xref: /openbmc/linux/drivers/nvme/host/fc.c (revision bb0eb050)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS	1
38 #define NVME_FC_AQ_BLKMQ_DEPTH	\
39 	(NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE		(NVME_FC_AQ_BLKMQ_DEPTH + 1)
41 
42 enum nvme_fc_queue_flags {
43 	NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45 
46 #define NVMEFC_QUEUE_DELAY	3		/* ms units */
47 
48 struct nvme_fc_queue {
49 	struct nvme_fc_ctrl	*ctrl;
50 	struct device		*dev;
51 	struct blk_mq_hw_ctx	*hctx;
52 	void			*lldd_handle;
53 	int			queue_size;
54 	size_t			cmnd_capsule_len;
55 	u32			qnum;
56 	u32			rqcnt;
57 	u32			seqno;
58 
59 	u64			connection_id;
60 	atomic_t		csn;
61 
62 	unsigned long		flags;
63 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
64 
65 enum nvme_fcop_flags {
66 	FCOP_FLAGS_TERMIO	= (1 << 0),
67 	FCOP_FLAGS_RELEASED	= (1 << 1),
68 	FCOP_FLAGS_COMPLETE	= (1 << 2),
69 	FCOP_FLAGS_AEN		= (1 << 3),
70 };
71 
72 struct nvmefc_ls_req_op {
73 	struct nvmefc_ls_req	ls_req;
74 
75 	struct nvme_fc_rport	*rport;
76 	struct nvme_fc_queue	*queue;
77 	struct request		*rq;
78 	u32			flags;
79 
80 	int			ls_error;
81 	struct completion	ls_done;
82 	struct list_head	lsreq_list;	/* rport->ls_req_list */
83 	bool			req_queued;
84 };
85 
86 enum nvme_fcpop_state {
87 	FCPOP_STATE_UNINIT	= 0,
88 	FCPOP_STATE_IDLE	= 1,
89 	FCPOP_STATE_ACTIVE	= 2,
90 	FCPOP_STATE_ABORTED	= 3,
91 	FCPOP_STATE_COMPLETE	= 4,
92 };
93 
94 struct nvme_fc_fcp_op {
95 	struct nvme_request	nreq;		/*
96 						 * nvme/host/core.c
97 						 * requires this to be
98 						 * the 1st element in the
99 						 * private structure
100 						 * associated with the
101 						 * request.
102 						 */
103 	struct nvmefc_fcp_req	fcp_req;
104 
105 	struct nvme_fc_ctrl	*ctrl;
106 	struct nvme_fc_queue	*queue;
107 	struct request		*rq;
108 
109 	atomic_t		state;
110 	u32			flags;
111 	u32			rqno;
112 	u32			nents;
113 
114 	struct nvme_fc_cmd_iu	cmd_iu;
115 	struct nvme_fc_ersp_iu	rsp_iu;
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 struct nvme_fc_rport {
130 	struct nvme_fc_remote_port	remoteport;
131 
132 	struct list_head		endp_list; /* for lport->endp_list */
133 	struct list_head		ctrl_list;
134 	struct list_head		ls_req_list;
135 	struct device			*dev;	/* physical device for dma */
136 	struct nvme_fc_lport		*lport;
137 	spinlock_t			lock;
138 	struct kref			ref;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			queue_count;
152 	u32			cnum;
153 
154 	u64			association_id;
155 
156 	u64			cap;
157 
158 	struct list_head	ctrl_list;	/* rport->ctrl_list */
159 
160 	struct blk_mq_tag_set	admin_tag_set;
161 	struct blk_mq_tag_set	tag_set;
162 
163 	struct work_struct	delete_work;
164 	struct work_struct	reset_work;
165 	struct delayed_work	connect_work;
166 
167 	struct kref		ref;
168 	u32			flags;
169 	u32			iocnt;
170 
171 	struct nvme_fc_fcp_op	aen_ops[NVME_FC_NR_AEN_COMMANDS];
172 
173 	struct nvme_ctrl	ctrl;
174 };
175 
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181 
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185 	return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187 
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191 	return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193 
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199 
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205 
206 
207 
208 /* *************************** Globals **************************** */
209 
210 
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212 
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216 
217 static struct workqueue_struct *nvme_fc_wq;
218 
219 
220 
221 /* *********************** FC-NVME Port Management ************************ */
222 
223 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
224 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
225 			struct nvme_fc_queue *, unsigned int);
226 
227 
228 /**
229  * nvme_fc_register_localport - transport entry point called by an
230  *                              LLDD to register the existence of a NVME
231  *                              host FC port.
232  * @pinfo:     pointer to information about the port to be registered
233  * @template:  LLDD entrypoints and operational parameters for the port
234  * @dev:       physical hardware device node port corresponds to. Will be
235  *             used for DMA mappings
236  * @lport_p:   pointer to a local port pointer. Upon success, the routine
237  *             will allocate a nvme_fc_local_port structure and place its
238  *             address in the local port pointer. Upon failure, local port
239  *             pointer will be set to 0.
240  *
241  * Returns:
242  * a completion status. Must be 0 upon success; a negative errno
243  * (ex: -ENXIO) upon failure.
244  */
245 int
246 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
247 			struct nvme_fc_port_template *template,
248 			struct device *dev,
249 			struct nvme_fc_local_port **portptr)
250 {
251 	struct nvme_fc_lport *newrec;
252 	unsigned long flags;
253 	int ret, idx;
254 
255 	if (!template->localport_delete || !template->remoteport_delete ||
256 	    !template->ls_req || !template->fcp_io ||
257 	    !template->ls_abort || !template->fcp_abort ||
258 	    !template->max_hw_queues || !template->max_sgl_segments ||
259 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
260 		ret = -EINVAL;
261 		goto out_reghost_failed;
262 	}
263 
264 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
265 			 GFP_KERNEL);
266 	if (!newrec) {
267 		ret = -ENOMEM;
268 		goto out_reghost_failed;
269 	}
270 
271 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
272 	if (idx < 0) {
273 		ret = -ENOSPC;
274 		goto out_fail_kfree;
275 	}
276 
277 	if (!get_device(dev) && dev) {
278 		ret = -ENODEV;
279 		goto out_ida_put;
280 	}
281 
282 	INIT_LIST_HEAD(&newrec->port_list);
283 	INIT_LIST_HEAD(&newrec->endp_list);
284 	kref_init(&newrec->ref);
285 	newrec->ops = template;
286 	newrec->dev = dev;
287 	ida_init(&newrec->endp_cnt);
288 	newrec->localport.private = &newrec[1];
289 	newrec->localport.node_name = pinfo->node_name;
290 	newrec->localport.port_name = pinfo->port_name;
291 	newrec->localport.port_role = pinfo->port_role;
292 	newrec->localport.port_id = pinfo->port_id;
293 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
294 	newrec->localport.port_num = idx;
295 
296 	spin_lock_irqsave(&nvme_fc_lock, flags);
297 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
298 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
299 
300 	if (dev)
301 		dma_set_seg_boundary(dev, template->dma_boundary);
302 
303 	*portptr = &newrec->localport;
304 	return 0;
305 
306 out_ida_put:
307 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
308 out_fail_kfree:
309 	kfree(newrec);
310 out_reghost_failed:
311 	*portptr = NULL;
312 
313 	return ret;
314 }
315 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
316 
317 static void
318 nvme_fc_free_lport(struct kref *ref)
319 {
320 	struct nvme_fc_lport *lport =
321 		container_of(ref, struct nvme_fc_lport, ref);
322 	unsigned long flags;
323 
324 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
325 	WARN_ON(!list_empty(&lport->endp_list));
326 
327 	/* remove from transport list */
328 	spin_lock_irqsave(&nvme_fc_lock, flags);
329 	list_del(&lport->port_list);
330 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
331 
332 	/* let the LLDD know we've finished tearing it down */
333 	lport->ops->localport_delete(&lport->localport);
334 
335 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
336 	ida_destroy(&lport->endp_cnt);
337 
338 	put_device(lport->dev);
339 
340 	kfree(lport);
341 }
342 
343 static void
344 nvme_fc_lport_put(struct nvme_fc_lport *lport)
345 {
346 	kref_put(&lport->ref, nvme_fc_free_lport);
347 }
348 
349 static int
350 nvme_fc_lport_get(struct nvme_fc_lport *lport)
351 {
352 	return kref_get_unless_zero(&lport->ref);
353 }
354 
355 /**
356  * nvme_fc_unregister_localport - transport entry point called by an
357  *                              LLDD to deregister/remove a previously
358  *                              registered a NVME host FC port.
359  * @localport: pointer to the (registered) local port that is to be
360  *             deregistered.
361  *
362  * Returns:
363  * a completion status. Must be 0 upon success; a negative errno
364  * (ex: -ENXIO) upon failure.
365  */
366 int
367 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
368 {
369 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
370 	unsigned long flags;
371 
372 	if (!portptr)
373 		return -EINVAL;
374 
375 	spin_lock_irqsave(&nvme_fc_lock, flags);
376 
377 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
378 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
379 		return -EINVAL;
380 	}
381 	portptr->port_state = FC_OBJSTATE_DELETED;
382 
383 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
384 
385 	nvme_fc_lport_put(lport);
386 
387 	return 0;
388 }
389 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
390 
391 /**
392  * nvme_fc_register_remoteport - transport entry point called by an
393  *                              LLDD to register the existence of a NVME
394  *                              subsystem FC port on its fabric.
395  * @localport: pointer to the (registered) local port that the remote
396  *             subsystem port is connected to.
397  * @pinfo:     pointer to information about the port to be registered
398  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
399  *             will allocate a nvme_fc_remote_port structure and place its
400  *             address in the remote port pointer. Upon failure, remote port
401  *             pointer will be set to 0.
402  *
403  * Returns:
404  * a completion status. Must be 0 upon success; a negative errno
405  * (ex: -ENXIO) upon failure.
406  */
407 int
408 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
409 				struct nvme_fc_port_info *pinfo,
410 				struct nvme_fc_remote_port **portptr)
411 {
412 	struct nvme_fc_lport *lport = localport_to_lport(localport);
413 	struct nvme_fc_rport *newrec;
414 	unsigned long flags;
415 	int ret, idx;
416 
417 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
418 			 GFP_KERNEL);
419 	if (!newrec) {
420 		ret = -ENOMEM;
421 		goto out_reghost_failed;
422 	}
423 
424 	if (!nvme_fc_lport_get(lport)) {
425 		ret = -ESHUTDOWN;
426 		goto out_kfree_rport;
427 	}
428 
429 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
430 	if (idx < 0) {
431 		ret = -ENOSPC;
432 		goto out_lport_put;
433 	}
434 
435 	INIT_LIST_HEAD(&newrec->endp_list);
436 	INIT_LIST_HEAD(&newrec->ctrl_list);
437 	INIT_LIST_HEAD(&newrec->ls_req_list);
438 	kref_init(&newrec->ref);
439 	spin_lock_init(&newrec->lock);
440 	newrec->remoteport.localport = &lport->localport;
441 	newrec->dev = lport->dev;
442 	newrec->lport = lport;
443 	newrec->remoteport.private = &newrec[1];
444 	newrec->remoteport.port_role = pinfo->port_role;
445 	newrec->remoteport.node_name = pinfo->node_name;
446 	newrec->remoteport.port_name = pinfo->port_name;
447 	newrec->remoteport.port_id = pinfo->port_id;
448 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
449 	newrec->remoteport.port_num = idx;
450 
451 	spin_lock_irqsave(&nvme_fc_lock, flags);
452 	list_add_tail(&newrec->endp_list, &lport->endp_list);
453 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 
455 	*portptr = &newrec->remoteport;
456 	return 0;
457 
458 out_lport_put:
459 	nvme_fc_lport_put(lport);
460 out_kfree_rport:
461 	kfree(newrec);
462 out_reghost_failed:
463 	*portptr = NULL;
464 	return ret;
465 }
466 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
467 
468 static void
469 nvme_fc_free_rport(struct kref *ref)
470 {
471 	struct nvme_fc_rport *rport =
472 		container_of(ref, struct nvme_fc_rport, ref);
473 	struct nvme_fc_lport *lport =
474 			localport_to_lport(rport->remoteport.localport);
475 	unsigned long flags;
476 
477 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
478 	WARN_ON(!list_empty(&rport->ctrl_list));
479 
480 	/* remove from lport list */
481 	spin_lock_irqsave(&nvme_fc_lock, flags);
482 	list_del(&rport->endp_list);
483 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
484 
485 	/* let the LLDD know we've finished tearing it down */
486 	lport->ops->remoteport_delete(&rport->remoteport);
487 
488 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
489 
490 	kfree(rport);
491 
492 	nvme_fc_lport_put(lport);
493 }
494 
495 static void
496 nvme_fc_rport_put(struct nvme_fc_rport *rport)
497 {
498 	kref_put(&rport->ref, nvme_fc_free_rport);
499 }
500 
501 static int
502 nvme_fc_rport_get(struct nvme_fc_rport *rport)
503 {
504 	return kref_get_unless_zero(&rport->ref);
505 }
506 
507 static int
508 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
509 {
510 	struct nvmefc_ls_req_op *lsop;
511 	unsigned long flags;
512 
513 restart:
514 	spin_lock_irqsave(&rport->lock, flags);
515 
516 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
517 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
518 			lsop->flags |= FCOP_FLAGS_TERMIO;
519 			spin_unlock_irqrestore(&rport->lock, flags);
520 			rport->lport->ops->ls_abort(&rport->lport->localport,
521 						&rport->remoteport,
522 						&lsop->ls_req);
523 			goto restart;
524 		}
525 	}
526 	spin_unlock_irqrestore(&rport->lock, flags);
527 
528 	return 0;
529 }
530 
531 /**
532  * nvme_fc_unregister_remoteport - transport entry point called by an
533  *                              LLDD to deregister/remove a previously
534  *                              registered a NVME subsystem FC port.
535  * @remoteport: pointer to the (registered) remote port that is to be
536  *              deregistered.
537  *
538  * Returns:
539  * a completion status. Must be 0 upon success; a negative errno
540  * (ex: -ENXIO) upon failure.
541  */
542 int
543 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
544 {
545 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
546 	struct nvme_fc_ctrl *ctrl;
547 	unsigned long flags;
548 
549 	if (!portptr)
550 		return -EINVAL;
551 
552 	spin_lock_irqsave(&rport->lock, flags);
553 
554 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
555 		spin_unlock_irqrestore(&rport->lock, flags);
556 		return -EINVAL;
557 	}
558 	portptr->port_state = FC_OBJSTATE_DELETED;
559 
560 	/* tear down all associations to the remote port */
561 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
562 		__nvme_fc_del_ctrl(ctrl);
563 
564 	spin_unlock_irqrestore(&rport->lock, flags);
565 
566 	nvme_fc_abort_lsops(rport);
567 
568 	nvme_fc_rport_put(rport);
569 	return 0;
570 }
571 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
572 
573 
574 /* *********************** FC-NVME DMA Handling **************************** */
575 
576 /*
577  * The fcloop device passes in a NULL device pointer. Real LLD's will
578  * pass in a valid device pointer. If NULL is passed to the dma mapping
579  * routines, depending on the platform, it may or may not succeed, and
580  * may crash.
581  *
582  * As such:
583  * Wrapper all the dma routines and check the dev pointer.
584  *
585  * If simple mappings (return just a dma address, we'll noop them,
586  * returning a dma address of 0.
587  *
588  * On more complex mappings (dma_map_sg), a pseudo routine fills
589  * in the scatter list, setting all dma addresses to 0.
590  */
591 
592 static inline dma_addr_t
593 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
594 		enum dma_data_direction dir)
595 {
596 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
597 }
598 
599 static inline int
600 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
601 {
602 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
603 }
604 
605 static inline void
606 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
607 	enum dma_data_direction dir)
608 {
609 	if (dev)
610 		dma_unmap_single(dev, addr, size, dir);
611 }
612 
613 static inline void
614 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
615 		enum dma_data_direction dir)
616 {
617 	if (dev)
618 		dma_sync_single_for_cpu(dev, addr, size, dir);
619 }
620 
621 static inline void
622 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
623 		enum dma_data_direction dir)
624 {
625 	if (dev)
626 		dma_sync_single_for_device(dev, addr, size, dir);
627 }
628 
629 /* pseudo dma_map_sg call */
630 static int
631 fc_map_sg(struct scatterlist *sg, int nents)
632 {
633 	struct scatterlist *s;
634 	int i;
635 
636 	WARN_ON(nents == 0 || sg[0].length == 0);
637 
638 	for_each_sg(sg, s, nents, i) {
639 		s->dma_address = 0L;
640 #ifdef CONFIG_NEED_SG_DMA_LENGTH
641 		s->dma_length = s->length;
642 #endif
643 	}
644 	return nents;
645 }
646 
647 static inline int
648 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
649 		enum dma_data_direction dir)
650 {
651 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
652 }
653 
654 static inline void
655 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
656 		enum dma_data_direction dir)
657 {
658 	if (dev)
659 		dma_unmap_sg(dev, sg, nents, dir);
660 }
661 
662 
663 /* *********************** FC-NVME LS Handling **************************** */
664 
665 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
666 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
667 
668 
669 static void
670 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
671 {
672 	struct nvme_fc_rport *rport = lsop->rport;
673 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&rport->lock, flags);
677 
678 	if (!lsop->req_queued) {
679 		spin_unlock_irqrestore(&rport->lock, flags);
680 		return;
681 	}
682 
683 	list_del(&lsop->lsreq_list);
684 
685 	lsop->req_queued = false;
686 
687 	spin_unlock_irqrestore(&rport->lock, flags);
688 
689 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
690 				  (lsreq->rqstlen + lsreq->rsplen),
691 				  DMA_BIDIRECTIONAL);
692 
693 	nvme_fc_rport_put(rport);
694 }
695 
696 static int
697 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
698 		struct nvmefc_ls_req_op *lsop,
699 		void (*done)(struct nvmefc_ls_req *req, int status))
700 {
701 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
702 	unsigned long flags;
703 	int ret = 0;
704 
705 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
706 		return -ECONNREFUSED;
707 
708 	if (!nvme_fc_rport_get(rport))
709 		return -ESHUTDOWN;
710 
711 	lsreq->done = done;
712 	lsop->rport = rport;
713 	lsop->req_queued = false;
714 	INIT_LIST_HEAD(&lsop->lsreq_list);
715 	init_completion(&lsop->ls_done);
716 
717 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
718 				  lsreq->rqstlen + lsreq->rsplen,
719 				  DMA_BIDIRECTIONAL);
720 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
721 		ret = -EFAULT;
722 		goto out_putrport;
723 	}
724 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
725 
726 	spin_lock_irqsave(&rport->lock, flags);
727 
728 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
729 
730 	lsop->req_queued = true;
731 
732 	spin_unlock_irqrestore(&rport->lock, flags);
733 
734 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
735 					&rport->remoteport, lsreq);
736 	if (ret)
737 		goto out_unlink;
738 
739 	return 0;
740 
741 out_unlink:
742 	lsop->ls_error = ret;
743 	spin_lock_irqsave(&rport->lock, flags);
744 	lsop->req_queued = false;
745 	list_del(&lsop->lsreq_list);
746 	spin_unlock_irqrestore(&rport->lock, flags);
747 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
748 				  (lsreq->rqstlen + lsreq->rsplen),
749 				  DMA_BIDIRECTIONAL);
750 out_putrport:
751 	nvme_fc_rport_put(rport);
752 
753 	return ret;
754 }
755 
756 static void
757 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
758 {
759 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
760 
761 	lsop->ls_error = status;
762 	complete(&lsop->ls_done);
763 }
764 
765 static int
766 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
767 {
768 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
769 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
770 	int ret;
771 
772 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
773 
774 	if (!ret) {
775 		/*
776 		 * No timeout/not interruptible as we need the struct
777 		 * to exist until the lldd calls us back. Thus mandate
778 		 * wait until driver calls back. lldd responsible for
779 		 * the timeout action
780 		 */
781 		wait_for_completion(&lsop->ls_done);
782 
783 		__nvme_fc_finish_ls_req(lsop);
784 
785 		ret = lsop->ls_error;
786 	}
787 
788 	if (ret)
789 		return ret;
790 
791 	/* ACC or RJT payload ? */
792 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
793 		return -ENXIO;
794 
795 	return 0;
796 }
797 
798 static int
799 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
800 		struct nvmefc_ls_req_op *lsop,
801 		void (*done)(struct nvmefc_ls_req *req, int status))
802 {
803 	/* don't wait for completion */
804 
805 	return __nvme_fc_send_ls_req(rport, lsop, done);
806 }
807 
808 /* Validation Error indexes into the string table below */
809 enum {
810 	VERR_NO_ERROR		= 0,
811 	VERR_LSACC		= 1,
812 	VERR_LSDESC_RQST	= 2,
813 	VERR_LSDESC_RQST_LEN	= 3,
814 	VERR_ASSOC_ID		= 4,
815 	VERR_ASSOC_ID_LEN	= 5,
816 	VERR_CONN_ID		= 6,
817 	VERR_CONN_ID_LEN	= 7,
818 	VERR_CR_ASSOC		= 8,
819 	VERR_CR_ASSOC_ACC_LEN	= 9,
820 	VERR_CR_CONN		= 10,
821 	VERR_CR_CONN_ACC_LEN	= 11,
822 	VERR_DISCONN		= 12,
823 	VERR_DISCONN_ACC_LEN	= 13,
824 };
825 
826 static char *validation_errors[] = {
827 	"OK",
828 	"Not LS_ACC",
829 	"Not LSDESC_RQST",
830 	"Bad LSDESC_RQST Length",
831 	"Not Association ID",
832 	"Bad Association ID Length",
833 	"Not Connection ID",
834 	"Bad Connection ID Length",
835 	"Not CR_ASSOC Rqst",
836 	"Bad CR_ASSOC ACC Length",
837 	"Not CR_CONN Rqst",
838 	"Bad CR_CONN ACC Length",
839 	"Not Disconnect Rqst",
840 	"Bad Disconnect ACC Length",
841 };
842 
843 static int
844 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
845 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
846 {
847 	struct nvmefc_ls_req_op *lsop;
848 	struct nvmefc_ls_req *lsreq;
849 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
850 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
851 	int ret, fcret = 0;
852 
853 	lsop = kzalloc((sizeof(*lsop) +
854 			 ctrl->lport->ops->lsrqst_priv_sz +
855 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
856 	if (!lsop) {
857 		ret = -ENOMEM;
858 		goto out_no_memory;
859 	}
860 	lsreq = &lsop->ls_req;
861 
862 	lsreq->private = (void *)&lsop[1];
863 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
864 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
865 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
866 
867 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
868 	assoc_rqst->desc_list_len =
869 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870 
871 	assoc_rqst->assoc_cmd.desc_tag =
872 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
873 	assoc_rqst->assoc_cmd.desc_len =
874 			fcnvme_lsdesc_len(
875 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
876 
877 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
878 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
879 	/* Linux supports only Dynamic controllers */
880 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
881 	memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
882 		min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
883 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
884 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
885 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
886 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
887 
888 	lsop->queue = queue;
889 	lsreq->rqstaddr = assoc_rqst;
890 	lsreq->rqstlen = sizeof(*assoc_rqst);
891 	lsreq->rspaddr = assoc_acc;
892 	lsreq->rsplen = sizeof(*assoc_acc);
893 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
894 
895 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
896 	if (ret)
897 		goto out_free_buffer;
898 
899 	/* process connect LS completion */
900 
901 	/* validate the ACC response */
902 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
903 		fcret = VERR_LSACC;
904 	else if (assoc_acc->hdr.desc_list_len !=
905 			fcnvme_lsdesc_len(
906 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
907 		fcret = VERR_CR_ASSOC_ACC_LEN;
908 	else if (assoc_acc->hdr.rqst.desc_tag !=
909 			cpu_to_be32(FCNVME_LSDESC_RQST))
910 		fcret = VERR_LSDESC_RQST;
911 	else if (assoc_acc->hdr.rqst.desc_len !=
912 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
913 		fcret = VERR_LSDESC_RQST_LEN;
914 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
915 		fcret = VERR_CR_ASSOC;
916 	else if (assoc_acc->associd.desc_tag !=
917 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
918 		fcret = VERR_ASSOC_ID;
919 	else if (assoc_acc->associd.desc_len !=
920 			fcnvme_lsdesc_len(
921 				sizeof(struct fcnvme_lsdesc_assoc_id)))
922 		fcret = VERR_ASSOC_ID_LEN;
923 	else if (assoc_acc->connectid.desc_tag !=
924 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
925 		fcret = VERR_CONN_ID;
926 	else if (assoc_acc->connectid.desc_len !=
927 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
928 		fcret = VERR_CONN_ID_LEN;
929 
930 	if (fcret) {
931 		ret = -EBADF;
932 		dev_err(ctrl->dev,
933 			"q %d connect failed: %s\n",
934 			queue->qnum, validation_errors[fcret]);
935 	} else {
936 		ctrl->association_id =
937 			be64_to_cpu(assoc_acc->associd.association_id);
938 		queue->connection_id =
939 			be64_to_cpu(assoc_acc->connectid.connection_id);
940 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
941 	}
942 
943 out_free_buffer:
944 	kfree(lsop);
945 out_no_memory:
946 	if (ret)
947 		dev_err(ctrl->dev,
948 			"queue %d connect admin queue failed (%d).\n",
949 			queue->qnum, ret);
950 	return ret;
951 }
952 
953 static int
954 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
955 			u16 qsize, u16 ersp_ratio)
956 {
957 	struct nvmefc_ls_req_op *lsop;
958 	struct nvmefc_ls_req *lsreq;
959 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
960 	struct fcnvme_ls_cr_conn_acc *conn_acc;
961 	int ret, fcret = 0;
962 
963 	lsop = kzalloc((sizeof(*lsop) +
964 			 ctrl->lport->ops->lsrqst_priv_sz +
965 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
966 	if (!lsop) {
967 		ret = -ENOMEM;
968 		goto out_no_memory;
969 	}
970 	lsreq = &lsop->ls_req;
971 
972 	lsreq->private = (void *)&lsop[1];
973 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
974 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
975 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
976 
977 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
978 	conn_rqst->desc_list_len = cpu_to_be32(
979 				sizeof(struct fcnvme_lsdesc_assoc_id) +
980 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
981 
982 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
983 	conn_rqst->associd.desc_len =
984 			fcnvme_lsdesc_len(
985 				sizeof(struct fcnvme_lsdesc_assoc_id));
986 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
987 	conn_rqst->connect_cmd.desc_tag =
988 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
989 	conn_rqst->connect_cmd.desc_len =
990 			fcnvme_lsdesc_len(
991 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
992 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
993 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
994 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
995 
996 	lsop->queue = queue;
997 	lsreq->rqstaddr = conn_rqst;
998 	lsreq->rqstlen = sizeof(*conn_rqst);
999 	lsreq->rspaddr = conn_acc;
1000 	lsreq->rsplen = sizeof(*conn_acc);
1001 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1002 
1003 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1004 	if (ret)
1005 		goto out_free_buffer;
1006 
1007 	/* process connect LS completion */
1008 
1009 	/* validate the ACC response */
1010 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1011 		fcret = VERR_LSACC;
1012 	else if (conn_acc->hdr.desc_list_len !=
1013 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1014 		fcret = VERR_CR_CONN_ACC_LEN;
1015 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1016 		fcret = VERR_LSDESC_RQST;
1017 	else if (conn_acc->hdr.rqst.desc_len !=
1018 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1019 		fcret = VERR_LSDESC_RQST_LEN;
1020 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1021 		fcret = VERR_CR_CONN;
1022 	else if (conn_acc->connectid.desc_tag !=
1023 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1024 		fcret = VERR_CONN_ID;
1025 	else if (conn_acc->connectid.desc_len !=
1026 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1027 		fcret = VERR_CONN_ID_LEN;
1028 
1029 	if (fcret) {
1030 		ret = -EBADF;
1031 		dev_err(ctrl->dev,
1032 			"q %d connect failed: %s\n",
1033 			queue->qnum, validation_errors[fcret]);
1034 	} else {
1035 		queue->connection_id =
1036 			be64_to_cpu(conn_acc->connectid.connection_id);
1037 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1038 	}
1039 
1040 out_free_buffer:
1041 	kfree(lsop);
1042 out_no_memory:
1043 	if (ret)
1044 		dev_err(ctrl->dev,
1045 			"queue %d connect command failed (%d).\n",
1046 			queue->qnum, ret);
1047 	return ret;
1048 }
1049 
1050 static void
1051 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1052 {
1053 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1054 
1055 	__nvme_fc_finish_ls_req(lsop);
1056 
1057 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1058 
1059 	kfree(lsop);
1060 }
1061 
1062 /*
1063  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1064  * the FC-NVME Association.  Terminating the association also
1065  * terminates the FC-NVME connections (per queue, both admin and io
1066  * queues) that are part of the association. E.g. things are torn
1067  * down, and the related FC-NVME Association ID and Connection IDs
1068  * become invalid.
1069  *
1070  * The behavior of the fc-nvme initiator is such that it's
1071  * understanding of the association and connections will implicitly
1072  * be torn down. The action is implicit as it may be due to a loss of
1073  * connectivity with the fc-nvme target, so you may never get a
1074  * response even if you tried.  As such, the action of this routine
1075  * is to asynchronously send the LS, ignore any results of the LS, and
1076  * continue on with terminating the association. If the fc-nvme target
1077  * is present and receives the LS, it too can tear down.
1078  */
1079 static void
1080 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1081 {
1082 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1083 	struct fcnvme_ls_disconnect_acc *discon_acc;
1084 	struct nvmefc_ls_req_op *lsop;
1085 	struct nvmefc_ls_req *lsreq;
1086 	int ret;
1087 
1088 	lsop = kzalloc((sizeof(*lsop) +
1089 			 ctrl->lport->ops->lsrqst_priv_sz +
1090 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1091 			GFP_KERNEL);
1092 	if (!lsop)
1093 		/* couldn't sent it... too bad */
1094 		return;
1095 
1096 	lsreq = &lsop->ls_req;
1097 
1098 	lsreq->private = (void *)&lsop[1];
1099 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1100 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1101 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1102 
1103 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1104 	discon_rqst->desc_list_len = cpu_to_be32(
1105 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1106 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1107 
1108 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1109 	discon_rqst->associd.desc_len =
1110 			fcnvme_lsdesc_len(
1111 				sizeof(struct fcnvme_lsdesc_assoc_id));
1112 
1113 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1114 
1115 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1116 						FCNVME_LSDESC_DISCONN_CMD);
1117 	discon_rqst->discon_cmd.desc_len =
1118 			fcnvme_lsdesc_len(
1119 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1120 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1121 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1122 
1123 	lsreq->rqstaddr = discon_rqst;
1124 	lsreq->rqstlen = sizeof(*discon_rqst);
1125 	lsreq->rspaddr = discon_acc;
1126 	lsreq->rsplen = sizeof(*discon_acc);
1127 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1128 
1129 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1130 				nvme_fc_disconnect_assoc_done);
1131 	if (ret)
1132 		kfree(lsop);
1133 
1134 	/* only meaningful part to terminating the association */
1135 	ctrl->association_id = 0;
1136 }
1137 
1138 
1139 /* *********************** NVME Ctrl Routines **************************** */
1140 
1141 static void __nvme_fc_final_op_cleanup(struct request *rq);
1142 
1143 static int
1144 nvme_fc_reinit_request(void *data, struct request *rq)
1145 {
1146 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1147 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1148 
1149 	memset(cmdiu, 0, sizeof(*cmdiu));
1150 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1151 	cmdiu->fc_id = NVME_CMD_FC_ID;
1152 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1153 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1154 
1155 	return 0;
1156 }
1157 
1158 static void
1159 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1160 		struct nvme_fc_fcp_op *op)
1161 {
1162 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1163 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1164 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1165 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1166 
1167 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1168 }
1169 
1170 static void
1171 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1172 		unsigned int hctx_idx)
1173 {
1174 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1175 
1176 	return __nvme_fc_exit_request(set->driver_data, op);
1177 }
1178 
1179 static int
1180 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1181 {
1182 	int state;
1183 
1184 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1185 	if (state != FCPOP_STATE_ACTIVE) {
1186 		atomic_set(&op->state, state);
1187 		return -ECANCELED;
1188 	}
1189 
1190 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1191 					&ctrl->rport->remoteport,
1192 					op->queue->lldd_handle,
1193 					&op->fcp_req);
1194 
1195 	return 0;
1196 }
1197 
1198 static void
1199 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1200 {
1201 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1202 	unsigned long flags;
1203 	int i, ret;
1204 
1205 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1206 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1207 			continue;
1208 
1209 		spin_lock_irqsave(&ctrl->lock, flags);
1210 		if (ctrl->flags & FCCTRL_TERMIO) {
1211 			ctrl->iocnt++;
1212 			aen_op->flags |= FCOP_FLAGS_TERMIO;
1213 		}
1214 		spin_unlock_irqrestore(&ctrl->lock, flags);
1215 
1216 		ret = __nvme_fc_abort_op(ctrl, aen_op);
1217 		if (ret) {
1218 			/*
1219 			 * if __nvme_fc_abort_op failed the io wasn't
1220 			 * active. Thus this call path is running in
1221 			 * parallel to the io complete. Treat as non-error.
1222 			 */
1223 
1224 			/* back out the flags/counters */
1225 			spin_lock_irqsave(&ctrl->lock, flags);
1226 			if (ctrl->flags & FCCTRL_TERMIO)
1227 				ctrl->iocnt--;
1228 			aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1229 			spin_unlock_irqrestore(&ctrl->lock, flags);
1230 			return;
1231 		}
1232 	}
1233 }
1234 
1235 static inline int
1236 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1237 		struct nvme_fc_fcp_op *op)
1238 {
1239 	unsigned long flags;
1240 	bool complete_rq = false;
1241 
1242 	spin_lock_irqsave(&ctrl->lock, flags);
1243 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1244 		if (ctrl->flags & FCCTRL_TERMIO)
1245 			ctrl->iocnt--;
1246 	}
1247 	if (op->flags & FCOP_FLAGS_RELEASED)
1248 		complete_rq = true;
1249 	else
1250 		op->flags |= FCOP_FLAGS_COMPLETE;
1251 	spin_unlock_irqrestore(&ctrl->lock, flags);
1252 
1253 	return complete_rq;
1254 }
1255 
1256 static void
1257 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1258 {
1259 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1260 	struct request *rq = op->rq;
1261 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1262 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1263 	struct nvme_fc_queue *queue = op->queue;
1264 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1265 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1266 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1267 	union nvme_result result;
1268 	bool complete_rq;
1269 
1270 	/*
1271 	 * WARNING:
1272 	 * The current linux implementation of a nvme controller
1273 	 * allocates a single tag set for all io queues and sizes
1274 	 * the io queues to fully hold all possible tags. Thus, the
1275 	 * implementation does not reference or care about the sqhd
1276 	 * value as it never needs to use the sqhd/sqtail pointers
1277 	 * for submission pacing.
1278 	 *
1279 	 * This affects the FC-NVME implementation in two ways:
1280 	 * 1) As the value doesn't matter, we don't need to waste
1281 	 *    cycles extracting it from ERSPs and stamping it in the
1282 	 *    cases where the transport fabricates CQEs on successful
1283 	 *    completions.
1284 	 * 2) The FC-NVME implementation requires that delivery of
1285 	 *    ERSP completions are to go back to the nvme layer in order
1286 	 *    relative to the rsn, such that the sqhd value will always
1287 	 *    be "in order" for the nvme layer. As the nvme layer in
1288 	 *    linux doesn't care about sqhd, there's no need to return
1289 	 *    them in order.
1290 	 *
1291 	 * Additionally:
1292 	 * As the core nvme layer in linux currently does not look at
1293 	 * every field in the cqe - in cases where the FC transport must
1294 	 * fabricate a CQE, the following fields will not be set as they
1295 	 * are not referenced:
1296 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1297 	 */
1298 
1299 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1300 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1301 
1302 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1303 		status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1304 	else if (freq->status)
1305 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1306 
1307 	/*
1308 	 * For the linux implementation, if we have an unsuccesful
1309 	 * status, they blk-mq layer can typically be called with the
1310 	 * non-zero status and the content of the cqe isn't important.
1311 	 */
1312 	if (status)
1313 		goto done;
1314 
1315 	/*
1316 	 * command completed successfully relative to the wire
1317 	 * protocol. However, validate anything received and
1318 	 * extract the status and result from the cqe (create it
1319 	 * where necessary).
1320 	 */
1321 
1322 	switch (freq->rcv_rsplen) {
1323 
1324 	case 0:
1325 	case NVME_FC_SIZEOF_ZEROS_RSP:
1326 		/*
1327 		 * No response payload or 12 bytes of payload (which
1328 		 * should all be zeros) are considered successful and
1329 		 * no payload in the CQE by the transport.
1330 		 */
1331 		if (freq->transferred_length !=
1332 			be32_to_cpu(op->cmd_iu.data_len)) {
1333 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1334 			goto done;
1335 		}
1336 		result.u64 = 0;
1337 		break;
1338 
1339 	case sizeof(struct nvme_fc_ersp_iu):
1340 		/*
1341 		 * The ERSP IU contains a full completion with CQE.
1342 		 * Validate ERSP IU and look at cqe.
1343 		 */
1344 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1345 					(freq->rcv_rsplen / 4) ||
1346 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1347 					freq->transferred_length ||
1348 			     op->rsp_iu.status_code ||
1349 			     sqe->common.command_id != cqe->command_id)) {
1350 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1351 			goto done;
1352 		}
1353 		result = cqe->result;
1354 		status = cqe->status;
1355 		break;
1356 
1357 	default:
1358 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1359 		goto done;
1360 	}
1361 
1362 done:
1363 	if (op->flags & FCOP_FLAGS_AEN) {
1364 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1365 		complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1366 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1367 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1368 		nvme_fc_ctrl_put(ctrl);
1369 		return;
1370 	}
1371 
1372 	complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1373 	if (!complete_rq) {
1374 		if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1375 			status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1376 			if (blk_queue_dying(rq->q))
1377 				status |= cpu_to_le16(NVME_SC_DNR << 1);
1378 		}
1379 		nvme_end_request(rq, status, result);
1380 	} else
1381 		__nvme_fc_final_op_cleanup(rq);
1382 }
1383 
1384 static int
1385 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1386 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1387 		struct request *rq, u32 rqno)
1388 {
1389 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1390 	int ret = 0;
1391 
1392 	memset(op, 0, sizeof(*op));
1393 	op->fcp_req.cmdaddr = &op->cmd_iu;
1394 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1395 	op->fcp_req.rspaddr = &op->rsp_iu;
1396 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1397 	op->fcp_req.done = nvme_fc_fcpio_done;
1398 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1399 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1400 	op->ctrl = ctrl;
1401 	op->queue = queue;
1402 	op->rq = rq;
1403 	op->rqno = rqno;
1404 
1405 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1406 	cmdiu->fc_id = NVME_CMD_FC_ID;
1407 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1408 
1409 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1410 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1411 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1412 		dev_err(ctrl->dev,
1413 			"FCP Op failed - cmdiu dma mapping failed.\n");
1414 		ret = EFAULT;
1415 		goto out_on_error;
1416 	}
1417 
1418 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1419 				&op->rsp_iu, sizeof(op->rsp_iu),
1420 				DMA_FROM_DEVICE);
1421 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1422 		dev_err(ctrl->dev,
1423 			"FCP Op failed - rspiu dma mapping failed.\n");
1424 		ret = EFAULT;
1425 	}
1426 
1427 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1428 out_on_error:
1429 	return ret;
1430 }
1431 
1432 static int
1433 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1434 		unsigned int hctx_idx, unsigned int numa_node)
1435 {
1436 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1437 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1438 	struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1439 
1440 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1441 }
1442 
1443 static int
1444 nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1445 		unsigned int hctx_idx, unsigned int numa_node)
1446 {
1447 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1448 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1449 	struct nvme_fc_queue *queue = &ctrl->queues[0];
1450 
1451 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1452 }
1453 
1454 static int
1455 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1456 {
1457 	struct nvme_fc_fcp_op *aen_op;
1458 	struct nvme_fc_cmd_iu *cmdiu;
1459 	struct nvme_command *sqe;
1460 	void *private;
1461 	int i, ret;
1462 
1463 	aen_op = ctrl->aen_ops;
1464 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1465 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1466 						GFP_KERNEL);
1467 		if (!private)
1468 			return -ENOMEM;
1469 
1470 		cmdiu = &aen_op->cmd_iu;
1471 		sqe = &cmdiu->sqe;
1472 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1473 				aen_op, (struct request *)NULL,
1474 				(AEN_CMDID_BASE + i));
1475 		if (ret) {
1476 			kfree(private);
1477 			return ret;
1478 		}
1479 
1480 		aen_op->flags = FCOP_FLAGS_AEN;
1481 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1482 		aen_op->fcp_req.private = private;
1483 
1484 		memset(sqe, 0, sizeof(*sqe));
1485 		sqe->common.opcode = nvme_admin_async_event;
1486 		/* Note: core layer may overwrite the sqe.command_id value */
1487 		sqe->common.command_id = AEN_CMDID_BASE + i;
1488 	}
1489 	return 0;
1490 }
1491 
1492 static void
1493 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1494 {
1495 	struct nvme_fc_fcp_op *aen_op;
1496 	int i;
1497 
1498 	aen_op = ctrl->aen_ops;
1499 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1500 		if (!aen_op->fcp_req.private)
1501 			continue;
1502 
1503 		__nvme_fc_exit_request(ctrl, aen_op);
1504 
1505 		kfree(aen_op->fcp_req.private);
1506 		aen_op->fcp_req.private = NULL;
1507 	}
1508 }
1509 
1510 static inline void
1511 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1512 		unsigned int qidx)
1513 {
1514 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1515 
1516 	hctx->driver_data = queue;
1517 	queue->hctx = hctx;
1518 }
1519 
1520 static int
1521 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1522 		unsigned int hctx_idx)
1523 {
1524 	struct nvme_fc_ctrl *ctrl = data;
1525 
1526 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1527 
1528 	return 0;
1529 }
1530 
1531 static int
1532 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1533 		unsigned int hctx_idx)
1534 {
1535 	struct nvme_fc_ctrl *ctrl = data;
1536 
1537 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1538 
1539 	return 0;
1540 }
1541 
1542 static void
1543 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1544 {
1545 	struct nvme_fc_queue *queue;
1546 
1547 	queue = &ctrl->queues[idx];
1548 	memset(queue, 0, sizeof(*queue));
1549 	queue->ctrl = ctrl;
1550 	queue->qnum = idx;
1551 	atomic_set(&queue->csn, 1);
1552 	queue->dev = ctrl->dev;
1553 
1554 	if (idx > 0)
1555 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1556 	else
1557 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1558 
1559 	queue->queue_size = queue_size;
1560 
1561 	/*
1562 	 * Considered whether we should allocate buffers for all SQEs
1563 	 * and CQEs and dma map them - mapping their respective entries
1564 	 * into the request structures (kernel vm addr and dma address)
1565 	 * thus the driver could use the buffers/mappings directly.
1566 	 * It only makes sense if the LLDD would use them for its
1567 	 * messaging api. It's very unlikely most adapter api's would use
1568 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1569 	 * structures were used instead.
1570 	 */
1571 }
1572 
1573 /*
1574  * This routine terminates a queue at the transport level.
1575  * The transport has already ensured that all outstanding ios on
1576  * the queue have been terminated.
1577  * The transport will send a Disconnect LS request to terminate
1578  * the queue's connection. Termination of the admin queue will also
1579  * terminate the association at the target.
1580  */
1581 static void
1582 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1583 {
1584 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1585 		return;
1586 
1587 	/*
1588 	 * Current implementation never disconnects a single queue.
1589 	 * It always terminates a whole association. So there is never
1590 	 * a disconnect(queue) LS sent to the target.
1591 	 */
1592 
1593 	queue->connection_id = 0;
1594 	clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1595 }
1596 
1597 static void
1598 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1599 	struct nvme_fc_queue *queue, unsigned int qidx)
1600 {
1601 	if (ctrl->lport->ops->delete_queue)
1602 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1603 				queue->lldd_handle);
1604 	queue->lldd_handle = NULL;
1605 }
1606 
1607 static void
1608 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1609 {
1610 	int i;
1611 
1612 	for (i = 1; i < ctrl->queue_count; i++)
1613 		nvme_fc_free_queue(&ctrl->queues[i]);
1614 }
1615 
1616 static int
1617 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1618 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1619 {
1620 	int ret = 0;
1621 
1622 	queue->lldd_handle = NULL;
1623 	if (ctrl->lport->ops->create_queue)
1624 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1625 				qidx, qsize, &queue->lldd_handle);
1626 
1627 	return ret;
1628 }
1629 
1630 static void
1631 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1632 {
1633 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1634 	int i;
1635 
1636 	for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1637 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1638 }
1639 
1640 static int
1641 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1642 {
1643 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1644 	int i, ret;
1645 
1646 	for (i = 1; i < ctrl->queue_count; i++, queue++) {
1647 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1648 		if (ret)
1649 			goto delete_queues;
1650 	}
1651 
1652 	return 0;
1653 
1654 delete_queues:
1655 	for (; i >= 0; i--)
1656 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1657 	return ret;
1658 }
1659 
1660 static int
1661 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1662 {
1663 	int i, ret = 0;
1664 
1665 	for (i = 1; i < ctrl->queue_count; i++) {
1666 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1667 					(qsize / 5));
1668 		if (ret)
1669 			break;
1670 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1671 		if (ret)
1672 			break;
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 static void
1679 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1680 {
1681 	int i;
1682 
1683 	for (i = 1; i < ctrl->queue_count; i++)
1684 		nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1685 }
1686 
1687 static void
1688 nvme_fc_ctrl_free(struct kref *ref)
1689 {
1690 	struct nvme_fc_ctrl *ctrl =
1691 		container_of(ref, struct nvme_fc_ctrl, ref);
1692 	unsigned long flags;
1693 
1694 	if (ctrl->ctrl.tagset) {
1695 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1696 		blk_mq_free_tag_set(&ctrl->tag_set);
1697 	}
1698 
1699 	/* remove from rport list */
1700 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1701 	list_del(&ctrl->ctrl_list);
1702 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1703 
1704 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1705 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1706 
1707 	kfree(ctrl->queues);
1708 
1709 	put_device(ctrl->dev);
1710 	nvme_fc_rport_put(ctrl->rport);
1711 
1712 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1713 	if (ctrl->ctrl.opts)
1714 		nvmf_free_options(ctrl->ctrl.opts);
1715 	kfree(ctrl);
1716 }
1717 
1718 static void
1719 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1720 {
1721 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1722 }
1723 
1724 static int
1725 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1726 {
1727 	return kref_get_unless_zero(&ctrl->ref);
1728 }
1729 
1730 /*
1731  * All accesses from nvme core layer done - can now free the
1732  * controller. Called after last nvme_put_ctrl() call
1733  */
1734 static void
1735 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1736 {
1737 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1738 
1739 	WARN_ON(nctrl != &ctrl->ctrl);
1740 
1741 	nvme_fc_ctrl_put(ctrl);
1742 }
1743 
1744 static void
1745 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1746 {
1747 	dev_warn(ctrl->ctrl.device,
1748 		"NVME-FC{%d}: transport association error detected: %s\n",
1749 		ctrl->cnum, errmsg);
1750 	dev_warn(ctrl->ctrl.device,
1751 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1752 
1753 	/* stop the queues on error, cleanup is in reset thread */
1754 	if (ctrl->queue_count > 1)
1755 		nvme_stop_queues(&ctrl->ctrl);
1756 
1757 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1758 		dev_err(ctrl->ctrl.device,
1759 			"NVME-FC{%d}: error_recovery: Couldn't change state "
1760 			"to RECONNECTING\n", ctrl->cnum);
1761 		return;
1762 	}
1763 
1764 	if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1765 		dev_err(ctrl->ctrl.device,
1766 			"NVME-FC{%d}: error_recovery: Failed to schedule "
1767 			"reset work\n", ctrl->cnum);
1768 }
1769 
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1775 	int ret;
1776 
1777 	if (reserved)
1778 		return BLK_EH_RESET_TIMER;
1779 
1780 	ret = __nvme_fc_abort_op(ctrl, op);
1781 	if (ret)
1782 		/* io wasn't active to abort consider it done */
1783 		return BLK_EH_HANDLED;
1784 
1785 	/*
1786 	 * we can't individually ABTS an io without affecting the queue,
1787 	 * thus killing the queue, adn thus the association.
1788 	 * So resolve by performing a controller reset, which will stop
1789 	 * the host/io stack, terminate the association on the link,
1790 	 * and recreate an association on the link.
1791 	 */
1792 	nvme_fc_error_recovery(ctrl, "io timeout error");
1793 
1794 	return BLK_EH_HANDLED;
1795 }
1796 
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799 		struct nvme_fc_fcp_op *op)
1800 {
1801 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1802 	enum dma_data_direction dir;
1803 	int ret;
1804 
1805 	freq->sg_cnt = 0;
1806 
1807 	if (!blk_rq_payload_bytes(rq))
1808 		return 0;
1809 
1810 	freq->sg_table.sgl = freq->first_sgl;
1811 	ret = sg_alloc_table_chained(&freq->sg_table,
1812 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813 	if (ret)
1814 		return -ENOMEM;
1815 
1816 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820 				op->nents, dir);
1821 	if (unlikely(freq->sg_cnt <= 0)) {
1822 		sg_free_table_chained(&freq->sg_table, true);
1823 		freq->sg_cnt = 0;
1824 		return -EFAULT;
1825 	}
1826 
1827 	/*
1828 	 * TODO: blk_integrity_rq(rq)  for DIF
1829 	 */
1830 	return 0;
1831 }
1832 
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835 		struct nvme_fc_fcp_op *op)
1836 {
1837 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1838 
1839 	if (!freq->sg_cnt)
1840 		return;
1841 
1842 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843 				((rq_data_dir(rq) == WRITE) ?
1844 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845 
1846 	nvme_cleanup_cmd(rq);
1847 
1848 	sg_free_table_chained(&freq->sg_table, true);
1849 
1850 	freq->sg_cnt = 0;
1851 }
1852 
1853 /*
1854  * In FC, the queue is a logical thing. At transport connect, the target
1855  * creates its "queue" and returns a handle that is to be given to the
1856  * target whenever it posts something to the corresponding SQ.  When an
1857  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858  * command contained within the SQE, an io, and assigns a FC exchange
1859  * to it. The SQE and the associated SQ handle are sent in the initial
1860  * CMD IU sents on the exchange. All transfers relative to the io occur
1861  * as part of the exchange.  The CQE is the last thing for the io,
1862  * which is transferred (explicitly or implicitly) with the RSP IU
1863  * sent on the exchange. After the CQE is received, the FC exchange is
1864  * terminaed and the Exchange may be used on a different io.
1865  *
1866  * The transport to LLDD api has the transport making a request for a
1867  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868  * resource and transfers the command. The LLDD will then process all
1869  * steps to complete the io. Upon completion, the transport done routine
1870  * is called.
1871  *
1872  * So - while the operation is outstanding to the LLDD, there is a link
1873  * level FC exchange resource that is also outstanding. This must be
1874  * considered in all cleanup operations.
1875  */
1876 static int
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878 	struct nvme_fc_fcp_op *op, u32 data_len,
1879 	enum nvmefc_fcp_datadir	io_dir)
1880 {
1881 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882 	struct nvme_command *sqe = &cmdiu->sqe;
1883 	u32 csn;
1884 	int ret;
1885 
1886 	/*
1887 	 * before attempting to send the io, check to see if we believe
1888 	 * the target device is present
1889 	 */
1890 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891 		return BLK_MQ_RQ_QUEUE_ERROR;
1892 
1893 	if (!nvme_fc_ctrl_get(ctrl))
1894 		return BLK_MQ_RQ_QUEUE_ERROR;
1895 
1896 	/* format the FC-NVME CMD IU and fcp_req */
1897 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898 	csn = atomic_inc_return(&queue->csn);
1899 	cmdiu->csn = cpu_to_be32(csn);
1900 	cmdiu->data_len = cpu_to_be32(data_len);
1901 	switch (io_dir) {
1902 	case NVMEFC_FCP_WRITE:
1903 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904 		break;
1905 	case NVMEFC_FCP_READ:
1906 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907 		break;
1908 	case NVMEFC_FCP_NODATA:
1909 		cmdiu->flags = 0;
1910 		break;
1911 	}
1912 	op->fcp_req.payload_length = data_len;
1913 	op->fcp_req.io_dir = io_dir;
1914 	op->fcp_req.transferred_length = 0;
1915 	op->fcp_req.rcv_rsplen = 0;
1916 	op->fcp_req.status = NVME_SC_SUCCESS;
1917 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918 
1919 	/*
1920 	 * validate per fabric rules, set fields mandated by fabric spec
1921 	 * as well as those by FC-NVME spec.
1922 	 */
1923 	WARN_ON_ONCE(sqe->common.metadata);
1924 	WARN_ON_ONCE(sqe->common.dptr.prp1);
1925 	WARN_ON_ONCE(sqe->common.dptr.prp2);
1926 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927 
1928 	/*
1929 	 * format SQE DPTR field per FC-NVME rules
1930 	 *    type=data block descr; subtype=offset;
1931 	 *    offset is currently 0.
1932 	 */
1933 	sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935 	sqe->rw.dptr.sgl.addr = 0;
1936 
1937 	if (!(op->flags & FCOP_FLAGS_AEN)) {
1938 		ret = nvme_fc_map_data(ctrl, op->rq, op);
1939 		if (ret < 0) {
1940 			nvme_cleanup_cmd(op->rq);
1941 			nvme_fc_ctrl_put(ctrl);
1942 			return (ret == -ENOMEM || ret == -EAGAIN) ?
1943 				BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1944 		}
1945 	}
1946 
1947 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1948 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
1949 
1950 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1951 
1952 	if (!(op->flags & FCOP_FLAGS_AEN))
1953 		blk_mq_start_request(op->rq);
1954 
1955 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1956 					&ctrl->rport->remoteport,
1957 					queue->lldd_handle, &op->fcp_req);
1958 
1959 	if (ret) {
1960 		if (op->rq) {			/* normal request */
1961 			nvme_fc_unmap_data(ctrl, op->rq, op);
1962 			nvme_cleanup_cmd(op->rq);
1963 		}
1964 		/* else - aen. no cleanup needed */
1965 
1966 		nvme_fc_ctrl_put(ctrl);
1967 
1968 		if (ret != -EBUSY)
1969 			return BLK_MQ_RQ_QUEUE_ERROR;
1970 
1971 		if (op->rq) {
1972 			blk_mq_stop_hw_queues(op->rq->q);
1973 			blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1974 		}
1975 		return BLK_MQ_RQ_QUEUE_BUSY;
1976 	}
1977 
1978 	return BLK_MQ_RQ_QUEUE_OK;
1979 }
1980 
1981 static int
1982 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1983 			const struct blk_mq_queue_data *bd)
1984 {
1985 	struct nvme_ns *ns = hctx->queue->queuedata;
1986 	struct nvme_fc_queue *queue = hctx->driver_data;
1987 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
1988 	struct request *rq = bd->rq;
1989 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1990 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1991 	struct nvme_command *sqe = &cmdiu->sqe;
1992 	enum nvmefc_fcp_datadir	io_dir;
1993 	u32 data_len;
1994 	int ret;
1995 
1996 	ret = nvme_setup_cmd(ns, rq, sqe);
1997 	if (ret)
1998 		return ret;
1999 
2000 	data_len = blk_rq_payload_bytes(rq);
2001 	if (data_len)
2002 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2003 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2004 	else
2005 		io_dir = NVMEFC_FCP_NODATA;
2006 
2007 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2008 }
2009 
2010 static struct blk_mq_tags *
2011 nvme_fc_tagset(struct nvme_fc_queue *queue)
2012 {
2013 	if (queue->qnum == 0)
2014 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2015 
2016 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2017 }
2018 
2019 static int
2020 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2021 
2022 {
2023 	struct nvme_fc_queue *queue = hctx->driver_data;
2024 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2025 	struct request *req;
2026 	struct nvme_fc_fcp_op *op;
2027 
2028 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2029 	if (!req)
2030 		return 0;
2031 
2032 	op = blk_mq_rq_to_pdu(req);
2033 
2034 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2035 		 (ctrl->lport->ops->poll_queue))
2036 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2037 						 queue->lldd_handle);
2038 
2039 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2040 }
2041 
2042 static void
2043 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2044 {
2045 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2046 	struct nvme_fc_fcp_op *aen_op;
2047 	unsigned long flags;
2048 	bool terminating = false;
2049 	int ret;
2050 
2051 	if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2052 		return;
2053 
2054 	spin_lock_irqsave(&ctrl->lock, flags);
2055 	if (ctrl->flags & FCCTRL_TERMIO)
2056 		terminating = true;
2057 	spin_unlock_irqrestore(&ctrl->lock, flags);
2058 
2059 	if (terminating)
2060 		return;
2061 
2062 	aen_op = &ctrl->aen_ops[aer_idx];
2063 
2064 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2065 					NVMEFC_FCP_NODATA);
2066 	if (ret)
2067 		dev_err(ctrl->ctrl.device,
2068 			"failed async event work [%d]\n", aer_idx);
2069 }
2070 
2071 static void
2072 __nvme_fc_final_op_cleanup(struct request *rq)
2073 {
2074 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2075 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2076 
2077 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2078 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2079 			FCOP_FLAGS_COMPLETE);
2080 
2081 	nvme_cleanup_cmd(rq);
2082 	nvme_fc_unmap_data(ctrl, rq, op);
2083 	nvme_complete_rq(rq);
2084 	nvme_fc_ctrl_put(ctrl);
2085 
2086 }
2087 
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2093 	unsigned long flags;
2094 	bool completed = false;
2095 
2096 	/*
2097 	 * the core layer, on controller resets after calling
2098 	 * nvme_shutdown_ctrl(), calls complete_rq without our
2099 	 * calling blk_mq_complete_request(), thus there may still
2100 	 * be live i/o outstanding with the LLDD. Means transport has
2101 	 * to track complete calls vs fcpio_done calls to know what
2102 	 * path to take on completes and dones.
2103 	 */
2104 	spin_lock_irqsave(&ctrl->lock, flags);
2105 	if (op->flags & FCOP_FLAGS_COMPLETE)
2106 		completed = true;
2107 	else
2108 		op->flags |= FCOP_FLAGS_RELEASED;
2109 	spin_unlock_irqrestore(&ctrl->lock, flags);
2110 
2111 	if (completed)
2112 		__nvme_fc_final_op_cleanup(rq);
2113 }
2114 
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131 	struct nvme_ctrl *nctrl = data;
2132 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134 	unsigned long flags;
2135 	int status;
2136 
2137 	if (!blk_mq_request_started(req))
2138 		return;
2139 
2140 	spin_lock_irqsave(&ctrl->lock, flags);
2141 	if (ctrl->flags & FCCTRL_TERMIO) {
2142 		ctrl->iocnt++;
2143 		op->flags |= FCOP_FLAGS_TERMIO;
2144 	}
2145 	spin_unlock_irqrestore(&ctrl->lock, flags);
2146 
2147 	status = __nvme_fc_abort_op(ctrl, op);
2148 	if (status) {
2149 		/*
2150 		 * if __nvme_fc_abort_op failed the io wasn't
2151 		 * active. Thus this call path is running in
2152 		 * parallel to the io complete. Treat as non-error.
2153 		 */
2154 
2155 		/* back out the flags/counters */
2156 		spin_lock_irqsave(&ctrl->lock, flags);
2157 		if (ctrl->flags & FCCTRL_TERMIO)
2158 			ctrl->iocnt--;
2159 		op->flags &= ~FCOP_FLAGS_TERMIO;
2160 		spin_unlock_irqrestore(&ctrl->lock, flags);
2161 		return;
2162 	}
2163 }
2164 
2165 
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167 	.queue_rq	= nvme_fc_queue_rq,
2168 	.complete	= nvme_fc_complete_rq,
2169 	.init_request	= nvme_fc_init_request,
2170 	.exit_request	= nvme_fc_exit_request,
2171 	.reinit_request	= nvme_fc_reinit_request,
2172 	.init_hctx	= nvme_fc_init_hctx,
2173 	.poll		= nvme_fc_poll,
2174 	.timeout	= nvme_fc_timeout,
2175 };
2176 
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181 	int ret;
2182 
2183 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2184 	if (ret) {
2185 		dev_info(ctrl->ctrl.device,
2186 			"set_queue_count failed: %d\n", ret);
2187 		return ret;
2188 	}
2189 
2190 	ctrl->queue_count = opts->nr_io_queues + 1;
2191 	if (!opts->nr_io_queues)
2192 		return 0;
2193 
2194 	nvme_fc_init_io_queues(ctrl);
2195 
2196 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2197 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2198 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2199 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2200 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2201 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2202 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2203 					(SG_CHUNK_SIZE *
2204 						sizeof(struct scatterlist)) +
2205 					ctrl->lport->ops->fcprqst_priv_sz;
2206 	ctrl->tag_set.driver_data = ctrl;
2207 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2208 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2209 
2210 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2211 	if (ret)
2212 		return ret;
2213 
2214 	ctrl->ctrl.tagset = &ctrl->tag_set;
2215 
2216 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2217 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2218 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2219 		goto out_free_tag_set;
2220 	}
2221 
2222 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2223 	if (ret)
2224 		goto out_cleanup_blk_queue;
2225 
2226 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2227 	if (ret)
2228 		goto out_delete_hw_queues;
2229 
2230 	return 0;
2231 
2232 out_delete_hw_queues:
2233 	nvme_fc_delete_hw_io_queues(ctrl);
2234 out_cleanup_blk_queue:
2235 	nvme_stop_keep_alive(&ctrl->ctrl);
2236 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2237 out_free_tag_set:
2238 	blk_mq_free_tag_set(&ctrl->tag_set);
2239 	nvme_fc_free_io_queues(ctrl);
2240 
2241 	/* force put free routine to ignore io queues */
2242 	ctrl->ctrl.tagset = NULL;
2243 
2244 	return ret;
2245 }
2246 
2247 static int
2248 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2249 {
2250 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2251 	int ret;
2252 
2253 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2254 	if (ret) {
2255 		dev_info(ctrl->ctrl.device,
2256 			"set_queue_count failed: %d\n", ret);
2257 		return ret;
2258 	}
2259 
2260 	/* check for io queues existing */
2261 	if (ctrl->queue_count == 1)
2262 		return 0;
2263 
2264 	nvme_fc_init_io_queues(ctrl);
2265 
2266 	ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2267 	if (ret)
2268 		goto out_free_io_queues;
2269 
2270 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2271 	if (ret)
2272 		goto out_free_io_queues;
2273 
2274 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2275 	if (ret)
2276 		goto out_delete_hw_queues;
2277 
2278 	return 0;
2279 
2280 out_delete_hw_queues:
2281 	nvme_fc_delete_hw_io_queues(ctrl);
2282 out_free_io_queues:
2283 	nvme_fc_free_io_queues(ctrl);
2284 	return ret;
2285 }
2286 
2287 /*
2288  * This routine restarts the controller on the host side, and
2289  * on the link side, recreates the controller association.
2290  */
2291 static int
2292 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2293 {
2294 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2295 	u32 segs;
2296 	int ret;
2297 	bool changed;
2298 
2299 	++ctrl->ctrl.opts->nr_reconnects;
2300 
2301 	/*
2302 	 * Create the admin queue
2303 	 */
2304 
2305 	nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2306 
2307 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2308 				NVME_FC_AQ_BLKMQ_DEPTH);
2309 	if (ret)
2310 		goto out_free_queue;
2311 
2312 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2313 				NVME_FC_AQ_BLKMQ_DEPTH,
2314 				(NVME_FC_AQ_BLKMQ_DEPTH / 4));
2315 	if (ret)
2316 		goto out_delete_hw_queue;
2317 
2318 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2319 		blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2320 
2321 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2322 	if (ret)
2323 		goto out_disconnect_admin_queue;
2324 
2325 	/*
2326 	 * Check controller capabilities
2327 	 *
2328 	 * todo:- add code to check if ctrl attributes changed from
2329 	 * prior connection values
2330 	 */
2331 
2332 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2333 	if (ret) {
2334 		dev_err(ctrl->ctrl.device,
2335 			"prop_get NVME_REG_CAP failed\n");
2336 		goto out_disconnect_admin_queue;
2337 	}
2338 
2339 	ctrl->ctrl.sqsize =
2340 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2341 
2342 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2343 	if (ret)
2344 		goto out_disconnect_admin_queue;
2345 
2346 	segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2347 			ctrl->lport->ops->max_sgl_segments);
2348 	ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2349 
2350 	ret = nvme_init_identify(&ctrl->ctrl);
2351 	if (ret)
2352 		goto out_disconnect_admin_queue;
2353 
2354 	/* sanity checks */
2355 
2356 	/* FC-NVME does not have other data in the capsule */
2357 	if (ctrl->ctrl.icdoff) {
2358 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2359 				ctrl->ctrl.icdoff);
2360 		goto out_disconnect_admin_queue;
2361 	}
2362 
2363 	nvme_start_keep_alive(&ctrl->ctrl);
2364 
2365 	/* FC-NVME supports normal SGL Data Block Descriptors */
2366 
2367 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2368 		/* warn if maxcmd is lower than queue_size */
2369 		dev_warn(ctrl->ctrl.device,
2370 			"queue_size %zu > ctrl maxcmd %u, reducing "
2371 			"to queue_size\n",
2372 			opts->queue_size, ctrl->ctrl.maxcmd);
2373 		opts->queue_size = ctrl->ctrl.maxcmd;
2374 	}
2375 
2376 	ret = nvme_fc_init_aen_ops(ctrl);
2377 	if (ret)
2378 		goto out_term_aen_ops;
2379 
2380 	/*
2381 	 * Create the io queues
2382 	 */
2383 
2384 	if (ctrl->queue_count > 1) {
2385 		if (ctrl->ctrl.state == NVME_CTRL_NEW)
2386 			ret = nvme_fc_create_io_queues(ctrl);
2387 		else
2388 			ret = nvme_fc_reinit_io_queues(ctrl);
2389 		if (ret)
2390 			goto out_term_aen_ops;
2391 	}
2392 
2393 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2394 	WARN_ON_ONCE(!changed);
2395 
2396 	ctrl->ctrl.opts->nr_reconnects = 0;
2397 
2398 	if (ctrl->queue_count > 1) {
2399 		nvme_start_queues(&ctrl->ctrl);
2400 		nvme_queue_scan(&ctrl->ctrl);
2401 		nvme_queue_async_events(&ctrl->ctrl);
2402 	}
2403 
2404 	return 0;	/* Success */
2405 
2406 out_term_aen_ops:
2407 	nvme_fc_term_aen_ops(ctrl);
2408 	nvme_stop_keep_alive(&ctrl->ctrl);
2409 out_disconnect_admin_queue:
2410 	/* send a Disconnect(association) LS to fc-nvme target */
2411 	nvme_fc_xmt_disconnect_assoc(ctrl);
2412 out_delete_hw_queue:
2413 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2414 out_free_queue:
2415 	nvme_fc_free_queue(&ctrl->queues[0]);
2416 
2417 	return ret;
2418 }
2419 
2420 /*
2421  * This routine stops operation of the controller on the host side.
2422  * On the host os stack side: Admin and IO queues are stopped,
2423  *   outstanding ios on them terminated via FC ABTS.
2424  * On the link side: the association is terminated.
2425  */
2426 static void
2427 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2428 {
2429 	unsigned long flags;
2430 
2431 	nvme_stop_keep_alive(&ctrl->ctrl);
2432 
2433 	spin_lock_irqsave(&ctrl->lock, flags);
2434 	ctrl->flags |= FCCTRL_TERMIO;
2435 	ctrl->iocnt = 0;
2436 	spin_unlock_irqrestore(&ctrl->lock, flags);
2437 
2438 	/*
2439 	 * If io queues are present, stop them and terminate all outstanding
2440 	 * ios on them. As FC allocates FC exchange for each io, the
2441 	 * transport must contact the LLDD to terminate the exchange,
2442 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2443 	 * to tell us what io's are busy and invoke a transport routine
2444 	 * to kill them with the LLDD.  After terminating the exchange
2445 	 * the LLDD will call the transport's normal io done path, but it
2446 	 * will have an aborted status. The done path will return the
2447 	 * io requests back to the block layer as part of normal completions
2448 	 * (but with error status).
2449 	 */
2450 	if (ctrl->queue_count > 1) {
2451 		nvme_stop_queues(&ctrl->ctrl);
2452 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2453 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2454 	}
2455 
2456 	/*
2457 	 * Other transports, which don't have link-level contexts bound
2458 	 * to sqe's, would try to gracefully shutdown the controller by
2459 	 * writing the registers for shutdown and polling (call
2460 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2461 	 * just aborted and we will wait on those contexts, and given
2462 	 * there was no indication of how live the controlelr is on the
2463 	 * link, don't send more io to create more contexts for the
2464 	 * shutdown. Let the controller fail via keepalive failure if
2465 	 * its still present.
2466 	 */
2467 
2468 	/*
2469 	 * clean up the admin queue. Same thing as above.
2470 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2471 	 * terminate the exchanges.
2472 	 */
2473 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2474 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2475 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2476 
2477 	/* kill the aens as they are a separate path */
2478 	nvme_fc_abort_aen_ops(ctrl);
2479 
2480 	/* wait for all io that had to be aborted */
2481 	spin_lock_irqsave(&ctrl->lock, flags);
2482 	while (ctrl->iocnt) {
2483 		spin_unlock_irqrestore(&ctrl->lock, flags);
2484 		msleep(1000);
2485 		spin_lock_irqsave(&ctrl->lock, flags);
2486 	}
2487 	ctrl->flags &= ~FCCTRL_TERMIO;
2488 	spin_unlock_irqrestore(&ctrl->lock, flags);
2489 
2490 	nvme_fc_term_aen_ops(ctrl);
2491 
2492 	/*
2493 	 * send a Disconnect(association) LS to fc-nvme target
2494 	 * Note: could have been sent at top of process, but
2495 	 * cleaner on link traffic if after the aborts complete.
2496 	 * Note: if association doesn't exist, association_id will be 0
2497 	 */
2498 	if (ctrl->association_id)
2499 		nvme_fc_xmt_disconnect_assoc(ctrl);
2500 
2501 	if (ctrl->ctrl.tagset) {
2502 		nvme_fc_delete_hw_io_queues(ctrl);
2503 		nvme_fc_free_io_queues(ctrl);
2504 	}
2505 
2506 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2507 	nvme_fc_free_queue(&ctrl->queues[0]);
2508 }
2509 
2510 static void
2511 nvme_fc_delete_ctrl_work(struct work_struct *work)
2512 {
2513 	struct nvme_fc_ctrl *ctrl =
2514 		container_of(work, struct nvme_fc_ctrl, delete_work);
2515 
2516 	cancel_work_sync(&ctrl->reset_work);
2517 	cancel_delayed_work_sync(&ctrl->connect_work);
2518 
2519 	/*
2520 	 * kill the association on the link side.  this will block
2521 	 * waiting for io to terminate
2522 	 */
2523 	nvme_fc_delete_association(ctrl);
2524 
2525 	/*
2526 	 * tear down the controller
2527 	 * After the last reference on the nvme ctrl is removed,
2528 	 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2529 	 * invoked. From there, the transport will tear down it's
2530 	 * logical queues and association.
2531 	 */
2532 	nvme_uninit_ctrl(&ctrl->ctrl);
2533 
2534 	nvme_put_ctrl(&ctrl->ctrl);
2535 }
2536 
2537 static bool
2538 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2539 {
2540 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2541 		return true;
2542 
2543 	if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2544 		return true;
2545 
2546 	return false;
2547 }
2548 
2549 static int
2550 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2551 {
2552 	return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2553 }
2554 
2555 /*
2556  * Request from nvme core layer to delete the controller
2557  */
2558 static int
2559 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2560 {
2561 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2562 	int ret;
2563 
2564 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2565 		return -EBUSY;
2566 
2567 	ret = __nvme_fc_del_ctrl(ctrl);
2568 
2569 	if (!ret)
2570 		flush_workqueue(nvme_fc_wq);
2571 
2572 	nvme_put_ctrl(&ctrl->ctrl);
2573 
2574 	return ret;
2575 }
2576 
2577 static void
2578 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2579 {
2580 	/* If we are resetting/deleting then do nothing */
2581 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2582 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2583 			ctrl->ctrl.state == NVME_CTRL_LIVE);
2584 		return;
2585 	}
2586 
2587 	dev_info(ctrl->ctrl.device,
2588 		"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2589 		ctrl->cnum, status);
2590 
2591 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
2592 		dev_info(ctrl->ctrl.device,
2593 			"NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2594 			ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2595 		queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2596 				ctrl->ctrl.opts->reconnect_delay * HZ);
2597 	} else {
2598 		dev_warn(ctrl->ctrl.device,
2599 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2600 				"reached. Removing controller\n",
2601 				ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2602 		WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2603 	}
2604 }
2605 
2606 static void
2607 nvme_fc_reset_ctrl_work(struct work_struct *work)
2608 {
2609 	struct nvme_fc_ctrl *ctrl =
2610 			container_of(work, struct nvme_fc_ctrl, reset_work);
2611 	int ret;
2612 
2613 	/* will block will waiting for io to terminate */
2614 	nvme_fc_delete_association(ctrl);
2615 
2616 	ret = nvme_fc_create_association(ctrl);
2617 	if (ret)
2618 		nvme_fc_reconnect_or_delete(ctrl, ret);
2619 	else
2620 		dev_info(ctrl->ctrl.device,
2621 			"NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2622 }
2623 
2624 /*
2625  * called by the nvme core layer, for sysfs interface that requests
2626  * a reset of the nvme controller
2627  */
2628 static int
2629 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2630 {
2631 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2632 
2633 	dev_info(ctrl->ctrl.device,
2634 		"NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2635 
2636 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2637 		return -EBUSY;
2638 
2639 	if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2640 		return -EBUSY;
2641 
2642 	flush_work(&ctrl->reset_work);
2643 
2644 	return 0;
2645 }
2646 
2647 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2648 	.name			= "fc",
2649 	.module			= THIS_MODULE,
2650 	.flags			= NVME_F_FABRICS,
2651 	.reg_read32		= nvmf_reg_read32,
2652 	.reg_read64		= nvmf_reg_read64,
2653 	.reg_write32		= nvmf_reg_write32,
2654 	.reset_ctrl		= nvme_fc_reset_nvme_ctrl,
2655 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2656 	.submit_async_event	= nvme_fc_submit_async_event,
2657 	.delete_ctrl		= nvme_fc_del_nvme_ctrl,
2658 	.get_subsysnqn		= nvmf_get_subsysnqn,
2659 	.get_address		= nvmf_get_address,
2660 };
2661 
2662 static void
2663 nvme_fc_connect_ctrl_work(struct work_struct *work)
2664 {
2665 	int ret;
2666 
2667 	struct nvme_fc_ctrl *ctrl =
2668 			container_of(to_delayed_work(work),
2669 				struct nvme_fc_ctrl, connect_work);
2670 
2671 	ret = nvme_fc_create_association(ctrl);
2672 	if (ret)
2673 		nvme_fc_reconnect_or_delete(ctrl, ret);
2674 	else
2675 		dev_info(ctrl->ctrl.device,
2676 			"NVME-FC{%d}: controller reconnect complete\n",
2677 			ctrl->cnum);
2678 }
2679 
2680 
2681 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2682 	.queue_rq	= nvme_fc_queue_rq,
2683 	.complete	= nvme_fc_complete_rq,
2684 	.init_request	= nvme_fc_init_admin_request,
2685 	.exit_request	= nvme_fc_exit_request,
2686 	.reinit_request	= nvme_fc_reinit_request,
2687 	.init_hctx	= nvme_fc_init_admin_hctx,
2688 	.timeout	= nvme_fc_timeout,
2689 };
2690 
2691 
2692 static struct nvme_ctrl *
2693 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2694 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2695 {
2696 	struct nvme_fc_ctrl *ctrl;
2697 	unsigned long flags;
2698 	int ret, idx;
2699 
2700 	if (!(rport->remoteport.port_role &
2701 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2702 		ret = -EBADR;
2703 		goto out_fail;
2704 	}
2705 
2706 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2707 	if (!ctrl) {
2708 		ret = -ENOMEM;
2709 		goto out_fail;
2710 	}
2711 
2712 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2713 	if (idx < 0) {
2714 		ret = -ENOSPC;
2715 		goto out_free_ctrl;
2716 	}
2717 
2718 	ctrl->ctrl.opts = opts;
2719 	INIT_LIST_HEAD(&ctrl->ctrl_list);
2720 	ctrl->lport = lport;
2721 	ctrl->rport = rport;
2722 	ctrl->dev = lport->dev;
2723 	ctrl->cnum = idx;
2724 
2725 	get_device(ctrl->dev);
2726 	kref_init(&ctrl->ref);
2727 
2728 	INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2729 	INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2730 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2731 	spin_lock_init(&ctrl->lock);
2732 
2733 	/* io queue count */
2734 	ctrl->queue_count = min_t(unsigned int,
2735 				opts->nr_io_queues,
2736 				lport->ops->max_hw_queues);
2737 	opts->nr_io_queues = ctrl->queue_count;	/* so opts has valid value */
2738 	ctrl->queue_count++;	/* +1 for admin queue */
2739 
2740 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2741 	ctrl->ctrl.kato = opts->kato;
2742 
2743 	ret = -ENOMEM;
2744 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2745 				GFP_KERNEL);
2746 	if (!ctrl->queues)
2747 		goto out_free_ida;
2748 
2749 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2750 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2751 	ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2752 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2753 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2754 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2755 					(SG_CHUNK_SIZE *
2756 						sizeof(struct scatterlist)) +
2757 					ctrl->lport->ops->fcprqst_priv_sz;
2758 	ctrl->admin_tag_set.driver_data = ctrl;
2759 	ctrl->admin_tag_set.nr_hw_queues = 1;
2760 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2761 
2762 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2763 	if (ret)
2764 		goto out_free_queues;
2765 
2766 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2767 	if (IS_ERR(ctrl->ctrl.admin_q)) {
2768 		ret = PTR_ERR(ctrl->ctrl.admin_q);
2769 		goto out_free_admin_tag_set;
2770 	}
2771 
2772 	/*
2773 	 * Would have been nice to init io queues tag set as well.
2774 	 * However, we require interaction from the controller
2775 	 * for max io queue count before we can do so.
2776 	 * Defer this to the connect path.
2777 	 */
2778 
2779 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2780 	if (ret)
2781 		goto out_cleanup_admin_q;
2782 
2783 	/* at this point, teardown path changes to ref counting on nvme ctrl */
2784 
2785 	spin_lock_irqsave(&rport->lock, flags);
2786 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2787 	spin_unlock_irqrestore(&rport->lock, flags);
2788 
2789 	ret = nvme_fc_create_association(ctrl);
2790 	if (ret) {
2791 		ctrl->ctrl.opts = NULL;
2792 		/* initiate nvme ctrl ref counting teardown */
2793 		nvme_uninit_ctrl(&ctrl->ctrl);
2794 
2795 		/* as we're past the point where we transition to the ref
2796 		 * counting teardown path, if we return a bad pointer here,
2797 		 * the calling routine, thinking it's prior to the
2798 		 * transition, will do an rport put. Since the teardown
2799 		 * path also does a rport put, we do an extra get here to
2800 		 * so proper order/teardown happens.
2801 		 */
2802 		nvme_fc_rport_get(rport);
2803 
2804 		if (ret > 0)
2805 			ret = -EIO;
2806 		return ERR_PTR(ret);
2807 	}
2808 
2809 	kref_get(&ctrl->ctrl.kref);
2810 
2811 	dev_info(ctrl->ctrl.device,
2812 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2813 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2814 
2815 	return &ctrl->ctrl;
2816 
2817 out_cleanup_admin_q:
2818 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2819 out_free_admin_tag_set:
2820 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2821 out_free_queues:
2822 	kfree(ctrl->queues);
2823 out_free_ida:
2824 	put_device(ctrl->dev);
2825 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2826 out_free_ctrl:
2827 	kfree(ctrl);
2828 out_fail:
2829 	/* exit via here doesn't follow ctlr ref points */
2830 	return ERR_PTR(ret);
2831 }
2832 
2833 enum {
2834 	FCT_TRADDR_ERR		= 0,
2835 	FCT_TRADDR_WWNN		= 1 << 0,
2836 	FCT_TRADDR_WWPN		= 1 << 1,
2837 };
2838 
2839 struct nvmet_fc_traddr {
2840 	u64	nn;
2841 	u64	pn;
2842 };
2843 
2844 static const match_table_t traddr_opt_tokens = {
2845 	{ FCT_TRADDR_WWNN,	"nn-%s"		},
2846 	{ FCT_TRADDR_WWPN,	"pn-%s"		},
2847 	{ FCT_TRADDR_ERR,	NULL		}
2848 };
2849 
2850 static int
2851 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2852 {
2853 	substring_t args[MAX_OPT_ARGS];
2854 	char *options, *o, *p;
2855 	int token, ret = 0;
2856 	u64 token64;
2857 
2858 	options = o = kstrdup(buf, GFP_KERNEL);
2859 	if (!options)
2860 		return -ENOMEM;
2861 
2862 	while ((p = strsep(&o, ":\n")) != NULL) {
2863 		if (!*p)
2864 			continue;
2865 
2866 		token = match_token(p, traddr_opt_tokens, args);
2867 		switch (token) {
2868 		case FCT_TRADDR_WWNN:
2869 			if (match_u64(args, &token64)) {
2870 				ret = -EINVAL;
2871 				goto out;
2872 			}
2873 			traddr->nn = token64;
2874 			break;
2875 		case FCT_TRADDR_WWPN:
2876 			if (match_u64(args, &token64)) {
2877 				ret = -EINVAL;
2878 				goto out;
2879 			}
2880 			traddr->pn = token64;
2881 			break;
2882 		default:
2883 			pr_warn("unknown traddr token or missing value '%s'\n",
2884 					p);
2885 			ret = -EINVAL;
2886 			goto out;
2887 		}
2888 	}
2889 
2890 out:
2891 	kfree(options);
2892 	return ret;
2893 }
2894 
2895 static struct nvme_ctrl *
2896 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2897 {
2898 	struct nvme_fc_lport *lport;
2899 	struct nvme_fc_rport *rport;
2900 	struct nvme_ctrl *ctrl;
2901 	struct nvmet_fc_traddr laddr = { 0L, 0L };
2902 	struct nvmet_fc_traddr raddr = { 0L, 0L };
2903 	unsigned long flags;
2904 	int ret;
2905 
2906 	ret = nvme_fc_parse_address(&raddr, opts->traddr);
2907 	if (ret || !raddr.nn || !raddr.pn)
2908 		return ERR_PTR(-EINVAL);
2909 
2910 	ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2911 	if (ret || !laddr.nn || !laddr.pn)
2912 		return ERR_PTR(-EINVAL);
2913 
2914 	/* find the host and remote ports to connect together */
2915 	spin_lock_irqsave(&nvme_fc_lock, flags);
2916 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2917 		if (lport->localport.node_name != laddr.nn ||
2918 		    lport->localport.port_name != laddr.pn)
2919 			continue;
2920 
2921 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
2922 			if (rport->remoteport.node_name != raddr.nn ||
2923 			    rport->remoteport.port_name != raddr.pn)
2924 				continue;
2925 
2926 			/* if fail to get reference fall through. Will error */
2927 			if (!nvme_fc_rport_get(rport))
2928 				break;
2929 
2930 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
2931 
2932 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2933 			if (IS_ERR(ctrl))
2934 				nvme_fc_rport_put(rport);
2935 			return ctrl;
2936 		}
2937 	}
2938 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
2939 
2940 	return ERR_PTR(-ENOENT);
2941 }
2942 
2943 
2944 static struct nvmf_transport_ops nvme_fc_transport = {
2945 	.name		= "fc",
2946 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2947 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2948 	.create_ctrl	= nvme_fc_create_ctrl,
2949 };
2950 
2951 static int __init nvme_fc_init_module(void)
2952 {
2953 	int ret;
2954 
2955 	nvme_fc_wq = create_workqueue("nvme_fc_wq");
2956 	if (!nvme_fc_wq)
2957 		return -ENOMEM;
2958 
2959 	ret = nvmf_register_transport(&nvme_fc_transport);
2960 	if (ret)
2961 		goto err;
2962 
2963 	return 0;
2964 err:
2965 	destroy_workqueue(nvme_fc_wq);
2966 	return ret;
2967 }
2968 
2969 static void __exit nvme_fc_exit_module(void)
2970 {
2971 	/* sanity check - all lports should be removed */
2972 	if (!list_empty(&nvme_fc_lport_list))
2973 		pr_warn("%s: localport list not empty\n", __func__);
2974 
2975 	nvmf_unregister_transport(&nvme_fc_transport);
2976 
2977 	destroy_workqueue(nvme_fc_wq);
2978 
2979 	ida_destroy(&nvme_fc_local_port_cnt);
2980 	ida_destroy(&nvme_fc_ctrl_cnt);
2981 }
2982 
2983 module_init(nvme_fc_init_module);
2984 module_exit(nvme_fc_exit_module);
2985 
2986 MODULE_LICENSE("GPL v2");
2987