s\n", 1367 queue->qnum, validation_errors[fcret]); 1368 } else { 1369 queue->connection_id = 1370 be64_to_cpu(conn_acc->connectid.connection_id); 1371 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1372 } 1373 1374 out_free_buffer: 1375 kfree(lsop); 1376 out_no_memory: 1377 if (ret) 1378 dev_err(ctrl->dev, 1379 "queue %d connect command failed (%d).\n", 1380 queue->qnum, ret); 1381 return ret; 1382 } 1383 1384 static void 1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1386 { 1387 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1388 1389 __nvme_fc_finish_ls_req(lsop); 1390 1391 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1392 1393 kfree(lsop); 1394 } 1395 1396 /* 1397 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1398 * the FC-NVME Association. Terminating the association also 1399 * terminates the FC-NVME connections (per queue, both admin and io 1400 * queues) that are part of the association. E.g. things are torn 1401 * down, and the related FC-NVME Association ID and Connection IDs 1402 * become invalid. 1403 * 1404 * The behavior of the fc-nvme initiator is such that it's 1405 * understanding of the association and connections will implicitly 1406 * be torn down. The action is implicit as it may be due to a loss of 1407 * connectivity with the fc-nvme target, so you may never get a 1408 * response even if you tried. As such, the action of this routine 1409 * is to asynchronously send the LS, ignore any results of the LS, and 1410 * continue on with terminating the association. If the fc-nvme target 1411 * is present and receives the LS, it too can tear down. 1412 */ 1413 static void 1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1415 { 1416 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1417 struct fcnvme_ls_disconnect_acc *discon_acc; 1418 struct nvmefc_ls_req_op *lsop; 1419 struct nvmefc_ls_req *lsreq; 1420 int ret; 1421 1422 lsop = kzalloc((sizeof(*lsop) + 1423 ctrl->lport->ops->lsrqst_priv_sz + 1424 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1425 GFP_KERNEL); 1426 if (!lsop) 1427 /* couldn't sent it... too bad */ 1428 return; 1429 1430 lsreq = &lsop->ls_req; 1431 1432 lsreq->private = (void *)&lsop[1]; 1433 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1434 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1435 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1436 1437 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1438 discon_rqst->desc_list_len = cpu_to_be32( 1439 sizeof(struct fcnvme_lsdesc_assoc_id) + 1440 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1441 1442 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1443 discon_rqst->associd.desc_len = 1444 fcnvme_lsdesc_len( 1445 sizeof(struct fcnvme_lsdesc_assoc_id)); 1446 1447 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1448 1449 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1450 FCNVME_LSDESC_DISCONN_CMD); 1451 discon_rqst->discon_cmd.desc_len = 1452 fcnvme_lsdesc_len( 1453 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1454 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1455 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1456 1457 lsreq->rqstaddr = discon_rqst; 1458 lsreq->rqstlen = sizeof(*discon_rqst); 1459 lsreq->rspaddr = discon_acc; 1460 lsreq->rsplen = sizeof(*discon_acc); 1461 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1462 1463 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1464 nvme_fc_disconnect_assoc_done); 1465 if (ret) 1466 kfree(lsop); 1467 1468 /* only meaningful part to terminating the association */ 1469 ctrl->association_id = 0; 1470 } 1471 1472 1473 /* *********************** NVME Ctrl Routines **************************** */ 1474 1475 static void __nvme_fc_final_op_cleanup(struct request *rq); 1476 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1477 1478 static int 1479 nvme_fc_reinit_request(void *data, struct request *rq) 1480 { 1481 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1482 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1483 1484 memset(cmdiu, 0, sizeof(*cmdiu)); 1485 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1486 cmdiu->fc_id = NVME_CMD_FC_ID; 1487 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1488 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); 1489 1490 return 0; 1491 } 1492 1493 static void 1494 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1495 struct nvme_fc_fcp_op *op) 1496 { 1497 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1498 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1499 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1500 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1501 1502 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1503 } 1504 1505 static void 1506 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1507 unsigned int hctx_idx) 1508 { 1509 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1510 1511 return __nvme_fc_exit_request(set->driver_data, op); 1512 } 1513 1514 static int 1515 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1516 { 1517 int state; 1518 1519 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1520 if (state != FCPOP_STATE_ACTIVE) { 1521 atomic_set(&op->state, state); 1522 return -ECANCELED; 1523 } 1524 1525 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1526 &ctrl->rport->remoteport, 1527 op->queue->lldd_handle, 1528 &op->fcp_req); 1529 1530 return 0; 1531 } 1532 1533 static void 1534 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1535 { 1536 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1537 unsigned long flags; 1538 int i, ret; 1539 1540 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1541 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) 1542 continue; 1543 1544 spin_lock_irqsave(&ctrl->lock, flags); 1545 if (ctrl->flags & FCCTRL_TERMIO) { 1546 ctrl->iocnt++; 1547 aen_op->flags |= FCOP_FLAGS_TERMIO; 1548 } 1549 spin_unlock_irqrestore(&ctrl->lock, flags); 1550 1551 ret = __nvme_fc_abort_op(ctrl, aen_op); 1552 if (ret) { 1553 /* 1554 * if __nvme_fc_abort_op failed the io wasn't 1555 * active. Thus this call path is running in 1556 * parallel to the io complete. Treat as non-error. 1557 */ 1558 1559 /* back out the flags/counters */ 1560 spin_lock_irqsave(&ctrl->lock, flags); 1561 if (ctrl->flags & FCCTRL_TERMIO) 1562 ctrl->iocnt--; 1563 aen_op->flags &= ~FCOP_FLAGS_TERMIO; 1564 spin_unlock_irqrestore(&ctrl->lock, flags); 1565 return; 1566 } 1567 } 1568 } 1569 1570 static inline int 1571 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1572 struct nvme_fc_fcp_op *op) 1573 { 1574 unsigned long flags; 1575 bool complete_rq = false; 1576 1577 spin_lock_irqsave(&ctrl->lock, flags); 1578 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1579 if (ctrl->flags & FCCTRL_TERMIO) { 1580 if (!--ctrl->iocnt) 1581 wake_up(&ctrl->ioabort_wait); 1582 } 1583 } 1584 if (op->flags & FCOP_FLAGS_RELEASED) 1585 complete_rq = true; 1586 else 1587 op->flags |= FCOP_FLAGS_COMPLETE; 1588 spin_unlock_irqrestore(&ctrl->lock, flags); 1589 1590 return complete_rq; 1591 } 1592 1593 static void 1594 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1595 { 1596 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1597 struct request *rq = op->rq; 1598 struct nvmefc_fcp_req *freq = &op->fcp_req; 1599 struct nvme_fc_ctrl *ctrl = op->ctrl; 1600 struct nvme_fc_queue *queue = op->queue; 1601 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1602 struct nvme_command *sqe = &op->cmd_iu.sqe; 1603 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1604 union nvme_result result; 1605 bool terminate_assoc = true; 1606 1607 /* 1608 * WARNING: 1609 * The current linux implementation of a nvme controller 1610 * allocates a single tag set for all io queues and sizes 1611 * the io queues to fully hold all possible tags. Thus, the 1612 * implementation does not reference or care about the sqhd 1613 * value as it never needs to use the sqhd/sqtail pointers 1614 * for submission pacing. 1615 * 1616 * This affects the FC-NVME implementation in two ways: 1617 * 1) As the value doesn't matter, we don't need to waste 1618 * cycles extracting it from ERSPs and stamping it in the 1619 * cases where the transport fabricates CQEs on successful 1620 * completions. 1621 * 2) The FC-NVME implementation requires that delivery of 1622 * ERSP completions are to go back to the nvme layer in order 1623 * relative to the rsn, such that the sqhd value will always 1624 * be "in order" for the nvme layer. As the nvme layer in 1625 * linux doesn't care about sqhd, there's no need to return 1626 * them in order. 1627 * 1628 * Additionally: 1629 * As the core nvme layer in linux currently does not look at 1630 * every field in the cqe - in cases where the FC transport must 1631 * fabricate a CQE, the following fields will not be set as they 1632 * are not referenced: 1633 * cqe.sqid, cqe.sqhd, cqe.command_id 1634 * 1635 * Failure or error of an individual i/o, in a transport 1636 * detected fashion unrelated to the nvme completion status, 1637 * potentially cause the initiator and target sides to get out 1638 * of sync on SQ head/tail (aka outstanding io count allowed). 1639 * Per FC-NVME spec, failure of an individual command requires 1640 * the connection to be terminated, which in turn requires the 1641 * association to be terminated. 1642 */ 1643 1644 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1645 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1646 1647 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED || 1648 op->flags & FCOP_FLAGS_TERMIO) 1649 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); 1650 else if (freq->status) 1651 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1652 1653 /* 1654 * For the linux implementation, if we have an unsuccesful 1655 * status, they blk-mq layer can typically be called with the 1656 * non-zero status and the content of the cqe isn't important. 1657 */ 1658 if (status) 1659 goto done; 1660 1661 /* 1662 * command completed successfully relative to the wire 1663 * protocol. However, validate anything received and 1664 * extract the status and result from the cqe (create it 1665 * where necessary). 1666 */ 1667 1668 switch (freq->rcv_rsplen) { 1669 1670 case 0: 1671 case NVME_FC_SIZEOF_ZEROS_RSP: 1672 /* 1673 * No response payload or 12 bytes of payload (which 1674 * should all be zeros) are considered successful and 1675 * no payload in the CQE by the transport. 1676 */ 1677 if (freq->transferred_length != 1678 be32_to_cpu(op->cmd_iu.data_len)) { 1679 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1680 goto done; 1681 } 1682 result.u64 = 0; 1683 break; 1684 1685 case sizeof(struct nvme_fc_ersp_iu): 1686 /* 1687 * The ERSP IU contains a full completion with CQE. 1688 * Validate ERSP IU and look at cqe. 1689 */ 1690 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1691 (freq->rcv_rsplen / 4) || 1692 be32_to_cpu(op->rsp_iu.xfrd_len) != 1693 freq->transferred_length || 1694 op->rsp_iu.status_code || 1695 sqe->common.command_id != cqe->command_id)) { 1696 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1697 goto done; 1698 } 1699 result = cqe->result; 1700 status = cqe->status; 1701 break; 1702 1703 default: 1704 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1705 goto done; 1706 } 1707 1708 terminate_assoc = false; 1709 1710 done: 1711 if (op->flags & FCOP_FLAGS_AEN) { 1712 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1713 __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1714 atomic_set(&op->state, FCPOP_STATE_IDLE); 1715 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1716 nvme_fc_ctrl_put(ctrl); 1717 goto check_error; 1718 } 1719 1720 /* 1721 * Force failures of commands if we're killing the controller 1722 * or have an error on a command used to create an new association 1723 */ 1724 if (status && 1725 (blk_queue_dying(rq->q) || 1726 ctrl->ctrl.state == NVME_CTRL_NEW || 1727 ctrl->ctrl.state == NVME_CTRL_RECONNECTING)) 1728 status |= cpu_to_le16(NVME_SC_DNR << 1); 1729 1730 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op)) 1731 __nvme_fc_final_op_cleanup(rq); 1732 else 1733 nvme_end_request(rq, status, result); 1734 1735 check_error: 1736 if (terminate_assoc) 1737 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1738 } 1739 1740 static int 1741 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1742 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1743 struct request *rq, u32 rqno) 1744 { 1745 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1746 int ret = 0; 1747 1748 memset(op, 0, sizeof(*op)); 1749 op->fcp_req.cmdaddr = &op->cmd_iu; 1750 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1751 op->fcp_req.rspaddr = &op->rsp_iu; 1752 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1753 op->fcp_req.done = nvme_fc_fcpio_done; 1754 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1755 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1756 op->ctrl = ctrl; 1757 op->queue = queue; 1758 op->rq = rq; 1759 op->rqno = rqno; 1760 1761 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1762 cmdiu->fc_id = NVME_CMD_FC_ID; 1763 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1764 1765 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1766 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1767 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1768 dev_err(ctrl->dev, 1769 "FCP Op failed - cmdiu dma mapping failed.\n"); 1770 ret = EFAULT; 1771 goto out_on_error; 1772 } 1773 1774 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1775 &op->rsp_iu, sizeof(op->rsp_iu), 1776 DMA_FROM_DEVICE); 1777 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1778 dev_err(ctrl->dev, 1779 "FCP Op failed - rspiu dma mapping failed.\n"); 1780 ret = EFAULT; 1781 } 1782 1783 atomic_set(&op->state, FCPOP_STATE_IDLE); 1784 out_on_error: 1785 return ret; 1786 } 1787 1788 static int 1789 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1790 unsigned int hctx_idx, unsigned int numa_node) 1791 { 1792 struct nvme_fc_ctrl *ctrl = set->driver_data; 1793 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1794 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1795 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1796 1797 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1798 } 1799 1800 static int 1801 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1802 { 1803 struct nvme_fc_fcp_op *aen_op; 1804 struct nvme_fc_cmd_iu *cmdiu; 1805 struct nvme_command *sqe; 1806 void *private; 1807 int i, ret; 1808 1809 aen_op = ctrl->aen_ops; 1810 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1811 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1812 GFP_KERNEL); 1813 if (!private) 1814 return -ENOMEM; 1815 1816 cmdiu = &aen_op->cmd_iu; 1817 sqe = &cmdiu->sqe; 1818 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1819 aen_op, (struct request *)NULL, 1820 (NVME_AQ_BLK_MQ_DEPTH + i)); 1821 if (ret) { 1822 kfree(private); 1823 return ret; 1824 } 1825 1826 aen_op->flags = FCOP_FLAGS_AEN; 1827 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1828 aen_op->fcp_req.private = private; 1829 1830 memset(sqe, 0, sizeof(*sqe)); 1831 sqe->common.opcode = nvme_admin_async_event; 1832 /* Note: core layer may overwrite the sqe.command_id value */ 1833 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1834 } 1835 return 0; 1836 } 1837 1838 static void 1839 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1840 { 1841 struct nvme_fc_fcp_op *aen_op; 1842 int i; 1843 1844 aen_op = ctrl->aen_ops; 1845 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1846 if (!aen_op->fcp_req.private) 1847 continue; 1848 1849 __nvme_fc_exit_request(ctrl, aen_op); 1850 1851 kfree(aen_op->fcp_req.private); 1852 aen_op->fcp_req.private = NULL; 1853 } 1854 } 1855 1856 static inline void 1857 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1858 unsigned int qidx) 1859 { 1860 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1861 1862 hctx->driver_data = queue; 1863 queue->hctx = hctx; 1864 } 1865 1866 static int 1867 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1868 unsigned int hctx_idx) 1869 { 1870 struct nvme_fc_ctrl *ctrl = data; 1871 1872 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1873 1874 return 0; 1875 } 1876 1877 static int 1878 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1879 unsigned int hctx_idx) 1880 { 1881 struct nvme_fc_ctrl *ctrl = data; 1882 1883 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1884 1885 return 0; 1886 } 1887 1888 static void 1889 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1890 { 1891 struct nvme_fc_queue *queue; 1892 1893 queue = &ctrl->queues[idx]; 1894 memset(queue, 0, sizeof(*queue)); 1895 queue->ctrl = ctrl; 1896 queue->qnum = idx; 1897 atomic_set(&queue->csn, 1); 1898 queue->dev = ctrl->dev; 1899 1900 if (idx > 0) 1901 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1902 else 1903 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1904 1905 /* 1906 * Considered whether we should allocate buffers for all SQEs 1907 * and CQEs and dma map them - mapping their respective entries 1908 * into the request structures (kernel vm addr and dma address) 1909 * thus the driver could use the buffers/mappings directly. 1910 * It only makes sense if the LLDD would use them for its 1911 * messaging api. It's very unlikely most adapter api's would use 1912 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1913 * structures were used instead. 1914 */ 1915 } 1916 1917 /* 1918 * This routine terminates a queue at the transport level. 1919 * The transport has already ensured that all outstanding ios on 1920 * the queue have been terminated. 1921 * The transport will send a Disconnect LS request to terminate 1922 * the queue's connection. Termination of the admin queue will also 1923 * terminate the association at the target. 1924 */ 1925 static void 1926 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1927 { 1928 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1929 return; 1930 1931 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 1932 /* 1933 * Current implementation never disconnects a single queue. 1934 * It always terminates a whole association. So there is never 1935 * a disconnect(queue) LS sent to the target. 1936 */ 1937 1938 queue->connection_id = 0; 1939 } 1940 1941 static void 1942 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1943 struct nvme_fc_queue *queue, unsigned int qidx) 1944 { 1945 if (ctrl->lport->ops->delete_queue) 1946 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1947 queue->lldd_handle); 1948 queue->lldd_handle = NULL; 1949 } 1950 1951 static void 1952 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1953 { 1954 int i; 1955 1956 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1957 nvme_fc_free_queue(&ctrl->queues[i]); 1958 } 1959 1960 static int 1961 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1962 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1963 { 1964 int ret = 0; 1965 1966 queue->lldd_handle = NULL; 1967 if (ctrl->lport->ops->create_queue) 1968 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1969 qidx, qsize, &queue->lldd_handle); 1970 1971 return ret; 1972 } 1973 1974 static void 1975 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1976 { 1977 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1978 int i; 1979 1980 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1981 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1982 } 1983 1984 static int 1985 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1986 { 1987 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1988 int i, ret; 1989 1990 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1991 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1992 if (ret) 1993 goto delete_queues; 1994 } 1995 1996 return 0; 1997 1998 delete_queues: 1999 for (; i >= 0; i--) 2000 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2001 return ret; 2002 } 2003 2004 static int 2005 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2006 { 2007 int i, ret = 0; 2008 2009 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2010 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2011 (qsize / 5)); 2012 if (ret) 2013 break; 2014 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2015 if (ret) 2016 break; 2017 2018 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2019 } 2020 2021 return ret; 2022 } 2023 2024 static void 2025 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2026 { 2027 int i; 2028 2029 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2030 nvme_fc_init_queue(ctrl, i); 2031 } 2032 2033 static void 2034 nvme_fc_ctrl_free(struct kref *ref) 2035 { 2036 struct nvme_fc_ctrl *ctrl = 2037 container_of(ref, struct nvme_fc_ctrl, ref); 2038 unsigned long flags; 2039 2040 if (ctrl->ctrl.tagset) { 2041 blk_cleanup_queue(ctrl->ctrl.connect_q); 2042 blk_mq_free_tag_set(&ctrl->tag_set); 2043 } 2044 2045 /* remove from rport list */ 2046 spin_lock_irqsave(&ctrl->rport->lock, flags); 2047 list_del(&ctrl->ctrl_list); 2048 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2049 2050 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2051 blk_cleanup_queue(ctrl->ctrl.admin_q); 2052 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2053 2054 kfree(ctrl->queues); 2055 2056 put_device(ctrl->dev); 2057 nvme_fc_rport_put(ctrl->rport); 2058 2059 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2060 if (ctrl->ctrl.opts) 2061 nvmf_free_options(ctrl->ctrl.opts); 2062 kfree(ctrl); 2063 } 2064 2065 static void 2066 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2067 { 2068 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2069 } 2070 2071 static int 2072 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2073 { 2074 return kref_get_unless_zero(&ctrl->ref); 2075 } 2076 2077 /* 2078 * All accesses from nvme core layer done - can now free the 2079 * controller. Called after last nvme_put_ctrl() call 2080 */ 2081 static void 2082 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2083 { 2084 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2085 2086 WARN_ON(nctrl != &ctrl->ctrl); 2087 2088 nvme_fc_ctrl_put(ctrl); 2089 } 2090 2091 static void 2092 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2093 { 2094 /* only proceed if in LIVE state - e.g. on first error */ 2095 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2096 return; 2097 2098 dev_warn(ctrl->ctrl.device, 2099 "NVME-FC{%d}: transport association error detected: %s\n", 2100 ctrl->cnum, errmsg); 2101 dev_warn(ctrl->ctrl.device, 2102 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2103 2104 nvme_reset_ctrl(&ctrl->ctrl); 2105 } 2106 2107 static enum blk_eh_timer_return 2108 nvme_fc_timeout(struct request *rq, bool reserved) 2109 { 2110 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2111 struct nvme_fc_ctrl *ctrl = op->ctrl; 2112 int ret; 2113 2114 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2115 atomic_read(&op->state) == FCPOP_STATE_ABORTED) 2116 return BLK_EH_RESET_TIMER; 2117 2118 ret = __nvme_fc_abort_op(ctrl, op); 2119 if (ret) 2120 /* io wasn't active to abort */ 2121 return BLK_EH_NOT_HANDLED; 2122 2123 /* 2124 * we can't individually ABTS an io without affecting the queue, 2125 * thus killing the queue, adn thus the association. 2126 * So resolve by performing a controller reset, which will stop 2127 * the host/io stack, terminate the association on the link, 2128 * and recreate an association on the link. 2129 */ 2130 nvme_fc_error_recovery(ctrl, "io timeout error"); 2131 2132 /* 2133 * the io abort has been initiated. Have the reset timer 2134 * restarted and the abort completion will complete the io 2135 * shortly. Avoids a synchronous wait while the abort finishes. 2136 */ 2137 return BLK_EH_RESET_TIMER; 2138 } 2139 2140 static int 2141 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2142 struct nvme_fc_fcp_op *op) 2143 { 2144 struct nvmefc_fcp_req *freq = &op->fcp_req; 2145 enum dma_data_direction dir; 2146 int ret; 2147 2148 freq->sg_cnt = 0; 2149 2150 if (!blk_rq_payload_bytes(rq)) 2151 return 0; 2152 2153 freq->sg_table.sgl = freq->first_sgl; 2154 ret = sg_alloc_table_chained(&freq->sg_table, 2155 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 2156 if (ret) 2157 return -ENOMEM; 2158 2159 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2160 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2161 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2162 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2163 op->nents, dir); 2164 if (unlikely(freq->sg_cnt <= 0)) { 2165 sg_free_table_chained(&freq->sg_table, true); 2166 freq->sg_cnt = 0; 2167 return -EFAULT; 2168 } 2169 2170 /* 2171 * TODO: blk_integrity_rq(rq) for DIF 2172 */ 2173 return 0; 2174 } 2175 2176 static void 2177 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2178 struct nvme_fc_fcp_op *op) 2179 { 2180 struct nvmefc_fcp_req *freq = &op->fcp_req; 2181 2182 if (!freq->sg_cnt) 2183 return; 2184 2185 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2186 ((rq_data_dir(rq) == WRITE) ? 2187 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 2188 2189 nvme_cleanup_cmd(rq); 2190 2191 sg_free_table_chained(&freq->sg_table, true); 2192 2193 freq->sg_cnt = 0; 2194 } 2195 2196 /* 2197 * In FC, the queue is a logical thing. At transport connect, the target 2198 * creates its "queue" and returns a handle that is to be given to the 2199 * target whenever it posts something to the corresponding SQ. When an 2200 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2201 * command contained within the SQE, an io, and assigns a FC exchange 2202 * to it. The SQE and the associated SQ handle are sent in the initial 2203 * CMD IU sents on the exchange. All transfers relative to the io occur 2204 * as part of the exchange. The CQE is the last thing for the io, 2205 * which is transferred (explicitly or implicitly) with the RSP IU 2206 * sent on the exchange. After the CQE is received, the FC exchange is 2207 * terminaed and the Exchange may be used on a different io. 2208 * 2209 * The transport to LLDD api has the transport making a request for a 2210 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2211 * resource and transfers the command. The LLDD will then process all 2212 * steps to complete the io. Upon completion, the transport done routine 2213 * is called. 2214 * 2215 * So - while the operation is outstanding to the LLDD, there is a link 2216 * level FC exchange resource that is also outstanding. This must be 2217 * considered in all cleanup operations. 2218 */ 2219 static blk_status_t 2220 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2221 struct nvme_fc_fcp_op *op, u32 data_len, 2222 enum nvmefc_fcp_datadir io_dir) 2223 { 2224 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2225 struct nvme_command *sqe = &cmdiu->sqe; 2226 u32 csn; 2227 int ret; 2228 2229 /* 2230 * before attempting to send the io, check to see if we believe 2231 * the target device is present 2232 */ 2233 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2234 goto busy; 2235 2236 if (!nvme_fc_ctrl_get(ctrl)) 2237 return BLK_STS_IOERR; 2238 2239 /* format the FC-NVME CMD IU and fcp_req */ 2240 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2241 csn = atomic_inc_return(&queue->csn); 2242 cmdiu->csn = cpu_to_be32(csn); 2243 cmdiu->data_len = cpu_to_be32(data_len); 2244 switch (io_dir) { 2245 case NVMEFC_FCP_WRITE: 2246 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2247 break; 2248 case NVMEFC_FCP_READ: 2249 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2250 break; 2251 case NVMEFC_FCP_NODATA: 2252 cmdiu->flags = 0; 2253 break; 2254 } 2255 op->fcp_req.payload_length = data_len; 2256 op->fcp_req.io_dir = io_dir; 2257 op->fcp_req.transferred_length = 0; 2258 op->fcp_req.rcv_rsplen = 0; 2259 op->fcp_req.status = NVME_SC_SUCCESS; 2260 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2261 2262 /* 2263 * validate per fabric rules, set fields mandated by fabric spec 2264 * as well as those by FC-NVME spec. 2265 */ 2266 WARN_ON_ONCE(sqe->common.metadata); 2267 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2268 2269 /* 2270 * format SQE DPTR field per FC-NVME rules: 2271 * type=0x5 Transport SGL Data Block Descriptor 2272 * subtype=0xA Transport-specific value 2273 * address=0 2274 * length=length of the data series 2275 */ 2276 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2277 NVME_SGL_FMT_TRANSPORT_A; 2278 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2279 sqe->rw.dptr.sgl.addr = 0; 2280 2281 if (!(op->flags & FCOP_FLAGS_AEN)) { 2282 ret = nvme_fc_map_data(ctrl, op->rq, op); 2283 if (ret < 0) { 2284 nvme_cleanup_cmd(op->rq); 2285 nvme_fc_ctrl_put(ctrl); 2286 if (ret == -ENOMEM || ret == -EAGAIN) 2287 return BLK_STS_RESOURCE; 2288 return BLK_STS_IOERR; 2289 } 2290 } 2291 2292 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2293 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2294 2295 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2296 2297 if (!(op->flags & FCOP_FLAGS_AEN)) 2298 blk_mq_start_request(op->rq); 2299 2300 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2301 &ctrl->rport->remoteport, 2302 queue->lldd_handle, &op->fcp_req); 2303 2304 if (ret) { 2305 if (!(op->flags & FCOP_FLAGS_AEN)) 2306 nvme_fc_unmap_data(ctrl, op->rq, op); 2307 2308 nvme_fc_ctrl_put(ctrl); 2309 2310 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2311 ret != -EBUSY) 2312 return BLK_STS_IOERR; 2313 2314 goto busy; 2315 } 2316 2317 return BLK_STS_OK; 2318 2319 busy: 2320 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx) 2321 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY); 2322 2323 return BLK_STS_RESOURCE; 2324 } 2325 2326 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue, 2327 struct request *rq) 2328 { 2329 if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags))) 2330 return nvmf_check_init_req(&queue->ctrl->ctrl, rq); 2331 return BLK_STS_OK; 2332 } 2333 2334 static blk_status_t 2335 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2336 const struct blk_mq_queue_data *bd) 2337 { 2338 struct nvme_ns *ns = hctx->queue->queuedata; 2339 struct nvme_fc_queue *queue = hctx->driver_data; 2340 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2341 struct request *rq = bd->rq; 2342 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2343 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2344 struct nvme_command *sqe = &cmdiu->sqe; 2345 enum nvmefc_fcp_datadir io_dir; 2346 u32 data_len; 2347 blk_status_t ret; 2348 2349 ret = nvme_fc_is_ready(queue, rq); 2350 if (unlikely(ret)) 2351 return ret; 2352 2353 ret = nvme_setup_cmd(ns, rq, sqe); 2354 if (ret) 2355 return ret; 2356 2357 data_len = blk_rq_payload_bytes(rq); 2358 if (data_len) 2359 io_dir = ((rq_data_dir(rq) == WRITE) ? 2360 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2361 else 2362 io_dir = NVMEFC_FCP_NODATA; 2363 2364 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2365 } 2366 2367 static struct blk_mq_tags * 2368 nvme_fc_tagset(struct nvme_fc_queue *queue) 2369 { 2370 if (queue->qnum == 0) 2371 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2372 2373 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2374 } 2375 2376 static int 2377 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2378 2379 { 2380 struct nvme_fc_queue *queue = hctx->driver_data; 2381 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2382 struct request *req; 2383 struct nvme_fc_fcp_op *op; 2384 2385 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2386 if (!req) 2387 return 0; 2388 2389 op = blk_mq_rq_to_pdu(req); 2390 2391 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2392 (ctrl->lport->ops->poll_queue)) 2393 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2394 queue->lldd_handle); 2395 2396 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2397 } 2398 2399 static void 2400 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2401 { 2402 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2403 struct nvme_fc_fcp_op *aen_op; 2404 unsigned long flags; 2405 bool terminating = false; 2406 blk_status_t ret; 2407 2408 spin_lock_irqsave(&ctrl->lock, flags); 2409 if (ctrl->flags & FCCTRL_TERMIO) 2410 terminating = true; 2411 spin_unlock_irqrestore(&ctrl->lock, flags); 2412 2413 if (terminating) 2414 return; 2415 2416 aen_op = &ctrl->aen_ops[0]; 2417 2418 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2419 NVMEFC_FCP_NODATA); 2420 if (ret) 2421 dev_err(ctrl->ctrl.device, 2422 "failed async event work\n"); 2423 } 2424 2425 static void 2426 __nvme_fc_final_op_cleanup(struct request *rq) 2427 { 2428 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2429 struct nvme_fc_ctrl *ctrl = op->ctrl; 2430 2431 atomic_set(&op->state, FCPOP_STATE_IDLE); 2432 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | 2433 FCOP_FLAGS_COMPLETE); 2434 2435 nvme_fc_unmap_data(ctrl, rq, op); 2436 nvme_complete_rq(rq); 2437 nvme_fc_ctrl_put(ctrl); 2438 2439 } 2440 2441 static void 2442 nvme_fc_complete_rq(struct request *rq) 2443 { 2444 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2445 struct nvme_fc_ctrl *ctrl = op->ctrl; 2446 unsigned long flags; 2447 bool completed = false; 2448 2449 /* 2450 * the core layer, on controller resets after calling 2451 * nvme_shutdown_ctrl(), calls complete_rq without our 2452 * calling blk_mq_complete_request(), thus there may still 2453 * be live i/o outstanding with the LLDD. Means transport has 2454 * to track complete calls vs fcpio_done calls to know what 2455 * path to take on completes and dones. 2456 */ 2457 spin_lock_irqsave(&ctrl->lock, flags); 2458 if (op->flags & FCOP_FLAGS_COMPLETE) 2459 completed = true; 2460 else 2461 op->flags |= FCOP_FLAGS_RELEASED; 2462 spin_unlock_irqrestore(&ctrl->lock, flags); 2463 2464 if (completed) 2465 __nvme_fc_final_op_cleanup(rq); 2466 } 2467 2468 /* 2469 * This routine is used by the transport when it needs to find active 2470 * io on a queue that is to be terminated. The transport uses 2471 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2472 * this routine to kill them on a 1 by 1 basis. 2473 * 2474 * As FC allocates FC exchange for each io, the transport must contact 2475 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2476 * After terminating the exchange the LLDD will call the transport's 2477 * normal io done path for the request, but it will have an aborted 2478 * status. The done path will return the io request back to the block 2479 * layer with an error status. 2480 */ 2481 static void 2482 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2483 { 2484 struct nvme_ctrl *nctrl = data; 2485 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2486 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2487 unsigned long flags; 2488 int status; 2489 2490 if (!blk_mq_request_started(req)) 2491 return; 2492 2493 spin_lock_irqsave(&ctrl->lock, flags); 2494 if (ctrl->flags & FCCTRL_TERMIO) { 2495 ctrl->iocnt++; 2496 op->flags |= FCOP_FLAGS_TERMIO; 2497 } 2498 spin_unlock_irqrestore(&ctrl->lock, flags); 2499 2500 status = __nvme_fc_abort_op(ctrl, op); 2501 if (status) { 2502 /* 2503 * if __nvme_fc_abort_op failed the io wasn't 2504 * active. Thus this call path is running in 2505 * parallel to the io complete. Treat as non-error. 2506 */ 2507 2508 /* back out the flags/counters */ 2509 spin_lock_irqsave(&ctrl->lock, flags); 2510 if (ctrl->flags & FCCTRL_TERMIO) 2511 ctrl->iocnt--; 2512 op->flags &= ~FCOP_FLAGS_TERMIO; 2513 spin_unlock_irqrestore(&ctrl->lock, flags); 2514 return; 2515 } 2516 } 2517 2518 2519 static const struct blk_mq_ops nvme_fc_mq_ops = { 2520 .queue_rq = nvme_fc_queue_rq, 2521 .complete = nvme_fc_complete_rq, 2522 .init_request = nvme_fc_init_request, 2523 .exit_request = nvme_fc_exit_request, 2524 .init_hctx = nvme_fc_init_hctx, 2525 .poll = nvme_fc_poll, 2526 .timeout = nvme_fc_timeout, 2527 }; 2528 2529 static int 2530 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2531 { 2532 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2533 unsigned int nr_io_queues; 2534 int ret; 2535 2536 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2537 ctrl->lport->ops->max_hw_queues); 2538 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2539 if (ret) { 2540 dev_info(ctrl->ctrl.device, 2541 "set_queue_count failed: %d\n", ret); 2542 return ret; 2543 } 2544 2545 ctrl->ctrl.queue_count = nr_io_queues + 1; 2546 if (!nr_io_queues) 2547 return 0; 2548 2549 nvme_fc_init_io_queues(ctrl); 2550 2551 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2552 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2553 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2554 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2555 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2556 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2557 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2558 (SG_CHUNK_SIZE * 2559 sizeof(struct scatterlist)) + 2560 ctrl->lport->ops->fcprqst_priv_sz; 2561 ctrl->tag_set.driver_data = ctrl; 2562 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2563 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2564 2565 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2566 if (ret) 2567 return ret; 2568 2569 ctrl->ctrl.tagset = &ctrl->tag_set; 2570 2571 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2572 if (IS_ERR(ctrl->ctrl.connect_q)) { 2573 ret = PTR_ERR(ctrl->ctrl.connect_q); 2574 goto out_free_tag_set; 2575 } 2576 2577 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2578 if (ret) 2579 goto out_cleanup_blk_queue; 2580 2581 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2582 if (ret) 2583 goto out_delete_hw_queues; 2584 2585 return 0; 2586 2587 out_delete_hw_queues: 2588 nvme_fc_delete_hw_io_queues(ctrl); 2589 out_cleanup_blk_queue: 2590 blk_cleanup_queue(ctrl->ctrl.connect_q); 2591 out_free_tag_set: 2592 blk_mq_free_tag_set(&ctrl->tag_set); 2593 nvme_fc_free_io_queues(ctrl); 2594 2595 /* force put free routine to ignore io queues */ 2596 ctrl->ctrl.tagset = NULL; 2597 2598 return ret; 2599 } 2600 2601 static int 2602 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) 2603 { 2604 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2605 unsigned int nr_io_queues; 2606 int ret; 2607 2608 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2609 ctrl->lport->ops->max_hw_queues); 2610 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2611 if (ret) { 2612 dev_info(ctrl->ctrl.device, 2613 "set_queue_count failed: %d\n", ret); 2614 return ret; 2615 } 2616 2617 ctrl->ctrl.queue_count = nr_io_queues + 1; 2618 /* check for io queues existing */ 2619 if (ctrl->ctrl.queue_count == 1) 2620 return 0; 2621 2622 nvme_fc_init_io_queues(ctrl); 2623 2624 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 2625 if (ret) 2626 goto out_free_io_queues; 2627 2628 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2629 if (ret) 2630 goto out_free_io_queues; 2631 2632 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2633 if (ret) 2634 goto out_delete_hw_queues; 2635 2636 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2637 2638 return 0; 2639 2640 out_delete_hw_queues: 2641 nvme_fc_delete_hw_io_queues(ctrl); 2642 out_free_io_queues: 2643 nvme_fc_free_io_queues(ctrl); 2644 return ret; 2645 } 2646 2647 static void 2648 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2649 { 2650 struct nvme_fc_lport *lport = rport->lport; 2651 2652 atomic_inc(&lport->act_rport_cnt); 2653 } 2654 2655 static void 2656 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2657 { 2658 struct nvme_fc_lport *lport = rport->lport; 2659 u32 cnt; 2660 2661 cnt = atomic_dec_return(&lport->act_rport_cnt); 2662 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2663 lport->ops->localport_delete(&lport->localport); 2664 } 2665 2666 static int 2667 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2668 { 2669 struct nvme_fc_rport *rport = ctrl->rport; 2670 u32 cnt; 2671 2672 if (ctrl->assoc_active) 2673 return 1; 2674 2675 ctrl->assoc_active = true; 2676 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2677 if (cnt == 1) 2678 nvme_fc_rport_active_on_lport(rport); 2679 2680 return 0; 2681 } 2682 2683 static int 2684 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2685 { 2686 struct nvme_fc_rport *rport = ctrl->rport; 2687 struct nvme_fc_lport *lport = rport->lport; 2688 u32 cnt; 2689 2690 /* ctrl->assoc_active=false will be set independently */ 2691 2692 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2693 if (cnt == 0) { 2694 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2695 lport->ops->remoteport_delete(&rport->remoteport); 2696 nvme_fc_rport_inactive_on_lport(rport); 2697 } 2698 2699 return 0; 2700 } 2701 2702 /* 2703 * This routine restarts the controller on the host side, and 2704 * on the link side, recreates the controller association. 2705 */ 2706 static int 2707 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2708 { 2709 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2710 int ret; 2711 bool changed; 2712 2713 ++ctrl->ctrl.nr_reconnects; 2714 2715 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2716 return -ENODEV; 2717 2718 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2719 return -ENOTUNIQ; 2720 2721 /* 2722 * Create the admin queue 2723 */ 2724 2725 nvme_fc_init_queue(ctrl, 0); 2726 2727 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2728 NVME_AQ_BLK_MQ_DEPTH); 2729 if (ret) 2730 goto out_free_queue; 2731 2732 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2733 NVME_AQ_BLK_MQ_DEPTH, 2734 (NVME_AQ_BLK_MQ_DEPTH / 4)); 2735 if (ret) 2736 goto out_delete_hw_queue; 2737 2738 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2739 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2740 2741 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2742 if (ret) 2743 goto out_disconnect_admin_queue; 2744 2745 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2746 2747 /* 2748 * Check controller capabilities 2749 * 2750 * todo:- add code to check if ctrl attributes changed from 2751 * prior connection values 2752 */ 2753 2754 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 2755 if (ret) { 2756 dev_err(ctrl->ctrl.device, 2757 "prop_get NVME_REG_CAP failed\n"); 2758 goto out_disconnect_admin_queue; 2759 } 2760 2761 ctrl->ctrl.sqsize = 2762 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); 2763 2764 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 2765 if (ret) 2766 goto out_disconnect_admin_queue; 2767 2768 ctrl->ctrl.max_hw_sectors = 2769 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2770 2771 ret = nvme_init_identify(&ctrl->ctrl); 2772 if (ret) 2773 goto out_disconnect_admin_queue; 2774 2775 /* sanity checks */ 2776 2777 /* FC-NVME does not have other data in the capsule */ 2778 if (ctrl->ctrl.icdoff) { 2779 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2780 ctrl->ctrl.icdoff); 2781 goto out_disconnect_admin_queue; 2782 } 2783 2784 /* FC-NVME supports normal SGL Data Block Descriptors */ 2785 2786 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2787 /* warn if maxcmd is lower than queue_size */ 2788 dev_warn(ctrl->ctrl.device, 2789 "queue_size %zu > ctrl maxcmd %u, reducing " 2790 "to queue_size\n", 2791 opts->queue_size, ctrl->ctrl.maxcmd); 2792 opts->queue_size = ctrl->ctrl.maxcmd; 2793 } 2794 2795 ret = nvme_fc_init_aen_ops(ctrl); 2796 if (ret) 2797 goto out_term_aen_ops; 2798 2799 /* 2800 * Create the io queues 2801 */ 2802 2803 if (ctrl->ctrl.queue_count > 1) { 2804 if (ctrl->ctrl.state == NVME_CTRL_NEW) 2805 ret = nvme_fc_create_io_queues(ctrl); 2806 else 2807 ret = nvme_fc_reinit_io_queues(ctrl); 2808 if (ret) 2809 goto out_term_aen_ops; 2810 } 2811 2812 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2813 2814 ctrl->ctrl.nr_reconnects = 0; 2815 2816 if (changed) 2817 nvme_start_ctrl(&ctrl->ctrl); 2818 2819 return 0; /* Success */ 2820 2821 out_term_aen_ops: 2822 nvme_fc_term_aen_ops(ctrl); 2823 out_disconnect_admin_queue: 2824 /* send a Disconnect(association) LS to fc-nvme target */ 2825 nvme_fc_xmt_disconnect_assoc(ctrl); 2826 out_delete_hw_queue: 2827 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2828 out_free_queue: 2829 nvme_fc_free_queue(&ctrl->queues[0]); 2830 ctrl->assoc_active = false; 2831 nvme_fc_ctlr_inactive_on_rport(ctrl); 2832 2833 return ret; 2834 } 2835 2836 /* 2837 * This routine stops operation of the controller on the host side. 2838 * On the host os stack side: Admin and IO queues are stopped, 2839 * outstanding ios on them terminated via FC ABTS. 2840 * On the link side: the association is terminated. 2841 */ 2842 static void 2843 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2844 { 2845 unsigned long flags; 2846 2847 if (!ctrl->assoc_active) 2848 return; 2849 ctrl->assoc_active = false; 2850 2851 spin_lock_irqsave(&ctrl->lock, flags); 2852 ctrl->flags |= FCCTRL_TERMIO; 2853 ctrl->iocnt = 0; 2854 spin_unlock_irqrestore(&ctrl->lock, flags); 2855 2856 /* 2857 * If io queues are present, stop them and terminate all outstanding 2858 * ios on them. As FC allocates FC exchange for each io, the 2859 * transport must contact the LLDD to terminate the exchange, 2860 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2861 * to tell us what io's are busy and invoke a transport routine 2862 * to kill them with the LLDD. After terminating the exchange 2863 * the LLDD will call the transport's normal io done path, but it 2864 * will have an aborted status. The done path will return the 2865 * io requests back to the block layer as part of normal completions 2866 * (but with error status). 2867 */ 2868 if (ctrl->ctrl.queue_count > 1) { 2869 nvme_stop_queues(&ctrl->ctrl); 2870 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2871 nvme_fc_terminate_exchange, &ctrl->ctrl); 2872 } 2873 2874 /* 2875 * Other transports, which don't have link-level contexts bound 2876 * to sqe's, would try to gracefully shutdown the controller by 2877 * writing the registers for shutdown and polling (call 2878 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2879 * just aborted and we will wait on those contexts, and given 2880 * there was no indication of how live the controlelr is on the 2881 * link, don't send more io to create more contexts for the 2882 * shutdown. Let the controller fail via keepalive failure if 2883 * its still present. 2884 */ 2885 2886 /* 2887 * clean up the admin queue. Same thing as above. 2888 * use blk_mq_tagset_busy_itr() and the transport routine to 2889 * terminate the exchanges. 2890 */ 2891 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2892 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2893 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2894 nvme_fc_terminate_exchange, &ctrl->ctrl); 2895 2896 /* kill the aens as they are a separate path */ 2897 nvme_fc_abort_aen_ops(ctrl); 2898 2899 /* wait for all io that had to be aborted */ 2900 spin_lock_irq(&ctrl->lock); 2901 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2902 ctrl->flags &= ~FCCTRL_TERMIO; 2903 spin_unlock_irq(&ctrl->lock); 2904 2905 nvme_fc_term_aen_ops(ctrl); 2906 2907 /* 2908 * send a Disconnect(association) LS to fc-nvme target 2909 * Note: could have been sent at top of process, but 2910 * cleaner on link traffic if after the aborts complete. 2911 * Note: if association doesn't exist, association_id will be 0 2912 */ 2913 if (ctrl->association_id) 2914 nvme_fc_xmt_disconnect_assoc(ctrl); 2915 2916 if (ctrl->ctrl.tagset) { 2917 nvme_fc_delete_hw_io_queues(ctrl); 2918 nvme_fc_free_io_queues(ctrl); 2919 } 2920 2921 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2922 nvme_fc_free_queue(&ctrl->queues[0]); 2923 2924 nvme_fc_ctlr_inactive_on_rport(ctrl); 2925 } 2926 2927 static void 2928 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2929 { 2930 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2931 2932 cancel_delayed_work_sync(&ctrl->connect_work); 2933 /* 2934 * kill the association on the link side. this will block 2935 * waiting for io to terminate 2936 */ 2937 nvme_fc_delete_association(ctrl); 2938 } 2939 2940 static void 2941 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2942 { 2943 struct nvme_fc_rport *rport = ctrl->rport; 2944 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2945 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2946 bool recon = true; 2947 2948 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) 2949 return; 2950 2951 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2952 dev_info(ctrl->ctrl.device, 2953 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2954 ctrl->cnum, status); 2955 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2956 recon = false; 2957 2958 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2959 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2960 dev_info(ctrl->ctrl.device, 2961 "NVME-FC{%d}: Reconnect attempt in %ld " 2962 "seconds\n", 2963 ctrl->cnum, recon_delay / HZ); 2964 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2965 recon_delay = rport->dev_loss_end - jiffies; 2966 2967 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2968 } else { 2969 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2970 dev_warn(ctrl->ctrl.device, 2971 "NVME-FC{%d}: Max reconnect attempts (%d) " 2972 "reached. Removing controller\n", 2973 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2974 else 2975 dev_warn(ctrl->ctrl.device, 2976 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2977 "while waiting for remoteport connectivity. " 2978 "Removing controller\n", ctrl->cnum, 2979 portptr->dev_loss_tmo); 2980 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2981 } 2982 } 2983 2984 static void 2985 nvme_fc_reset_ctrl_work(struct work_struct *work) 2986 { 2987 struct nvme_fc_ctrl *ctrl = 2988 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2989 int ret; 2990 2991 nvme_stop_ctrl(&ctrl->ctrl); 2992 2993 /* will block will waiting for io to terminate */ 2994 nvme_fc_delete_association(ctrl); 2995 2996 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 2997 dev_err(ctrl->ctrl.device, 2998 "NVME-FC{%d}: error_recovery: Couldn't change state " 2999 "to RECONNECTING\n", ctrl->cnum); 3000 return; 3001 } 3002 3003 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 3004 ret = nvme_fc_create_association(ctrl); 3005 else 3006 ret = -ENOTCONN; 3007 3008 if (ret) 3009 nvme_fc_reconnect_or_delete(ctrl, ret); 3010 else 3011 dev_info(ctrl->ctrl.device, 3012 "NVME-FC{%d}: controller reset complete\n", 3013 ctrl->cnum); 3014 } 3015 3016 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3017 .name = "fc", 3018 .module = THIS_MODULE, 3019 .flags = NVME_F_FABRICS, 3020 .reg_read32 = nvmf_reg_read32, 3021 .reg_read64 = nvmf_reg_read64, 3022 .reg_write32 = nvmf_reg_write32, 3023 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3024 .submit_async_event = nvme_fc_submit_async_event, 3025 .delete_ctrl = nvme_fc_delete_ctrl, 3026 .get_address = nvmf_get_address, 3027 .reinit_request = nvme_fc_reinit_request, 3028 }; 3029 3030 static void 3031 nvme_fc_connect_ctrl_work(struct work_struct *work) 3032 { 3033 int ret; 3034 3035 struct nvme_fc_ctrl *ctrl = 3036 container_of(to_delayed_work(work), 3037 struct nvme_fc_ctrl, connect_work); 3038 3039 ret = nvme_fc_create_association(ctrl); 3040 if (ret) 3041 nvme_fc_reconnect_or_delete(ctrl, ret); 3042 else 3043 dev_info(ctrl->ctrl.device, 3044 "NVME-FC{%d}: controller reconnect complete\n", 3045 ctrl->cnum); 3046 } 3047 3048 3049 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3050 .queue_rq = nvme_fc_queue_rq, 3051 .complete = nvme_fc_complete_rq, 3052 .init_request = nvme_fc_init_request, 3053 .exit_request = nvme_fc_exit_request, 3054 .init_hctx = nvme_fc_init_admin_hctx, 3055 .timeout = nvme_fc_timeout, 3056 }; 3057 3058 3059 /* 3060 * Fails a controller request if it matches an existing controller 3061 * (association) with the same tuple: 3062 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3063 * 3064 * The ports don't need to be compared as they are intrinsically 3065 * already matched by the port pointers supplied. 3066 */ 3067 static bool 3068 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3069 struct nvmf_ctrl_options *opts) 3070 { 3071 struct nvme_fc_ctrl *ctrl; 3072 unsigned long flags; 3073 bool found = false; 3074 3075 spin_lock_irqsave(&rport->lock, flags); 3076 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3077 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3078 if (found) 3079 break; 3080 } 3081 spin_unlock_irqrestore(&rport->lock, flags); 3082 3083 return found; 3084 } 3085 3086 static struct nvme_ctrl * 3087 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3088 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3089 { 3090 struct nvme_fc_ctrl *ctrl; 3091 unsigned long flags; 3092 int ret, idx, retry; 3093 3094 if (!(rport->remoteport.port_role & 3095 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3096 ret = -EBADR; 3097 goto out_fail; 3098 } 3099 3100 if (!opts->duplicate_connect && 3101 nvme_fc_existing_controller(rport, opts)) { 3102 ret = -EALREADY; 3103 goto out_fail; 3104 } 3105 3106 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3107 if (!ctrl) { 3108 ret = -ENOMEM; 3109 goto out_fail; 3110 } 3111 3112 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3113 if (idx < 0) { 3114 ret = -ENOSPC; 3115 goto out_free_ctrl; 3116 } 3117 3118 ctrl->ctrl.opts = opts; 3119 INIT_LIST_HEAD(&ctrl->ctrl_list); 3120 ctrl->lport = lport; 3121 ctrl->rport = rport; 3122 ctrl->dev = lport->dev; 3123 ctrl->cnum = idx; 3124 ctrl->assoc_active = false; 3125 init_waitqueue_head(&ctrl->ioabort_wait); 3126 3127 get_device(ctrl->dev); 3128 kref_init(&ctrl->ref); 3129 3130 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3131 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3132 spin_lock_init(&ctrl->lock); 3133 3134 /* io queue count */ 3135 ctrl->ctrl.queue_count = min_t(unsigned int, 3136 opts->nr_io_queues, 3137 lport->ops->max_hw_queues); 3138 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3139 3140 ctrl->ctrl.sqsize = opts->queue_size - 1; 3141 ctrl->ctrl.kato = opts->kato; 3142 3143 ret = -ENOMEM; 3144 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3145 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3146 if (!ctrl->queues) 3147 goto out_free_ida; 3148 3149 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3150 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3151 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3152 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3153 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 3154 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 3155 (SG_CHUNK_SIZE * 3156 sizeof(struct scatterlist)) + 3157 ctrl->lport->ops->fcprqst_priv_sz; 3158 ctrl->admin_tag_set.driver_data = ctrl; 3159 ctrl->admin_tag_set.nr_hw_queues = 1; 3160 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3161 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3162 3163 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3164 if (ret) 3165 goto out_free_queues; 3166 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3167 3168 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3169 if (IS_ERR(ctrl->ctrl.admin_q)) { 3170 ret = PTR_ERR(ctrl->ctrl.admin_q); 3171 goto out_free_admin_tag_set; 3172 } 3173 3174 /* 3175 * Would have been nice to init io queues tag set as well. 3176 * However, we require interaction from the controller 3177 * for max io queue count before we can do so. 3178 * Defer this to the connect path. 3179 */ 3180 3181 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3182 if (ret) 3183 goto out_cleanup_admin_q; 3184 3185 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3186 3187 spin_lock_irqsave(&rport->lock, flags); 3188 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3189 spin_unlock_irqrestore(&rport->lock, flags); 3190 3191 /* 3192 * It's possible that transactions used to create the association 3193 * may fail. Examples: CreateAssociation LS or CreateIOConnection 3194 * LS gets dropped/corrupted/fails; or a frame gets dropped or a 3195 * command times out for one of the actions to init the controller 3196 * (Connect, Get/Set_Property, Set_Features, etc). Many of these 3197 * transport errors (frame drop, LS failure) inherently must kill 3198 * the association. The transport is coded so that any command used 3199 * to create the association (prior to a LIVE state transition 3200 * while NEW or RECONNECTING) will fail if it completes in error or 3201 * times out. 3202 * 3203 * As such: as the connect request was mostly likely due to a 3204 * udev event that discovered the remote port, meaning there is 3205 * not an admin or script there to restart if the connect 3206 * request fails, retry the initial connection creation up to 3207 * three times before giving up and declaring failure. 3208 */ 3209 for (retry = 0; retry < 3; retry++) { 3210 ret = nvme_fc_create_association(ctrl); 3211 if (!ret) 3212 break; 3213 } 3214 3215 if (ret) { 3216 /* couldn't schedule retry - fail out */ 3217 dev_err(ctrl->ctrl.device, 3218 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum); 3219 3220 ctrl->ctrl.opts = NULL; 3221 3222 /* initiate nvme ctrl ref counting teardown */ 3223 nvme_uninit_ctrl(&ctrl->ctrl); 3224 nvme_put_ctrl(&ctrl->ctrl); 3225 3226 /* Remove core ctrl ref. */ 3227 nvme_put_ctrl(&ctrl->ctrl); 3228 3229 /* as we're past the point where we transition to the ref 3230 * counting teardown path, if we return a bad pointer here, 3231 * the calling routine, thinking it's prior to the 3232 * transition, will do an rport put. Since the teardown 3233 * path also does a rport put, we do an extra get here to 3234 * so proper order/teardown happens. 3235 */ 3236 nvme_fc_rport_get(rport); 3237 3238 if (ret > 0) 3239 ret = -EIO; 3240 return ERR_PTR(ret); 3241 } 3242 3243 nvme_get_ctrl(&ctrl->ctrl); 3244 3245 dev_info(ctrl->ctrl.device, 3246 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3247 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3248 3249 return &ctrl->ctrl; 3250 3251 out_cleanup_admin_q: 3252 blk_cleanup_queue(ctrl->ctrl.admin_q); 3253 out_free_admin_tag_set: 3254 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3255 out_free_queues: 3256 kfree(ctrl->queues); 3257 out_free_ida: 3258 put_device(ctrl->dev); 3259 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3260 out_free_ctrl: 3261 kfree(ctrl); 3262 out_fail: 3263 /* exit via here doesn't follow ctlr ref points */ 3264 return ERR_PTR(ret); 3265 } 3266 3267 3268 struct nvmet_fc_traddr { 3269 u64 nn; 3270 u64 pn; 3271 }; 3272 3273 static int 3274 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3275 { 3276 u64 token64; 3277 3278 if (match_u64(sstr, &token64)) 3279 return -EINVAL; 3280 *val = token64; 3281 3282 return 0; 3283 } 3284 3285 /* 3286 * This routine validates and extracts the WWN's from the TRADDR string. 3287 * As kernel parsers need the 0x to determine number base, universally 3288 * build string to parse with 0x prefix before parsing name strings. 3289 */ 3290 static int 3291 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3292 { 3293 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3294 substring_t wwn = { name, &name[sizeof(name)-1] }; 3295 int nnoffset, pnoffset; 3296 3297 /* validate it string one of the 2 allowed formats */ 3298 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3299 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3300 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3301 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3302 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3303 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3304 NVME_FC_TRADDR_OXNNLEN; 3305 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3306 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3307 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3308 "pn-", NVME_FC_TRADDR_NNLEN))) { 3309 nnoffset = NVME_FC_TRADDR_NNLEN; 3310 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3311 } else 3312 goto out_einval; 3313 3314 name[0] = '0'; 3315 name[1] = 'x'; 3316 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3317 3318 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3319 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3320 goto out_einval; 3321 3322 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3323 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3324 goto out_einval; 3325 3326 return 0; 3327 3328 out_einval: 3329 pr_warn("%s: bad traddr string\n", __func__); 3330 return -EINVAL; 3331 } 3332 3333 static struct nvme_ctrl * 3334 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3335 { 3336 struct nvme_fc_lport *lport; 3337 struct nvme_fc_rport *rport; 3338 struct nvme_ctrl *ctrl; 3339 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3340 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3341 unsigned long flags; 3342 int ret; 3343 3344 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3345 if (ret || !raddr.nn || !raddr.pn) 3346 return ERR_PTR(-EINVAL); 3347 3348 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3349 if (ret || !laddr.nn || !laddr.pn) 3350 return ERR_PTR(-EINVAL); 3351 3352 /* find the host and remote ports to connect together */ 3353 spin_lock_irqsave(&nvme_fc_lock, flags); 3354 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3355 if (lport->localport.node_name != laddr.nn || 3356 lport->localport.port_name != laddr.pn) 3357 continue; 3358 3359 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3360 if (rport->remoteport.node_name != raddr.nn || 3361 rport->remoteport.port_name != raddr.pn) 3362 continue; 3363 3364 /* if fail to get reference fall through. Will error */ 3365 if (!nvme_fc_rport_get(rport)) 3366 break; 3367 3368 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3369 3370 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3371 if (IS_ERR(ctrl)) 3372 nvme_fc_rport_put(rport); 3373 return ctrl; 3374 } 3375 } 3376 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3377 3378 return ERR_PTR(-ENOENT); 3379 } 3380 3381 3382 static struct nvmf_transport_ops nvme_fc_transport = { 3383 .name = "fc", 3384 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3385 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3386 .create_ctrl = nvme_fc_create_ctrl, 3387 }; 3388 3389 static int __init nvme_fc_init_module(void) 3390 { 3391 int ret; 3392 3393 /* 3394 * NOTE: 3395 * It is expected that in the future the kernel will combine 3396 * the FC-isms that are currently under scsi and now being 3397 * added to by NVME into a new standalone FC class. The SCSI 3398 * and NVME protocols and their devices would be under this 3399 * new FC class. 3400 * 3401 * As we need something to post FC-specific udev events to, 3402 * specifically for nvme probe events, start by creating the 3403 * new device class. When the new standalone FC class is 3404 * put in place, this code will move to a more generic 3405 * location for the class. 3406 */ 3407 fc_class = class_create(THIS_MODULE, "fc"); 3408 if (IS_ERR(fc_class)) { 3409 pr_err("couldn't register class fc\n"); 3410 return PTR_ERR(fc_class); 3411 } 3412 3413 /* 3414 * Create a device for the FC-centric udev events 3415 */ 3416 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL, 3417 "fc_udev_device"); 3418 if (IS_ERR(fc_udev_device)) { 3419 pr_err("couldn't create fc_udev device!\n"); 3420 ret = PTR_ERR(fc_udev_device); 3421 goto out_destroy_class; 3422 } 3423 3424 ret = nvmf_register_transport(&nvme_fc_transport); 3425 if (ret) 3426 goto out_destroy_device; 3427 3428 return 0; 3429 3430 out_destroy_device: 3431 device_destroy(fc_class, MKDEV(0, 0)); 3432 out_destroy_class: 3433 class_destroy(fc_class); 3434 return ret; 3435 } 3436 3437 static void __exit nvme_fc_exit_module(void) 3438 { 3439 /* sanity check - all lports should be removed */ 3440 if (!list_empty(&nvme_fc_lport_list)) 3441 pr_warn("%s: localport list not empty\n", __func__); 3442 3443 nvmf_unregister_transport(&nvme_fc_transport); 3444 3445 ida_destroy(&nvme_fc_local_port_cnt); 3446 ida_destroy(&nvme_fc_ctrl_cnt); 3447 3448 device_destroy(fc_class, MKDEV(0, 0)); 3449 class_destroy(fc_class); 3450 } 3451 3452 module_init(nvme_fc_init_module); 3453 module_exit(nvme_fc_exit_module); 3454 3455 MODULE_LICENSE("GPL v2"); 3456