xref: /openbmc/linux/drivers/nvme/host/fc.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 enum nvme_fc_queue_flags {
23 	NVME_FC_Q_CONNECTED = 0,
24 	NVME_FC_Q_LIVE,
25 };
26 
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
28 
29 struct nvme_fc_queue {
30 	struct nvme_fc_ctrl	*ctrl;
31 	struct device		*dev;
32 	struct blk_mq_hw_ctx	*hctx;
33 	void			*lldd_handle;
34 	size_t			cmnd_capsule_len;
35 	u32			qnum;
36 	u32			rqcnt;
37 	u32			seqno;
38 
39 	u64			connection_id;
40 	atomic_t		csn;
41 
42 	unsigned long		flags;
43 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
44 
45 enum nvme_fcop_flags {
46 	FCOP_FLAGS_TERMIO	= (1 << 0),
47 	FCOP_FLAGS_AEN		= (1 << 1),
48 };
49 
50 struct nvmefc_ls_req_op {
51 	struct nvmefc_ls_req	ls_req;
52 
53 	struct nvme_fc_rport	*rport;
54 	struct nvme_fc_queue	*queue;
55 	struct request		*rq;
56 	u32			flags;
57 
58 	int			ls_error;
59 	struct completion	ls_done;
60 	struct list_head	lsreq_list;	/* rport->ls_req_list */
61 	bool			req_queued;
62 };
63 
64 enum nvme_fcpop_state {
65 	FCPOP_STATE_UNINIT	= 0,
66 	FCPOP_STATE_IDLE	= 1,
67 	FCPOP_STATE_ACTIVE	= 2,
68 	FCPOP_STATE_ABORTED	= 3,
69 	FCPOP_STATE_COMPLETE	= 4,
70 };
71 
72 struct nvme_fc_fcp_op {
73 	struct nvme_request	nreq;		/*
74 						 * nvme/host/core.c
75 						 * requires this to be
76 						 * the 1st element in the
77 						 * private structure
78 						 * associated with the
79 						 * request.
80 						 */
81 	struct nvmefc_fcp_req	fcp_req;
82 
83 	struct nvme_fc_ctrl	*ctrl;
84 	struct nvme_fc_queue	*queue;
85 	struct request		*rq;
86 
87 	atomic_t		state;
88 	u32			flags;
89 	u32			rqno;
90 	u32			nents;
91 
92 	struct nvme_fc_cmd_iu	cmd_iu;
93 	struct nvme_fc_ersp_iu	rsp_iu;
94 };
95 
96 struct nvme_fcp_op_w_sgl {
97 	struct nvme_fc_fcp_op	op;
98 	struct scatterlist	sgl[SG_CHUNK_SIZE];
99 	uint8_t			priv[0];
100 };
101 
102 struct nvme_fc_lport {
103 	struct nvme_fc_local_port	localport;
104 
105 	struct ida			endp_cnt;
106 	struct list_head		port_list;	/* nvme_fc_port_list */
107 	struct list_head		endp_list;
108 	struct device			*dev;	/* physical device for dma */
109 	struct nvme_fc_port_template	*ops;
110 	struct kref			ref;
111 	atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
113 
114 struct nvme_fc_rport {
115 	struct nvme_fc_remote_port	remoteport;
116 
117 	struct list_head		endp_list; /* for lport->endp_list */
118 	struct list_head		ctrl_list;
119 	struct list_head		ls_req_list;
120 	struct list_head		disc_list;
121 	struct device			*dev;	/* physical device for dma */
122 	struct nvme_fc_lport		*lport;
123 	spinlock_t			lock;
124 	struct kref			ref;
125 	atomic_t                        act_ctrl_cnt;
126 	unsigned long			dev_loss_end;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 enum nvme_fcctrl_flags {
130 	FCCTRL_TERMIO		= (1 << 0),
131 };
132 
133 struct nvme_fc_ctrl {
134 	spinlock_t		lock;
135 	struct nvme_fc_queue	*queues;
136 	struct device		*dev;
137 	struct nvme_fc_lport	*lport;
138 	struct nvme_fc_rport	*rport;
139 	u32			cnum;
140 
141 	bool			ioq_live;
142 	bool			assoc_active;
143 	atomic_t		err_work_active;
144 	u64			association_id;
145 
146 	struct list_head	ctrl_list;	/* rport->ctrl_list */
147 
148 	struct blk_mq_tag_set	admin_tag_set;
149 	struct blk_mq_tag_set	tag_set;
150 
151 	struct delayed_work	connect_work;
152 	struct work_struct	err_work;
153 
154 	struct kref		ref;
155 	u32			flags;
156 	u32			iocnt;
157 	wait_queue_head_t	ioabort_wait;
158 
159 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
160 
161 	struct nvme_ctrl	ctrl;
162 };
163 
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169 
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173 	return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175 
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179 	return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181 
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187 
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193 
194 
195 
196 /* *************************** Globals **************************** */
197 
198 
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200 
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204 
205 static struct workqueue_struct *nvme_fc_wq;
206 
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
209 
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct device *fc_udev_device;
215 
216 
217 /* *********************** FC-NVME Port Management ************************ */
218 
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 			struct nvme_fc_queue *, unsigned int);
221 
222 static void
223 nvme_fc_free_lport(struct kref *ref)
224 {
225 	struct nvme_fc_lport *lport =
226 		container_of(ref, struct nvme_fc_lport, ref);
227 	unsigned long flags;
228 
229 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 	WARN_ON(!list_empty(&lport->endp_list));
231 
232 	/* remove from transport list */
233 	spin_lock_irqsave(&nvme_fc_lock, flags);
234 	list_del(&lport->port_list);
235 	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236 		complete(&nvme_fc_unload_proceed);
237 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
238 
239 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 	ida_destroy(&lport->endp_cnt);
241 
242 	put_device(lport->dev);
243 
244 	kfree(lport);
245 }
246 
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250 	kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252 
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256 	return kref_get_unless_zero(&lport->ref);
257 }
258 
259 
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 			struct nvme_fc_port_template *ops,
263 			struct device *dev)
264 {
265 	struct nvme_fc_lport *lport;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&nvme_fc_lock, flags);
269 
270 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 		if (lport->localport.node_name != pinfo->node_name ||
272 		    lport->localport.port_name != pinfo->port_name)
273 			continue;
274 
275 		if (lport->dev != dev) {
276 			lport = ERR_PTR(-EXDEV);
277 			goto out_done;
278 		}
279 
280 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 			lport = ERR_PTR(-EEXIST);
282 			goto out_done;
283 		}
284 
285 		if (!nvme_fc_lport_get(lport)) {
286 			/*
287 			 * fails if ref cnt already 0. If so,
288 			 * act as if lport already deleted
289 			 */
290 			lport = NULL;
291 			goto out_done;
292 		}
293 
294 		/* resume the lport */
295 
296 		lport->ops = ops;
297 		lport->localport.port_role = pinfo->port_role;
298 		lport->localport.port_id = pinfo->port_id;
299 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
300 
301 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
302 
303 		return lport;
304 	}
305 
306 	lport = NULL;
307 
308 out_done:
309 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
310 
311 	return lport;
312 }
313 
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @portptr:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 			struct nvme_fc_port_template *template,
334 			struct device *dev,
335 			struct nvme_fc_local_port **portptr)
336 {
337 	struct nvme_fc_lport *newrec;
338 	unsigned long flags;
339 	int ret, idx;
340 
341 	if (!template->localport_delete || !template->remoteport_delete ||
342 	    !template->ls_req || !template->fcp_io ||
343 	    !template->ls_abort || !template->fcp_abort ||
344 	    !template->max_hw_queues || !template->max_sgl_segments ||
345 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
346 		ret = -EINVAL;
347 		goto out_reghost_failed;
348 	}
349 
350 	/*
351 	 * look to see if there is already a localport that had been
352 	 * deregistered and in the process of waiting for all the
353 	 * references to fully be removed.  If the references haven't
354 	 * expired, we can simply re-enable the localport. Remoteports
355 	 * and controller reconnections should resume naturally.
356 	 */
357 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358 
359 	/* found an lport, but something about its state is bad */
360 	if (IS_ERR(newrec)) {
361 		ret = PTR_ERR(newrec);
362 		goto out_reghost_failed;
363 
364 	/* found existing lport, which was resumed */
365 	} else if (newrec) {
366 		*portptr = &newrec->localport;
367 		return 0;
368 	}
369 
370 	/* nothing found - allocate a new localport struct */
371 
372 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373 			 GFP_KERNEL);
374 	if (!newrec) {
375 		ret = -ENOMEM;
376 		goto out_reghost_failed;
377 	}
378 
379 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380 	if (idx < 0) {
381 		ret = -ENOSPC;
382 		goto out_fail_kfree;
383 	}
384 
385 	if (!get_device(dev) && dev) {
386 		ret = -ENODEV;
387 		goto out_ida_put;
388 	}
389 
390 	INIT_LIST_HEAD(&newrec->port_list);
391 	INIT_LIST_HEAD(&newrec->endp_list);
392 	kref_init(&newrec->ref);
393 	atomic_set(&newrec->act_rport_cnt, 0);
394 	newrec->ops = template;
395 	newrec->dev = dev;
396 	ida_init(&newrec->endp_cnt);
397 	newrec->localport.private = &newrec[1];
398 	newrec->localport.node_name = pinfo->node_name;
399 	newrec->localport.port_name = pinfo->port_name;
400 	newrec->localport.port_role = pinfo->port_role;
401 	newrec->localport.port_id = pinfo->port_id;
402 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403 	newrec->localport.port_num = idx;
404 
405 	spin_lock_irqsave(&nvme_fc_lock, flags);
406 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
408 
409 	if (dev)
410 		dma_set_seg_boundary(dev, template->dma_boundary);
411 
412 	*portptr = &newrec->localport;
413 	return 0;
414 
415 out_ida_put:
416 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418 	kfree(newrec);
419 out_reghost_failed:
420 	*portptr = NULL;
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425 
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @portptr: pointer to the (registered) local port that is to be deregistered.
431  *
432  * Returns:
433  * a completion status. Must be 0 upon success; a negative errno
434  * (ex: -ENXIO) upon failure.
435  */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
440 	unsigned long flags;
441 
442 	if (!portptr)
443 		return -EINVAL;
444 
445 	spin_lock_irqsave(&nvme_fc_lock, flags);
446 
447 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 		return -EINVAL;
450 	}
451 	portptr->port_state = FC_OBJSTATE_DELETED;
452 
453 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 
455 	if (atomic_read(&lport->act_rport_cnt) == 0)
456 		lport->ops->localport_delete(&lport->localport);
457 
458 	nvme_fc_lport_put(lport);
459 
460 	return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463 
464 /*
465  * TRADDR strings, per FC-NVME are fixed format:
466  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467  * udev event will only differ by prefix of what field is
468  * being specified:
469  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470  *  19 + 43 + null_fudge = 64 characters
471  */
472 #define FCNVME_TRADDR_LENGTH		64
473 
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476 		struct nvme_fc_rport *rport)
477 {
478 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
479 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
480 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481 
482 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483 		return;
484 
485 	snprintf(hostaddr, sizeof(hostaddr),
486 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487 		lport->localport.node_name, lport->localport.port_name);
488 	snprintf(tgtaddr, sizeof(tgtaddr),
489 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490 		rport->remoteport.node_name, rport->remoteport.port_name);
491 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493 
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497 	struct nvme_fc_rport *rport =
498 		container_of(ref, struct nvme_fc_rport, ref);
499 	struct nvme_fc_lport *lport =
500 			localport_to_lport(rport->remoteport.localport);
501 	unsigned long flags;
502 
503 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504 	WARN_ON(!list_empty(&rport->ctrl_list));
505 
506 	/* remove from lport list */
507 	spin_lock_irqsave(&nvme_fc_lock, flags);
508 	list_del(&rport->endp_list);
509 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
510 
511 	WARN_ON(!list_empty(&rport->disc_list));
512 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513 
514 	kfree(rport);
515 
516 	nvme_fc_lport_put(lport);
517 }
518 
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522 	kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524 
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528 	return kref_get_unless_zero(&rport->ref);
529 }
530 
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534 	switch (ctrl->ctrl.state) {
535 	case NVME_CTRL_NEW:
536 	case NVME_CTRL_CONNECTING:
537 		/*
538 		 * As all reconnects were suppressed, schedule a
539 		 * connect.
540 		 */
541 		dev_info(ctrl->ctrl.device,
542 			"NVME-FC{%d}: connectivity re-established. "
543 			"Attempting reconnect\n", ctrl->cnum);
544 
545 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546 		break;
547 
548 	case NVME_CTRL_RESETTING:
549 		/*
550 		 * Controller is already in the process of terminating the
551 		 * association. No need to do anything further. The reconnect
552 		 * step will naturally occur after the reset completes.
553 		 */
554 		break;
555 
556 	default:
557 		/* no action to take - let it delete */
558 		break;
559 	}
560 }
561 
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564 				struct nvme_fc_port_info *pinfo)
565 {
566 	struct nvme_fc_rport *rport;
567 	struct nvme_fc_ctrl *ctrl;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&nvme_fc_lock, flags);
571 
572 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
573 		if (rport->remoteport.node_name != pinfo->node_name ||
574 		    rport->remoteport.port_name != pinfo->port_name)
575 			continue;
576 
577 		if (!nvme_fc_rport_get(rport)) {
578 			rport = ERR_PTR(-ENOLCK);
579 			goto out_done;
580 		}
581 
582 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
583 
584 		spin_lock_irqsave(&rport->lock, flags);
585 
586 		/* has it been unregistered */
587 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588 			/* means lldd called us twice */
589 			spin_unlock_irqrestore(&rport->lock, flags);
590 			nvme_fc_rport_put(rport);
591 			return ERR_PTR(-ESTALE);
592 		}
593 
594 		rport->remoteport.port_role = pinfo->port_role;
595 		rport->remoteport.port_id = pinfo->port_id;
596 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597 		rport->dev_loss_end = 0;
598 
599 		/*
600 		 * kick off a reconnect attempt on all associations to the
601 		 * remote port. A successful reconnects will resume i/o.
602 		 */
603 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604 			nvme_fc_resume_controller(ctrl);
605 
606 		spin_unlock_irqrestore(&rport->lock, flags);
607 
608 		return rport;
609 	}
610 
611 	rport = NULL;
612 
613 out_done:
614 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
615 
616 	return rport;
617 }
618 
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621 			struct nvme_fc_port_info *pinfo)
622 {
623 	if (pinfo->dev_loss_tmo)
624 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625 	else
626 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628 
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @portptr:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647 				struct nvme_fc_port_info *pinfo,
648 				struct nvme_fc_remote_port **portptr)
649 {
650 	struct nvme_fc_lport *lport = localport_to_lport(localport);
651 	struct nvme_fc_rport *newrec;
652 	unsigned long flags;
653 	int ret, idx;
654 
655 	if (!nvme_fc_lport_get(lport)) {
656 		ret = -ESHUTDOWN;
657 		goto out_reghost_failed;
658 	}
659 
660 	/*
661 	 * look to see if there is already a remoteport that is waiting
662 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
663 	 * If so, transition to it and reconnect.
664 	 */
665 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666 
667 	/* found an rport, but something about its state is bad */
668 	if (IS_ERR(newrec)) {
669 		ret = PTR_ERR(newrec);
670 		goto out_lport_put;
671 
672 	/* found existing rport, which was resumed */
673 	} else if (newrec) {
674 		nvme_fc_lport_put(lport);
675 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676 		nvme_fc_signal_discovery_scan(lport, newrec);
677 		*portptr = &newrec->remoteport;
678 		return 0;
679 	}
680 
681 	/* nothing found - allocate a new remoteport struct */
682 
683 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684 			 GFP_KERNEL);
685 	if (!newrec) {
686 		ret = -ENOMEM;
687 		goto out_lport_put;
688 	}
689 
690 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691 	if (idx < 0) {
692 		ret = -ENOSPC;
693 		goto out_kfree_rport;
694 	}
695 
696 	INIT_LIST_HEAD(&newrec->endp_list);
697 	INIT_LIST_HEAD(&newrec->ctrl_list);
698 	INIT_LIST_HEAD(&newrec->ls_req_list);
699 	INIT_LIST_HEAD(&newrec->disc_list);
700 	kref_init(&newrec->ref);
701 	atomic_set(&newrec->act_ctrl_cnt, 0);
702 	spin_lock_init(&newrec->lock);
703 	newrec->remoteport.localport = &lport->localport;
704 	newrec->dev = lport->dev;
705 	newrec->lport = lport;
706 	newrec->remoteport.private = &newrec[1];
707 	newrec->remoteport.port_role = pinfo->port_role;
708 	newrec->remoteport.node_name = pinfo->node_name;
709 	newrec->remoteport.port_name = pinfo->port_name;
710 	newrec->remoteport.port_id = pinfo->port_id;
711 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
712 	newrec->remoteport.port_num = idx;
713 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
714 
715 	spin_lock_irqsave(&nvme_fc_lock, flags);
716 	list_add_tail(&newrec->endp_list, &lport->endp_list);
717 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
718 
719 	nvme_fc_signal_discovery_scan(lport, newrec);
720 
721 	*portptr = &newrec->remoteport;
722 	return 0;
723 
724 out_kfree_rport:
725 	kfree(newrec);
726 out_lport_put:
727 	nvme_fc_lport_put(lport);
728 out_reghost_failed:
729 	*portptr = NULL;
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
733 
734 static int
735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
736 {
737 	struct nvmefc_ls_req_op *lsop;
738 	unsigned long flags;
739 
740 restart:
741 	spin_lock_irqsave(&rport->lock, flags);
742 
743 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
744 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
745 			lsop->flags |= FCOP_FLAGS_TERMIO;
746 			spin_unlock_irqrestore(&rport->lock, flags);
747 			rport->lport->ops->ls_abort(&rport->lport->localport,
748 						&rport->remoteport,
749 						&lsop->ls_req);
750 			goto restart;
751 		}
752 	}
753 	spin_unlock_irqrestore(&rport->lock, flags);
754 
755 	return 0;
756 }
757 
758 static void
759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
760 {
761 	dev_info(ctrl->ctrl.device,
762 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
763 		"Reconnect", ctrl->cnum);
764 
765 	switch (ctrl->ctrl.state) {
766 	case NVME_CTRL_NEW:
767 	case NVME_CTRL_LIVE:
768 		/*
769 		 * Schedule a controller reset. The reset will terminate the
770 		 * association and schedule the reconnect timer.  Reconnects
771 		 * will be attempted until either the ctlr_loss_tmo
772 		 * (max_retries * connect_delay) expires or the remoteport's
773 		 * dev_loss_tmo expires.
774 		 */
775 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
776 			dev_warn(ctrl->ctrl.device,
777 				"NVME-FC{%d}: Couldn't schedule reset.\n",
778 				ctrl->cnum);
779 			nvme_delete_ctrl(&ctrl->ctrl);
780 		}
781 		break;
782 
783 	case NVME_CTRL_CONNECTING:
784 		/*
785 		 * The association has already been terminated and the
786 		 * controller is attempting reconnects.  No need to do anything
787 		 * futher.  Reconnects will be attempted until either the
788 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
789 		 * remoteport's dev_loss_tmo expires.
790 		 */
791 		break;
792 
793 	case NVME_CTRL_RESETTING:
794 		/*
795 		 * Controller is already in the process of terminating the
796 		 * association.  No need to do anything further. The reconnect
797 		 * step will kick in naturally after the association is
798 		 * terminated.
799 		 */
800 		break;
801 
802 	case NVME_CTRL_DELETING:
803 	default:
804 		/* no action to take - let it delete */
805 		break;
806 	}
807 }
808 
809 /**
810  * nvme_fc_unregister_remoteport - transport entry point called by an
811  *                              LLDD to deregister/remove a previously
812  *                              registered a NVME subsystem FC port.
813  * @portptr: pointer to the (registered) remote port that is to be
814  *           deregistered.
815  *
816  * Returns:
817  * a completion status. Must be 0 upon success; a negative errno
818  * (ex: -ENXIO) upon failure.
819  */
820 int
821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
822 {
823 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
824 	struct nvme_fc_ctrl *ctrl;
825 	unsigned long flags;
826 
827 	if (!portptr)
828 		return -EINVAL;
829 
830 	spin_lock_irqsave(&rport->lock, flags);
831 
832 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
833 		spin_unlock_irqrestore(&rport->lock, flags);
834 		return -EINVAL;
835 	}
836 	portptr->port_state = FC_OBJSTATE_DELETED;
837 
838 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
839 
840 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
841 		/* if dev_loss_tmo==0, dev loss is immediate */
842 		if (!portptr->dev_loss_tmo) {
843 			dev_warn(ctrl->ctrl.device,
844 				"NVME-FC{%d}: controller connectivity lost.\n",
845 				ctrl->cnum);
846 			nvme_delete_ctrl(&ctrl->ctrl);
847 		} else
848 			nvme_fc_ctrl_connectivity_loss(ctrl);
849 	}
850 
851 	spin_unlock_irqrestore(&rport->lock, flags);
852 
853 	nvme_fc_abort_lsops(rport);
854 
855 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
856 		rport->lport->ops->remoteport_delete(portptr);
857 
858 	/*
859 	 * release the reference, which will allow, if all controllers
860 	 * go away, which should only occur after dev_loss_tmo occurs,
861 	 * for the rport to be torn down.
862 	 */
863 	nvme_fc_rport_put(rport);
864 
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
868 
869 /**
870  * nvme_fc_rescan_remoteport - transport entry point called by an
871  *                              LLDD to request a nvme device rescan.
872  * @remoteport: pointer to the (registered) remote port that is to be
873  *              rescanned.
874  *
875  * Returns: N/A
876  */
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
879 {
880 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
881 
882 	nvme_fc_signal_discovery_scan(rport->lport, rport);
883 }
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
885 
886 int
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888 			u32 dev_loss_tmo)
889 {
890 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891 	unsigned long flags;
892 
893 	spin_lock_irqsave(&rport->lock, flags);
894 
895 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896 		spin_unlock_irqrestore(&rport->lock, flags);
897 		return -EINVAL;
898 	}
899 
900 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
902 
903 	spin_unlock_irqrestore(&rport->lock, flags);
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
908 
909 
910 /* *********************** FC-NVME DMA Handling **************************** */
911 
912 /*
913  * The fcloop device passes in a NULL device pointer. Real LLD's will
914  * pass in a valid device pointer. If NULL is passed to the dma mapping
915  * routines, depending on the platform, it may or may not succeed, and
916  * may crash.
917  *
918  * As such:
919  * Wrapper all the dma routines and check the dev pointer.
920  *
921  * If simple mappings (return just a dma address, we'll noop them,
922  * returning a dma address of 0.
923  *
924  * On more complex mappings (dma_map_sg), a pseudo routine fills
925  * in the scatter list, setting all dma addresses to 0.
926  */
927 
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930 		enum dma_data_direction dir)
931 {
932 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
933 }
934 
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
937 {
938 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
939 }
940 
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943 	enum dma_data_direction dir)
944 {
945 	if (dev)
946 		dma_unmap_single(dev, addr, size, dir);
947 }
948 
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951 		enum dma_data_direction dir)
952 {
953 	if (dev)
954 		dma_sync_single_for_cpu(dev, addr, size, dir);
955 }
956 
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959 		enum dma_data_direction dir)
960 {
961 	if (dev)
962 		dma_sync_single_for_device(dev, addr, size, dir);
963 }
964 
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
968 {
969 	struct scatterlist *s;
970 	int i;
971 
972 	WARN_ON(nents == 0 || sg[0].length == 0);
973 
974 	for_each_sg(sg, s, nents, i) {
975 		s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977 		s->dma_length = s->length;
978 #endif
979 	}
980 	return nents;
981 }
982 
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985 		enum dma_data_direction dir)
986 {
987 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
988 }
989 
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992 		enum dma_data_direction dir)
993 {
994 	if (dev)
995 		dma_unmap_sg(dev, sg, nents, dir);
996 }
997 
998 /* *********************** FC-NVME LS Handling **************************** */
999 
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002 
1003 
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006 {
1007 	struct nvme_fc_rport *rport = lsop->rport;
1008 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&rport->lock, flags);
1012 
1013 	if (!lsop->req_queued) {
1014 		spin_unlock_irqrestore(&rport->lock, flags);
1015 		return;
1016 	}
1017 
1018 	list_del(&lsop->lsreq_list);
1019 
1020 	lsop->req_queued = false;
1021 
1022 	spin_unlock_irqrestore(&rport->lock, flags);
1023 
1024 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025 				  (lsreq->rqstlen + lsreq->rsplen),
1026 				  DMA_BIDIRECTIONAL);
1027 
1028 	nvme_fc_rport_put(rport);
1029 }
1030 
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033 		struct nvmefc_ls_req_op *lsop,
1034 		void (*done)(struct nvmefc_ls_req *req, int status))
1035 {
1036 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037 	unsigned long flags;
1038 	int ret = 0;
1039 
1040 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041 		return -ECONNREFUSED;
1042 
1043 	if (!nvme_fc_rport_get(rport))
1044 		return -ESHUTDOWN;
1045 
1046 	lsreq->done = done;
1047 	lsop->rport = rport;
1048 	lsop->req_queued = false;
1049 	INIT_LIST_HEAD(&lsop->lsreq_list);
1050 	init_completion(&lsop->ls_done);
1051 
1052 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053 				  lsreq->rqstlen + lsreq->rsplen,
1054 				  DMA_BIDIRECTIONAL);
1055 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056 		ret = -EFAULT;
1057 		goto out_putrport;
1058 	}
1059 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060 
1061 	spin_lock_irqsave(&rport->lock, flags);
1062 
1063 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064 
1065 	lsop->req_queued = true;
1066 
1067 	spin_unlock_irqrestore(&rport->lock, flags);
1068 
1069 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070 					&rport->remoteport, lsreq);
1071 	if (ret)
1072 		goto out_unlink;
1073 
1074 	return 0;
1075 
1076 out_unlink:
1077 	lsop->ls_error = ret;
1078 	spin_lock_irqsave(&rport->lock, flags);
1079 	lsop->req_queued = false;
1080 	list_del(&lsop->lsreq_list);
1081 	spin_unlock_irqrestore(&rport->lock, flags);
1082 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083 				  (lsreq->rqstlen + lsreq->rsplen),
1084 				  DMA_BIDIRECTIONAL);
1085 out_putrport:
1086 	nvme_fc_rport_put(rport);
1087 
1088 	return ret;
1089 }
1090 
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093 {
1094 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095 
1096 	lsop->ls_error = status;
1097 	complete(&lsop->ls_done);
1098 }
1099 
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102 {
1103 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105 	int ret;
1106 
1107 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108 
1109 	if (!ret) {
1110 		/*
1111 		 * No timeout/not interruptible as we need the struct
1112 		 * to exist until the lldd calls us back. Thus mandate
1113 		 * wait until driver calls back. lldd responsible for
1114 		 * the timeout action
1115 		 */
1116 		wait_for_completion(&lsop->ls_done);
1117 
1118 		__nvme_fc_finish_ls_req(lsop);
1119 
1120 		ret = lsop->ls_error;
1121 	}
1122 
1123 	if (ret)
1124 		return ret;
1125 
1126 	/* ACC or RJT payload ? */
1127 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128 		return -ENXIO;
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135 		struct nvmefc_ls_req_op *lsop,
1136 		void (*done)(struct nvmefc_ls_req *req, int status))
1137 {
1138 	/* don't wait for completion */
1139 
1140 	return __nvme_fc_send_ls_req(rport, lsop, done);
1141 }
1142 
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145 	VERR_NO_ERROR		= 0,
1146 	VERR_LSACC		= 1,
1147 	VERR_LSDESC_RQST	= 2,
1148 	VERR_LSDESC_RQST_LEN	= 3,
1149 	VERR_ASSOC_ID		= 4,
1150 	VERR_ASSOC_ID_LEN	= 5,
1151 	VERR_CONN_ID		= 6,
1152 	VERR_CONN_ID_LEN	= 7,
1153 	VERR_CR_ASSOC		= 8,
1154 	VERR_CR_ASSOC_ACC_LEN	= 9,
1155 	VERR_CR_CONN		= 10,
1156 	VERR_CR_CONN_ACC_LEN	= 11,
1157 	VERR_DISCONN		= 12,
1158 	VERR_DISCONN_ACC_LEN	= 13,
1159 };
1160 
1161 static char *validation_errors[] = {
1162 	"OK",
1163 	"Not LS_ACC",
1164 	"Not LSDESC_RQST",
1165 	"Bad LSDESC_RQST Length",
1166 	"Not Association ID",
1167 	"Bad Association ID Length",
1168 	"Not Connection ID",
1169 	"Bad Connection ID Length",
1170 	"Not CR_ASSOC Rqst",
1171 	"Bad CR_ASSOC ACC Length",
1172 	"Not CR_CONN Rqst",
1173 	"Bad CR_CONN ACC Length",
1174 	"Not Disconnect Rqst",
1175 	"Bad Disconnect ACC Length",
1176 };
1177 
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181 {
1182 	struct nvmefc_ls_req_op *lsop;
1183 	struct nvmefc_ls_req *lsreq;
1184 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186 	int ret, fcret = 0;
1187 
1188 	lsop = kzalloc((sizeof(*lsop) +
1189 			 ctrl->lport->ops->lsrqst_priv_sz +
1190 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191 	if (!lsop) {
1192 		ret = -ENOMEM;
1193 		goto out_no_memory;
1194 	}
1195 	lsreq = &lsop->ls_req;
1196 
1197 	lsreq->private = (void *)&lsop[1];
1198 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201 
1202 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203 	assoc_rqst->desc_list_len =
1204 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205 
1206 	assoc_rqst->assoc_cmd.desc_tag =
1207 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208 	assoc_rqst->assoc_cmd.desc_len =
1209 			fcnvme_lsdesc_len(
1210 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211 
1212 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214 	/* Linux supports only Dynamic controllers */
1215 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221 
1222 	lsop->queue = queue;
1223 	lsreq->rqstaddr = assoc_rqst;
1224 	lsreq->rqstlen = sizeof(*assoc_rqst);
1225 	lsreq->rspaddr = assoc_acc;
1226 	lsreq->rsplen = sizeof(*assoc_acc);
1227 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228 
1229 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230 	if (ret)
1231 		goto out_free_buffer;
1232 
1233 	/* process connect LS completion */
1234 
1235 	/* validate the ACC response */
1236 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237 		fcret = VERR_LSACC;
1238 	else if (assoc_acc->hdr.desc_list_len !=
1239 			fcnvme_lsdesc_len(
1240 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241 		fcret = VERR_CR_ASSOC_ACC_LEN;
1242 	else if (assoc_acc->hdr.rqst.desc_tag !=
1243 			cpu_to_be32(FCNVME_LSDESC_RQST))
1244 		fcret = VERR_LSDESC_RQST;
1245 	else if (assoc_acc->hdr.rqst.desc_len !=
1246 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247 		fcret = VERR_LSDESC_RQST_LEN;
1248 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249 		fcret = VERR_CR_ASSOC;
1250 	else if (assoc_acc->associd.desc_tag !=
1251 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252 		fcret = VERR_ASSOC_ID;
1253 	else if (assoc_acc->associd.desc_len !=
1254 			fcnvme_lsdesc_len(
1255 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1256 		fcret = VERR_ASSOC_ID_LEN;
1257 	else if (assoc_acc->connectid.desc_tag !=
1258 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259 		fcret = VERR_CONN_ID;
1260 	else if (assoc_acc->connectid.desc_len !=
1261 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262 		fcret = VERR_CONN_ID_LEN;
1263 
1264 	if (fcret) {
1265 		ret = -EBADF;
1266 		dev_err(ctrl->dev,
1267 			"q %d connect failed: %s\n",
1268 			queue->qnum, validation_errors[fcret]);
1269 	} else {
1270 		ctrl->association_id =
1271 			be64_to_cpu(assoc_acc->associd.association_id);
1272 		queue->connection_id =
1273 			be64_to_cpu(assoc_acc->connectid.connection_id);
1274 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275 	}
1276 
1277 out_free_buffer:
1278 	kfree(lsop);
1279 out_no_memory:
1280 	if (ret)
1281 		dev_err(ctrl->dev,
1282 			"queue %d connect admin queue failed (%d).\n",
1283 			queue->qnum, ret);
1284 	return ret;
1285 }
1286 
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289 			u16 qsize, u16 ersp_ratio)
1290 {
1291 	struct nvmefc_ls_req_op *lsop;
1292 	struct nvmefc_ls_req *lsreq;
1293 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1295 	int ret, fcret = 0;
1296 
1297 	lsop = kzalloc((sizeof(*lsop) +
1298 			 ctrl->lport->ops->lsrqst_priv_sz +
1299 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300 	if (!lsop) {
1301 		ret = -ENOMEM;
1302 		goto out_no_memory;
1303 	}
1304 	lsreq = &lsop->ls_req;
1305 
1306 	lsreq->private = (void *)&lsop[1];
1307 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310 
1311 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312 	conn_rqst->desc_list_len = cpu_to_be32(
1313 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1314 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315 
1316 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317 	conn_rqst->associd.desc_len =
1318 			fcnvme_lsdesc_len(
1319 				sizeof(struct fcnvme_lsdesc_assoc_id));
1320 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321 	conn_rqst->connect_cmd.desc_tag =
1322 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323 	conn_rqst->connect_cmd.desc_len =
1324 			fcnvme_lsdesc_len(
1325 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329 
1330 	lsop->queue = queue;
1331 	lsreq->rqstaddr = conn_rqst;
1332 	lsreq->rqstlen = sizeof(*conn_rqst);
1333 	lsreq->rspaddr = conn_acc;
1334 	lsreq->rsplen = sizeof(*conn_acc);
1335 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336 
1337 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338 	if (ret)
1339 		goto out_free_buffer;
1340 
1341 	/* process connect LS completion */
1342 
1343 	/* validate the ACC response */
1344 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345 		fcret = VERR_LSACC;
1346 	else if (conn_acc->hdr.desc_list_len !=
1347 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348 		fcret = VERR_CR_CONN_ACC_LEN;
1349 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350 		fcret = VERR_LSDESC_RQST;
1351 	else if (conn_acc->hdr.rqst.desc_len !=
1352 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353 		fcret = VERR_LSDESC_RQST_LEN;
1354 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355 		fcret = VERR_CR_CONN;
1356 	else if (conn_acc->connectid.desc_tag !=
1357 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358 		fcret = VERR_CONN_ID;
1359 	else if (conn_acc->connectid.desc_len !=
1360 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361 		fcret = VERR_CONN_ID_LEN;
1362 
1363 	if (fcret) {
1364 		ret = -EBADF;
1365 		dev_err(ctrl->dev,
1366 			"q %d connect failed: %s\n",
1367 			queue->qnum, validation_errors[fcret]);
1368 	} else {
1369 		queue->connection_id =
1370 			be64_to_cpu(conn_acc->connectid.connection_id);
1371 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372 	}
1373 
1374 out_free_buffer:
1375 	kfree(lsop);
1376 out_no_memory:
1377 	if (ret)
1378 		dev_err(ctrl->dev,
1379 			"queue %d connect command failed (%d).\n",
1380 			queue->qnum, ret);
1381 	return ret;
1382 }
1383 
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386 {
1387 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388 
1389 	__nvme_fc_finish_ls_req(lsop);
1390 
1391 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1392 
1393 	kfree(lsop);
1394 }
1395 
1396 /*
1397  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398  * the FC-NVME Association.  Terminating the association also
1399  * terminates the FC-NVME connections (per queue, both admin and io
1400  * queues) that are part of the association. E.g. things are torn
1401  * down, and the related FC-NVME Association ID and Connection IDs
1402  * become invalid.
1403  *
1404  * The behavior of the fc-nvme initiator is such that it's
1405  * understanding of the association and connections will implicitly
1406  * be torn down. The action is implicit as it may be due to a loss of
1407  * connectivity with the fc-nvme target, so you may never get a
1408  * response even if you tried.  As such, the action of this routine
1409  * is to asynchronously send the LS, ignore any results of the LS, and
1410  * continue on with terminating the association. If the fc-nvme target
1411  * is present and receives the LS, it too can tear down.
1412  */
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415 {
1416 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417 	struct fcnvme_ls_disconnect_acc *discon_acc;
1418 	struct nvmefc_ls_req_op *lsop;
1419 	struct nvmefc_ls_req *lsreq;
1420 	int ret;
1421 
1422 	lsop = kzalloc((sizeof(*lsop) +
1423 			 ctrl->lport->ops->lsrqst_priv_sz +
1424 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425 			GFP_KERNEL);
1426 	if (!lsop)
1427 		/* couldn't sent it... too bad */
1428 		return;
1429 
1430 	lsreq = &lsop->ls_req;
1431 
1432 	lsreq->private = (void *)&lsop[1];
1433 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436 
1437 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438 	discon_rqst->desc_list_len = cpu_to_be32(
1439 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1440 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441 
1442 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443 	discon_rqst->associd.desc_len =
1444 			fcnvme_lsdesc_len(
1445 				sizeof(struct fcnvme_lsdesc_assoc_id));
1446 
1447 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448 
1449 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450 						FCNVME_LSDESC_DISCONN_CMD);
1451 	discon_rqst->discon_cmd.desc_len =
1452 			fcnvme_lsdesc_len(
1453 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456 
1457 	lsreq->rqstaddr = discon_rqst;
1458 	lsreq->rqstlen = sizeof(*discon_rqst);
1459 	lsreq->rspaddr = discon_acc;
1460 	lsreq->rsplen = sizeof(*discon_acc);
1461 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462 
1463 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464 				nvme_fc_disconnect_assoc_done);
1465 	if (ret)
1466 		kfree(lsop);
1467 
1468 	/* only meaningful part to terminating the association */
1469 	ctrl->association_id = 0;
1470 }
1471 
1472 
1473 /* *********************** NVME Ctrl Routines **************************** */
1474 
1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476 
1477 static void
1478 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1479 		struct nvme_fc_fcp_op *op)
1480 {
1481 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1482 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1483 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1484 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1485 
1486 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1487 }
1488 
1489 static void
1490 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1491 		unsigned int hctx_idx)
1492 {
1493 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1494 
1495 	return __nvme_fc_exit_request(set->driver_data, op);
1496 }
1497 
1498 static int
1499 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1500 {
1501 	unsigned long flags;
1502 	int opstate;
1503 
1504 	spin_lock_irqsave(&ctrl->lock, flags);
1505 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1506 	if (opstate != FCPOP_STATE_ACTIVE)
1507 		atomic_set(&op->state, opstate);
1508 	else if (ctrl->flags & FCCTRL_TERMIO)
1509 		ctrl->iocnt++;
1510 	spin_unlock_irqrestore(&ctrl->lock, flags);
1511 
1512 	if (opstate != FCPOP_STATE_ACTIVE)
1513 		return -ECANCELED;
1514 
1515 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1516 					&ctrl->rport->remoteport,
1517 					op->queue->lldd_handle,
1518 					&op->fcp_req);
1519 
1520 	return 0;
1521 }
1522 
1523 static void
1524 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1525 {
1526 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1527 	int i;
1528 
1529 	/* ensure we've initialized the ops once */
1530 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1531 		return;
1532 
1533 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1534 		__nvme_fc_abort_op(ctrl, aen_op);
1535 }
1536 
1537 static inline void
1538 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1539 		struct nvme_fc_fcp_op *op, int opstate)
1540 {
1541 	unsigned long flags;
1542 
1543 	if (opstate == FCPOP_STATE_ABORTED) {
1544 		spin_lock_irqsave(&ctrl->lock, flags);
1545 		if (ctrl->flags & FCCTRL_TERMIO) {
1546 			if (!--ctrl->iocnt)
1547 				wake_up(&ctrl->ioabort_wait);
1548 		}
1549 		spin_unlock_irqrestore(&ctrl->lock, flags);
1550 	}
1551 }
1552 
1553 static void
1554 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1555 {
1556 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1557 	struct request *rq = op->rq;
1558 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1559 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1560 	struct nvme_fc_queue *queue = op->queue;
1561 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1562 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1563 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1564 	union nvme_result result;
1565 	bool terminate_assoc = true;
1566 	int opstate;
1567 
1568 	/*
1569 	 * WARNING:
1570 	 * The current linux implementation of a nvme controller
1571 	 * allocates a single tag set for all io queues and sizes
1572 	 * the io queues to fully hold all possible tags. Thus, the
1573 	 * implementation does not reference or care about the sqhd
1574 	 * value as it never needs to use the sqhd/sqtail pointers
1575 	 * for submission pacing.
1576 	 *
1577 	 * This affects the FC-NVME implementation in two ways:
1578 	 * 1) As the value doesn't matter, we don't need to waste
1579 	 *    cycles extracting it from ERSPs and stamping it in the
1580 	 *    cases where the transport fabricates CQEs on successful
1581 	 *    completions.
1582 	 * 2) The FC-NVME implementation requires that delivery of
1583 	 *    ERSP completions are to go back to the nvme layer in order
1584 	 *    relative to the rsn, such that the sqhd value will always
1585 	 *    be "in order" for the nvme layer. As the nvme layer in
1586 	 *    linux doesn't care about sqhd, there's no need to return
1587 	 *    them in order.
1588 	 *
1589 	 * Additionally:
1590 	 * As the core nvme layer in linux currently does not look at
1591 	 * every field in the cqe - in cases where the FC transport must
1592 	 * fabricate a CQE, the following fields will not be set as they
1593 	 * are not referenced:
1594 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1595 	 *
1596 	 * Failure or error of an individual i/o, in a transport
1597 	 * detected fashion unrelated to the nvme completion status,
1598 	 * potentially cause the initiator and target sides to get out
1599 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1600 	 * Per FC-NVME spec, failure of an individual command requires
1601 	 * the connection to be terminated, which in turn requires the
1602 	 * association to be terminated.
1603 	 */
1604 
1605 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1606 
1607 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1608 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1609 
1610 	if (opstate == FCPOP_STATE_ABORTED)
1611 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1612 	else if (freq->status)
1613 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1614 
1615 	/*
1616 	 * For the linux implementation, if we have an unsuccesful
1617 	 * status, they blk-mq layer can typically be called with the
1618 	 * non-zero status and the content of the cqe isn't important.
1619 	 */
1620 	if (status)
1621 		goto done;
1622 
1623 	/*
1624 	 * command completed successfully relative to the wire
1625 	 * protocol. However, validate anything received and
1626 	 * extract the status and result from the cqe (create it
1627 	 * where necessary).
1628 	 */
1629 
1630 	switch (freq->rcv_rsplen) {
1631 
1632 	case 0:
1633 	case NVME_FC_SIZEOF_ZEROS_RSP:
1634 		/*
1635 		 * No response payload or 12 bytes of payload (which
1636 		 * should all be zeros) are considered successful and
1637 		 * no payload in the CQE by the transport.
1638 		 */
1639 		if (freq->transferred_length !=
1640 			be32_to_cpu(op->cmd_iu.data_len)) {
1641 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1642 			goto done;
1643 		}
1644 		result.u64 = 0;
1645 		break;
1646 
1647 	case sizeof(struct nvme_fc_ersp_iu):
1648 		/*
1649 		 * The ERSP IU contains a full completion with CQE.
1650 		 * Validate ERSP IU and look at cqe.
1651 		 */
1652 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1653 					(freq->rcv_rsplen / 4) ||
1654 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1655 					freq->transferred_length ||
1656 			     op->rsp_iu.status_code ||
1657 			     sqe->common.command_id != cqe->command_id)) {
1658 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1659 			goto done;
1660 		}
1661 		result = cqe->result;
1662 		status = cqe->status;
1663 		break;
1664 
1665 	default:
1666 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1667 		goto done;
1668 	}
1669 
1670 	terminate_assoc = false;
1671 
1672 done:
1673 	if (op->flags & FCOP_FLAGS_AEN) {
1674 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1675 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1676 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1677 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1678 		nvme_fc_ctrl_put(ctrl);
1679 		goto check_error;
1680 	}
1681 
1682 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683 	nvme_end_request(rq, status, result);
1684 
1685 check_error:
1686 	if (terminate_assoc)
1687 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1688 }
1689 
1690 static int
1691 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1692 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1693 		struct request *rq, u32 rqno)
1694 {
1695 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1696 		container_of(op, typeof(*op_w_sgl), op);
1697 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1698 	int ret = 0;
1699 
1700 	memset(op, 0, sizeof(*op));
1701 	op->fcp_req.cmdaddr = &op->cmd_iu;
1702 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1703 	op->fcp_req.rspaddr = &op->rsp_iu;
1704 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1705 	op->fcp_req.done = nvme_fc_fcpio_done;
1706 	op->ctrl = ctrl;
1707 	op->queue = queue;
1708 	op->rq = rq;
1709 	op->rqno = rqno;
1710 
1711 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1712 	cmdiu->fc_id = NVME_CMD_FC_ID;
1713 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1714 
1715 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1716 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1717 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1718 		dev_err(ctrl->dev,
1719 			"FCP Op failed - cmdiu dma mapping failed.\n");
1720 		ret = EFAULT;
1721 		goto out_on_error;
1722 	}
1723 
1724 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1725 				&op->rsp_iu, sizeof(op->rsp_iu),
1726 				DMA_FROM_DEVICE);
1727 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1728 		dev_err(ctrl->dev,
1729 			"FCP Op failed - rspiu dma mapping failed.\n");
1730 		ret = EFAULT;
1731 	}
1732 
1733 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1734 out_on_error:
1735 	return ret;
1736 }
1737 
1738 static int
1739 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740 		unsigned int hctx_idx, unsigned int numa_node)
1741 {
1742 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1743 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1744 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1745 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1746 	int res;
1747 
1748 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1749 	if (res)
1750 		return res;
1751 	op->op.fcp_req.first_sgl = &op->sgl[0];
1752 	op->op.fcp_req.private = &op->priv[0];
1753 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1754 	return res;
1755 }
1756 
1757 static int
1758 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1759 {
1760 	struct nvme_fc_fcp_op *aen_op;
1761 	struct nvme_fc_cmd_iu *cmdiu;
1762 	struct nvme_command *sqe;
1763 	void *private;
1764 	int i, ret;
1765 
1766 	aen_op = ctrl->aen_ops;
1767 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1768 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1769 						GFP_KERNEL);
1770 		if (!private)
1771 			return -ENOMEM;
1772 
1773 		cmdiu = &aen_op->cmd_iu;
1774 		sqe = &cmdiu->sqe;
1775 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1776 				aen_op, (struct request *)NULL,
1777 				(NVME_AQ_BLK_MQ_DEPTH + i));
1778 		if (ret) {
1779 			kfree(private);
1780 			return ret;
1781 		}
1782 
1783 		aen_op->flags = FCOP_FLAGS_AEN;
1784 		aen_op->fcp_req.private = private;
1785 
1786 		memset(sqe, 0, sizeof(*sqe));
1787 		sqe->common.opcode = nvme_admin_async_event;
1788 		/* Note: core layer may overwrite the sqe.command_id value */
1789 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1790 	}
1791 	return 0;
1792 }
1793 
1794 static void
1795 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1796 {
1797 	struct nvme_fc_fcp_op *aen_op;
1798 	int i;
1799 
1800 	aen_op = ctrl->aen_ops;
1801 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1802 		if (!aen_op->fcp_req.private)
1803 			continue;
1804 
1805 		__nvme_fc_exit_request(ctrl, aen_op);
1806 
1807 		kfree(aen_op->fcp_req.private);
1808 		aen_op->fcp_req.private = NULL;
1809 	}
1810 }
1811 
1812 static inline void
1813 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1814 		unsigned int qidx)
1815 {
1816 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1817 
1818 	hctx->driver_data = queue;
1819 	queue->hctx = hctx;
1820 }
1821 
1822 static int
1823 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1824 		unsigned int hctx_idx)
1825 {
1826 	struct nvme_fc_ctrl *ctrl = data;
1827 
1828 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1829 
1830 	return 0;
1831 }
1832 
1833 static int
1834 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1835 		unsigned int hctx_idx)
1836 {
1837 	struct nvme_fc_ctrl *ctrl = data;
1838 
1839 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1840 
1841 	return 0;
1842 }
1843 
1844 static void
1845 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1846 {
1847 	struct nvme_fc_queue *queue;
1848 
1849 	queue = &ctrl->queues[idx];
1850 	memset(queue, 0, sizeof(*queue));
1851 	queue->ctrl = ctrl;
1852 	queue->qnum = idx;
1853 	atomic_set(&queue->csn, 0);
1854 	queue->dev = ctrl->dev;
1855 
1856 	if (idx > 0)
1857 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1858 	else
1859 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1860 
1861 	/*
1862 	 * Considered whether we should allocate buffers for all SQEs
1863 	 * and CQEs and dma map them - mapping their respective entries
1864 	 * into the request structures (kernel vm addr and dma address)
1865 	 * thus the driver could use the buffers/mappings directly.
1866 	 * It only makes sense if the LLDD would use them for its
1867 	 * messaging api. It's very unlikely most adapter api's would use
1868 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1869 	 * structures were used instead.
1870 	 */
1871 }
1872 
1873 /*
1874  * This routine terminates a queue at the transport level.
1875  * The transport has already ensured that all outstanding ios on
1876  * the queue have been terminated.
1877  * The transport will send a Disconnect LS request to terminate
1878  * the queue's connection. Termination of the admin queue will also
1879  * terminate the association at the target.
1880  */
1881 static void
1882 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1883 {
1884 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1885 		return;
1886 
1887 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1888 	/*
1889 	 * Current implementation never disconnects a single queue.
1890 	 * It always terminates a whole association. So there is never
1891 	 * a disconnect(queue) LS sent to the target.
1892 	 */
1893 
1894 	queue->connection_id = 0;
1895 	atomic_set(&queue->csn, 0);
1896 }
1897 
1898 static void
1899 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1900 	struct nvme_fc_queue *queue, unsigned int qidx)
1901 {
1902 	if (ctrl->lport->ops->delete_queue)
1903 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1904 				queue->lldd_handle);
1905 	queue->lldd_handle = NULL;
1906 }
1907 
1908 static void
1909 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1910 {
1911 	int i;
1912 
1913 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1914 		nvme_fc_free_queue(&ctrl->queues[i]);
1915 }
1916 
1917 static int
1918 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1919 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1920 {
1921 	int ret = 0;
1922 
1923 	queue->lldd_handle = NULL;
1924 	if (ctrl->lport->ops->create_queue)
1925 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1926 				qidx, qsize, &queue->lldd_handle);
1927 
1928 	return ret;
1929 }
1930 
1931 static void
1932 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1933 {
1934 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1935 	int i;
1936 
1937 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1938 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1939 }
1940 
1941 static int
1942 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1943 {
1944 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1945 	int i, ret;
1946 
1947 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1948 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1949 		if (ret)
1950 			goto delete_queues;
1951 	}
1952 
1953 	return 0;
1954 
1955 delete_queues:
1956 	for (; i >= 0; i--)
1957 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1958 	return ret;
1959 }
1960 
1961 static int
1962 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1963 {
1964 	int i, ret = 0;
1965 
1966 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1967 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1968 					(qsize / 5));
1969 		if (ret)
1970 			break;
1971 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1972 		if (ret)
1973 			break;
1974 
1975 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1976 	}
1977 
1978 	return ret;
1979 }
1980 
1981 static void
1982 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1983 {
1984 	int i;
1985 
1986 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1987 		nvme_fc_init_queue(ctrl, i);
1988 }
1989 
1990 static void
1991 nvme_fc_ctrl_free(struct kref *ref)
1992 {
1993 	struct nvme_fc_ctrl *ctrl =
1994 		container_of(ref, struct nvme_fc_ctrl, ref);
1995 	unsigned long flags;
1996 
1997 	if (ctrl->ctrl.tagset) {
1998 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1999 		blk_mq_free_tag_set(&ctrl->tag_set);
2000 	}
2001 
2002 	/* remove from rport list */
2003 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2004 	list_del(&ctrl->ctrl_list);
2005 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2006 
2007 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2008 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2009 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2010 
2011 	kfree(ctrl->queues);
2012 
2013 	put_device(ctrl->dev);
2014 	nvme_fc_rport_put(ctrl->rport);
2015 
2016 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2017 	if (ctrl->ctrl.opts)
2018 		nvmf_free_options(ctrl->ctrl.opts);
2019 	kfree(ctrl);
2020 }
2021 
2022 static void
2023 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2024 {
2025 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2026 }
2027 
2028 static int
2029 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2030 {
2031 	return kref_get_unless_zero(&ctrl->ref);
2032 }
2033 
2034 /*
2035  * All accesses from nvme core layer done - can now free the
2036  * controller. Called after last nvme_put_ctrl() call
2037  */
2038 static void
2039 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2040 {
2041 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2042 
2043 	WARN_ON(nctrl != &ctrl->ctrl);
2044 
2045 	nvme_fc_ctrl_put(ctrl);
2046 }
2047 
2048 static void
2049 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2050 {
2051 	int active;
2052 
2053 	/*
2054 	 * if an error (io timeout, etc) while (re)connecting,
2055 	 * it's an error on creating the new association.
2056 	 * Start the error recovery thread if it hasn't already
2057 	 * been started. It is expected there could be multiple
2058 	 * ios hitting this path before things are cleaned up.
2059 	 */
2060 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2061 		active = atomic_xchg(&ctrl->err_work_active, 1);
2062 		if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2063 			atomic_set(&ctrl->err_work_active, 0);
2064 			WARN_ON(1);
2065 		}
2066 		return;
2067 	}
2068 
2069 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2070 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2071 		return;
2072 
2073 	dev_warn(ctrl->ctrl.device,
2074 		"NVME-FC{%d}: transport association error detected: %s\n",
2075 		ctrl->cnum, errmsg);
2076 	dev_warn(ctrl->ctrl.device,
2077 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2078 
2079 	nvme_reset_ctrl(&ctrl->ctrl);
2080 }
2081 
2082 static enum blk_eh_timer_return
2083 nvme_fc_timeout(struct request *rq, bool reserved)
2084 {
2085 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2086 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2087 
2088 	/*
2089 	 * we can't individually ABTS an io without affecting the queue,
2090 	 * thus killing the queue, and thus the association.
2091 	 * So resolve by performing a controller reset, which will stop
2092 	 * the host/io stack, terminate the association on the link,
2093 	 * and recreate an association on the link.
2094 	 */
2095 	nvme_fc_error_recovery(ctrl, "io timeout error");
2096 
2097 	/*
2098 	 * the io abort has been initiated. Have the reset timer
2099 	 * restarted and the abort completion will complete the io
2100 	 * shortly. Avoids a synchronous wait while the abort finishes.
2101 	 */
2102 	return BLK_EH_RESET_TIMER;
2103 }
2104 
2105 static int
2106 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2107 		struct nvme_fc_fcp_op *op)
2108 {
2109 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2110 	enum dma_data_direction dir;
2111 	int ret;
2112 
2113 	freq->sg_cnt = 0;
2114 
2115 	if (!blk_rq_nr_phys_segments(rq))
2116 		return 0;
2117 
2118 	freq->sg_table.sgl = freq->first_sgl;
2119 	ret = sg_alloc_table_chained(&freq->sg_table,
2120 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2121 			SG_CHUNK_SIZE);
2122 	if (ret)
2123 		return -ENOMEM;
2124 
2125 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2126 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2127 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2128 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2129 				op->nents, dir);
2130 	if (unlikely(freq->sg_cnt <= 0)) {
2131 		sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2132 		freq->sg_cnt = 0;
2133 		return -EFAULT;
2134 	}
2135 
2136 	/*
2137 	 * TODO: blk_integrity_rq(rq)  for DIF
2138 	 */
2139 	return 0;
2140 }
2141 
2142 static void
2143 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2144 		struct nvme_fc_fcp_op *op)
2145 {
2146 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2147 
2148 	if (!freq->sg_cnt)
2149 		return;
2150 
2151 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2152 				((rq_data_dir(rq) == WRITE) ?
2153 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2154 
2155 	nvme_cleanup_cmd(rq);
2156 
2157 	sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2158 
2159 	freq->sg_cnt = 0;
2160 }
2161 
2162 /*
2163  * In FC, the queue is a logical thing. At transport connect, the target
2164  * creates its "queue" and returns a handle that is to be given to the
2165  * target whenever it posts something to the corresponding SQ.  When an
2166  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2167  * command contained within the SQE, an io, and assigns a FC exchange
2168  * to it. The SQE and the associated SQ handle are sent in the initial
2169  * CMD IU sents on the exchange. All transfers relative to the io occur
2170  * as part of the exchange.  The CQE is the last thing for the io,
2171  * which is transferred (explicitly or implicitly) with the RSP IU
2172  * sent on the exchange. After the CQE is received, the FC exchange is
2173  * terminaed and the Exchange may be used on a different io.
2174  *
2175  * The transport to LLDD api has the transport making a request for a
2176  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2177  * resource and transfers the command. The LLDD will then process all
2178  * steps to complete the io. Upon completion, the transport done routine
2179  * is called.
2180  *
2181  * So - while the operation is outstanding to the LLDD, there is a link
2182  * level FC exchange resource that is also outstanding. This must be
2183  * considered in all cleanup operations.
2184  */
2185 static blk_status_t
2186 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2187 	struct nvme_fc_fcp_op *op, u32 data_len,
2188 	enum nvmefc_fcp_datadir	io_dir)
2189 {
2190 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2191 	struct nvme_command *sqe = &cmdiu->sqe;
2192 	int ret, opstate;
2193 
2194 	/*
2195 	 * before attempting to send the io, check to see if we believe
2196 	 * the target device is present
2197 	 */
2198 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2199 		return BLK_STS_RESOURCE;
2200 
2201 	if (!nvme_fc_ctrl_get(ctrl))
2202 		return BLK_STS_IOERR;
2203 
2204 	/* format the FC-NVME CMD IU and fcp_req */
2205 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2206 	cmdiu->data_len = cpu_to_be32(data_len);
2207 	switch (io_dir) {
2208 	case NVMEFC_FCP_WRITE:
2209 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2210 		break;
2211 	case NVMEFC_FCP_READ:
2212 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2213 		break;
2214 	case NVMEFC_FCP_NODATA:
2215 		cmdiu->flags = 0;
2216 		break;
2217 	}
2218 	op->fcp_req.payload_length = data_len;
2219 	op->fcp_req.io_dir = io_dir;
2220 	op->fcp_req.transferred_length = 0;
2221 	op->fcp_req.rcv_rsplen = 0;
2222 	op->fcp_req.status = NVME_SC_SUCCESS;
2223 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2224 
2225 	/*
2226 	 * validate per fabric rules, set fields mandated by fabric spec
2227 	 * as well as those by FC-NVME spec.
2228 	 */
2229 	WARN_ON_ONCE(sqe->common.metadata);
2230 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2231 
2232 	/*
2233 	 * format SQE DPTR field per FC-NVME rules:
2234 	 *    type=0x5     Transport SGL Data Block Descriptor
2235 	 *    subtype=0xA  Transport-specific value
2236 	 *    address=0
2237 	 *    length=length of the data series
2238 	 */
2239 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2240 					NVME_SGL_FMT_TRANSPORT_A;
2241 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2242 	sqe->rw.dptr.sgl.addr = 0;
2243 
2244 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2245 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2246 		if (ret < 0) {
2247 			nvme_cleanup_cmd(op->rq);
2248 			nvme_fc_ctrl_put(ctrl);
2249 			if (ret == -ENOMEM || ret == -EAGAIN)
2250 				return BLK_STS_RESOURCE;
2251 			return BLK_STS_IOERR;
2252 		}
2253 	}
2254 
2255 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2256 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2257 
2258 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2259 
2260 	if (!(op->flags & FCOP_FLAGS_AEN))
2261 		blk_mq_start_request(op->rq);
2262 
2263 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2264 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2265 					&ctrl->rport->remoteport,
2266 					queue->lldd_handle, &op->fcp_req);
2267 
2268 	if (ret) {
2269 		/*
2270 		 * If the lld fails to send the command is there an issue with
2271 		 * the csn value?  If the command that fails is the Connect,
2272 		 * no - as the connection won't be live.  If it is a command
2273 		 * post-connect, it's possible a gap in csn may be created.
2274 		 * Does this matter?  As Linux initiators don't send fused
2275 		 * commands, no.  The gap would exist, but as there's nothing
2276 		 * that depends on csn order to be delivered on the target
2277 		 * side, it shouldn't hurt.  It would be difficult for a
2278 		 * target to even detect the csn gap as it has no idea when the
2279 		 * cmd with the csn was supposed to arrive.
2280 		 */
2281 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2282 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2283 
2284 		if (!(op->flags & FCOP_FLAGS_AEN))
2285 			nvme_fc_unmap_data(ctrl, op->rq, op);
2286 
2287 		nvme_fc_ctrl_put(ctrl);
2288 
2289 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2290 				ret != -EBUSY)
2291 			return BLK_STS_IOERR;
2292 
2293 		return BLK_STS_RESOURCE;
2294 	}
2295 
2296 	return BLK_STS_OK;
2297 }
2298 
2299 static blk_status_t
2300 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2301 			const struct blk_mq_queue_data *bd)
2302 {
2303 	struct nvme_ns *ns = hctx->queue->queuedata;
2304 	struct nvme_fc_queue *queue = hctx->driver_data;
2305 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2306 	struct request *rq = bd->rq;
2307 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2308 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2309 	struct nvme_command *sqe = &cmdiu->sqe;
2310 	enum nvmefc_fcp_datadir	io_dir;
2311 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2312 	u32 data_len;
2313 	blk_status_t ret;
2314 
2315 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2316 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2317 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2318 
2319 	ret = nvme_setup_cmd(ns, rq, sqe);
2320 	if (ret)
2321 		return ret;
2322 
2323 	/*
2324 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2325 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2326 	 * there is no actual payload to be transferred.
2327 	 * To get it right, key data transmission on there being 1 or
2328 	 * more physical segments in the sg list. If there is no
2329 	 * physical segments, there is no payload.
2330 	 */
2331 	if (blk_rq_nr_phys_segments(rq)) {
2332 		data_len = blk_rq_payload_bytes(rq);
2333 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2334 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2335 	} else {
2336 		data_len = 0;
2337 		io_dir = NVMEFC_FCP_NODATA;
2338 	}
2339 
2340 
2341 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2342 }
2343 
2344 static void
2345 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2346 {
2347 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2348 	struct nvme_fc_fcp_op *aen_op;
2349 	unsigned long flags;
2350 	bool terminating = false;
2351 	blk_status_t ret;
2352 
2353 	spin_lock_irqsave(&ctrl->lock, flags);
2354 	if (ctrl->flags & FCCTRL_TERMIO)
2355 		terminating = true;
2356 	spin_unlock_irqrestore(&ctrl->lock, flags);
2357 
2358 	if (terminating)
2359 		return;
2360 
2361 	aen_op = &ctrl->aen_ops[0];
2362 
2363 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2364 					NVMEFC_FCP_NODATA);
2365 	if (ret)
2366 		dev_err(ctrl->ctrl.device,
2367 			"failed async event work\n");
2368 }
2369 
2370 static void
2371 nvme_fc_complete_rq(struct request *rq)
2372 {
2373 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2374 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2375 
2376 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2377 
2378 	nvme_fc_unmap_data(ctrl, rq, op);
2379 	nvme_complete_rq(rq);
2380 	nvme_fc_ctrl_put(ctrl);
2381 }
2382 
2383 /*
2384  * This routine is used by the transport when it needs to find active
2385  * io on a queue that is to be terminated. The transport uses
2386  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2387  * this routine to kill them on a 1 by 1 basis.
2388  *
2389  * As FC allocates FC exchange for each io, the transport must contact
2390  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2391  * After terminating the exchange the LLDD will call the transport's
2392  * normal io done path for the request, but it will have an aborted
2393  * status. The done path will return the io request back to the block
2394  * layer with an error status.
2395  */
2396 static bool
2397 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2398 {
2399 	struct nvme_ctrl *nctrl = data;
2400 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2401 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2402 
2403 	__nvme_fc_abort_op(ctrl, op);
2404 	return true;
2405 }
2406 
2407 
2408 static const struct blk_mq_ops nvme_fc_mq_ops = {
2409 	.queue_rq	= nvme_fc_queue_rq,
2410 	.complete	= nvme_fc_complete_rq,
2411 	.init_request	= nvme_fc_init_request,
2412 	.exit_request	= nvme_fc_exit_request,
2413 	.init_hctx	= nvme_fc_init_hctx,
2414 	.timeout	= nvme_fc_timeout,
2415 };
2416 
2417 static int
2418 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2419 {
2420 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2421 	unsigned int nr_io_queues;
2422 	int ret;
2423 
2424 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2425 				ctrl->lport->ops->max_hw_queues);
2426 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2427 	if (ret) {
2428 		dev_info(ctrl->ctrl.device,
2429 			"set_queue_count failed: %d\n", ret);
2430 		return ret;
2431 	}
2432 
2433 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2434 	if (!nr_io_queues)
2435 		return 0;
2436 
2437 	nvme_fc_init_io_queues(ctrl);
2438 
2439 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2440 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2441 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2442 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2443 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2444 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2445 	ctrl->tag_set.cmd_size =
2446 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2447 			    ctrl->lport->ops->fcprqst_priv_sz);
2448 	ctrl->tag_set.driver_data = ctrl;
2449 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2450 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2451 
2452 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2453 	if (ret)
2454 		return ret;
2455 
2456 	ctrl->ctrl.tagset = &ctrl->tag_set;
2457 
2458 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2459 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2460 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2461 		goto out_free_tag_set;
2462 	}
2463 
2464 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2465 	if (ret)
2466 		goto out_cleanup_blk_queue;
2467 
2468 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2469 	if (ret)
2470 		goto out_delete_hw_queues;
2471 
2472 	ctrl->ioq_live = true;
2473 
2474 	return 0;
2475 
2476 out_delete_hw_queues:
2477 	nvme_fc_delete_hw_io_queues(ctrl);
2478 out_cleanup_blk_queue:
2479 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2480 out_free_tag_set:
2481 	blk_mq_free_tag_set(&ctrl->tag_set);
2482 	nvme_fc_free_io_queues(ctrl);
2483 
2484 	/* force put free routine to ignore io queues */
2485 	ctrl->ctrl.tagset = NULL;
2486 
2487 	return ret;
2488 }
2489 
2490 static int
2491 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2492 {
2493 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2494 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2495 	unsigned int nr_io_queues;
2496 	int ret;
2497 
2498 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2499 				ctrl->lport->ops->max_hw_queues);
2500 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2501 	if (ret) {
2502 		dev_info(ctrl->ctrl.device,
2503 			"set_queue_count failed: %d\n", ret);
2504 		return ret;
2505 	}
2506 
2507 	if (!nr_io_queues && prior_ioq_cnt) {
2508 		dev_info(ctrl->ctrl.device,
2509 			"Fail Reconnect: At least 1 io queue "
2510 			"required (was %d)\n", prior_ioq_cnt);
2511 		return -ENOSPC;
2512 	}
2513 
2514 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2515 	/* check for io queues existing */
2516 	if (ctrl->ctrl.queue_count == 1)
2517 		return 0;
2518 
2519 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2520 	if (ret)
2521 		goto out_free_io_queues;
2522 
2523 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2524 	if (ret)
2525 		goto out_delete_hw_queues;
2526 
2527 	if (prior_ioq_cnt != nr_io_queues)
2528 		dev_info(ctrl->ctrl.device,
2529 			"reconnect: revising io queue count from %d to %d\n",
2530 			prior_ioq_cnt, nr_io_queues);
2531 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2532 
2533 	return 0;
2534 
2535 out_delete_hw_queues:
2536 	nvme_fc_delete_hw_io_queues(ctrl);
2537 out_free_io_queues:
2538 	nvme_fc_free_io_queues(ctrl);
2539 	return ret;
2540 }
2541 
2542 static void
2543 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2544 {
2545 	struct nvme_fc_lport *lport = rport->lport;
2546 
2547 	atomic_inc(&lport->act_rport_cnt);
2548 }
2549 
2550 static void
2551 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2552 {
2553 	struct nvme_fc_lport *lport = rport->lport;
2554 	u32 cnt;
2555 
2556 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2557 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2558 		lport->ops->localport_delete(&lport->localport);
2559 }
2560 
2561 static int
2562 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2563 {
2564 	struct nvme_fc_rport *rport = ctrl->rport;
2565 	u32 cnt;
2566 
2567 	if (ctrl->assoc_active)
2568 		return 1;
2569 
2570 	ctrl->assoc_active = true;
2571 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2572 	if (cnt == 1)
2573 		nvme_fc_rport_active_on_lport(rport);
2574 
2575 	return 0;
2576 }
2577 
2578 static int
2579 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2580 {
2581 	struct nvme_fc_rport *rport = ctrl->rport;
2582 	struct nvme_fc_lport *lport = rport->lport;
2583 	u32 cnt;
2584 
2585 	/* ctrl->assoc_active=false will be set independently */
2586 
2587 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2588 	if (cnt == 0) {
2589 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2590 			lport->ops->remoteport_delete(&rport->remoteport);
2591 		nvme_fc_rport_inactive_on_lport(rport);
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 /*
2598  * This routine restarts the controller on the host side, and
2599  * on the link side, recreates the controller association.
2600  */
2601 static int
2602 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2603 {
2604 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605 	int ret;
2606 	bool changed;
2607 
2608 	++ctrl->ctrl.nr_reconnects;
2609 
2610 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2611 		return -ENODEV;
2612 
2613 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2614 		return -ENOTUNIQ;
2615 
2616 	dev_info(ctrl->ctrl.device,
2617 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
2618 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
2619 		ctrl->cnum, ctrl->lport->localport.port_name,
2620 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2621 
2622 	/*
2623 	 * Create the admin queue
2624 	 */
2625 
2626 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2627 				NVME_AQ_DEPTH);
2628 	if (ret)
2629 		goto out_free_queue;
2630 
2631 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2632 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2633 	if (ret)
2634 		goto out_delete_hw_queue;
2635 
2636 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2637 
2638 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2639 	if (ret)
2640 		goto out_disconnect_admin_queue;
2641 
2642 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2643 
2644 	/*
2645 	 * Check controller capabilities
2646 	 *
2647 	 * todo:- add code to check if ctrl attributes changed from
2648 	 * prior connection values
2649 	 */
2650 
2651 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2652 	if (ret) {
2653 		dev_err(ctrl->ctrl.device,
2654 			"prop_get NVME_REG_CAP failed\n");
2655 		goto out_disconnect_admin_queue;
2656 	}
2657 
2658 	ctrl->ctrl.sqsize =
2659 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2660 
2661 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2662 	if (ret)
2663 		goto out_disconnect_admin_queue;
2664 
2665 	ctrl->ctrl.max_hw_sectors =
2666 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2667 
2668 	ret = nvme_init_identify(&ctrl->ctrl);
2669 	if (ret)
2670 		goto out_disconnect_admin_queue;
2671 
2672 	/* sanity checks */
2673 
2674 	/* FC-NVME does not have other data in the capsule */
2675 	if (ctrl->ctrl.icdoff) {
2676 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2677 				ctrl->ctrl.icdoff);
2678 		goto out_disconnect_admin_queue;
2679 	}
2680 
2681 	/* FC-NVME supports normal SGL Data Block Descriptors */
2682 
2683 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2684 		/* warn if maxcmd is lower than queue_size */
2685 		dev_warn(ctrl->ctrl.device,
2686 			"queue_size %zu > ctrl maxcmd %u, reducing "
2687 			"to queue_size\n",
2688 			opts->queue_size, ctrl->ctrl.maxcmd);
2689 		opts->queue_size = ctrl->ctrl.maxcmd;
2690 	}
2691 
2692 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2693 		/* warn if sqsize is lower than queue_size */
2694 		dev_warn(ctrl->ctrl.device,
2695 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2696 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2697 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2698 	}
2699 
2700 	ret = nvme_fc_init_aen_ops(ctrl);
2701 	if (ret)
2702 		goto out_term_aen_ops;
2703 
2704 	/*
2705 	 * Create the io queues
2706 	 */
2707 
2708 	if (ctrl->ctrl.queue_count > 1) {
2709 		if (!ctrl->ioq_live)
2710 			ret = nvme_fc_create_io_queues(ctrl);
2711 		else
2712 			ret = nvme_fc_recreate_io_queues(ctrl);
2713 		if (ret)
2714 			goto out_term_aen_ops;
2715 	}
2716 
2717 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2718 
2719 	ctrl->ctrl.nr_reconnects = 0;
2720 
2721 	if (changed)
2722 		nvme_start_ctrl(&ctrl->ctrl);
2723 
2724 	return 0;	/* Success */
2725 
2726 out_term_aen_ops:
2727 	nvme_fc_term_aen_ops(ctrl);
2728 out_disconnect_admin_queue:
2729 	/* send a Disconnect(association) LS to fc-nvme target */
2730 	nvme_fc_xmt_disconnect_assoc(ctrl);
2731 out_delete_hw_queue:
2732 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2733 out_free_queue:
2734 	nvme_fc_free_queue(&ctrl->queues[0]);
2735 	ctrl->assoc_active = false;
2736 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2737 
2738 	return ret;
2739 }
2740 
2741 /*
2742  * This routine stops operation of the controller on the host side.
2743  * On the host os stack side: Admin and IO queues are stopped,
2744  *   outstanding ios on them terminated via FC ABTS.
2745  * On the link side: the association is terminated.
2746  */
2747 static void
2748 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2749 {
2750 	unsigned long flags;
2751 
2752 	if (!ctrl->assoc_active)
2753 		return;
2754 	ctrl->assoc_active = false;
2755 
2756 	spin_lock_irqsave(&ctrl->lock, flags);
2757 	ctrl->flags |= FCCTRL_TERMIO;
2758 	ctrl->iocnt = 0;
2759 	spin_unlock_irqrestore(&ctrl->lock, flags);
2760 
2761 	/*
2762 	 * If io queues are present, stop them and terminate all outstanding
2763 	 * ios on them. As FC allocates FC exchange for each io, the
2764 	 * transport must contact the LLDD to terminate the exchange,
2765 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2766 	 * to tell us what io's are busy and invoke a transport routine
2767 	 * to kill them with the LLDD.  After terminating the exchange
2768 	 * the LLDD will call the transport's normal io done path, but it
2769 	 * will have an aborted status. The done path will return the
2770 	 * io requests back to the block layer as part of normal completions
2771 	 * (but with error status).
2772 	 */
2773 	if (ctrl->ctrl.queue_count > 1) {
2774 		nvme_stop_queues(&ctrl->ctrl);
2775 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2776 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2777 	}
2778 
2779 	/*
2780 	 * Other transports, which don't have link-level contexts bound
2781 	 * to sqe's, would try to gracefully shutdown the controller by
2782 	 * writing the registers for shutdown and polling (call
2783 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2784 	 * just aborted and we will wait on those contexts, and given
2785 	 * there was no indication of how live the controlelr is on the
2786 	 * link, don't send more io to create more contexts for the
2787 	 * shutdown. Let the controller fail via keepalive failure if
2788 	 * its still present.
2789 	 */
2790 
2791 	/*
2792 	 * clean up the admin queue. Same thing as above.
2793 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2794 	 * terminate the exchanges.
2795 	 */
2796 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2797 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2798 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2799 
2800 	/* kill the aens as they are a separate path */
2801 	nvme_fc_abort_aen_ops(ctrl);
2802 
2803 	/* wait for all io that had to be aborted */
2804 	spin_lock_irq(&ctrl->lock);
2805 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2806 	ctrl->flags &= ~FCCTRL_TERMIO;
2807 	spin_unlock_irq(&ctrl->lock);
2808 
2809 	nvme_fc_term_aen_ops(ctrl);
2810 
2811 	/*
2812 	 * send a Disconnect(association) LS to fc-nvme target
2813 	 * Note: could have been sent at top of process, but
2814 	 * cleaner on link traffic if after the aborts complete.
2815 	 * Note: if association doesn't exist, association_id will be 0
2816 	 */
2817 	if (ctrl->association_id)
2818 		nvme_fc_xmt_disconnect_assoc(ctrl);
2819 
2820 	if (ctrl->ctrl.tagset) {
2821 		nvme_fc_delete_hw_io_queues(ctrl);
2822 		nvme_fc_free_io_queues(ctrl);
2823 	}
2824 
2825 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2826 	nvme_fc_free_queue(&ctrl->queues[0]);
2827 
2828 	/* re-enable the admin_q so anything new can fast fail */
2829 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2830 
2831 	/* resume the io queues so that things will fast fail */
2832 	nvme_start_queues(&ctrl->ctrl);
2833 
2834 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2835 }
2836 
2837 static void
2838 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2839 {
2840 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2841 
2842 	cancel_work_sync(&ctrl->err_work);
2843 	cancel_delayed_work_sync(&ctrl->connect_work);
2844 	/*
2845 	 * kill the association on the link side.  this will block
2846 	 * waiting for io to terminate
2847 	 */
2848 	nvme_fc_delete_association(ctrl);
2849 }
2850 
2851 static void
2852 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2853 {
2854 	struct nvme_fc_rport *rport = ctrl->rport;
2855 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2856 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2857 	bool recon = true;
2858 
2859 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2860 		return;
2861 
2862 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2863 		dev_info(ctrl->ctrl.device,
2864 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2865 			ctrl->cnum, status);
2866 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2867 		recon = false;
2868 
2869 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2870 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2871 			dev_info(ctrl->ctrl.device,
2872 				"NVME-FC{%d}: Reconnect attempt in %ld "
2873 				"seconds\n",
2874 				ctrl->cnum, recon_delay / HZ);
2875 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2876 			recon_delay = rport->dev_loss_end - jiffies;
2877 
2878 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2879 	} else {
2880 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2881 			dev_warn(ctrl->ctrl.device,
2882 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2883 				"reached.\n",
2884 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2885 		else
2886 			dev_warn(ctrl->ctrl.device,
2887 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2888 				"while waiting for remoteport connectivity.\n",
2889 				ctrl->cnum, portptr->dev_loss_tmo);
2890 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2891 	}
2892 }
2893 
2894 static void
2895 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2896 {
2897 	nvme_stop_keep_alive(&ctrl->ctrl);
2898 
2899 	/* will block will waiting for io to terminate */
2900 	nvme_fc_delete_association(ctrl);
2901 
2902 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2903 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2904 		dev_err(ctrl->ctrl.device,
2905 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2906 			"to CONNECTING\n", ctrl->cnum);
2907 }
2908 
2909 static void
2910 nvme_fc_reset_ctrl_work(struct work_struct *work)
2911 {
2912 	struct nvme_fc_ctrl *ctrl =
2913 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2914 	int ret;
2915 
2916 	__nvme_fc_terminate_io(ctrl);
2917 
2918 	nvme_stop_ctrl(&ctrl->ctrl);
2919 
2920 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2921 		ret = nvme_fc_create_association(ctrl);
2922 	else
2923 		ret = -ENOTCONN;
2924 
2925 	if (ret)
2926 		nvme_fc_reconnect_or_delete(ctrl, ret);
2927 	else
2928 		dev_info(ctrl->ctrl.device,
2929 			"NVME-FC{%d}: controller reset complete\n",
2930 			ctrl->cnum);
2931 }
2932 
2933 static void
2934 nvme_fc_connect_err_work(struct work_struct *work)
2935 {
2936 	struct nvme_fc_ctrl *ctrl =
2937 			container_of(work, struct nvme_fc_ctrl, err_work);
2938 
2939 	__nvme_fc_terminate_io(ctrl);
2940 
2941 	atomic_set(&ctrl->err_work_active, 0);
2942 
2943 	/*
2944 	 * Rescheduling the connection after recovering
2945 	 * from the io error is left to the reconnect work
2946 	 * item, which is what should have stalled waiting on
2947 	 * the io that had the error that scheduled this work.
2948 	 */
2949 }
2950 
2951 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2952 	.name			= "fc",
2953 	.module			= THIS_MODULE,
2954 	.flags			= NVME_F_FABRICS,
2955 	.reg_read32		= nvmf_reg_read32,
2956 	.reg_read64		= nvmf_reg_read64,
2957 	.reg_write32		= nvmf_reg_write32,
2958 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2959 	.submit_async_event	= nvme_fc_submit_async_event,
2960 	.delete_ctrl		= nvme_fc_delete_ctrl,
2961 	.get_address		= nvmf_get_address,
2962 };
2963 
2964 static void
2965 nvme_fc_connect_ctrl_work(struct work_struct *work)
2966 {
2967 	int ret;
2968 
2969 	struct nvme_fc_ctrl *ctrl =
2970 			container_of(to_delayed_work(work),
2971 				struct nvme_fc_ctrl, connect_work);
2972 
2973 	ret = nvme_fc_create_association(ctrl);
2974 	if (ret)
2975 		nvme_fc_reconnect_or_delete(ctrl, ret);
2976 	else
2977 		dev_info(ctrl->ctrl.device,
2978 			"NVME-FC{%d}: controller connect complete\n",
2979 			ctrl->cnum);
2980 }
2981 
2982 
2983 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2984 	.queue_rq	= nvme_fc_queue_rq,
2985 	.complete	= nvme_fc_complete_rq,
2986 	.init_request	= nvme_fc_init_request,
2987 	.exit_request	= nvme_fc_exit_request,
2988 	.init_hctx	= nvme_fc_init_admin_hctx,
2989 	.timeout	= nvme_fc_timeout,
2990 };
2991 
2992 
2993 /*
2994  * Fails a controller request if it matches an existing controller
2995  * (association) with the same tuple:
2996  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2997  *
2998  * The ports don't need to be compared as they are intrinsically
2999  * already matched by the port pointers supplied.
3000  */
3001 static bool
3002 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3003 		struct nvmf_ctrl_options *opts)
3004 {
3005 	struct nvme_fc_ctrl *ctrl;
3006 	unsigned long flags;
3007 	bool found = false;
3008 
3009 	spin_lock_irqsave(&rport->lock, flags);
3010 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3011 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3012 		if (found)
3013 			break;
3014 	}
3015 	spin_unlock_irqrestore(&rport->lock, flags);
3016 
3017 	return found;
3018 }
3019 
3020 static struct nvme_ctrl *
3021 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3022 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3023 {
3024 	struct nvme_fc_ctrl *ctrl;
3025 	unsigned long flags;
3026 	int ret, idx;
3027 
3028 	if (!(rport->remoteport.port_role &
3029 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3030 		ret = -EBADR;
3031 		goto out_fail;
3032 	}
3033 
3034 	if (!opts->duplicate_connect &&
3035 	    nvme_fc_existing_controller(rport, opts)) {
3036 		ret = -EALREADY;
3037 		goto out_fail;
3038 	}
3039 
3040 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3041 	if (!ctrl) {
3042 		ret = -ENOMEM;
3043 		goto out_fail;
3044 	}
3045 
3046 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3047 	if (idx < 0) {
3048 		ret = -ENOSPC;
3049 		goto out_free_ctrl;
3050 	}
3051 
3052 	ctrl->ctrl.opts = opts;
3053 	ctrl->ctrl.nr_reconnects = 0;
3054 	if (lport->dev)
3055 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3056 	else
3057 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3058 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3059 	ctrl->lport = lport;
3060 	ctrl->rport = rport;
3061 	ctrl->dev = lport->dev;
3062 	ctrl->cnum = idx;
3063 	ctrl->ioq_live = false;
3064 	ctrl->assoc_active = false;
3065 	atomic_set(&ctrl->err_work_active, 0);
3066 	init_waitqueue_head(&ctrl->ioabort_wait);
3067 
3068 	get_device(ctrl->dev);
3069 	kref_init(&ctrl->ref);
3070 
3071 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3072 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3073 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3074 	spin_lock_init(&ctrl->lock);
3075 
3076 	/* io queue count */
3077 	ctrl->ctrl.queue_count = min_t(unsigned int,
3078 				opts->nr_io_queues,
3079 				lport->ops->max_hw_queues);
3080 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3081 
3082 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3083 	ctrl->ctrl.kato = opts->kato;
3084 	ctrl->ctrl.cntlid = 0xffff;
3085 
3086 	ret = -ENOMEM;
3087 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3088 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3089 	if (!ctrl->queues)
3090 		goto out_free_ida;
3091 
3092 	nvme_fc_init_queue(ctrl, 0);
3093 
3094 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3095 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3096 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3097 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3098 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3099 	ctrl->admin_tag_set.cmd_size =
3100 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3101 			    ctrl->lport->ops->fcprqst_priv_sz);
3102 	ctrl->admin_tag_set.driver_data = ctrl;
3103 	ctrl->admin_tag_set.nr_hw_queues = 1;
3104 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3105 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3106 
3107 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3108 	if (ret)
3109 		goto out_free_queues;
3110 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3111 
3112 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3113 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3114 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3115 		goto out_free_admin_tag_set;
3116 	}
3117 
3118 	/*
3119 	 * Would have been nice to init io queues tag set as well.
3120 	 * However, we require interaction from the controller
3121 	 * for max io queue count before we can do so.
3122 	 * Defer this to the connect path.
3123 	 */
3124 
3125 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3126 	if (ret)
3127 		goto out_cleanup_admin_q;
3128 
3129 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3130 
3131 	spin_lock_irqsave(&rport->lock, flags);
3132 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3133 	spin_unlock_irqrestore(&rport->lock, flags);
3134 
3135 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3136 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3137 		dev_err(ctrl->ctrl.device,
3138 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3139 		goto fail_ctrl;
3140 	}
3141 
3142 	nvme_get_ctrl(&ctrl->ctrl);
3143 
3144 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3145 		nvme_put_ctrl(&ctrl->ctrl);
3146 		dev_err(ctrl->ctrl.device,
3147 			"NVME-FC{%d}: failed to schedule initial connect\n",
3148 			ctrl->cnum);
3149 		goto fail_ctrl;
3150 	}
3151 
3152 	flush_delayed_work(&ctrl->connect_work);
3153 
3154 	dev_info(ctrl->ctrl.device,
3155 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3156 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3157 
3158 	return &ctrl->ctrl;
3159 
3160 fail_ctrl:
3161 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3162 	cancel_work_sync(&ctrl->ctrl.reset_work);
3163 	cancel_work_sync(&ctrl->err_work);
3164 	cancel_delayed_work_sync(&ctrl->connect_work);
3165 
3166 	ctrl->ctrl.opts = NULL;
3167 
3168 	/* initiate nvme ctrl ref counting teardown */
3169 	nvme_uninit_ctrl(&ctrl->ctrl);
3170 
3171 	/* Remove core ctrl ref. */
3172 	nvme_put_ctrl(&ctrl->ctrl);
3173 
3174 	/* as we're past the point where we transition to the ref
3175 	 * counting teardown path, if we return a bad pointer here,
3176 	 * the calling routine, thinking it's prior to the
3177 	 * transition, will do an rport put. Since the teardown
3178 	 * path also does a rport put, we do an extra get here to
3179 	 * so proper order/teardown happens.
3180 	 */
3181 	nvme_fc_rport_get(rport);
3182 
3183 	return ERR_PTR(-EIO);
3184 
3185 out_cleanup_admin_q:
3186 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3187 out_free_admin_tag_set:
3188 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3189 out_free_queues:
3190 	kfree(ctrl->queues);
3191 out_free_ida:
3192 	put_device(ctrl->dev);
3193 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3194 out_free_ctrl:
3195 	kfree(ctrl);
3196 out_fail:
3197 	/* exit via here doesn't follow ctlr ref points */
3198 	return ERR_PTR(ret);
3199 }
3200 
3201 
3202 struct nvmet_fc_traddr {
3203 	u64	nn;
3204 	u64	pn;
3205 };
3206 
3207 static int
3208 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3209 {
3210 	u64 token64;
3211 
3212 	if (match_u64(sstr, &token64))
3213 		return -EINVAL;
3214 	*val = token64;
3215 
3216 	return 0;
3217 }
3218 
3219 /*
3220  * This routine validates and extracts the WWN's from the TRADDR string.
3221  * As kernel parsers need the 0x to determine number base, universally
3222  * build string to parse with 0x prefix before parsing name strings.
3223  */
3224 static int
3225 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3226 {
3227 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3228 	substring_t wwn = { name, &name[sizeof(name)-1] };
3229 	int nnoffset, pnoffset;
3230 
3231 	/* validate if string is one of the 2 allowed formats */
3232 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3233 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3234 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3235 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3236 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3237 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3238 						NVME_FC_TRADDR_OXNNLEN;
3239 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3240 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3241 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3242 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3243 		nnoffset = NVME_FC_TRADDR_NNLEN;
3244 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3245 	} else
3246 		goto out_einval;
3247 
3248 	name[0] = '0';
3249 	name[1] = 'x';
3250 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3251 
3252 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3253 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3254 		goto out_einval;
3255 
3256 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3257 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3258 		goto out_einval;
3259 
3260 	return 0;
3261 
3262 out_einval:
3263 	pr_warn("%s: bad traddr string\n", __func__);
3264 	return -EINVAL;
3265 }
3266 
3267 static struct nvme_ctrl *
3268 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3269 {
3270 	struct nvme_fc_lport *lport;
3271 	struct nvme_fc_rport *rport;
3272 	struct nvme_ctrl *ctrl;
3273 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3274 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3275 	unsigned long flags;
3276 	int ret;
3277 
3278 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3279 	if (ret || !raddr.nn || !raddr.pn)
3280 		return ERR_PTR(-EINVAL);
3281 
3282 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3283 	if (ret || !laddr.nn || !laddr.pn)
3284 		return ERR_PTR(-EINVAL);
3285 
3286 	/* find the host and remote ports to connect together */
3287 	spin_lock_irqsave(&nvme_fc_lock, flags);
3288 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3289 		if (lport->localport.node_name != laddr.nn ||
3290 		    lport->localport.port_name != laddr.pn)
3291 			continue;
3292 
3293 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3294 			if (rport->remoteport.node_name != raddr.nn ||
3295 			    rport->remoteport.port_name != raddr.pn)
3296 				continue;
3297 
3298 			/* if fail to get reference fall through. Will error */
3299 			if (!nvme_fc_rport_get(rport))
3300 				break;
3301 
3302 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3303 
3304 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3305 			if (IS_ERR(ctrl))
3306 				nvme_fc_rport_put(rport);
3307 			return ctrl;
3308 		}
3309 	}
3310 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3311 
3312 	pr_warn("%s: %s - %s combination not found\n",
3313 		__func__, opts->traddr, opts->host_traddr);
3314 	return ERR_PTR(-ENOENT);
3315 }
3316 
3317 
3318 static struct nvmf_transport_ops nvme_fc_transport = {
3319 	.name		= "fc",
3320 	.module		= THIS_MODULE,
3321 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3322 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3323 	.create_ctrl	= nvme_fc_create_ctrl,
3324 };
3325 
3326 /* Arbitrary successive failures max. With lots of subsystems could be high */
3327 #define DISCOVERY_MAX_FAIL	20
3328 
3329 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3330 		struct device_attribute *attr, const char *buf, size_t count)
3331 {
3332 	unsigned long flags;
3333 	LIST_HEAD(local_disc_list);
3334 	struct nvme_fc_lport *lport;
3335 	struct nvme_fc_rport *rport;
3336 	int failcnt = 0;
3337 
3338 	spin_lock_irqsave(&nvme_fc_lock, flags);
3339 restart:
3340 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3341 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3342 			if (!nvme_fc_lport_get(lport))
3343 				continue;
3344 			if (!nvme_fc_rport_get(rport)) {
3345 				/*
3346 				 * This is a temporary condition. Upon restart
3347 				 * this rport will be gone from the list.
3348 				 *
3349 				 * Revert the lport put and retry.  Anything
3350 				 * added to the list already will be skipped (as
3351 				 * they are no longer list_empty).  Loops should
3352 				 * resume at rports that were not yet seen.
3353 				 */
3354 				nvme_fc_lport_put(lport);
3355 
3356 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3357 					goto restart;
3358 
3359 				pr_err("nvme_discovery: too many reference "
3360 				       "failures\n");
3361 				goto process_local_list;
3362 			}
3363 			if (list_empty(&rport->disc_list))
3364 				list_add_tail(&rport->disc_list,
3365 					      &local_disc_list);
3366 		}
3367 	}
3368 
3369 process_local_list:
3370 	while (!list_empty(&local_disc_list)) {
3371 		rport = list_first_entry(&local_disc_list,
3372 					 struct nvme_fc_rport, disc_list);
3373 		list_del_init(&rport->disc_list);
3374 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3375 
3376 		lport = rport->lport;
3377 		/* signal discovery. Won't hurt if it repeats */
3378 		nvme_fc_signal_discovery_scan(lport, rport);
3379 		nvme_fc_rport_put(rport);
3380 		nvme_fc_lport_put(lport);
3381 
3382 		spin_lock_irqsave(&nvme_fc_lock, flags);
3383 	}
3384 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3385 
3386 	return count;
3387 }
3388 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3389 
3390 static struct attribute *nvme_fc_attrs[] = {
3391 	&dev_attr_nvme_discovery.attr,
3392 	NULL
3393 };
3394 
3395 static struct attribute_group nvme_fc_attr_group = {
3396 	.attrs = nvme_fc_attrs,
3397 };
3398 
3399 static const struct attribute_group *nvme_fc_attr_groups[] = {
3400 	&nvme_fc_attr_group,
3401 	NULL
3402 };
3403 
3404 static struct class fc_class = {
3405 	.name = "fc",
3406 	.dev_groups = nvme_fc_attr_groups,
3407 	.owner = THIS_MODULE,
3408 };
3409 
3410 static int __init nvme_fc_init_module(void)
3411 {
3412 	int ret;
3413 
3414 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3415 	if (!nvme_fc_wq)
3416 		return -ENOMEM;
3417 
3418 	/*
3419 	 * NOTE:
3420 	 * It is expected that in the future the kernel will combine
3421 	 * the FC-isms that are currently under scsi and now being
3422 	 * added to by NVME into a new standalone FC class. The SCSI
3423 	 * and NVME protocols and their devices would be under this
3424 	 * new FC class.
3425 	 *
3426 	 * As we need something to post FC-specific udev events to,
3427 	 * specifically for nvme probe events, start by creating the
3428 	 * new device class.  When the new standalone FC class is
3429 	 * put in place, this code will move to a more generic
3430 	 * location for the class.
3431 	 */
3432 	ret = class_register(&fc_class);
3433 	if (ret) {
3434 		pr_err("couldn't register class fc\n");
3435 		goto out_destroy_wq;
3436 	}
3437 
3438 	/*
3439 	 * Create a device for the FC-centric udev events
3440 	 */
3441 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3442 				"fc_udev_device");
3443 	if (IS_ERR(fc_udev_device)) {
3444 		pr_err("couldn't create fc_udev device!\n");
3445 		ret = PTR_ERR(fc_udev_device);
3446 		goto out_destroy_class;
3447 	}
3448 
3449 	ret = nvmf_register_transport(&nvme_fc_transport);
3450 	if (ret)
3451 		goto out_destroy_device;
3452 
3453 	return 0;
3454 
3455 out_destroy_device:
3456 	device_destroy(&fc_class, MKDEV(0, 0));
3457 out_destroy_class:
3458 	class_unregister(&fc_class);
3459 out_destroy_wq:
3460 	destroy_workqueue(nvme_fc_wq);
3461 
3462 	return ret;
3463 }
3464 
3465 static void
3466 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3467 {
3468 	struct nvme_fc_ctrl *ctrl;
3469 
3470 	spin_lock(&rport->lock);
3471 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3472 		dev_warn(ctrl->ctrl.device,
3473 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3474 			ctrl->cnum);
3475 		nvme_delete_ctrl(&ctrl->ctrl);
3476 	}
3477 	spin_unlock(&rport->lock);
3478 }
3479 
3480 static void
3481 nvme_fc_cleanup_for_unload(void)
3482 {
3483 	struct nvme_fc_lport *lport;
3484 	struct nvme_fc_rport *rport;
3485 
3486 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3487 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3488 			nvme_fc_delete_controllers(rport);
3489 		}
3490 	}
3491 }
3492 
3493 static void __exit nvme_fc_exit_module(void)
3494 {
3495 	unsigned long flags;
3496 	bool need_cleanup = false;
3497 
3498 	spin_lock_irqsave(&nvme_fc_lock, flags);
3499 	nvme_fc_waiting_to_unload = true;
3500 	if (!list_empty(&nvme_fc_lport_list)) {
3501 		need_cleanup = true;
3502 		nvme_fc_cleanup_for_unload();
3503 	}
3504 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3505 	if (need_cleanup) {
3506 		pr_info("%s: waiting for ctlr deletes\n", __func__);
3507 		wait_for_completion(&nvme_fc_unload_proceed);
3508 		pr_info("%s: ctrl deletes complete\n", __func__);
3509 	}
3510 
3511 	nvmf_unregister_transport(&nvme_fc_transport);
3512 
3513 	ida_destroy(&nvme_fc_local_port_cnt);
3514 	ida_destroy(&nvme_fc_ctrl_cnt);
3515 
3516 	device_destroy(&fc_class, MKDEV(0, 0));
3517 	class_unregister(&fc_class);
3518 	destroy_workqueue(nvme_fc_wq);
3519 }
3520 
3521 module_init(nvme_fc_init_module);
3522 module_exit(nvme_fc_exit_module);
3523 
3524 MODULE_LICENSE("GPL v2");
3525