1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 30 struct nvme_fc_queue { 31 struct nvme_fc_ctrl *ctrl; 32 struct device *dev; 33 struct blk_mq_hw_ctx *hctx; 34 void *lldd_handle; 35 size_t cmnd_capsule_len; 36 u32 qnum; 37 u32 rqcnt; 38 u32 seqno; 39 40 u64 connection_id; 41 atomic_t csn; 42 43 unsigned long flags; 44 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 45 46 enum nvme_fcop_flags { 47 FCOP_FLAGS_TERMIO = (1 << 0), 48 FCOP_FLAGS_AEN = (1 << 1), 49 }; 50 51 struct nvmefc_ls_req_op { 52 struct nvmefc_ls_req ls_req; 53 54 struct nvme_fc_rport *rport; 55 struct nvme_fc_queue *queue; 56 struct request *rq; 57 u32 flags; 58 59 int ls_error; 60 struct completion ls_done; 61 struct list_head lsreq_list; /* rport->ls_req_list */ 62 bool req_queued; 63 }; 64 65 struct nvmefc_ls_rcv_op { 66 struct nvme_fc_rport *rport; 67 struct nvmefc_ls_rsp *lsrsp; 68 union nvmefc_ls_requests *rqstbuf; 69 union nvmefc_ls_responses *rspbuf; 70 u16 rqstdatalen; 71 bool handled; 72 dma_addr_t rspdma; 73 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 74 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 75 76 enum nvme_fcpop_state { 77 FCPOP_STATE_UNINIT = 0, 78 FCPOP_STATE_IDLE = 1, 79 FCPOP_STATE_ACTIVE = 2, 80 FCPOP_STATE_ABORTED = 3, 81 FCPOP_STATE_COMPLETE = 4, 82 }; 83 84 struct nvme_fc_fcp_op { 85 struct nvme_request nreq; /* 86 * nvme/host/core.c 87 * requires this to be 88 * the 1st element in the 89 * private structure 90 * associated with the 91 * request. 92 */ 93 struct nvmefc_fcp_req fcp_req; 94 95 struct nvme_fc_ctrl *ctrl; 96 struct nvme_fc_queue *queue; 97 struct request *rq; 98 99 atomic_t state; 100 u32 flags; 101 u32 rqno; 102 u32 nents; 103 104 struct nvme_fc_cmd_iu cmd_iu; 105 struct nvme_fc_ersp_iu rsp_iu; 106 }; 107 108 struct nvme_fcp_op_w_sgl { 109 struct nvme_fc_fcp_op op; 110 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 111 uint8_t priv[]; 112 }; 113 114 struct nvme_fc_lport { 115 struct nvme_fc_local_port localport; 116 117 struct ida endp_cnt; 118 struct list_head port_list; /* nvme_fc_port_list */ 119 struct list_head endp_list; 120 struct device *dev; /* physical device for dma */ 121 struct nvme_fc_port_template *ops; 122 struct kref ref; 123 atomic_t act_rport_cnt; 124 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 125 126 struct nvme_fc_rport { 127 struct nvme_fc_remote_port remoteport; 128 129 struct list_head endp_list; /* for lport->endp_list */ 130 struct list_head ctrl_list; 131 struct list_head ls_req_list; 132 struct list_head ls_rcv_list; 133 struct list_head disc_list; 134 struct device *dev; /* physical device for dma */ 135 struct nvme_fc_lport *lport; 136 spinlock_t lock; 137 struct kref ref; 138 atomic_t act_ctrl_cnt; 139 unsigned long dev_loss_end; 140 struct work_struct lsrcv_work; 141 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 142 143 /* fc_ctrl flags values - specified as bit positions */ 144 #define ASSOC_ACTIVE 0 145 #define FCCTRL_TERMIO 1 146 147 struct nvme_fc_ctrl { 148 spinlock_t lock; 149 struct nvme_fc_queue *queues; 150 struct device *dev; 151 struct nvme_fc_lport *lport; 152 struct nvme_fc_rport *rport; 153 u32 cnum; 154 155 bool ioq_live; 156 atomic_t err_work_active; 157 u64 association_id; 158 struct nvmefc_ls_rcv_op *rcv_disconn; 159 160 struct list_head ctrl_list; /* rport->ctrl_list */ 161 162 struct blk_mq_tag_set admin_tag_set; 163 struct blk_mq_tag_set tag_set; 164 165 struct delayed_work connect_work; 166 struct work_struct err_work; 167 168 struct kref ref; 169 unsigned long flags; 170 u32 iocnt; 171 wait_queue_head_t ioabort_wait; 172 173 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 174 175 struct nvme_ctrl ctrl; 176 }; 177 178 static inline struct nvme_fc_ctrl * 179 to_fc_ctrl(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 182 } 183 184 static inline struct nvme_fc_lport * 185 localport_to_lport(struct nvme_fc_local_port *portptr) 186 { 187 return container_of(portptr, struct nvme_fc_lport, localport); 188 } 189 190 static inline struct nvme_fc_rport * 191 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 192 { 193 return container_of(portptr, struct nvme_fc_rport, remoteport); 194 } 195 196 static inline struct nvmefc_ls_req_op * 197 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 198 { 199 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 200 } 201 202 static inline struct nvme_fc_fcp_op * 203 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 204 { 205 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 206 } 207 208 209 210 /* *************************** Globals **************************** */ 211 212 213 static DEFINE_SPINLOCK(nvme_fc_lock); 214 215 static LIST_HEAD(nvme_fc_lport_list); 216 static DEFINE_IDA(nvme_fc_local_port_cnt); 217 static DEFINE_IDA(nvme_fc_ctrl_cnt); 218 219 static struct workqueue_struct *nvme_fc_wq; 220 221 static bool nvme_fc_waiting_to_unload; 222 static DECLARE_COMPLETION(nvme_fc_unload_proceed); 223 224 /* 225 * These items are short-term. They will eventually be moved into 226 * a generic FC class. See comments in module init. 227 */ 228 static struct device *fc_udev_device; 229 230 static void nvme_fc_complete_rq(struct request *rq); 231 232 /* *********************** FC-NVME Port Management ************************ */ 233 234 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 235 struct nvme_fc_queue *, unsigned int); 236 237 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 238 239 240 static void 241 nvme_fc_free_lport(struct kref *ref) 242 { 243 struct nvme_fc_lport *lport = 244 container_of(ref, struct nvme_fc_lport, ref); 245 unsigned long flags; 246 247 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 248 WARN_ON(!list_empty(&lport->endp_list)); 249 250 /* remove from transport list */ 251 spin_lock_irqsave(&nvme_fc_lock, flags); 252 list_del(&lport->port_list); 253 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) 254 complete(&nvme_fc_unload_proceed); 255 spin_unlock_irqrestore(&nvme_fc_lock, flags); 256 257 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 258 ida_destroy(&lport->endp_cnt); 259 260 put_device(lport->dev); 261 262 kfree(lport); 263 } 264 265 static void 266 nvme_fc_lport_put(struct nvme_fc_lport *lport) 267 { 268 kref_put(&lport->ref, nvme_fc_free_lport); 269 } 270 271 static int 272 nvme_fc_lport_get(struct nvme_fc_lport *lport) 273 { 274 return kref_get_unless_zero(&lport->ref); 275 } 276 277 278 static struct nvme_fc_lport * 279 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 280 struct nvme_fc_port_template *ops, 281 struct device *dev) 282 { 283 struct nvme_fc_lport *lport; 284 unsigned long flags; 285 286 spin_lock_irqsave(&nvme_fc_lock, flags); 287 288 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 289 if (lport->localport.node_name != pinfo->node_name || 290 lport->localport.port_name != pinfo->port_name) 291 continue; 292 293 if (lport->dev != dev) { 294 lport = ERR_PTR(-EXDEV); 295 goto out_done; 296 } 297 298 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 299 lport = ERR_PTR(-EEXIST); 300 goto out_done; 301 } 302 303 if (!nvme_fc_lport_get(lport)) { 304 /* 305 * fails if ref cnt already 0. If so, 306 * act as if lport already deleted 307 */ 308 lport = NULL; 309 goto out_done; 310 } 311 312 /* resume the lport */ 313 314 lport->ops = ops; 315 lport->localport.port_role = pinfo->port_role; 316 lport->localport.port_id = pinfo->port_id; 317 lport->localport.port_state = FC_OBJSTATE_ONLINE; 318 319 spin_unlock_irqrestore(&nvme_fc_lock, flags); 320 321 return lport; 322 } 323 324 lport = NULL; 325 326 out_done: 327 spin_unlock_irqrestore(&nvme_fc_lock, flags); 328 329 return lport; 330 } 331 332 /** 333 * nvme_fc_register_localport - transport entry point called by an 334 * LLDD to register the existence of a NVME 335 * host FC port. 336 * @pinfo: pointer to information about the port to be registered 337 * @template: LLDD entrypoints and operational parameters for the port 338 * @dev: physical hardware device node port corresponds to. Will be 339 * used for DMA mappings 340 * @portptr: pointer to a local port pointer. Upon success, the routine 341 * will allocate a nvme_fc_local_port structure and place its 342 * address in the local port pointer. Upon failure, local port 343 * pointer will be set to 0. 344 * 345 * Returns: 346 * a completion status. Must be 0 upon success; a negative errno 347 * (ex: -ENXIO) upon failure. 348 */ 349 int 350 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 351 struct nvme_fc_port_template *template, 352 struct device *dev, 353 struct nvme_fc_local_port **portptr) 354 { 355 struct nvme_fc_lport *newrec; 356 unsigned long flags; 357 int ret, idx; 358 359 if (!template->localport_delete || !template->remoteport_delete || 360 !template->ls_req || !template->fcp_io || 361 !template->ls_abort || !template->fcp_abort || 362 !template->max_hw_queues || !template->max_sgl_segments || 363 !template->max_dif_sgl_segments || !template->dma_boundary) { 364 ret = -EINVAL; 365 goto out_reghost_failed; 366 } 367 368 /* 369 * look to see if there is already a localport that had been 370 * deregistered and in the process of waiting for all the 371 * references to fully be removed. If the references haven't 372 * expired, we can simply re-enable the localport. Remoteports 373 * and controller reconnections should resume naturally. 374 */ 375 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 376 377 /* found an lport, but something about its state is bad */ 378 if (IS_ERR(newrec)) { 379 ret = PTR_ERR(newrec); 380 goto out_reghost_failed; 381 382 /* found existing lport, which was resumed */ 383 } else if (newrec) { 384 *portptr = &newrec->localport; 385 return 0; 386 } 387 388 /* nothing found - allocate a new localport struct */ 389 390 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 391 GFP_KERNEL); 392 if (!newrec) { 393 ret = -ENOMEM; 394 goto out_reghost_failed; 395 } 396 397 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 398 if (idx < 0) { 399 ret = -ENOSPC; 400 goto out_fail_kfree; 401 } 402 403 if (!get_device(dev) && dev) { 404 ret = -ENODEV; 405 goto out_ida_put; 406 } 407 408 INIT_LIST_HEAD(&newrec->port_list); 409 INIT_LIST_HEAD(&newrec->endp_list); 410 kref_init(&newrec->ref); 411 atomic_set(&newrec->act_rport_cnt, 0); 412 newrec->ops = template; 413 newrec->dev = dev; 414 ida_init(&newrec->endp_cnt); 415 if (template->local_priv_sz) 416 newrec->localport.private = &newrec[1]; 417 else 418 newrec->localport.private = NULL; 419 newrec->localport.node_name = pinfo->node_name; 420 newrec->localport.port_name = pinfo->port_name; 421 newrec->localport.port_role = pinfo->port_role; 422 newrec->localport.port_id = pinfo->port_id; 423 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 424 newrec->localport.port_num = idx; 425 426 spin_lock_irqsave(&nvme_fc_lock, flags); 427 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 428 spin_unlock_irqrestore(&nvme_fc_lock, flags); 429 430 if (dev) 431 dma_set_seg_boundary(dev, template->dma_boundary); 432 433 *portptr = &newrec->localport; 434 return 0; 435 436 out_ida_put: 437 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 438 out_fail_kfree: 439 kfree(newrec); 440 out_reghost_failed: 441 *portptr = NULL; 442 443 return ret; 444 } 445 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 446 447 /** 448 * nvme_fc_unregister_localport - transport entry point called by an 449 * LLDD to deregister/remove a previously 450 * registered a NVME host FC port. 451 * @portptr: pointer to the (registered) local port that is to be deregistered. 452 * 453 * Returns: 454 * a completion status. Must be 0 upon success; a negative errno 455 * (ex: -ENXIO) upon failure. 456 */ 457 int 458 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 459 { 460 struct nvme_fc_lport *lport = localport_to_lport(portptr); 461 unsigned long flags; 462 463 if (!portptr) 464 return -EINVAL; 465 466 spin_lock_irqsave(&nvme_fc_lock, flags); 467 468 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 469 spin_unlock_irqrestore(&nvme_fc_lock, flags); 470 return -EINVAL; 471 } 472 portptr->port_state = FC_OBJSTATE_DELETED; 473 474 spin_unlock_irqrestore(&nvme_fc_lock, flags); 475 476 if (atomic_read(&lport->act_rport_cnt) == 0) 477 lport->ops->localport_delete(&lport->localport); 478 479 nvme_fc_lport_put(lport); 480 481 return 0; 482 } 483 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 484 485 /* 486 * TRADDR strings, per FC-NVME are fixed format: 487 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 488 * udev event will only differ by prefix of what field is 489 * being specified: 490 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 491 * 19 + 43 + null_fudge = 64 characters 492 */ 493 #define FCNVME_TRADDR_LENGTH 64 494 495 static void 496 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 497 struct nvme_fc_rport *rport) 498 { 499 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 500 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 501 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 502 503 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 504 return; 505 506 snprintf(hostaddr, sizeof(hostaddr), 507 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 508 lport->localport.node_name, lport->localport.port_name); 509 snprintf(tgtaddr, sizeof(tgtaddr), 510 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 511 rport->remoteport.node_name, rport->remoteport.port_name); 512 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 513 } 514 515 static void 516 nvme_fc_free_rport(struct kref *ref) 517 { 518 struct nvme_fc_rport *rport = 519 container_of(ref, struct nvme_fc_rport, ref); 520 struct nvme_fc_lport *lport = 521 localport_to_lport(rport->remoteport.localport); 522 unsigned long flags; 523 524 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 525 WARN_ON(!list_empty(&rport->ctrl_list)); 526 527 /* remove from lport list */ 528 spin_lock_irqsave(&nvme_fc_lock, flags); 529 list_del(&rport->endp_list); 530 spin_unlock_irqrestore(&nvme_fc_lock, flags); 531 532 WARN_ON(!list_empty(&rport->disc_list)); 533 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 534 535 kfree(rport); 536 537 nvme_fc_lport_put(lport); 538 } 539 540 static void 541 nvme_fc_rport_put(struct nvme_fc_rport *rport) 542 { 543 kref_put(&rport->ref, nvme_fc_free_rport); 544 } 545 546 static int 547 nvme_fc_rport_get(struct nvme_fc_rport *rport) 548 { 549 return kref_get_unless_zero(&rport->ref); 550 } 551 552 static void 553 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 554 { 555 switch (ctrl->ctrl.state) { 556 case NVME_CTRL_NEW: 557 case NVME_CTRL_CONNECTING: 558 /* 559 * As all reconnects were suppressed, schedule a 560 * connect. 561 */ 562 dev_info(ctrl->ctrl.device, 563 "NVME-FC{%d}: connectivity re-established. " 564 "Attempting reconnect\n", ctrl->cnum); 565 566 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 567 break; 568 569 case NVME_CTRL_RESETTING: 570 /* 571 * Controller is already in the process of terminating the 572 * association. No need to do anything further. The reconnect 573 * step will naturally occur after the reset completes. 574 */ 575 break; 576 577 default: 578 /* no action to take - let it delete */ 579 break; 580 } 581 } 582 583 static struct nvme_fc_rport * 584 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 585 struct nvme_fc_port_info *pinfo) 586 { 587 struct nvme_fc_rport *rport; 588 struct nvme_fc_ctrl *ctrl; 589 unsigned long flags; 590 591 spin_lock_irqsave(&nvme_fc_lock, flags); 592 593 list_for_each_entry(rport, &lport->endp_list, endp_list) { 594 if (rport->remoteport.node_name != pinfo->node_name || 595 rport->remoteport.port_name != pinfo->port_name) 596 continue; 597 598 if (!nvme_fc_rport_get(rport)) { 599 rport = ERR_PTR(-ENOLCK); 600 goto out_done; 601 } 602 603 spin_unlock_irqrestore(&nvme_fc_lock, flags); 604 605 spin_lock_irqsave(&rport->lock, flags); 606 607 /* has it been unregistered */ 608 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 609 /* means lldd called us twice */ 610 spin_unlock_irqrestore(&rport->lock, flags); 611 nvme_fc_rport_put(rport); 612 return ERR_PTR(-ESTALE); 613 } 614 615 rport->remoteport.port_role = pinfo->port_role; 616 rport->remoteport.port_id = pinfo->port_id; 617 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 618 rport->dev_loss_end = 0; 619 620 /* 621 * kick off a reconnect attempt on all associations to the 622 * remote port. A successful reconnects will resume i/o. 623 */ 624 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 625 nvme_fc_resume_controller(ctrl); 626 627 spin_unlock_irqrestore(&rport->lock, flags); 628 629 return rport; 630 } 631 632 rport = NULL; 633 634 out_done: 635 spin_unlock_irqrestore(&nvme_fc_lock, flags); 636 637 return rport; 638 } 639 640 static inline void 641 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 642 struct nvme_fc_port_info *pinfo) 643 { 644 if (pinfo->dev_loss_tmo) 645 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 646 else 647 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 648 } 649 650 /** 651 * nvme_fc_register_remoteport - transport entry point called by an 652 * LLDD to register the existence of a NVME 653 * subsystem FC port on its fabric. 654 * @localport: pointer to the (registered) local port that the remote 655 * subsystem port is connected to. 656 * @pinfo: pointer to information about the port to be registered 657 * @portptr: pointer to a remote port pointer. Upon success, the routine 658 * will allocate a nvme_fc_remote_port structure and place its 659 * address in the remote port pointer. Upon failure, remote port 660 * pointer will be set to 0. 661 * 662 * Returns: 663 * a completion status. Must be 0 upon success; a negative errno 664 * (ex: -ENXIO) upon failure. 665 */ 666 int 667 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 668 struct nvme_fc_port_info *pinfo, 669 struct nvme_fc_remote_port **portptr) 670 { 671 struct nvme_fc_lport *lport = localport_to_lport(localport); 672 struct nvme_fc_rport *newrec; 673 unsigned long flags; 674 int ret, idx; 675 676 if (!nvme_fc_lport_get(lport)) { 677 ret = -ESHUTDOWN; 678 goto out_reghost_failed; 679 } 680 681 /* 682 * look to see if there is already a remoteport that is waiting 683 * for a reconnect (within dev_loss_tmo) with the same WWN's. 684 * If so, transition to it and reconnect. 685 */ 686 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 687 688 /* found an rport, but something about its state is bad */ 689 if (IS_ERR(newrec)) { 690 ret = PTR_ERR(newrec); 691 goto out_lport_put; 692 693 /* found existing rport, which was resumed */ 694 } else if (newrec) { 695 nvme_fc_lport_put(lport); 696 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 697 nvme_fc_signal_discovery_scan(lport, newrec); 698 *portptr = &newrec->remoteport; 699 return 0; 700 } 701 702 /* nothing found - allocate a new remoteport struct */ 703 704 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 705 GFP_KERNEL); 706 if (!newrec) { 707 ret = -ENOMEM; 708 goto out_lport_put; 709 } 710 711 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 712 if (idx < 0) { 713 ret = -ENOSPC; 714 goto out_kfree_rport; 715 } 716 717 INIT_LIST_HEAD(&newrec->endp_list); 718 INIT_LIST_HEAD(&newrec->ctrl_list); 719 INIT_LIST_HEAD(&newrec->ls_req_list); 720 INIT_LIST_HEAD(&newrec->disc_list); 721 kref_init(&newrec->ref); 722 atomic_set(&newrec->act_ctrl_cnt, 0); 723 spin_lock_init(&newrec->lock); 724 newrec->remoteport.localport = &lport->localport; 725 INIT_LIST_HEAD(&newrec->ls_rcv_list); 726 newrec->dev = lport->dev; 727 newrec->lport = lport; 728 if (lport->ops->remote_priv_sz) 729 newrec->remoteport.private = &newrec[1]; 730 else 731 newrec->remoteport.private = NULL; 732 newrec->remoteport.port_role = pinfo->port_role; 733 newrec->remoteport.node_name = pinfo->node_name; 734 newrec->remoteport.port_name = pinfo->port_name; 735 newrec->remoteport.port_id = pinfo->port_id; 736 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 737 newrec->remoteport.port_num = idx; 738 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 739 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 740 741 spin_lock_irqsave(&nvme_fc_lock, flags); 742 list_add_tail(&newrec->endp_list, &lport->endp_list); 743 spin_unlock_irqrestore(&nvme_fc_lock, flags); 744 745 nvme_fc_signal_discovery_scan(lport, newrec); 746 747 *portptr = &newrec->remoteport; 748 return 0; 749 750 out_kfree_rport: 751 kfree(newrec); 752 out_lport_put: 753 nvme_fc_lport_put(lport); 754 out_reghost_failed: 755 *portptr = NULL; 756 return ret; 757 } 758 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 759 760 static int 761 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 762 { 763 struct nvmefc_ls_req_op *lsop; 764 unsigned long flags; 765 766 restart: 767 spin_lock_irqsave(&rport->lock, flags); 768 769 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 770 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 771 lsop->flags |= FCOP_FLAGS_TERMIO; 772 spin_unlock_irqrestore(&rport->lock, flags); 773 rport->lport->ops->ls_abort(&rport->lport->localport, 774 &rport->remoteport, 775 &lsop->ls_req); 776 goto restart; 777 } 778 } 779 spin_unlock_irqrestore(&rport->lock, flags); 780 781 return 0; 782 } 783 784 static void 785 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 786 { 787 dev_info(ctrl->ctrl.device, 788 "NVME-FC{%d}: controller connectivity lost. Awaiting " 789 "Reconnect", ctrl->cnum); 790 791 switch (ctrl->ctrl.state) { 792 case NVME_CTRL_NEW: 793 case NVME_CTRL_LIVE: 794 /* 795 * Schedule a controller reset. The reset will terminate the 796 * association and schedule the reconnect timer. Reconnects 797 * will be attempted until either the ctlr_loss_tmo 798 * (max_retries * connect_delay) expires or the remoteport's 799 * dev_loss_tmo expires. 800 */ 801 if (nvme_reset_ctrl(&ctrl->ctrl)) { 802 dev_warn(ctrl->ctrl.device, 803 "NVME-FC{%d}: Couldn't schedule reset.\n", 804 ctrl->cnum); 805 nvme_delete_ctrl(&ctrl->ctrl); 806 } 807 break; 808 809 case NVME_CTRL_CONNECTING: 810 /* 811 * The association has already been terminated and the 812 * controller is attempting reconnects. No need to do anything 813 * futher. Reconnects will be attempted until either the 814 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 815 * remoteport's dev_loss_tmo expires. 816 */ 817 break; 818 819 case NVME_CTRL_RESETTING: 820 /* 821 * Controller is already in the process of terminating the 822 * association. No need to do anything further. The reconnect 823 * step will kick in naturally after the association is 824 * terminated. 825 */ 826 break; 827 828 case NVME_CTRL_DELETING: 829 case NVME_CTRL_DELETING_NOIO: 830 default: 831 /* no action to take - let it delete */ 832 break; 833 } 834 } 835 836 /** 837 * nvme_fc_unregister_remoteport - transport entry point called by an 838 * LLDD to deregister/remove a previously 839 * registered a NVME subsystem FC port. 840 * @portptr: pointer to the (registered) remote port that is to be 841 * deregistered. 842 * 843 * Returns: 844 * a completion status. Must be 0 upon success; a negative errno 845 * (ex: -ENXIO) upon failure. 846 */ 847 int 848 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 849 { 850 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 851 struct nvme_fc_ctrl *ctrl; 852 unsigned long flags; 853 854 if (!portptr) 855 return -EINVAL; 856 857 spin_lock_irqsave(&rport->lock, flags); 858 859 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 860 spin_unlock_irqrestore(&rport->lock, flags); 861 return -EINVAL; 862 } 863 portptr->port_state = FC_OBJSTATE_DELETED; 864 865 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 866 867 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 868 /* if dev_loss_tmo==0, dev loss is immediate */ 869 if (!portptr->dev_loss_tmo) { 870 dev_warn(ctrl->ctrl.device, 871 "NVME-FC{%d}: controller connectivity lost.\n", 872 ctrl->cnum); 873 nvme_delete_ctrl(&ctrl->ctrl); 874 } else 875 nvme_fc_ctrl_connectivity_loss(ctrl); 876 } 877 878 spin_unlock_irqrestore(&rport->lock, flags); 879 880 nvme_fc_abort_lsops(rport); 881 882 if (atomic_read(&rport->act_ctrl_cnt) == 0) 883 rport->lport->ops->remoteport_delete(portptr); 884 885 /* 886 * release the reference, which will allow, if all controllers 887 * go away, which should only occur after dev_loss_tmo occurs, 888 * for the rport to be torn down. 889 */ 890 nvme_fc_rport_put(rport); 891 892 return 0; 893 } 894 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 895 896 /** 897 * nvme_fc_rescan_remoteport - transport entry point called by an 898 * LLDD to request a nvme device rescan. 899 * @remoteport: pointer to the (registered) remote port that is to be 900 * rescanned. 901 * 902 * Returns: N/A 903 */ 904 void 905 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 906 { 907 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 908 909 nvme_fc_signal_discovery_scan(rport->lport, rport); 910 } 911 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 912 913 int 914 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 915 u32 dev_loss_tmo) 916 { 917 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 918 unsigned long flags; 919 920 spin_lock_irqsave(&rport->lock, flags); 921 922 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 923 spin_unlock_irqrestore(&rport->lock, flags); 924 return -EINVAL; 925 } 926 927 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 928 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 929 930 spin_unlock_irqrestore(&rport->lock, flags); 931 932 return 0; 933 } 934 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 935 936 937 /* *********************** FC-NVME DMA Handling **************************** */ 938 939 /* 940 * The fcloop device passes in a NULL device pointer. Real LLD's will 941 * pass in a valid device pointer. If NULL is passed to the dma mapping 942 * routines, depending on the platform, it may or may not succeed, and 943 * may crash. 944 * 945 * As such: 946 * Wrapper all the dma routines and check the dev pointer. 947 * 948 * If simple mappings (return just a dma address, we'll noop them, 949 * returning a dma address of 0. 950 * 951 * On more complex mappings (dma_map_sg), a pseudo routine fills 952 * in the scatter list, setting all dma addresses to 0. 953 */ 954 955 static inline dma_addr_t 956 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 957 enum dma_data_direction dir) 958 { 959 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 960 } 961 962 static inline int 963 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 964 { 965 return dev ? dma_mapping_error(dev, dma_addr) : 0; 966 } 967 968 static inline void 969 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 970 enum dma_data_direction dir) 971 { 972 if (dev) 973 dma_unmap_single(dev, addr, size, dir); 974 } 975 976 static inline void 977 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 978 enum dma_data_direction dir) 979 { 980 if (dev) 981 dma_sync_single_for_cpu(dev, addr, size, dir); 982 } 983 984 static inline void 985 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 986 enum dma_data_direction dir) 987 { 988 if (dev) 989 dma_sync_single_for_device(dev, addr, size, dir); 990 } 991 992 /* pseudo dma_map_sg call */ 993 static int 994 fc_map_sg(struct scatterlist *sg, int nents) 995 { 996 struct scatterlist *s; 997 int i; 998 999 WARN_ON(nents == 0 || sg[0].length == 0); 1000 1001 for_each_sg(sg, s, nents, i) { 1002 s->dma_address = 0L; 1003 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1004 s->dma_length = s->length; 1005 #endif 1006 } 1007 return nents; 1008 } 1009 1010 static inline int 1011 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1012 enum dma_data_direction dir) 1013 { 1014 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 1015 } 1016 1017 static inline void 1018 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1019 enum dma_data_direction dir) 1020 { 1021 if (dev) 1022 dma_unmap_sg(dev, sg, nents, dir); 1023 } 1024 1025 /* *********************** FC-NVME LS Handling **************************** */ 1026 1027 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1028 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1029 1030 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1031 1032 static void 1033 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1034 { 1035 struct nvme_fc_rport *rport = lsop->rport; 1036 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1037 unsigned long flags; 1038 1039 spin_lock_irqsave(&rport->lock, flags); 1040 1041 if (!lsop->req_queued) { 1042 spin_unlock_irqrestore(&rport->lock, flags); 1043 return; 1044 } 1045 1046 list_del(&lsop->lsreq_list); 1047 1048 lsop->req_queued = false; 1049 1050 spin_unlock_irqrestore(&rport->lock, flags); 1051 1052 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1053 (lsreq->rqstlen + lsreq->rsplen), 1054 DMA_BIDIRECTIONAL); 1055 1056 nvme_fc_rport_put(rport); 1057 } 1058 1059 static int 1060 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1061 struct nvmefc_ls_req_op *lsop, 1062 void (*done)(struct nvmefc_ls_req *req, int status)) 1063 { 1064 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1065 unsigned long flags; 1066 int ret = 0; 1067 1068 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1069 return -ECONNREFUSED; 1070 1071 if (!nvme_fc_rport_get(rport)) 1072 return -ESHUTDOWN; 1073 1074 lsreq->done = done; 1075 lsop->rport = rport; 1076 lsop->req_queued = false; 1077 INIT_LIST_HEAD(&lsop->lsreq_list); 1078 init_completion(&lsop->ls_done); 1079 1080 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1081 lsreq->rqstlen + lsreq->rsplen, 1082 DMA_BIDIRECTIONAL); 1083 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1084 ret = -EFAULT; 1085 goto out_putrport; 1086 } 1087 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1088 1089 spin_lock_irqsave(&rport->lock, flags); 1090 1091 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1092 1093 lsop->req_queued = true; 1094 1095 spin_unlock_irqrestore(&rport->lock, flags); 1096 1097 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1098 &rport->remoteport, lsreq); 1099 if (ret) 1100 goto out_unlink; 1101 1102 return 0; 1103 1104 out_unlink: 1105 lsop->ls_error = ret; 1106 spin_lock_irqsave(&rport->lock, flags); 1107 lsop->req_queued = false; 1108 list_del(&lsop->lsreq_list); 1109 spin_unlock_irqrestore(&rport->lock, flags); 1110 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1111 (lsreq->rqstlen + lsreq->rsplen), 1112 DMA_BIDIRECTIONAL); 1113 out_putrport: 1114 nvme_fc_rport_put(rport); 1115 1116 return ret; 1117 } 1118 1119 static void 1120 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1121 { 1122 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1123 1124 lsop->ls_error = status; 1125 complete(&lsop->ls_done); 1126 } 1127 1128 static int 1129 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1130 { 1131 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1132 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1133 int ret; 1134 1135 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1136 1137 if (!ret) { 1138 /* 1139 * No timeout/not interruptible as we need the struct 1140 * to exist until the lldd calls us back. Thus mandate 1141 * wait until driver calls back. lldd responsible for 1142 * the timeout action 1143 */ 1144 wait_for_completion(&lsop->ls_done); 1145 1146 __nvme_fc_finish_ls_req(lsop); 1147 1148 ret = lsop->ls_error; 1149 } 1150 1151 if (ret) 1152 return ret; 1153 1154 /* ACC or RJT payload ? */ 1155 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1156 return -ENXIO; 1157 1158 return 0; 1159 } 1160 1161 static int 1162 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1163 struct nvmefc_ls_req_op *lsop, 1164 void (*done)(struct nvmefc_ls_req *req, int status)) 1165 { 1166 /* don't wait for completion */ 1167 1168 return __nvme_fc_send_ls_req(rport, lsop, done); 1169 } 1170 1171 static int 1172 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1173 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1174 { 1175 struct nvmefc_ls_req_op *lsop; 1176 struct nvmefc_ls_req *lsreq; 1177 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1178 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1179 unsigned long flags; 1180 int ret, fcret = 0; 1181 1182 lsop = kzalloc((sizeof(*lsop) + 1183 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1184 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1185 if (!lsop) { 1186 dev_info(ctrl->ctrl.device, 1187 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1188 ctrl->cnum); 1189 ret = -ENOMEM; 1190 goto out_no_memory; 1191 } 1192 1193 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1194 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1195 lsreq = &lsop->ls_req; 1196 if (ctrl->lport->ops->lsrqst_priv_sz) 1197 lsreq->private = &assoc_acc[1]; 1198 else 1199 lsreq->private = NULL; 1200 1201 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1202 assoc_rqst->desc_list_len = 1203 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1204 1205 assoc_rqst->assoc_cmd.desc_tag = 1206 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1207 assoc_rqst->assoc_cmd.desc_len = 1208 fcnvme_lsdesc_len( 1209 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1210 1211 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1212 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1213 /* Linux supports only Dynamic controllers */ 1214 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1215 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1216 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1217 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1218 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1219 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1220 1221 lsop->queue = queue; 1222 lsreq->rqstaddr = assoc_rqst; 1223 lsreq->rqstlen = sizeof(*assoc_rqst); 1224 lsreq->rspaddr = assoc_acc; 1225 lsreq->rsplen = sizeof(*assoc_acc); 1226 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1227 1228 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1229 if (ret) 1230 goto out_free_buffer; 1231 1232 /* process connect LS completion */ 1233 1234 /* validate the ACC response */ 1235 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1236 fcret = VERR_LSACC; 1237 else if (assoc_acc->hdr.desc_list_len != 1238 fcnvme_lsdesc_len( 1239 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1240 fcret = VERR_CR_ASSOC_ACC_LEN; 1241 else if (assoc_acc->hdr.rqst.desc_tag != 1242 cpu_to_be32(FCNVME_LSDESC_RQST)) 1243 fcret = VERR_LSDESC_RQST; 1244 else if (assoc_acc->hdr.rqst.desc_len != 1245 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1246 fcret = VERR_LSDESC_RQST_LEN; 1247 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1248 fcret = VERR_CR_ASSOC; 1249 else if (assoc_acc->associd.desc_tag != 1250 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1251 fcret = VERR_ASSOC_ID; 1252 else if (assoc_acc->associd.desc_len != 1253 fcnvme_lsdesc_len( 1254 sizeof(struct fcnvme_lsdesc_assoc_id))) 1255 fcret = VERR_ASSOC_ID_LEN; 1256 else if (assoc_acc->connectid.desc_tag != 1257 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1258 fcret = VERR_CONN_ID; 1259 else if (assoc_acc->connectid.desc_len != 1260 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1261 fcret = VERR_CONN_ID_LEN; 1262 1263 if (fcret) { 1264 ret = -EBADF; 1265 dev_err(ctrl->dev, 1266 "q %d Create Association LS failed: %s\n", 1267 queue->qnum, validation_errors[fcret]); 1268 } else { 1269 spin_lock_irqsave(&ctrl->lock, flags); 1270 ctrl->association_id = 1271 be64_to_cpu(assoc_acc->associd.association_id); 1272 queue->connection_id = 1273 be64_to_cpu(assoc_acc->connectid.connection_id); 1274 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1275 spin_unlock_irqrestore(&ctrl->lock, flags); 1276 } 1277 1278 out_free_buffer: 1279 kfree(lsop); 1280 out_no_memory: 1281 if (ret) 1282 dev_err(ctrl->dev, 1283 "queue %d connect admin queue failed (%d).\n", 1284 queue->qnum, ret); 1285 return ret; 1286 } 1287 1288 static int 1289 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1290 u16 qsize, u16 ersp_ratio) 1291 { 1292 struct nvmefc_ls_req_op *lsop; 1293 struct nvmefc_ls_req *lsreq; 1294 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1295 struct fcnvme_ls_cr_conn_acc *conn_acc; 1296 int ret, fcret = 0; 1297 1298 lsop = kzalloc((sizeof(*lsop) + 1299 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1300 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1301 if (!lsop) { 1302 dev_info(ctrl->ctrl.device, 1303 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1304 ctrl->cnum); 1305 ret = -ENOMEM; 1306 goto out_no_memory; 1307 } 1308 1309 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1310 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1311 lsreq = &lsop->ls_req; 1312 if (ctrl->lport->ops->lsrqst_priv_sz) 1313 lsreq->private = (void *)&conn_acc[1]; 1314 else 1315 lsreq->private = NULL; 1316 1317 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1318 conn_rqst->desc_list_len = cpu_to_be32( 1319 sizeof(struct fcnvme_lsdesc_assoc_id) + 1320 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1321 1322 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1323 conn_rqst->associd.desc_len = 1324 fcnvme_lsdesc_len( 1325 sizeof(struct fcnvme_lsdesc_assoc_id)); 1326 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1327 conn_rqst->connect_cmd.desc_tag = 1328 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1329 conn_rqst->connect_cmd.desc_len = 1330 fcnvme_lsdesc_len( 1331 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1332 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1333 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1334 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1335 1336 lsop->queue = queue; 1337 lsreq->rqstaddr = conn_rqst; 1338 lsreq->rqstlen = sizeof(*conn_rqst); 1339 lsreq->rspaddr = conn_acc; 1340 lsreq->rsplen = sizeof(*conn_acc); 1341 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1342 1343 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1344 if (ret) 1345 goto out_free_buffer; 1346 1347 /* process connect LS completion */ 1348 1349 /* validate the ACC response */ 1350 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1351 fcret = VERR_LSACC; 1352 else if (conn_acc->hdr.desc_list_len != 1353 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1354 fcret = VERR_CR_CONN_ACC_LEN; 1355 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1356 fcret = VERR_LSDESC_RQST; 1357 else if (conn_acc->hdr.rqst.desc_len != 1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1359 fcret = VERR_LSDESC_RQST_LEN; 1360 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1361 fcret = VERR_CR_CONN; 1362 else if (conn_acc->connectid.desc_tag != 1363 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1364 fcret = VERR_CONN_ID; 1365 else if (conn_acc->connectid.desc_len != 1366 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1367 fcret = VERR_CONN_ID_LEN; 1368 1369 if (fcret) { 1370 ret = -EBADF; 1371 dev_err(ctrl->dev, 1372 "q %d Create I/O Connection LS failed: %s\n", 1373 queue->qnum, validation_errors[fcret]); 1374 } else { 1375 queue->connection_id = 1376 be64_to_cpu(conn_acc->connectid.connection_id); 1377 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1378 } 1379 1380 out_free_buffer: 1381 kfree(lsop); 1382 out_no_memory: 1383 if (ret) 1384 dev_err(ctrl->dev, 1385 "queue %d connect I/O queue failed (%d).\n", 1386 queue->qnum, ret); 1387 return ret; 1388 } 1389 1390 static void 1391 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1392 { 1393 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1394 1395 __nvme_fc_finish_ls_req(lsop); 1396 1397 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1398 1399 kfree(lsop); 1400 } 1401 1402 /* 1403 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1404 * the FC-NVME Association. Terminating the association also 1405 * terminates the FC-NVME connections (per queue, both admin and io 1406 * queues) that are part of the association. E.g. things are torn 1407 * down, and the related FC-NVME Association ID and Connection IDs 1408 * become invalid. 1409 * 1410 * The behavior of the fc-nvme initiator is such that it's 1411 * understanding of the association and connections will implicitly 1412 * be torn down. The action is implicit as it may be due to a loss of 1413 * connectivity with the fc-nvme target, so you may never get a 1414 * response even if you tried. As such, the action of this routine 1415 * is to asynchronously send the LS, ignore any results of the LS, and 1416 * continue on with terminating the association. If the fc-nvme target 1417 * is present and receives the LS, it too can tear down. 1418 */ 1419 static void 1420 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1421 { 1422 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1423 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1424 struct nvmefc_ls_req_op *lsop; 1425 struct nvmefc_ls_req *lsreq; 1426 int ret; 1427 1428 lsop = kzalloc((sizeof(*lsop) + 1429 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1430 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1431 if (!lsop) { 1432 dev_info(ctrl->ctrl.device, 1433 "NVME-FC{%d}: send Disconnect Association " 1434 "failed: ENOMEM\n", 1435 ctrl->cnum); 1436 return; 1437 } 1438 1439 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1440 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1441 lsreq = &lsop->ls_req; 1442 if (ctrl->lport->ops->lsrqst_priv_sz) 1443 lsreq->private = (void *)&discon_acc[1]; 1444 else 1445 lsreq->private = NULL; 1446 1447 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1448 ctrl->association_id); 1449 1450 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1451 nvme_fc_disconnect_assoc_done); 1452 if (ret) 1453 kfree(lsop); 1454 } 1455 1456 static void 1457 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1458 { 1459 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1460 struct nvme_fc_rport *rport = lsop->rport; 1461 struct nvme_fc_lport *lport = rport->lport; 1462 unsigned long flags; 1463 1464 spin_lock_irqsave(&rport->lock, flags); 1465 list_del(&lsop->lsrcv_list); 1466 spin_unlock_irqrestore(&rport->lock, flags); 1467 1468 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1469 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1470 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1471 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1472 1473 kfree(lsop); 1474 1475 nvme_fc_rport_put(rport); 1476 } 1477 1478 static void 1479 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1480 { 1481 struct nvme_fc_rport *rport = lsop->rport; 1482 struct nvme_fc_lport *lport = rport->lport; 1483 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1484 int ret; 1485 1486 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1487 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1488 1489 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1490 lsop->lsrsp); 1491 if (ret) { 1492 dev_warn(lport->dev, 1493 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1494 w0->ls_cmd, ret); 1495 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1496 return; 1497 } 1498 } 1499 1500 static struct nvme_fc_ctrl * 1501 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1502 struct nvmefc_ls_rcv_op *lsop) 1503 { 1504 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1505 &lsop->rqstbuf->rq_dis_assoc; 1506 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1507 struct nvmefc_ls_rcv_op *oldls = NULL; 1508 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1509 unsigned long flags; 1510 1511 spin_lock_irqsave(&rport->lock, flags); 1512 1513 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1514 if (!nvme_fc_ctrl_get(ctrl)) 1515 continue; 1516 spin_lock(&ctrl->lock); 1517 if (association_id == ctrl->association_id) { 1518 oldls = ctrl->rcv_disconn; 1519 ctrl->rcv_disconn = lsop; 1520 ret = ctrl; 1521 } 1522 spin_unlock(&ctrl->lock); 1523 if (ret) 1524 /* leave the ctrl get reference */ 1525 break; 1526 nvme_fc_ctrl_put(ctrl); 1527 } 1528 1529 spin_unlock_irqrestore(&rport->lock, flags); 1530 1531 /* transmit a response for anything that was pending */ 1532 if (oldls) { 1533 dev_info(rport->lport->dev, 1534 "NVME-FC{%d}: Multiple Disconnect Association " 1535 "LS's received\n", ctrl->cnum); 1536 /* overwrite good response with bogus failure */ 1537 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1538 sizeof(*oldls->rspbuf), 1539 rqst->w0.ls_cmd, 1540 FCNVME_RJT_RC_UNAB, 1541 FCNVME_RJT_EXP_NONE, 0); 1542 nvme_fc_xmt_ls_rsp(oldls); 1543 } 1544 1545 return ret; 1546 } 1547 1548 /* 1549 * returns true to mean LS handled and ls_rsp can be sent 1550 * returns false to defer ls_rsp xmt (will be done as part of 1551 * association termination) 1552 */ 1553 static bool 1554 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1555 { 1556 struct nvme_fc_rport *rport = lsop->rport; 1557 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1558 &lsop->rqstbuf->rq_dis_assoc; 1559 struct fcnvme_ls_disconnect_assoc_acc *acc = 1560 &lsop->rspbuf->rsp_dis_assoc; 1561 struct nvme_fc_ctrl *ctrl = NULL; 1562 int ret = 0; 1563 1564 memset(acc, 0, sizeof(*acc)); 1565 1566 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1567 if (!ret) { 1568 /* match an active association */ 1569 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1570 if (!ctrl) 1571 ret = VERR_NO_ASSOC; 1572 } 1573 1574 if (ret) { 1575 dev_info(rport->lport->dev, 1576 "Disconnect LS failed: %s\n", 1577 validation_errors[ret]); 1578 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1579 sizeof(*acc), rqst->w0.ls_cmd, 1580 (ret == VERR_NO_ASSOC) ? 1581 FCNVME_RJT_RC_INV_ASSOC : 1582 FCNVME_RJT_RC_LOGIC, 1583 FCNVME_RJT_EXP_NONE, 0); 1584 return true; 1585 } 1586 1587 /* format an ACCept response */ 1588 1589 lsop->lsrsp->rsplen = sizeof(*acc); 1590 1591 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1592 fcnvme_lsdesc_len( 1593 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1594 FCNVME_LS_DISCONNECT_ASSOC); 1595 1596 /* 1597 * the transmit of the response will occur after the exchanges 1598 * for the association have been ABTS'd by 1599 * nvme_fc_delete_association(). 1600 */ 1601 1602 /* fail the association */ 1603 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1604 1605 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1606 nvme_fc_ctrl_put(ctrl); 1607 1608 return false; 1609 } 1610 1611 /* 1612 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1613 * returns true if a response should be sent afterward, false if rsp will 1614 * be sent asynchronously. 1615 */ 1616 static bool 1617 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1618 { 1619 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1620 bool ret = true; 1621 1622 lsop->lsrsp->nvme_fc_private = lsop; 1623 lsop->lsrsp->rspbuf = lsop->rspbuf; 1624 lsop->lsrsp->rspdma = lsop->rspdma; 1625 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1626 /* Be preventative. handlers will later set to valid length */ 1627 lsop->lsrsp->rsplen = 0; 1628 1629 /* 1630 * handlers: 1631 * parse request input, execute the request, and format the 1632 * LS response 1633 */ 1634 switch (w0->ls_cmd) { 1635 case FCNVME_LS_DISCONNECT_ASSOC: 1636 ret = nvme_fc_ls_disconnect_assoc(lsop); 1637 break; 1638 case FCNVME_LS_DISCONNECT_CONN: 1639 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1640 sizeof(*lsop->rspbuf), w0->ls_cmd, 1641 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1642 break; 1643 case FCNVME_LS_CREATE_ASSOCIATION: 1644 case FCNVME_LS_CREATE_CONNECTION: 1645 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1646 sizeof(*lsop->rspbuf), w0->ls_cmd, 1647 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1648 break; 1649 default: 1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1651 sizeof(*lsop->rspbuf), w0->ls_cmd, 1652 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1653 break; 1654 } 1655 1656 return(ret); 1657 } 1658 1659 static void 1660 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1661 { 1662 struct nvme_fc_rport *rport = 1663 container_of(work, struct nvme_fc_rport, lsrcv_work); 1664 struct fcnvme_ls_rqst_w0 *w0; 1665 struct nvmefc_ls_rcv_op *lsop; 1666 unsigned long flags; 1667 bool sendrsp; 1668 1669 restart: 1670 sendrsp = true; 1671 spin_lock_irqsave(&rport->lock, flags); 1672 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1673 if (lsop->handled) 1674 continue; 1675 1676 lsop->handled = true; 1677 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1678 spin_unlock_irqrestore(&rport->lock, flags); 1679 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1680 } else { 1681 spin_unlock_irqrestore(&rport->lock, flags); 1682 w0 = &lsop->rqstbuf->w0; 1683 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1684 lsop->rspbuf, 1685 sizeof(*lsop->rspbuf), 1686 w0->ls_cmd, 1687 FCNVME_RJT_RC_UNAB, 1688 FCNVME_RJT_EXP_NONE, 0); 1689 } 1690 if (sendrsp) 1691 nvme_fc_xmt_ls_rsp(lsop); 1692 goto restart; 1693 } 1694 spin_unlock_irqrestore(&rport->lock, flags); 1695 } 1696 1697 /** 1698 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1699 * upon the reception of a NVME LS request. 1700 * 1701 * The nvme-fc layer will copy payload to an internal structure for 1702 * processing. As such, upon completion of the routine, the LLDD may 1703 * immediately free/reuse the LS request buffer passed in the call. 1704 * 1705 * If this routine returns error, the LLDD should abort the exchange. 1706 * 1707 * @remoteport: pointer to the (registered) remote port that the LS 1708 * was received from. The remoteport is associated with 1709 * a specific localport. 1710 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1711 * used to reference the exchange corresponding to the LS 1712 * when issuing an ls response. 1713 * @lsreqbuf: pointer to the buffer containing the LS Request 1714 * @lsreqbuf_len: length, in bytes, of the received LS request 1715 */ 1716 int 1717 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1718 struct nvmefc_ls_rsp *lsrsp, 1719 void *lsreqbuf, u32 lsreqbuf_len) 1720 { 1721 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1722 struct nvme_fc_lport *lport = rport->lport; 1723 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1724 struct nvmefc_ls_rcv_op *lsop; 1725 unsigned long flags; 1726 int ret; 1727 1728 nvme_fc_rport_get(rport); 1729 1730 /* validate there's a routine to transmit a response */ 1731 if (!lport->ops->xmt_ls_rsp) { 1732 dev_info(lport->dev, 1733 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1734 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1735 nvmefc_ls_names[w0->ls_cmd] : ""); 1736 ret = -EINVAL; 1737 goto out_put; 1738 } 1739 1740 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1741 dev_info(lport->dev, 1742 "RCV %s LS failed: payload too large\n", 1743 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1744 nvmefc_ls_names[w0->ls_cmd] : ""); 1745 ret = -E2BIG; 1746 goto out_put; 1747 } 1748 1749 lsop = kzalloc(sizeof(*lsop) + 1750 sizeof(union nvmefc_ls_requests) + 1751 sizeof(union nvmefc_ls_responses), 1752 GFP_KERNEL); 1753 if (!lsop) { 1754 dev_info(lport->dev, 1755 "RCV %s LS failed: No memory\n", 1756 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1757 nvmefc_ls_names[w0->ls_cmd] : ""); 1758 ret = -ENOMEM; 1759 goto out_put; 1760 } 1761 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1]; 1762 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1]; 1763 1764 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1765 sizeof(*lsop->rspbuf), 1766 DMA_TO_DEVICE); 1767 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1768 dev_info(lport->dev, 1769 "RCV %s LS failed: DMA mapping failure\n", 1770 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1771 nvmefc_ls_names[w0->ls_cmd] : ""); 1772 ret = -EFAULT; 1773 goto out_free; 1774 } 1775 1776 lsop->rport = rport; 1777 lsop->lsrsp = lsrsp; 1778 1779 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1780 lsop->rqstdatalen = lsreqbuf_len; 1781 1782 spin_lock_irqsave(&rport->lock, flags); 1783 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1784 spin_unlock_irqrestore(&rport->lock, flags); 1785 ret = -ENOTCONN; 1786 goto out_unmap; 1787 } 1788 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1789 spin_unlock_irqrestore(&rport->lock, flags); 1790 1791 schedule_work(&rport->lsrcv_work); 1792 1793 return 0; 1794 1795 out_unmap: 1796 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1797 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1798 out_free: 1799 kfree(lsop); 1800 out_put: 1801 nvme_fc_rport_put(rport); 1802 return ret; 1803 } 1804 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1805 1806 1807 /* *********************** NVME Ctrl Routines **************************** */ 1808 1809 static void 1810 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1811 struct nvme_fc_fcp_op *op) 1812 { 1813 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1814 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1815 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1816 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1817 1818 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1819 } 1820 1821 static void 1822 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1823 unsigned int hctx_idx) 1824 { 1825 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1826 1827 return __nvme_fc_exit_request(set->driver_data, op); 1828 } 1829 1830 static int 1831 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1832 { 1833 unsigned long flags; 1834 int opstate; 1835 1836 spin_lock_irqsave(&ctrl->lock, flags); 1837 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1838 if (opstate != FCPOP_STATE_ACTIVE) 1839 atomic_set(&op->state, opstate); 1840 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 1841 ctrl->iocnt++; 1842 spin_unlock_irqrestore(&ctrl->lock, flags); 1843 1844 if (opstate != FCPOP_STATE_ACTIVE) 1845 return -ECANCELED; 1846 1847 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1848 &ctrl->rport->remoteport, 1849 op->queue->lldd_handle, 1850 &op->fcp_req); 1851 1852 return 0; 1853 } 1854 1855 static void 1856 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1857 { 1858 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1859 int i; 1860 1861 /* ensure we've initialized the ops once */ 1862 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1863 return; 1864 1865 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1866 __nvme_fc_abort_op(ctrl, aen_op); 1867 } 1868 1869 static inline void 1870 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1871 struct nvme_fc_fcp_op *op, int opstate) 1872 { 1873 unsigned long flags; 1874 1875 if (opstate == FCPOP_STATE_ABORTED) { 1876 spin_lock_irqsave(&ctrl->lock, flags); 1877 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1878 if (!--ctrl->iocnt) 1879 wake_up(&ctrl->ioabort_wait); 1880 } 1881 spin_unlock_irqrestore(&ctrl->lock, flags); 1882 } 1883 } 1884 1885 static void 1886 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1887 { 1888 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1889 struct request *rq = op->rq; 1890 struct nvmefc_fcp_req *freq = &op->fcp_req; 1891 struct nvme_fc_ctrl *ctrl = op->ctrl; 1892 struct nvme_fc_queue *queue = op->queue; 1893 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1894 struct nvme_command *sqe = &op->cmd_iu.sqe; 1895 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1896 union nvme_result result; 1897 bool terminate_assoc = true; 1898 int opstate; 1899 1900 /* 1901 * WARNING: 1902 * The current linux implementation of a nvme controller 1903 * allocates a single tag set for all io queues and sizes 1904 * the io queues to fully hold all possible tags. Thus, the 1905 * implementation does not reference or care about the sqhd 1906 * value as it never needs to use the sqhd/sqtail pointers 1907 * for submission pacing. 1908 * 1909 * This affects the FC-NVME implementation in two ways: 1910 * 1) As the value doesn't matter, we don't need to waste 1911 * cycles extracting it from ERSPs and stamping it in the 1912 * cases where the transport fabricates CQEs on successful 1913 * completions. 1914 * 2) The FC-NVME implementation requires that delivery of 1915 * ERSP completions are to go back to the nvme layer in order 1916 * relative to the rsn, such that the sqhd value will always 1917 * be "in order" for the nvme layer. As the nvme layer in 1918 * linux doesn't care about sqhd, there's no need to return 1919 * them in order. 1920 * 1921 * Additionally: 1922 * As the core nvme layer in linux currently does not look at 1923 * every field in the cqe - in cases where the FC transport must 1924 * fabricate a CQE, the following fields will not be set as they 1925 * are not referenced: 1926 * cqe.sqid, cqe.sqhd, cqe.command_id 1927 * 1928 * Failure or error of an individual i/o, in a transport 1929 * detected fashion unrelated to the nvme completion status, 1930 * potentially cause the initiator and target sides to get out 1931 * of sync on SQ head/tail (aka outstanding io count allowed). 1932 * Per FC-NVME spec, failure of an individual command requires 1933 * the connection to be terminated, which in turn requires the 1934 * association to be terminated. 1935 */ 1936 1937 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1938 1939 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1940 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1941 1942 if (opstate == FCPOP_STATE_ABORTED) 1943 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1944 else if (freq->status) { 1945 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1946 dev_info(ctrl->ctrl.device, 1947 "NVME-FC{%d}: io failed due to lldd error %d\n", 1948 ctrl->cnum, freq->status); 1949 } 1950 1951 /* 1952 * For the linux implementation, if we have an unsuccesful 1953 * status, they blk-mq layer can typically be called with the 1954 * non-zero status and the content of the cqe isn't important. 1955 */ 1956 if (status) 1957 goto done; 1958 1959 /* 1960 * command completed successfully relative to the wire 1961 * protocol. However, validate anything received and 1962 * extract the status and result from the cqe (create it 1963 * where necessary). 1964 */ 1965 1966 switch (freq->rcv_rsplen) { 1967 1968 case 0: 1969 case NVME_FC_SIZEOF_ZEROS_RSP: 1970 /* 1971 * No response payload or 12 bytes of payload (which 1972 * should all be zeros) are considered successful and 1973 * no payload in the CQE by the transport. 1974 */ 1975 if (freq->transferred_length != 1976 be32_to_cpu(op->cmd_iu.data_len)) { 1977 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1978 dev_info(ctrl->ctrl.device, 1979 "NVME-FC{%d}: io failed due to bad transfer " 1980 "length: %d vs expected %d\n", 1981 ctrl->cnum, freq->transferred_length, 1982 be32_to_cpu(op->cmd_iu.data_len)); 1983 goto done; 1984 } 1985 result.u64 = 0; 1986 break; 1987 1988 case sizeof(struct nvme_fc_ersp_iu): 1989 /* 1990 * The ERSP IU contains a full completion with CQE. 1991 * Validate ERSP IU and look at cqe. 1992 */ 1993 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1994 (freq->rcv_rsplen / 4) || 1995 be32_to_cpu(op->rsp_iu.xfrd_len) != 1996 freq->transferred_length || 1997 op->rsp_iu.ersp_result || 1998 sqe->common.command_id != cqe->command_id)) { 1999 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2000 dev_info(ctrl->ctrl.device, 2001 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2002 "iu len %d, xfr len %d vs %d, status code " 2003 "%d, cmdid %d vs %d\n", 2004 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2005 be32_to_cpu(op->rsp_iu.xfrd_len), 2006 freq->transferred_length, 2007 op->rsp_iu.ersp_result, 2008 sqe->common.command_id, 2009 cqe->command_id); 2010 goto done; 2011 } 2012 result = cqe->result; 2013 status = cqe->status; 2014 break; 2015 2016 default: 2017 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2018 dev_info(ctrl->ctrl.device, 2019 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2020 "len %d\n", 2021 ctrl->cnum, freq->rcv_rsplen); 2022 goto done; 2023 } 2024 2025 terminate_assoc = false; 2026 2027 done: 2028 if (op->flags & FCOP_FLAGS_AEN) { 2029 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2030 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2031 atomic_set(&op->state, FCPOP_STATE_IDLE); 2032 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2033 nvme_fc_ctrl_put(ctrl); 2034 goto check_error; 2035 } 2036 2037 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2038 if (!nvme_try_complete_req(rq, status, result)) 2039 nvme_fc_complete_rq(rq); 2040 2041 check_error: 2042 if (terminate_assoc) 2043 nvme_fc_error_recovery(ctrl, "transport detected io error"); 2044 } 2045 2046 static int 2047 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2048 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2049 struct request *rq, u32 rqno) 2050 { 2051 struct nvme_fcp_op_w_sgl *op_w_sgl = 2052 container_of(op, typeof(*op_w_sgl), op); 2053 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2054 int ret = 0; 2055 2056 memset(op, 0, sizeof(*op)); 2057 op->fcp_req.cmdaddr = &op->cmd_iu; 2058 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2059 op->fcp_req.rspaddr = &op->rsp_iu; 2060 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2061 op->fcp_req.done = nvme_fc_fcpio_done; 2062 op->ctrl = ctrl; 2063 op->queue = queue; 2064 op->rq = rq; 2065 op->rqno = rqno; 2066 2067 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2068 cmdiu->fc_id = NVME_CMD_FC_ID; 2069 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2070 if (queue->qnum) 2071 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2072 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2073 else 2074 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2075 2076 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2077 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2078 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2079 dev_err(ctrl->dev, 2080 "FCP Op failed - cmdiu dma mapping failed.\n"); 2081 ret = -EFAULT; 2082 goto out_on_error; 2083 } 2084 2085 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2086 &op->rsp_iu, sizeof(op->rsp_iu), 2087 DMA_FROM_DEVICE); 2088 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2089 dev_err(ctrl->dev, 2090 "FCP Op failed - rspiu dma mapping failed.\n"); 2091 ret = -EFAULT; 2092 } 2093 2094 atomic_set(&op->state, FCPOP_STATE_IDLE); 2095 out_on_error: 2096 return ret; 2097 } 2098 2099 static int 2100 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2101 unsigned int hctx_idx, unsigned int numa_node) 2102 { 2103 struct nvme_fc_ctrl *ctrl = set->driver_data; 2104 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2105 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2106 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2107 int res; 2108 2109 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2110 if (res) 2111 return res; 2112 op->op.fcp_req.first_sgl = op->sgl; 2113 op->op.fcp_req.private = &op->priv[0]; 2114 nvme_req(rq)->ctrl = &ctrl->ctrl; 2115 return res; 2116 } 2117 2118 static int 2119 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2120 { 2121 struct nvme_fc_fcp_op *aen_op; 2122 struct nvme_fc_cmd_iu *cmdiu; 2123 struct nvme_command *sqe; 2124 void *private = NULL; 2125 int i, ret; 2126 2127 aen_op = ctrl->aen_ops; 2128 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2129 if (ctrl->lport->ops->fcprqst_priv_sz) { 2130 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2131 GFP_KERNEL); 2132 if (!private) 2133 return -ENOMEM; 2134 } 2135 2136 cmdiu = &aen_op->cmd_iu; 2137 sqe = &cmdiu->sqe; 2138 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2139 aen_op, (struct request *)NULL, 2140 (NVME_AQ_BLK_MQ_DEPTH + i)); 2141 if (ret) { 2142 kfree(private); 2143 return ret; 2144 } 2145 2146 aen_op->flags = FCOP_FLAGS_AEN; 2147 aen_op->fcp_req.private = private; 2148 2149 memset(sqe, 0, sizeof(*sqe)); 2150 sqe->common.opcode = nvme_admin_async_event; 2151 /* Note: core layer may overwrite the sqe.command_id value */ 2152 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2153 } 2154 return 0; 2155 } 2156 2157 static void 2158 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2159 { 2160 struct nvme_fc_fcp_op *aen_op; 2161 int i; 2162 2163 cancel_work_sync(&ctrl->ctrl.async_event_work); 2164 aen_op = ctrl->aen_ops; 2165 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2166 __nvme_fc_exit_request(ctrl, aen_op); 2167 2168 kfree(aen_op->fcp_req.private); 2169 aen_op->fcp_req.private = NULL; 2170 } 2171 } 2172 2173 static inline void 2174 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 2175 unsigned int qidx) 2176 { 2177 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2178 2179 hctx->driver_data = queue; 2180 queue->hctx = hctx; 2181 } 2182 2183 static int 2184 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2185 unsigned int hctx_idx) 2186 { 2187 struct nvme_fc_ctrl *ctrl = data; 2188 2189 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 2190 2191 return 0; 2192 } 2193 2194 static int 2195 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2196 unsigned int hctx_idx) 2197 { 2198 struct nvme_fc_ctrl *ctrl = data; 2199 2200 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 2201 2202 return 0; 2203 } 2204 2205 static void 2206 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2207 { 2208 struct nvme_fc_queue *queue; 2209 2210 queue = &ctrl->queues[idx]; 2211 memset(queue, 0, sizeof(*queue)); 2212 queue->ctrl = ctrl; 2213 queue->qnum = idx; 2214 atomic_set(&queue->csn, 0); 2215 queue->dev = ctrl->dev; 2216 2217 if (idx > 0) 2218 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2219 else 2220 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2221 2222 /* 2223 * Considered whether we should allocate buffers for all SQEs 2224 * and CQEs and dma map them - mapping their respective entries 2225 * into the request structures (kernel vm addr and dma address) 2226 * thus the driver could use the buffers/mappings directly. 2227 * It only makes sense if the LLDD would use them for its 2228 * messaging api. It's very unlikely most adapter api's would use 2229 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2230 * structures were used instead. 2231 */ 2232 } 2233 2234 /* 2235 * This routine terminates a queue at the transport level. 2236 * The transport has already ensured that all outstanding ios on 2237 * the queue have been terminated. 2238 * The transport will send a Disconnect LS request to terminate 2239 * the queue's connection. Termination of the admin queue will also 2240 * terminate the association at the target. 2241 */ 2242 static void 2243 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2244 { 2245 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2246 return; 2247 2248 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2249 /* 2250 * Current implementation never disconnects a single queue. 2251 * It always terminates a whole association. So there is never 2252 * a disconnect(queue) LS sent to the target. 2253 */ 2254 2255 queue->connection_id = 0; 2256 atomic_set(&queue->csn, 0); 2257 } 2258 2259 static void 2260 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2261 struct nvme_fc_queue *queue, unsigned int qidx) 2262 { 2263 if (ctrl->lport->ops->delete_queue) 2264 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2265 queue->lldd_handle); 2266 queue->lldd_handle = NULL; 2267 } 2268 2269 static void 2270 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2271 { 2272 int i; 2273 2274 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2275 nvme_fc_free_queue(&ctrl->queues[i]); 2276 } 2277 2278 static int 2279 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2280 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2281 { 2282 int ret = 0; 2283 2284 queue->lldd_handle = NULL; 2285 if (ctrl->lport->ops->create_queue) 2286 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2287 qidx, qsize, &queue->lldd_handle); 2288 2289 return ret; 2290 } 2291 2292 static void 2293 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2294 { 2295 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2296 int i; 2297 2298 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2299 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2300 } 2301 2302 static int 2303 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2304 { 2305 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2306 int i, ret; 2307 2308 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2309 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2310 if (ret) 2311 goto delete_queues; 2312 } 2313 2314 return 0; 2315 2316 delete_queues: 2317 for (; i >= 0; i--) 2318 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2319 return ret; 2320 } 2321 2322 static int 2323 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2324 { 2325 int i, ret = 0; 2326 2327 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2328 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2329 (qsize / 5)); 2330 if (ret) 2331 break; 2332 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); 2333 if (ret) 2334 break; 2335 2336 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2337 } 2338 2339 return ret; 2340 } 2341 2342 static void 2343 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2344 { 2345 int i; 2346 2347 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2348 nvme_fc_init_queue(ctrl, i); 2349 } 2350 2351 static void 2352 nvme_fc_ctrl_free(struct kref *ref) 2353 { 2354 struct nvme_fc_ctrl *ctrl = 2355 container_of(ref, struct nvme_fc_ctrl, ref); 2356 unsigned long flags; 2357 2358 if (ctrl->ctrl.tagset) { 2359 blk_cleanup_queue(ctrl->ctrl.connect_q); 2360 blk_mq_free_tag_set(&ctrl->tag_set); 2361 } 2362 2363 /* remove from rport list */ 2364 spin_lock_irqsave(&ctrl->rport->lock, flags); 2365 list_del(&ctrl->ctrl_list); 2366 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2367 2368 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2369 blk_cleanup_queue(ctrl->ctrl.admin_q); 2370 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 2371 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2372 2373 kfree(ctrl->queues); 2374 2375 put_device(ctrl->dev); 2376 nvme_fc_rport_put(ctrl->rport); 2377 2378 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2379 if (ctrl->ctrl.opts) 2380 nvmf_free_options(ctrl->ctrl.opts); 2381 kfree(ctrl); 2382 } 2383 2384 static void 2385 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2386 { 2387 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2388 } 2389 2390 static int 2391 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2392 { 2393 return kref_get_unless_zero(&ctrl->ref); 2394 } 2395 2396 /* 2397 * All accesses from nvme core layer done - can now free the 2398 * controller. Called after last nvme_put_ctrl() call 2399 */ 2400 static void 2401 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2402 { 2403 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2404 2405 WARN_ON(nctrl != &ctrl->ctrl); 2406 2407 nvme_fc_ctrl_put(ctrl); 2408 } 2409 2410 static void 2411 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2412 { 2413 int active; 2414 2415 /* 2416 * if an error (io timeout, etc) while (re)connecting, 2417 * it's an error on creating the new association. 2418 * Start the error recovery thread if it hasn't already 2419 * been started. It is expected there could be multiple 2420 * ios hitting this path before things are cleaned up. 2421 */ 2422 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2423 active = atomic_xchg(&ctrl->err_work_active, 1); 2424 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) { 2425 atomic_set(&ctrl->err_work_active, 0); 2426 WARN_ON(1); 2427 } 2428 return; 2429 } 2430 2431 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2432 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2433 return; 2434 2435 dev_warn(ctrl->ctrl.device, 2436 "NVME-FC{%d}: transport association error detected: %s\n", 2437 ctrl->cnum, errmsg); 2438 dev_warn(ctrl->ctrl.device, 2439 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2440 2441 nvme_reset_ctrl(&ctrl->ctrl); 2442 } 2443 2444 static enum blk_eh_timer_return 2445 nvme_fc_timeout(struct request *rq, bool reserved) 2446 { 2447 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2448 struct nvme_fc_ctrl *ctrl = op->ctrl; 2449 2450 /* 2451 * we can't individually ABTS an io without affecting the queue, 2452 * thus killing the queue, and thus the association. 2453 * So resolve by performing a controller reset, which will stop 2454 * the host/io stack, terminate the association on the link, 2455 * and recreate an association on the link. 2456 */ 2457 nvme_fc_error_recovery(ctrl, "io timeout error"); 2458 2459 /* 2460 * the io abort has been initiated. Have the reset timer 2461 * restarted and the abort completion will complete the io 2462 * shortly. Avoids a synchronous wait while the abort finishes. 2463 */ 2464 return BLK_EH_RESET_TIMER; 2465 } 2466 2467 static int 2468 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2469 struct nvme_fc_fcp_op *op) 2470 { 2471 struct nvmefc_fcp_req *freq = &op->fcp_req; 2472 int ret; 2473 2474 freq->sg_cnt = 0; 2475 2476 if (!blk_rq_nr_phys_segments(rq)) 2477 return 0; 2478 2479 freq->sg_table.sgl = freq->first_sgl; 2480 ret = sg_alloc_table_chained(&freq->sg_table, 2481 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2482 NVME_INLINE_SG_CNT); 2483 if (ret) 2484 return -ENOMEM; 2485 2486 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2487 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2488 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2489 op->nents, rq_dma_dir(rq)); 2490 if (unlikely(freq->sg_cnt <= 0)) { 2491 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2492 freq->sg_cnt = 0; 2493 return -EFAULT; 2494 } 2495 2496 /* 2497 * TODO: blk_integrity_rq(rq) for DIF 2498 */ 2499 return 0; 2500 } 2501 2502 static void 2503 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2504 struct nvme_fc_fcp_op *op) 2505 { 2506 struct nvmefc_fcp_req *freq = &op->fcp_req; 2507 2508 if (!freq->sg_cnt) 2509 return; 2510 2511 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2512 rq_dma_dir(rq)); 2513 2514 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2515 2516 freq->sg_cnt = 0; 2517 } 2518 2519 /* 2520 * In FC, the queue is a logical thing. At transport connect, the target 2521 * creates its "queue" and returns a handle that is to be given to the 2522 * target whenever it posts something to the corresponding SQ. When an 2523 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2524 * command contained within the SQE, an io, and assigns a FC exchange 2525 * to it. The SQE and the associated SQ handle are sent in the initial 2526 * CMD IU sents on the exchange. All transfers relative to the io occur 2527 * as part of the exchange. The CQE is the last thing for the io, 2528 * which is transferred (explicitly or implicitly) with the RSP IU 2529 * sent on the exchange. After the CQE is received, the FC exchange is 2530 * terminaed and the Exchange may be used on a different io. 2531 * 2532 * The transport to LLDD api has the transport making a request for a 2533 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2534 * resource and transfers the command. The LLDD will then process all 2535 * steps to complete the io. Upon completion, the transport done routine 2536 * is called. 2537 * 2538 * So - while the operation is outstanding to the LLDD, there is a link 2539 * level FC exchange resource that is also outstanding. This must be 2540 * considered in all cleanup operations. 2541 */ 2542 static blk_status_t 2543 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2544 struct nvme_fc_fcp_op *op, u32 data_len, 2545 enum nvmefc_fcp_datadir io_dir) 2546 { 2547 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2548 struct nvme_command *sqe = &cmdiu->sqe; 2549 int ret, opstate; 2550 2551 /* 2552 * before attempting to send the io, check to see if we believe 2553 * the target device is present 2554 */ 2555 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2556 return BLK_STS_RESOURCE; 2557 2558 if (!nvme_fc_ctrl_get(ctrl)) 2559 return BLK_STS_IOERR; 2560 2561 /* format the FC-NVME CMD IU and fcp_req */ 2562 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2563 cmdiu->data_len = cpu_to_be32(data_len); 2564 switch (io_dir) { 2565 case NVMEFC_FCP_WRITE: 2566 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2567 break; 2568 case NVMEFC_FCP_READ: 2569 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2570 break; 2571 case NVMEFC_FCP_NODATA: 2572 cmdiu->flags = 0; 2573 break; 2574 } 2575 op->fcp_req.payload_length = data_len; 2576 op->fcp_req.io_dir = io_dir; 2577 op->fcp_req.transferred_length = 0; 2578 op->fcp_req.rcv_rsplen = 0; 2579 op->fcp_req.status = NVME_SC_SUCCESS; 2580 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2581 2582 /* 2583 * validate per fabric rules, set fields mandated by fabric spec 2584 * as well as those by FC-NVME spec. 2585 */ 2586 WARN_ON_ONCE(sqe->common.metadata); 2587 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2588 2589 /* 2590 * format SQE DPTR field per FC-NVME rules: 2591 * type=0x5 Transport SGL Data Block Descriptor 2592 * subtype=0xA Transport-specific value 2593 * address=0 2594 * length=length of the data series 2595 */ 2596 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2597 NVME_SGL_FMT_TRANSPORT_A; 2598 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2599 sqe->rw.dptr.sgl.addr = 0; 2600 2601 if (!(op->flags & FCOP_FLAGS_AEN)) { 2602 ret = nvme_fc_map_data(ctrl, op->rq, op); 2603 if (ret < 0) { 2604 nvme_cleanup_cmd(op->rq); 2605 nvme_fc_ctrl_put(ctrl); 2606 if (ret == -ENOMEM || ret == -EAGAIN) 2607 return BLK_STS_RESOURCE; 2608 return BLK_STS_IOERR; 2609 } 2610 } 2611 2612 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2613 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2614 2615 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2616 2617 if (!(op->flags & FCOP_FLAGS_AEN)) 2618 blk_mq_start_request(op->rq); 2619 2620 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2621 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2622 &ctrl->rport->remoteport, 2623 queue->lldd_handle, &op->fcp_req); 2624 2625 if (ret) { 2626 /* 2627 * If the lld fails to send the command is there an issue with 2628 * the csn value? If the command that fails is the Connect, 2629 * no - as the connection won't be live. If it is a command 2630 * post-connect, it's possible a gap in csn may be created. 2631 * Does this matter? As Linux initiators don't send fused 2632 * commands, no. The gap would exist, but as there's nothing 2633 * that depends on csn order to be delivered on the target 2634 * side, it shouldn't hurt. It would be difficult for a 2635 * target to even detect the csn gap as it has no idea when the 2636 * cmd with the csn was supposed to arrive. 2637 */ 2638 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2639 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2640 2641 if (!(op->flags & FCOP_FLAGS_AEN)) { 2642 nvme_fc_unmap_data(ctrl, op->rq, op); 2643 nvme_cleanup_cmd(op->rq); 2644 } 2645 2646 nvme_fc_ctrl_put(ctrl); 2647 2648 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2649 ret != -EBUSY) 2650 return BLK_STS_IOERR; 2651 2652 return BLK_STS_RESOURCE; 2653 } 2654 2655 return BLK_STS_OK; 2656 } 2657 2658 static blk_status_t 2659 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2660 const struct blk_mq_queue_data *bd) 2661 { 2662 struct nvme_ns *ns = hctx->queue->queuedata; 2663 struct nvme_fc_queue *queue = hctx->driver_data; 2664 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2665 struct request *rq = bd->rq; 2666 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2667 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2668 struct nvme_command *sqe = &cmdiu->sqe; 2669 enum nvmefc_fcp_datadir io_dir; 2670 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2671 u32 data_len; 2672 blk_status_t ret; 2673 2674 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2675 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2676 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2677 2678 ret = nvme_setup_cmd(ns, rq, sqe); 2679 if (ret) 2680 return ret; 2681 2682 /* 2683 * nvme core doesn't quite treat the rq opaquely. Commands such 2684 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2685 * there is no actual payload to be transferred. 2686 * To get it right, key data transmission on there being 1 or 2687 * more physical segments in the sg list. If there is no 2688 * physical segments, there is no payload. 2689 */ 2690 if (blk_rq_nr_phys_segments(rq)) { 2691 data_len = blk_rq_payload_bytes(rq); 2692 io_dir = ((rq_data_dir(rq) == WRITE) ? 2693 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2694 } else { 2695 data_len = 0; 2696 io_dir = NVMEFC_FCP_NODATA; 2697 } 2698 2699 2700 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2701 } 2702 2703 static void 2704 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2705 { 2706 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2707 struct nvme_fc_fcp_op *aen_op; 2708 blk_status_t ret; 2709 2710 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2711 return; 2712 2713 aen_op = &ctrl->aen_ops[0]; 2714 2715 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2716 NVMEFC_FCP_NODATA); 2717 if (ret) 2718 dev_err(ctrl->ctrl.device, 2719 "failed async event work\n"); 2720 } 2721 2722 static void 2723 nvme_fc_complete_rq(struct request *rq) 2724 { 2725 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2726 struct nvme_fc_ctrl *ctrl = op->ctrl; 2727 2728 atomic_set(&op->state, FCPOP_STATE_IDLE); 2729 2730 nvme_fc_unmap_data(ctrl, rq, op); 2731 nvme_complete_rq(rq); 2732 nvme_fc_ctrl_put(ctrl); 2733 } 2734 2735 /* 2736 * This routine is used by the transport when it needs to find active 2737 * io on a queue that is to be terminated. The transport uses 2738 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2739 * this routine to kill them on a 1 by 1 basis. 2740 * 2741 * As FC allocates FC exchange for each io, the transport must contact 2742 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2743 * After terminating the exchange the LLDD will call the transport's 2744 * normal io done path for the request, but it will have an aborted 2745 * status. The done path will return the io request back to the block 2746 * layer with an error status. 2747 */ 2748 static bool 2749 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2750 { 2751 struct nvme_ctrl *nctrl = data; 2752 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2753 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2754 2755 __nvme_fc_abort_op(ctrl, op); 2756 return true; 2757 } 2758 2759 2760 static const struct blk_mq_ops nvme_fc_mq_ops = { 2761 .queue_rq = nvme_fc_queue_rq, 2762 .complete = nvme_fc_complete_rq, 2763 .init_request = nvme_fc_init_request, 2764 .exit_request = nvme_fc_exit_request, 2765 .init_hctx = nvme_fc_init_hctx, 2766 .timeout = nvme_fc_timeout, 2767 }; 2768 2769 static int 2770 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2771 { 2772 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2773 unsigned int nr_io_queues; 2774 int ret; 2775 2776 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2777 ctrl->lport->ops->max_hw_queues); 2778 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2779 if (ret) { 2780 dev_info(ctrl->ctrl.device, 2781 "set_queue_count failed: %d\n", ret); 2782 return ret; 2783 } 2784 2785 ctrl->ctrl.queue_count = nr_io_queues + 1; 2786 if (!nr_io_queues) 2787 return 0; 2788 2789 nvme_fc_init_io_queues(ctrl); 2790 2791 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2792 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2793 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2794 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2795 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 2796 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2797 ctrl->tag_set.cmd_size = 2798 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 2799 ctrl->lport->ops->fcprqst_priv_sz); 2800 ctrl->tag_set.driver_data = ctrl; 2801 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2802 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2803 2804 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2805 if (ret) 2806 return ret; 2807 2808 ctrl->ctrl.tagset = &ctrl->tag_set; 2809 2810 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2811 if (IS_ERR(ctrl->ctrl.connect_q)) { 2812 ret = PTR_ERR(ctrl->ctrl.connect_q); 2813 goto out_free_tag_set; 2814 } 2815 2816 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2817 if (ret) 2818 goto out_cleanup_blk_queue; 2819 2820 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2821 if (ret) 2822 goto out_delete_hw_queues; 2823 2824 ctrl->ioq_live = true; 2825 2826 return 0; 2827 2828 out_delete_hw_queues: 2829 nvme_fc_delete_hw_io_queues(ctrl); 2830 out_cleanup_blk_queue: 2831 blk_cleanup_queue(ctrl->ctrl.connect_q); 2832 out_free_tag_set: 2833 blk_mq_free_tag_set(&ctrl->tag_set); 2834 nvme_fc_free_io_queues(ctrl); 2835 2836 /* force put free routine to ignore io queues */ 2837 ctrl->ctrl.tagset = NULL; 2838 2839 return ret; 2840 } 2841 2842 static int 2843 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2844 { 2845 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2846 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2847 unsigned int nr_io_queues; 2848 int ret; 2849 2850 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2851 ctrl->lport->ops->max_hw_queues); 2852 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2853 if (ret) { 2854 dev_info(ctrl->ctrl.device, 2855 "set_queue_count failed: %d\n", ret); 2856 return ret; 2857 } 2858 2859 if (!nr_io_queues && prior_ioq_cnt) { 2860 dev_info(ctrl->ctrl.device, 2861 "Fail Reconnect: At least 1 io queue " 2862 "required (was %d)\n", prior_ioq_cnt); 2863 return -ENOSPC; 2864 } 2865 2866 ctrl->ctrl.queue_count = nr_io_queues + 1; 2867 /* check for io queues existing */ 2868 if (ctrl->ctrl.queue_count == 1) 2869 return 0; 2870 2871 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2872 if (ret) 2873 goto out_free_io_queues; 2874 2875 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2876 if (ret) 2877 goto out_delete_hw_queues; 2878 2879 if (prior_ioq_cnt != nr_io_queues) 2880 dev_info(ctrl->ctrl.device, 2881 "reconnect: revising io queue count from %d to %d\n", 2882 prior_ioq_cnt, nr_io_queues); 2883 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2884 2885 return 0; 2886 2887 out_delete_hw_queues: 2888 nvme_fc_delete_hw_io_queues(ctrl); 2889 out_free_io_queues: 2890 nvme_fc_free_io_queues(ctrl); 2891 return ret; 2892 } 2893 2894 static void 2895 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2896 { 2897 struct nvme_fc_lport *lport = rport->lport; 2898 2899 atomic_inc(&lport->act_rport_cnt); 2900 } 2901 2902 static void 2903 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2904 { 2905 struct nvme_fc_lport *lport = rport->lport; 2906 u32 cnt; 2907 2908 cnt = atomic_dec_return(&lport->act_rport_cnt); 2909 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2910 lport->ops->localport_delete(&lport->localport); 2911 } 2912 2913 static int 2914 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2915 { 2916 struct nvme_fc_rport *rport = ctrl->rport; 2917 u32 cnt; 2918 2919 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 2920 return 1; 2921 2922 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2923 if (cnt == 1) 2924 nvme_fc_rport_active_on_lport(rport); 2925 2926 return 0; 2927 } 2928 2929 static int 2930 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2931 { 2932 struct nvme_fc_rport *rport = ctrl->rport; 2933 struct nvme_fc_lport *lport = rport->lport; 2934 u32 cnt; 2935 2936 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 2937 2938 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2939 if (cnt == 0) { 2940 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2941 lport->ops->remoteport_delete(&rport->remoteport); 2942 nvme_fc_rport_inactive_on_lport(rport); 2943 } 2944 2945 return 0; 2946 } 2947 2948 /* 2949 * This routine restarts the controller on the host side, and 2950 * on the link side, recreates the controller association. 2951 */ 2952 static int 2953 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2954 { 2955 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2956 struct nvmefc_ls_rcv_op *disls = NULL; 2957 unsigned long flags; 2958 int ret; 2959 bool changed; 2960 2961 ++ctrl->ctrl.nr_reconnects; 2962 2963 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2964 return -ENODEV; 2965 2966 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2967 return -ENOTUNIQ; 2968 2969 dev_info(ctrl->ctrl.device, 2970 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 2971 " rport wwpn 0x%016llx: NQN \"%s\"\n", 2972 ctrl->cnum, ctrl->lport->localport.port_name, 2973 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 2974 2975 /* 2976 * Create the admin queue 2977 */ 2978 2979 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2980 NVME_AQ_DEPTH); 2981 if (ret) 2982 goto out_free_queue; 2983 2984 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2985 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 2986 if (ret) 2987 goto out_delete_hw_queue; 2988 2989 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2990 if (ret) 2991 goto out_disconnect_admin_queue; 2992 2993 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2994 2995 /* 2996 * Check controller capabilities 2997 * 2998 * todo:- add code to check if ctrl attributes changed from 2999 * prior connection values 3000 */ 3001 3002 ret = nvme_enable_ctrl(&ctrl->ctrl); 3003 if (ret) 3004 goto out_disconnect_admin_queue; 3005 3006 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3007 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3008 (ilog2(SZ_4K) - 9); 3009 3010 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 3011 3012 ret = nvme_init_identify(&ctrl->ctrl); 3013 if (ret) 3014 goto out_disconnect_admin_queue; 3015 3016 /* sanity checks */ 3017 3018 /* FC-NVME does not have other data in the capsule */ 3019 if (ctrl->ctrl.icdoff) { 3020 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3021 ctrl->ctrl.icdoff); 3022 goto out_disconnect_admin_queue; 3023 } 3024 3025 /* FC-NVME supports normal SGL Data Block Descriptors */ 3026 3027 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3028 /* warn if maxcmd is lower than queue_size */ 3029 dev_warn(ctrl->ctrl.device, 3030 "queue_size %zu > ctrl maxcmd %u, reducing " 3031 "to maxcmd\n", 3032 opts->queue_size, ctrl->ctrl.maxcmd); 3033 opts->queue_size = ctrl->ctrl.maxcmd; 3034 } 3035 3036 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 3037 /* warn if sqsize is lower than queue_size */ 3038 dev_warn(ctrl->ctrl.device, 3039 "queue_size %zu > ctrl sqsize %u, reducing " 3040 "to sqsize\n", 3041 opts->queue_size, ctrl->ctrl.sqsize + 1); 3042 opts->queue_size = ctrl->ctrl.sqsize + 1; 3043 } 3044 3045 ret = nvme_fc_init_aen_ops(ctrl); 3046 if (ret) 3047 goto out_term_aen_ops; 3048 3049 /* 3050 * Create the io queues 3051 */ 3052 3053 if (ctrl->ctrl.queue_count > 1) { 3054 if (!ctrl->ioq_live) 3055 ret = nvme_fc_create_io_queues(ctrl); 3056 else 3057 ret = nvme_fc_recreate_io_queues(ctrl); 3058 if (ret) 3059 goto out_term_aen_ops; 3060 } 3061 3062 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 3063 3064 ctrl->ctrl.nr_reconnects = 0; 3065 3066 if (changed) 3067 nvme_start_ctrl(&ctrl->ctrl); 3068 3069 return 0; /* Success */ 3070 3071 out_term_aen_ops: 3072 nvme_fc_term_aen_ops(ctrl); 3073 out_disconnect_admin_queue: 3074 /* send a Disconnect(association) LS to fc-nvme target */ 3075 nvme_fc_xmt_disconnect_assoc(ctrl); 3076 spin_lock_irqsave(&ctrl->lock, flags); 3077 ctrl->association_id = 0; 3078 disls = ctrl->rcv_disconn; 3079 ctrl->rcv_disconn = NULL; 3080 spin_unlock_irqrestore(&ctrl->lock, flags); 3081 if (disls) 3082 nvme_fc_xmt_ls_rsp(disls); 3083 out_delete_hw_queue: 3084 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3085 out_free_queue: 3086 nvme_fc_free_queue(&ctrl->queues[0]); 3087 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3088 nvme_fc_ctlr_inactive_on_rport(ctrl); 3089 3090 return ret; 3091 } 3092 3093 /* 3094 * This routine stops operation of the controller on the host side. 3095 * On the host os stack side: Admin and IO queues are stopped, 3096 * outstanding ios on them terminated via FC ABTS. 3097 * On the link side: the association is terminated. 3098 */ 3099 static void 3100 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3101 { 3102 struct nvmefc_ls_rcv_op *disls = NULL; 3103 unsigned long flags; 3104 3105 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3106 return; 3107 3108 spin_lock_irqsave(&ctrl->lock, flags); 3109 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3110 ctrl->iocnt = 0; 3111 spin_unlock_irqrestore(&ctrl->lock, flags); 3112 3113 /* 3114 * If io queues are present, stop them and terminate all outstanding 3115 * ios on them. As FC allocates FC exchange for each io, the 3116 * transport must contact the LLDD to terminate the exchange, 3117 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 3118 * to tell us what io's are busy and invoke a transport routine 3119 * to kill them with the LLDD. After terminating the exchange 3120 * the LLDD will call the transport's normal io done path, but it 3121 * will have an aborted status. The done path will return the 3122 * io requests back to the block layer as part of normal completions 3123 * (but with error status). 3124 */ 3125 if (ctrl->ctrl.queue_count > 1) { 3126 nvme_stop_queues(&ctrl->ctrl); 3127 blk_mq_tagset_busy_iter(&ctrl->tag_set, 3128 nvme_fc_terminate_exchange, &ctrl->ctrl); 3129 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 3130 } 3131 3132 /* 3133 * Other transports, which don't have link-level contexts bound 3134 * to sqe's, would try to gracefully shutdown the controller by 3135 * writing the registers for shutdown and polling (call 3136 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 3137 * just aborted and we will wait on those contexts, and given 3138 * there was no indication of how live the controlelr is on the 3139 * link, don't send more io to create more contexts for the 3140 * shutdown. Let the controller fail via keepalive failure if 3141 * its still present. 3142 */ 3143 3144 /* 3145 * clean up the admin queue. Same thing as above. 3146 * use blk_mq_tagset_busy_itr() and the transport routine to 3147 * terminate the exchanges. 3148 */ 3149 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 3150 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 3151 nvme_fc_terminate_exchange, &ctrl->ctrl); 3152 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 3153 3154 /* kill the aens as they are a separate path */ 3155 nvme_fc_abort_aen_ops(ctrl); 3156 3157 /* wait for all io that had to be aborted */ 3158 spin_lock_irq(&ctrl->lock); 3159 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3160 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3161 spin_unlock_irq(&ctrl->lock); 3162 3163 nvme_fc_term_aen_ops(ctrl); 3164 3165 /* 3166 * send a Disconnect(association) LS to fc-nvme target 3167 * Note: could have been sent at top of process, but 3168 * cleaner on link traffic if after the aborts complete. 3169 * Note: if association doesn't exist, association_id will be 0 3170 */ 3171 if (ctrl->association_id) 3172 nvme_fc_xmt_disconnect_assoc(ctrl); 3173 3174 spin_lock_irqsave(&ctrl->lock, flags); 3175 ctrl->association_id = 0; 3176 disls = ctrl->rcv_disconn; 3177 ctrl->rcv_disconn = NULL; 3178 spin_unlock_irqrestore(&ctrl->lock, flags); 3179 if (disls) 3180 /* 3181 * if a Disconnect Request was waiting for a response, send 3182 * now that all ABTS's have been issued (and are complete). 3183 */ 3184 nvme_fc_xmt_ls_rsp(disls); 3185 3186 if (ctrl->ctrl.tagset) { 3187 nvme_fc_delete_hw_io_queues(ctrl); 3188 nvme_fc_free_io_queues(ctrl); 3189 } 3190 3191 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3192 nvme_fc_free_queue(&ctrl->queues[0]); 3193 3194 /* re-enable the admin_q so anything new can fast fail */ 3195 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 3196 3197 /* resume the io queues so that things will fast fail */ 3198 nvme_start_queues(&ctrl->ctrl); 3199 3200 nvme_fc_ctlr_inactive_on_rport(ctrl); 3201 } 3202 3203 static void 3204 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3205 { 3206 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3207 3208 cancel_work_sync(&ctrl->err_work); 3209 cancel_delayed_work_sync(&ctrl->connect_work); 3210 /* 3211 * kill the association on the link side. this will block 3212 * waiting for io to terminate 3213 */ 3214 nvme_fc_delete_association(ctrl); 3215 } 3216 3217 static void 3218 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3219 { 3220 struct nvme_fc_rport *rport = ctrl->rport; 3221 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3222 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3223 bool recon = true; 3224 3225 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 3226 return; 3227 3228 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3229 dev_info(ctrl->ctrl.device, 3230 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3231 ctrl->cnum, status); 3232 else if (time_after_eq(jiffies, rport->dev_loss_end)) 3233 recon = false; 3234 3235 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 3236 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3237 dev_info(ctrl->ctrl.device, 3238 "NVME-FC{%d}: Reconnect attempt in %ld " 3239 "seconds\n", 3240 ctrl->cnum, recon_delay / HZ); 3241 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3242 recon_delay = rport->dev_loss_end - jiffies; 3243 3244 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3245 } else { 3246 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3247 dev_warn(ctrl->ctrl.device, 3248 "NVME-FC{%d}: Max reconnect attempts (%d) " 3249 "reached.\n", 3250 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3251 else 3252 dev_warn(ctrl->ctrl.device, 3253 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3254 "while waiting for remoteport connectivity.\n", 3255 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3256 (ctrl->ctrl.opts->max_reconnects * 3257 ctrl->ctrl.opts->reconnect_delay))); 3258 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3259 } 3260 } 3261 3262 static void 3263 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) 3264 { 3265 /* 3266 * if state is connecting - the error occurred as part of a 3267 * reconnect attempt. The create_association error paths will 3268 * clean up any outstanding io. 3269 * 3270 * if it's a different state - ensure all pending io is 3271 * terminated. Given this can delay while waiting for the 3272 * aborted io to return, we recheck adapter state below 3273 * before changing state. 3274 */ 3275 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 3276 nvme_stop_keep_alive(&ctrl->ctrl); 3277 3278 /* will block will waiting for io to terminate */ 3279 nvme_fc_delete_association(ctrl); 3280 } 3281 3282 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING && 3283 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3284 dev_err(ctrl->ctrl.device, 3285 "NVME-FC{%d}: error_recovery: Couldn't change state " 3286 "to CONNECTING\n", ctrl->cnum); 3287 } 3288 3289 static void 3290 nvme_fc_reset_ctrl_work(struct work_struct *work) 3291 { 3292 struct nvme_fc_ctrl *ctrl = 3293 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3294 int ret; 3295 3296 __nvme_fc_terminate_io(ctrl); 3297 3298 nvme_stop_ctrl(&ctrl->ctrl); 3299 3300 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 3301 ret = nvme_fc_create_association(ctrl); 3302 else 3303 ret = -ENOTCONN; 3304 3305 if (ret) 3306 nvme_fc_reconnect_or_delete(ctrl, ret); 3307 else 3308 dev_info(ctrl->ctrl.device, 3309 "NVME-FC{%d}: controller reset complete\n", 3310 ctrl->cnum); 3311 } 3312 3313 static void 3314 nvme_fc_connect_err_work(struct work_struct *work) 3315 { 3316 struct nvme_fc_ctrl *ctrl = 3317 container_of(work, struct nvme_fc_ctrl, err_work); 3318 3319 __nvme_fc_terminate_io(ctrl); 3320 3321 atomic_set(&ctrl->err_work_active, 0); 3322 3323 /* 3324 * Rescheduling the connection after recovering 3325 * from the io error is left to the reconnect work 3326 * item, which is what should have stalled waiting on 3327 * the io that had the error that scheduled this work. 3328 */ 3329 } 3330 3331 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3332 .name = "fc", 3333 .module = THIS_MODULE, 3334 .flags = NVME_F_FABRICS, 3335 .reg_read32 = nvmf_reg_read32, 3336 .reg_read64 = nvmf_reg_read64, 3337 .reg_write32 = nvmf_reg_write32, 3338 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3339 .submit_async_event = nvme_fc_submit_async_event, 3340 .delete_ctrl = nvme_fc_delete_ctrl, 3341 .get_address = nvmf_get_address, 3342 }; 3343 3344 static void 3345 nvme_fc_connect_ctrl_work(struct work_struct *work) 3346 { 3347 int ret; 3348 3349 struct nvme_fc_ctrl *ctrl = 3350 container_of(to_delayed_work(work), 3351 struct nvme_fc_ctrl, connect_work); 3352 3353 ret = nvme_fc_create_association(ctrl); 3354 if (ret) 3355 nvme_fc_reconnect_or_delete(ctrl, ret); 3356 else 3357 dev_info(ctrl->ctrl.device, 3358 "NVME-FC{%d}: controller connect complete\n", 3359 ctrl->cnum); 3360 } 3361 3362 3363 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3364 .queue_rq = nvme_fc_queue_rq, 3365 .complete = nvme_fc_complete_rq, 3366 .init_request = nvme_fc_init_request, 3367 .exit_request = nvme_fc_exit_request, 3368 .init_hctx = nvme_fc_init_admin_hctx, 3369 .timeout = nvme_fc_timeout, 3370 }; 3371 3372 3373 /* 3374 * Fails a controller request if it matches an existing controller 3375 * (association) with the same tuple: 3376 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3377 * 3378 * The ports don't need to be compared as they are intrinsically 3379 * already matched by the port pointers supplied. 3380 */ 3381 static bool 3382 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3383 struct nvmf_ctrl_options *opts) 3384 { 3385 struct nvme_fc_ctrl *ctrl; 3386 unsigned long flags; 3387 bool found = false; 3388 3389 spin_lock_irqsave(&rport->lock, flags); 3390 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3391 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3392 if (found) 3393 break; 3394 } 3395 spin_unlock_irqrestore(&rport->lock, flags); 3396 3397 return found; 3398 } 3399 3400 static struct nvme_ctrl * 3401 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3402 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3403 { 3404 struct nvme_fc_ctrl *ctrl; 3405 unsigned long flags; 3406 int ret, idx; 3407 3408 if (!(rport->remoteport.port_role & 3409 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3410 ret = -EBADR; 3411 goto out_fail; 3412 } 3413 3414 if (!opts->duplicate_connect && 3415 nvme_fc_existing_controller(rport, opts)) { 3416 ret = -EALREADY; 3417 goto out_fail; 3418 } 3419 3420 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3421 if (!ctrl) { 3422 ret = -ENOMEM; 3423 goto out_fail; 3424 } 3425 3426 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3427 if (idx < 0) { 3428 ret = -ENOSPC; 3429 goto out_free_ctrl; 3430 } 3431 3432 ctrl->ctrl.opts = opts; 3433 ctrl->ctrl.nr_reconnects = 0; 3434 if (lport->dev) 3435 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3436 else 3437 ctrl->ctrl.numa_node = NUMA_NO_NODE; 3438 INIT_LIST_HEAD(&ctrl->ctrl_list); 3439 ctrl->lport = lport; 3440 ctrl->rport = rport; 3441 ctrl->dev = lport->dev; 3442 ctrl->cnum = idx; 3443 ctrl->ioq_live = false; 3444 atomic_set(&ctrl->err_work_active, 0); 3445 init_waitqueue_head(&ctrl->ioabort_wait); 3446 3447 get_device(ctrl->dev); 3448 kref_init(&ctrl->ref); 3449 3450 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3451 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3452 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work); 3453 spin_lock_init(&ctrl->lock); 3454 3455 /* io queue count */ 3456 ctrl->ctrl.queue_count = min_t(unsigned int, 3457 opts->nr_io_queues, 3458 lport->ops->max_hw_queues); 3459 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3460 3461 ctrl->ctrl.sqsize = opts->queue_size - 1; 3462 ctrl->ctrl.kato = opts->kato; 3463 ctrl->ctrl.cntlid = 0xffff; 3464 3465 ret = -ENOMEM; 3466 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3467 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3468 if (!ctrl->queues) 3469 goto out_free_ida; 3470 3471 nvme_fc_init_queue(ctrl, 0); 3472 3473 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3474 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3475 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3476 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3477 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 3478 ctrl->admin_tag_set.cmd_size = 3479 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 3480 ctrl->lport->ops->fcprqst_priv_sz); 3481 ctrl->admin_tag_set.driver_data = ctrl; 3482 ctrl->admin_tag_set.nr_hw_queues = 1; 3483 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3484 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3485 3486 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3487 if (ret) 3488 goto out_free_queues; 3489 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3490 3491 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3492 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 3493 ret = PTR_ERR(ctrl->ctrl.fabrics_q); 3494 goto out_free_admin_tag_set; 3495 } 3496 3497 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3498 if (IS_ERR(ctrl->ctrl.admin_q)) { 3499 ret = PTR_ERR(ctrl->ctrl.admin_q); 3500 goto out_cleanup_fabrics_q; 3501 } 3502 3503 /* 3504 * Would have been nice to init io queues tag set as well. 3505 * However, we require interaction from the controller 3506 * for max io queue count before we can do so. 3507 * Defer this to the connect path. 3508 */ 3509 3510 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3511 if (ret) 3512 goto out_cleanup_admin_q; 3513 3514 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3515 3516 spin_lock_irqsave(&rport->lock, flags); 3517 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3518 spin_unlock_irqrestore(&rport->lock, flags); 3519 3520 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3521 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3522 dev_err(ctrl->ctrl.device, 3523 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3524 goto fail_ctrl; 3525 } 3526 3527 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3528 dev_err(ctrl->ctrl.device, 3529 "NVME-FC{%d}: failed to schedule initial connect\n", 3530 ctrl->cnum); 3531 goto fail_ctrl; 3532 } 3533 3534 flush_delayed_work(&ctrl->connect_work); 3535 3536 dev_info(ctrl->ctrl.device, 3537 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3538 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3539 3540 return &ctrl->ctrl; 3541 3542 fail_ctrl: 3543 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3544 cancel_work_sync(&ctrl->ctrl.reset_work); 3545 cancel_work_sync(&ctrl->err_work); 3546 cancel_delayed_work_sync(&ctrl->connect_work); 3547 3548 ctrl->ctrl.opts = NULL; 3549 3550 /* initiate nvme ctrl ref counting teardown */ 3551 nvme_uninit_ctrl(&ctrl->ctrl); 3552 3553 /* Remove core ctrl ref. */ 3554 nvme_put_ctrl(&ctrl->ctrl); 3555 3556 /* as we're past the point where we transition to the ref 3557 * counting teardown path, if we return a bad pointer here, 3558 * the calling routine, thinking it's prior to the 3559 * transition, will do an rport put. Since the teardown 3560 * path also does a rport put, we do an extra get here to 3561 * so proper order/teardown happens. 3562 */ 3563 nvme_fc_rport_get(rport); 3564 3565 return ERR_PTR(-EIO); 3566 3567 out_cleanup_admin_q: 3568 blk_cleanup_queue(ctrl->ctrl.admin_q); 3569 out_cleanup_fabrics_q: 3570 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 3571 out_free_admin_tag_set: 3572 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3573 out_free_queues: 3574 kfree(ctrl->queues); 3575 out_free_ida: 3576 put_device(ctrl->dev); 3577 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3578 out_free_ctrl: 3579 kfree(ctrl); 3580 out_fail: 3581 /* exit via here doesn't follow ctlr ref points */ 3582 return ERR_PTR(ret); 3583 } 3584 3585 3586 struct nvmet_fc_traddr { 3587 u64 nn; 3588 u64 pn; 3589 }; 3590 3591 static int 3592 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3593 { 3594 u64 token64; 3595 3596 if (match_u64(sstr, &token64)) 3597 return -EINVAL; 3598 *val = token64; 3599 3600 return 0; 3601 } 3602 3603 /* 3604 * This routine validates and extracts the WWN's from the TRADDR string. 3605 * As kernel parsers need the 0x to determine number base, universally 3606 * build string to parse with 0x prefix before parsing name strings. 3607 */ 3608 static int 3609 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3610 { 3611 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3612 substring_t wwn = { name, &name[sizeof(name)-1] }; 3613 int nnoffset, pnoffset; 3614 3615 /* validate if string is one of the 2 allowed formats */ 3616 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3617 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3618 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3619 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3620 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3621 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3622 NVME_FC_TRADDR_OXNNLEN; 3623 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3624 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3625 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3626 "pn-", NVME_FC_TRADDR_NNLEN))) { 3627 nnoffset = NVME_FC_TRADDR_NNLEN; 3628 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3629 } else 3630 goto out_einval; 3631 3632 name[0] = '0'; 3633 name[1] = 'x'; 3634 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3635 3636 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3637 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3638 goto out_einval; 3639 3640 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3641 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3642 goto out_einval; 3643 3644 return 0; 3645 3646 out_einval: 3647 pr_warn("%s: bad traddr string\n", __func__); 3648 return -EINVAL; 3649 } 3650 3651 static struct nvme_ctrl * 3652 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3653 { 3654 struct nvme_fc_lport *lport; 3655 struct nvme_fc_rport *rport; 3656 struct nvme_ctrl *ctrl; 3657 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3658 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3659 unsigned long flags; 3660 int ret; 3661 3662 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3663 if (ret || !raddr.nn || !raddr.pn) 3664 return ERR_PTR(-EINVAL); 3665 3666 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3667 if (ret || !laddr.nn || !laddr.pn) 3668 return ERR_PTR(-EINVAL); 3669 3670 /* find the host and remote ports to connect together */ 3671 spin_lock_irqsave(&nvme_fc_lock, flags); 3672 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3673 if (lport->localport.node_name != laddr.nn || 3674 lport->localport.port_name != laddr.pn || 3675 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3676 continue; 3677 3678 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3679 if (rport->remoteport.node_name != raddr.nn || 3680 rport->remoteport.port_name != raddr.pn || 3681 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3682 continue; 3683 3684 /* if fail to get reference fall through. Will error */ 3685 if (!nvme_fc_rport_get(rport)) 3686 break; 3687 3688 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3689 3690 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3691 if (IS_ERR(ctrl)) 3692 nvme_fc_rport_put(rport); 3693 return ctrl; 3694 } 3695 } 3696 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3697 3698 pr_warn("%s: %s - %s combination not found\n", 3699 __func__, opts->traddr, opts->host_traddr); 3700 return ERR_PTR(-ENOENT); 3701 } 3702 3703 3704 static struct nvmf_transport_ops nvme_fc_transport = { 3705 .name = "fc", 3706 .module = THIS_MODULE, 3707 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3708 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3709 .create_ctrl = nvme_fc_create_ctrl, 3710 }; 3711 3712 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3713 #define DISCOVERY_MAX_FAIL 20 3714 3715 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3716 struct device_attribute *attr, const char *buf, size_t count) 3717 { 3718 unsigned long flags; 3719 LIST_HEAD(local_disc_list); 3720 struct nvme_fc_lport *lport; 3721 struct nvme_fc_rport *rport; 3722 int failcnt = 0; 3723 3724 spin_lock_irqsave(&nvme_fc_lock, flags); 3725 restart: 3726 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3727 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3728 if (!nvme_fc_lport_get(lport)) 3729 continue; 3730 if (!nvme_fc_rport_get(rport)) { 3731 /* 3732 * This is a temporary condition. Upon restart 3733 * this rport will be gone from the list. 3734 * 3735 * Revert the lport put and retry. Anything 3736 * added to the list already will be skipped (as 3737 * they are no longer list_empty). Loops should 3738 * resume at rports that were not yet seen. 3739 */ 3740 nvme_fc_lport_put(lport); 3741 3742 if (failcnt++ < DISCOVERY_MAX_FAIL) 3743 goto restart; 3744 3745 pr_err("nvme_discovery: too many reference " 3746 "failures\n"); 3747 goto process_local_list; 3748 } 3749 if (list_empty(&rport->disc_list)) 3750 list_add_tail(&rport->disc_list, 3751 &local_disc_list); 3752 } 3753 } 3754 3755 process_local_list: 3756 while (!list_empty(&local_disc_list)) { 3757 rport = list_first_entry(&local_disc_list, 3758 struct nvme_fc_rport, disc_list); 3759 list_del_init(&rport->disc_list); 3760 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3761 3762 lport = rport->lport; 3763 /* signal discovery. Won't hurt if it repeats */ 3764 nvme_fc_signal_discovery_scan(lport, rport); 3765 nvme_fc_rport_put(rport); 3766 nvme_fc_lport_put(lport); 3767 3768 spin_lock_irqsave(&nvme_fc_lock, flags); 3769 } 3770 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3771 3772 return count; 3773 } 3774 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3775 3776 static struct attribute *nvme_fc_attrs[] = { 3777 &dev_attr_nvme_discovery.attr, 3778 NULL 3779 }; 3780 3781 static struct attribute_group nvme_fc_attr_group = { 3782 .attrs = nvme_fc_attrs, 3783 }; 3784 3785 static const struct attribute_group *nvme_fc_attr_groups[] = { 3786 &nvme_fc_attr_group, 3787 NULL 3788 }; 3789 3790 static struct class fc_class = { 3791 .name = "fc", 3792 .dev_groups = nvme_fc_attr_groups, 3793 .owner = THIS_MODULE, 3794 }; 3795 3796 static int __init nvme_fc_init_module(void) 3797 { 3798 int ret; 3799 3800 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); 3801 if (!nvme_fc_wq) 3802 return -ENOMEM; 3803 3804 /* 3805 * NOTE: 3806 * It is expected that in the future the kernel will combine 3807 * the FC-isms that are currently under scsi and now being 3808 * added to by NVME into a new standalone FC class. The SCSI 3809 * and NVME protocols and their devices would be under this 3810 * new FC class. 3811 * 3812 * As we need something to post FC-specific udev events to, 3813 * specifically for nvme probe events, start by creating the 3814 * new device class. When the new standalone FC class is 3815 * put in place, this code will move to a more generic 3816 * location for the class. 3817 */ 3818 ret = class_register(&fc_class); 3819 if (ret) { 3820 pr_err("couldn't register class fc\n"); 3821 goto out_destroy_wq; 3822 } 3823 3824 /* 3825 * Create a device for the FC-centric udev events 3826 */ 3827 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3828 "fc_udev_device"); 3829 if (IS_ERR(fc_udev_device)) { 3830 pr_err("couldn't create fc_udev device!\n"); 3831 ret = PTR_ERR(fc_udev_device); 3832 goto out_destroy_class; 3833 } 3834 3835 ret = nvmf_register_transport(&nvme_fc_transport); 3836 if (ret) 3837 goto out_destroy_device; 3838 3839 return 0; 3840 3841 out_destroy_device: 3842 device_destroy(&fc_class, MKDEV(0, 0)); 3843 out_destroy_class: 3844 class_unregister(&fc_class); 3845 out_destroy_wq: 3846 destroy_workqueue(nvme_fc_wq); 3847 3848 return ret; 3849 } 3850 3851 static void 3852 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3853 { 3854 struct nvme_fc_ctrl *ctrl; 3855 3856 spin_lock(&rport->lock); 3857 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3858 dev_warn(ctrl->ctrl.device, 3859 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3860 ctrl->cnum); 3861 nvme_delete_ctrl(&ctrl->ctrl); 3862 } 3863 spin_unlock(&rport->lock); 3864 } 3865 3866 static void 3867 nvme_fc_cleanup_for_unload(void) 3868 { 3869 struct nvme_fc_lport *lport; 3870 struct nvme_fc_rport *rport; 3871 3872 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3873 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3874 nvme_fc_delete_controllers(rport); 3875 } 3876 } 3877 } 3878 3879 static void __exit nvme_fc_exit_module(void) 3880 { 3881 unsigned long flags; 3882 bool need_cleanup = false; 3883 3884 spin_lock_irqsave(&nvme_fc_lock, flags); 3885 nvme_fc_waiting_to_unload = true; 3886 if (!list_empty(&nvme_fc_lport_list)) { 3887 need_cleanup = true; 3888 nvme_fc_cleanup_for_unload(); 3889 } 3890 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3891 if (need_cleanup) { 3892 pr_info("%s: waiting for ctlr deletes\n", __func__); 3893 wait_for_completion(&nvme_fc_unload_proceed); 3894 pr_info("%s: ctrl deletes complete\n", __func__); 3895 } 3896 3897 nvmf_unregister_transport(&nvme_fc_transport); 3898 3899 ida_destroy(&nvme_fc_local_port_cnt); 3900 ida_destroy(&nvme_fc_ctrl_cnt); 3901 3902 device_destroy(&fc_class, MKDEV(0, 0)); 3903 class_unregister(&fc_class); 3904 destroy_workqueue(nvme_fc_wq); 3905 } 3906 3907 module_init(nvme_fc_init_module); 3908 module_exit(nvme_fc_exit_module); 3909 3910 MODULE_LICENSE("GPL v2"); 3911