xref: /openbmc/linux/drivers/nvme/host/fc.c (revision a977d045)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS	1
38 #define NVME_FC_AQ_BLKMQ_DEPTH	\
39 	(NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE		(NVME_FC_AQ_BLKMQ_DEPTH + 1)
41 
42 enum nvme_fc_queue_flags {
43 	NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45 
46 #define NVMEFC_QUEUE_DELAY	3		/* ms units */
47 
48 struct nvme_fc_queue {
49 	struct nvme_fc_ctrl	*ctrl;
50 	struct device		*dev;
51 	struct blk_mq_hw_ctx	*hctx;
52 	void			*lldd_handle;
53 	int			queue_size;
54 	size_t			cmnd_capsule_len;
55 	u32			qnum;
56 	u32			rqcnt;
57 	u32			seqno;
58 
59 	u64			connection_id;
60 	atomic_t		csn;
61 
62 	unsigned long		flags;
63 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
64 
65 enum nvme_fcop_flags {
66 	FCOP_FLAGS_TERMIO	= (1 << 0),
67 	FCOP_FLAGS_RELEASED	= (1 << 1),
68 	FCOP_FLAGS_COMPLETE	= (1 << 2),
69 	FCOP_FLAGS_AEN		= (1 << 3),
70 };
71 
72 struct nvmefc_ls_req_op {
73 	struct nvmefc_ls_req	ls_req;
74 
75 	struct nvme_fc_rport	*rport;
76 	struct nvme_fc_queue	*queue;
77 	struct request		*rq;
78 	u32			flags;
79 
80 	int			ls_error;
81 	struct completion	ls_done;
82 	struct list_head	lsreq_list;	/* rport->ls_req_list */
83 	bool			req_queued;
84 };
85 
86 enum nvme_fcpop_state {
87 	FCPOP_STATE_UNINIT	= 0,
88 	FCPOP_STATE_IDLE	= 1,
89 	FCPOP_STATE_ACTIVE	= 2,
90 	FCPOP_STATE_ABORTED	= 3,
91 	FCPOP_STATE_COMPLETE	= 4,
92 };
93 
94 struct nvme_fc_fcp_op {
95 	struct nvme_request	nreq;		/*
96 						 * nvme/host/core.c
97 						 * requires this to be
98 						 * the 1st element in the
99 						 * private structure
100 						 * associated with the
101 						 * request.
102 						 */
103 	struct nvmefc_fcp_req	fcp_req;
104 
105 	struct nvme_fc_ctrl	*ctrl;
106 	struct nvme_fc_queue	*queue;
107 	struct request		*rq;
108 
109 	atomic_t		state;
110 	u32			flags;
111 	u32			rqno;
112 	u32			nents;
113 
114 	struct nvme_fc_cmd_iu	cmd_iu;
115 	struct nvme_fc_ersp_iu	rsp_iu;
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 struct nvme_fc_rport {
130 	struct nvme_fc_remote_port	remoteport;
131 
132 	struct list_head		endp_list; /* for lport->endp_list */
133 	struct list_head		ctrl_list;
134 	struct list_head		ls_req_list;
135 	struct device			*dev;	/* physical device for dma */
136 	struct nvme_fc_lport		*lport;
137 	spinlock_t			lock;
138 	struct kref			ref;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			cnum;
152 
153 	u64			association_id;
154 
155 	struct list_head	ctrl_list;	/* rport->ctrl_list */
156 
157 	struct blk_mq_tag_set	admin_tag_set;
158 	struct blk_mq_tag_set	tag_set;
159 
160 	struct work_struct	delete_work;
161 	struct delayed_work	connect_work;
162 
163 	struct kref		ref;
164 	u32			flags;
165 	u32			iocnt;
166 	wait_queue_head_t	ioabort_wait;
167 
168 	struct nvme_fc_fcp_op	aen_ops[NVME_FC_NR_AEN_COMMANDS];
169 
170 	struct nvme_ctrl	ctrl;
171 };
172 
173 static inline struct nvme_fc_ctrl *
174 to_fc_ctrl(struct nvme_ctrl *ctrl)
175 {
176 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177 }
178 
179 static inline struct nvme_fc_lport *
180 localport_to_lport(struct nvme_fc_local_port *portptr)
181 {
182 	return container_of(portptr, struct nvme_fc_lport, localport);
183 }
184 
185 static inline struct nvme_fc_rport *
186 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187 {
188 	return container_of(portptr, struct nvme_fc_rport, remoteport);
189 }
190 
191 static inline struct nvmefc_ls_req_op *
192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193 {
194 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195 }
196 
197 static inline struct nvme_fc_fcp_op *
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199 {
200 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 }
202 
203 
204 
205 /* *************************** Globals **************************** */
206 
207 
208 static DEFINE_SPINLOCK(nvme_fc_lock);
209 
210 static LIST_HEAD(nvme_fc_lport_list);
211 static DEFINE_IDA(nvme_fc_local_port_cnt);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213 
214 
215 
216 
217 /* *********************** FC-NVME Port Management ************************ */
218 
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 			struct nvme_fc_queue *, unsigned int);
222 
223 
224 /**
225  * nvme_fc_register_localport - transport entry point called by an
226  *                              LLDD to register the existence of a NVME
227  *                              host FC port.
228  * @pinfo:     pointer to information about the port to be registered
229  * @template:  LLDD entrypoints and operational parameters for the port
230  * @dev:       physical hardware device node port corresponds to. Will be
231  *             used for DMA mappings
232  * @lport_p:   pointer to a local port pointer. Upon success, the routine
233  *             will allocate a nvme_fc_local_port structure and place its
234  *             address in the local port pointer. Upon failure, local port
235  *             pointer will be set to 0.
236  *
237  * Returns:
238  * a completion status. Must be 0 upon success; a negative errno
239  * (ex: -ENXIO) upon failure.
240  */
241 int
242 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
243 			struct nvme_fc_port_template *template,
244 			struct device *dev,
245 			struct nvme_fc_local_port **portptr)
246 {
247 	struct nvme_fc_lport *newrec;
248 	unsigned long flags;
249 	int ret, idx;
250 
251 	if (!template->localport_delete || !template->remoteport_delete ||
252 	    !template->ls_req || !template->fcp_io ||
253 	    !template->ls_abort || !template->fcp_abort ||
254 	    !template->max_hw_queues || !template->max_sgl_segments ||
255 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
256 		ret = -EINVAL;
257 		goto out_reghost_failed;
258 	}
259 
260 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
261 			 GFP_KERNEL);
262 	if (!newrec) {
263 		ret = -ENOMEM;
264 		goto out_reghost_failed;
265 	}
266 
267 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
268 	if (idx < 0) {
269 		ret = -ENOSPC;
270 		goto out_fail_kfree;
271 	}
272 
273 	if (!get_device(dev) && dev) {
274 		ret = -ENODEV;
275 		goto out_ida_put;
276 	}
277 
278 	INIT_LIST_HEAD(&newrec->port_list);
279 	INIT_LIST_HEAD(&newrec->endp_list);
280 	kref_init(&newrec->ref);
281 	newrec->ops = template;
282 	newrec->dev = dev;
283 	ida_init(&newrec->endp_cnt);
284 	newrec->localport.private = &newrec[1];
285 	newrec->localport.node_name = pinfo->node_name;
286 	newrec->localport.port_name = pinfo->port_name;
287 	newrec->localport.port_role = pinfo->port_role;
288 	newrec->localport.port_id = pinfo->port_id;
289 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
290 	newrec->localport.port_num = idx;
291 
292 	spin_lock_irqsave(&nvme_fc_lock, flags);
293 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
294 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
295 
296 	if (dev)
297 		dma_set_seg_boundary(dev, template->dma_boundary);
298 
299 	*portptr = &newrec->localport;
300 	return 0;
301 
302 out_ida_put:
303 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
304 out_fail_kfree:
305 	kfree(newrec);
306 out_reghost_failed:
307 	*portptr = NULL;
308 
309 	return ret;
310 }
311 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
312 
313 static void
314 nvme_fc_free_lport(struct kref *ref)
315 {
316 	struct nvme_fc_lport *lport =
317 		container_of(ref, struct nvme_fc_lport, ref);
318 	unsigned long flags;
319 
320 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
321 	WARN_ON(!list_empty(&lport->endp_list));
322 
323 	/* remove from transport list */
324 	spin_lock_irqsave(&nvme_fc_lock, flags);
325 	list_del(&lport->port_list);
326 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
327 
328 	/* let the LLDD know we've finished tearing it down */
329 	lport->ops->localport_delete(&lport->localport);
330 
331 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
332 	ida_destroy(&lport->endp_cnt);
333 
334 	put_device(lport->dev);
335 
336 	kfree(lport);
337 }
338 
339 static void
340 nvme_fc_lport_put(struct nvme_fc_lport *lport)
341 {
342 	kref_put(&lport->ref, nvme_fc_free_lport);
343 }
344 
345 static int
346 nvme_fc_lport_get(struct nvme_fc_lport *lport)
347 {
348 	return kref_get_unless_zero(&lport->ref);
349 }
350 
351 /**
352  * nvme_fc_unregister_localport - transport entry point called by an
353  *                              LLDD to deregister/remove a previously
354  *                              registered a NVME host FC port.
355  * @localport: pointer to the (registered) local port that is to be
356  *             deregistered.
357  *
358  * Returns:
359  * a completion status. Must be 0 upon success; a negative errno
360  * (ex: -ENXIO) upon failure.
361  */
362 int
363 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
364 {
365 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
366 	unsigned long flags;
367 
368 	if (!portptr)
369 		return -EINVAL;
370 
371 	spin_lock_irqsave(&nvme_fc_lock, flags);
372 
373 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
374 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
375 		return -EINVAL;
376 	}
377 	portptr->port_state = FC_OBJSTATE_DELETED;
378 
379 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
380 
381 	nvme_fc_lport_put(lport);
382 
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
386 
387 /**
388  * nvme_fc_register_remoteport - transport entry point called by an
389  *                              LLDD to register the existence of a NVME
390  *                              subsystem FC port on its fabric.
391  * @localport: pointer to the (registered) local port that the remote
392  *             subsystem port is connected to.
393  * @pinfo:     pointer to information about the port to be registered
394  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
395  *             will allocate a nvme_fc_remote_port structure and place its
396  *             address in the remote port pointer. Upon failure, remote port
397  *             pointer will be set to 0.
398  *
399  * Returns:
400  * a completion status. Must be 0 upon success; a negative errno
401  * (ex: -ENXIO) upon failure.
402  */
403 int
404 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
405 				struct nvme_fc_port_info *pinfo,
406 				struct nvme_fc_remote_port **portptr)
407 {
408 	struct nvme_fc_lport *lport = localport_to_lport(localport);
409 	struct nvme_fc_rport *newrec;
410 	unsigned long flags;
411 	int ret, idx;
412 
413 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
414 			 GFP_KERNEL);
415 	if (!newrec) {
416 		ret = -ENOMEM;
417 		goto out_reghost_failed;
418 	}
419 
420 	if (!nvme_fc_lport_get(lport)) {
421 		ret = -ESHUTDOWN;
422 		goto out_kfree_rport;
423 	}
424 
425 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
426 	if (idx < 0) {
427 		ret = -ENOSPC;
428 		goto out_lport_put;
429 	}
430 
431 	INIT_LIST_HEAD(&newrec->endp_list);
432 	INIT_LIST_HEAD(&newrec->ctrl_list);
433 	INIT_LIST_HEAD(&newrec->ls_req_list);
434 	kref_init(&newrec->ref);
435 	spin_lock_init(&newrec->lock);
436 	newrec->remoteport.localport = &lport->localport;
437 	newrec->dev = lport->dev;
438 	newrec->lport = lport;
439 	newrec->remoteport.private = &newrec[1];
440 	newrec->remoteport.port_role = pinfo->port_role;
441 	newrec->remoteport.node_name = pinfo->node_name;
442 	newrec->remoteport.port_name = pinfo->port_name;
443 	newrec->remoteport.port_id = pinfo->port_id;
444 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
445 	newrec->remoteport.port_num = idx;
446 
447 	spin_lock_irqsave(&nvme_fc_lock, flags);
448 	list_add_tail(&newrec->endp_list, &lport->endp_list);
449 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
450 
451 	*portptr = &newrec->remoteport;
452 	return 0;
453 
454 out_lport_put:
455 	nvme_fc_lport_put(lport);
456 out_kfree_rport:
457 	kfree(newrec);
458 out_reghost_failed:
459 	*portptr = NULL;
460 	return ret;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
463 
464 static void
465 nvme_fc_free_rport(struct kref *ref)
466 {
467 	struct nvme_fc_rport *rport =
468 		container_of(ref, struct nvme_fc_rport, ref);
469 	struct nvme_fc_lport *lport =
470 			localport_to_lport(rport->remoteport.localport);
471 	unsigned long flags;
472 
473 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
474 	WARN_ON(!list_empty(&rport->ctrl_list));
475 
476 	/* remove from lport list */
477 	spin_lock_irqsave(&nvme_fc_lock, flags);
478 	list_del(&rport->endp_list);
479 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
480 
481 	/* let the LLDD know we've finished tearing it down */
482 	lport->ops->remoteport_delete(&rport->remoteport);
483 
484 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
485 
486 	kfree(rport);
487 
488 	nvme_fc_lport_put(lport);
489 }
490 
491 static void
492 nvme_fc_rport_put(struct nvme_fc_rport *rport)
493 {
494 	kref_put(&rport->ref, nvme_fc_free_rport);
495 }
496 
497 static int
498 nvme_fc_rport_get(struct nvme_fc_rport *rport)
499 {
500 	return kref_get_unless_zero(&rport->ref);
501 }
502 
503 static int
504 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
505 {
506 	struct nvmefc_ls_req_op *lsop;
507 	unsigned long flags;
508 
509 restart:
510 	spin_lock_irqsave(&rport->lock, flags);
511 
512 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
513 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
514 			lsop->flags |= FCOP_FLAGS_TERMIO;
515 			spin_unlock_irqrestore(&rport->lock, flags);
516 			rport->lport->ops->ls_abort(&rport->lport->localport,
517 						&rport->remoteport,
518 						&lsop->ls_req);
519 			goto restart;
520 		}
521 	}
522 	spin_unlock_irqrestore(&rport->lock, flags);
523 
524 	return 0;
525 }
526 
527 /**
528  * nvme_fc_unregister_remoteport - transport entry point called by an
529  *                              LLDD to deregister/remove a previously
530  *                              registered a NVME subsystem FC port.
531  * @remoteport: pointer to the (registered) remote port that is to be
532  *              deregistered.
533  *
534  * Returns:
535  * a completion status. Must be 0 upon success; a negative errno
536  * (ex: -ENXIO) upon failure.
537  */
538 int
539 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
540 {
541 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
542 	struct nvme_fc_ctrl *ctrl;
543 	unsigned long flags;
544 
545 	if (!portptr)
546 		return -EINVAL;
547 
548 	spin_lock_irqsave(&rport->lock, flags);
549 
550 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
551 		spin_unlock_irqrestore(&rport->lock, flags);
552 		return -EINVAL;
553 	}
554 	portptr->port_state = FC_OBJSTATE_DELETED;
555 
556 	/* tear down all associations to the remote port */
557 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
558 		__nvme_fc_del_ctrl(ctrl);
559 
560 	spin_unlock_irqrestore(&rport->lock, flags);
561 
562 	nvme_fc_abort_lsops(rport);
563 
564 	nvme_fc_rport_put(rport);
565 	return 0;
566 }
567 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
568 
569 
570 /* *********************** FC-NVME DMA Handling **************************** */
571 
572 /*
573  * The fcloop device passes in a NULL device pointer. Real LLD's will
574  * pass in a valid device pointer. If NULL is passed to the dma mapping
575  * routines, depending on the platform, it may or may not succeed, and
576  * may crash.
577  *
578  * As such:
579  * Wrapper all the dma routines and check the dev pointer.
580  *
581  * If simple mappings (return just a dma address, we'll noop them,
582  * returning a dma address of 0.
583  *
584  * On more complex mappings (dma_map_sg), a pseudo routine fills
585  * in the scatter list, setting all dma addresses to 0.
586  */
587 
588 static inline dma_addr_t
589 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
590 		enum dma_data_direction dir)
591 {
592 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
593 }
594 
595 static inline int
596 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
597 {
598 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
599 }
600 
601 static inline void
602 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
603 	enum dma_data_direction dir)
604 {
605 	if (dev)
606 		dma_unmap_single(dev, addr, size, dir);
607 }
608 
609 static inline void
610 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
611 		enum dma_data_direction dir)
612 {
613 	if (dev)
614 		dma_sync_single_for_cpu(dev, addr, size, dir);
615 }
616 
617 static inline void
618 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
619 		enum dma_data_direction dir)
620 {
621 	if (dev)
622 		dma_sync_single_for_device(dev, addr, size, dir);
623 }
624 
625 /* pseudo dma_map_sg call */
626 static int
627 fc_map_sg(struct scatterlist *sg, int nents)
628 {
629 	struct scatterlist *s;
630 	int i;
631 
632 	WARN_ON(nents == 0 || sg[0].length == 0);
633 
634 	for_each_sg(sg, s, nents, i) {
635 		s->dma_address = 0L;
636 #ifdef CONFIG_NEED_SG_DMA_LENGTH
637 		s->dma_length = s->length;
638 #endif
639 	}
640 	return nents;
641 }
642 
643 static inline int
644 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
645 		enum dma_data_direction dir)
646 {
647 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
648 }
649 
650 static inline void
651 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
652 		enum dma_data_direction dir)
653 {
654 	if (dev)
655 		dma_unmap_sg(dev, sg, nents, dir);
656 }
657 
658 
659 /* *********************** FC-NVME LS Handling **************************** */
660 
661 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
662 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
663 
664 
665 static void
666 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
667 {
668 	struct nvme_fc_rport *rport = lsop->rport;
669 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&rport->lock, flags);
673 
674 	if (!lsop->req_queued) {
675 		spin_unlock_irqrestore(&rport->lock, flags);
676 		return;
677 	}
678 
679 	list_del(&lsop->lsreq_list);
680 
681 	lsop->req_queued = false;
682 
683 	spin_unlock_irqrestore(&rport->lock, flags);
684 
685 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
686 				  (lsreq->rqstlen + lsreq->rsplen),
687 				  DMA_BIDIRECTIONAL);
688 
689 	nvme_fc_rport_put(rport);
690 }
691 
692 static int
693 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
694 		struct nvmefc_ls_req_op *lsop,
695 		void (*done)(struct nvmefc_ls_req *req, int status))
696 {
697 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
698 	unsigned long flags;
699 	int ret = 0;
700 
701 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
702 		return -ECONNREFUSED;
703 
704 	if (!nvme_fc_rport_get(rport))
705 		return -ESHUTDOWN;
706 
707 	lsreq->done = done;
708 	lsop->rport = rport;
709 	lsop->req_queued = false;
710 	INIT_LIST_HEAD(&lsop->lsreq_list);
711 	init_completion(&lsop->ls_done);
712 
713 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
714 				  lsreq->rqstlen + lsreq->rsplen,
715 				  DMA_BIDIRECTIONAL);
716 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
717 		ret = -EFAULT;
718 		goto out_putrport;
719 	}
720 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
721 
722 	spin_lock_irqsave(&rport->lock, flags);
723 
724 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
725 
726 	lsop->req_queued = true;
727 
728 	spin_unlock_irqrestore(&rport->lock, flags);
729 
730 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
731 					&rport->remoteport, lsreq);
732 	if (ret)
733 		goto out_unlink;
734 
735 	return 0;
736 
737 out_unlink:
738 	lsop->ls_error = ret;
739 	spin_lock_irqsave(&rport->lock, flags);
740 	lsop->req_queued = false;
741 	list_del(&lsop->lsreq_list);
742 	spin_unlock_irqrestore(&rport->lock, flags);
743 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
744 				  (lsreq->rqstlen + lsreq->rsplen),
745 				  DMA_BIDIRECTIONAL);
746 out_putrport:
747 	nvme_fc_rport_put(rport);
748 
749 	return ret;
750 }
751 
752 static void
753 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
754 {
755 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
756 
757 	lsop->ls_error = status;
758 	complete(&lsop->ls_done);
759 }
760 
761 static int
762 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
763 {
764 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
765 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
766 	int ret;
767 
768 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
769 
770 	if (!ret) {
771 		/*
772 		 * No timeout/not interruptible as we need the struct
773 		 * to exist until the lldd calls us back. Thus mandate
774 		 * wait until driver calls back. lldd responsible for
775 		 * the timeout action
776 		 */
777 		wait_for_completion(&lsop->ls_done);
778 
779 		__nvme_fc_finish_ls_req(lsop);
780 
781 		ret = lsop->ls_error;
782 	}
783 
784 	if (ret)
785 		return ret;
786 
787 	/* ACC or RJT payload ? */
788 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
789 		return -ENXIO;
790 
791 	return 0;
792 }
793 
794 static int
795 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
796 		struct nvmefc_ls_req_op *lsop,
797 		void (*done)(struct nvmefc_ls_req *req, int status))
798 {
799 	/* don't wait for completion */
800 
801 	return __nvme_fc_send_ls_req(rport, lsop, done);
802 }
803 
804 /* Validation Error indexes into the string table below */
805 enum {
806 	VERR_NO_ERROR		= 0,
807 	VERR_LSACC		= 1,
808 	VERR_LSDESC_RQST	= 2,
809 	VERR_LSDESC_RQST_LEN	= 3,
810 	VERR_ASSOC_ID		= 4,
811 	VERR_ASSOC_ID_LEN	= 5,
812 	VERR_CONN_ID		= 6,
813 	VERR_CONN_ID_LEN	= 7,
814 	VERR_CR_ASSOC		= 8,
815 	VERR_CR_ASSOC_ACC_LEN	= 9,
816 	VERR_CR_CONN		= 10,
817 	VERR_CR_CONN_ACC_LEN	= 11,
818 	VERR_DISCONN		= 12,
819 	VERR_DISCONN_ACC_LEN	= 13,
820 };
821 
822 static char *validation_errors[] = {
823 	"OK",
824 	"Not LS_ACC",
825 	"Not LSDESC_RQST",
826 	"Bad LSDESC_RQST Length",
827 	"Not Association ID",
828 	"Bad Association ID Length",
829 	"Not Connection ID",
830 	"Bad Connection ID Length",
831 	"Not CR_ASSOC Rqst",
832 	"Bad CR_ASSOC ACC Length",
833 	"Not CR_CONN Rqst",
834 	"Bad CR_CONN ACC Length",
835 	"Not Disconnect Rqst",
836 	"Bad Disconnect ACC Length",
837 };
838 
839 static int
840 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
841 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
842 {
843 	struct nvmefc_ls_req_op *lsop;
844 	struct nvmefc_ls_req *lsreq;
845 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
846 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
847 	int ret, fcret = 0;
848 
849 	lsop = kzalloc((sizeof(*lsop) +
850 			 ctrl->lport->ops->lsrqst_priv_sz +
851 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
852 	if (!lsop) {
853 		ret = -ENOMEM;
854 		goto out_no_memory;
855 	}
856 	lsreq = &lsop->ls_req;
857 
858 	lsreq->private = (void *)&lsop[1];
859 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
860 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
861 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
862 
863 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
864 	assoc_rqst->desc_list_len =
865 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
866 
867 	assoc_rqst->assoc_cmd.desc_tag =
868 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
869 	assoc_rqst->assoc_cmd.desc_len =
870 			fcnvme_lsdesc_len(
871 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
872 
873 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
874 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
875 	/* Linux supports only Dynamic controllers */
876 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
877 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
878 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
879 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
880 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
881 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
882 
883 	lsop->queue = queue;
884 	lsreq->rqstaddr = assoc_rqst;
885 	lsreq->rqstlen = sizeof(*assoc_rqst);
886 	lsreq->rspaddr = assoc_acc;
887 	lsreq->rsplen = sizeof(*assoc_acc);
888 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
889 
890 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
891 	if (ret)
892 		goto out_free_buffer;
893 
894 	/* process connect LS completion */
895 
896 	/* validate the ACC response */
897 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
898 		fcret = VERR_LSACC;
899 	else if (assoc_acc->hdr.desc_list_len !=
900 			fcnvme_lsdesc_len(
901 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
902 		fcret = VERR_CR_ASSOC_ACC_LEN;
903 	else if (assoc_acc->hdr.rqst.desc_tag !=
904 			cpu_to_be32(FCNVME_LSDESC_RQST))
905 		fcret = VERR_LSDESC_RQST;
906 	else if (assoc_acc->hdr.rqst.desc_len !=
907 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
908 		fcret = VERR_LSDESC_RQST_LEN;
909 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
910 		fcret = VERR_CR_ASSOC;
911 	else if (assoc_acc->associd.desc_tag !=
912 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
913 		fcret = VERR_ASSOC_ID;
914 	else if (assoc_acc->associd.desc_len !=
915 			fcnvme_lsdesc_len(
916 				sizeof(struct fcnvme_lsdesc_assoc_id)))
917 		fcret = VERR_ASSOC_ID_LEN;
918 	else if (assoc_acc->connectid.desc_tag !=
919 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
920 		fcret = VERR_CONN_ID;
921 	else if (assoc_acc->connectid.desc_len !=
922 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
923 		fcret = VERR_CONN_ID_LEN;
924 
925 	if (fcret) {
926 		ret = -EBADF;
927 		dev_err(ctrl->dev,
928 			"q %d connect failed: %s\n",
929 			queue->qnum, validation_errors[fcret]);
930 	} else {
931 		ctrl->association_id =
932 			be64_to_cpu(assoc_acc->associd.association_id);
933 		queue->connection_id =
934 			be64_to_cpu(assoc_acc->connectid.connection_id);
935 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
936 	}
937 
938 out_free_buffer:
939 	kfree(lsop);
940 out_no_memory:
941 	if (ret)
942 		dev_err(ctrl->dev,
943 			"queue %d connect admin queue failed (%d).\n",
944 			queue->qnum, ret);
945 	return ret;
946 }
947 
948 static int
949 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
950 			u16 qsize, u16 ersp_ratio)
951 {
952 	struct nvmefc_ls_req_op *lsop;
953 	struct nvmefc_ls_req *lsreq;
954 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
955 	struct fcnvme_ls_cr_conn_acc *conn_acc;
956 	int ret, fcret = 0;
957 
958 	lsop = kzalloc((sizeof(*lsop) +
959 			 ctrl->lport->ops->lsrqst_priv_sz +
960 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
961 	if (!lsop) {
962 		ret = -ENOMEM;
963 		goto out_no_memory;
964 	}
965 	lsreq = &lsop->ls_req;
966 
967 	lsreq->private = (void *)&lsop[1];
968 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
969 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
970 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
971 
972 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
973 	conn_rqst->desc_list_len = cpu_to_be32(
974 				sizeof(struct fcnvme_lsdesc_assoc_id) +
975 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
976 
977 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
978 	conn_rqst->associd.desc_len =
979 			fcnvme_lsdesc_len(
980 				sizeof(struct fcnvme_lsdesc_assoc_id));
981 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
982 	conn_rqst->connect_cmd.desc_tag =
983 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
984 	conn_rqst->connect_cmd.desc_len =
985 			fcnvme_lsdesc_len(
986 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
987 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
988 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
989 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
990 
991 	lsop->queue = queue;
992 	lsreq->rqstaddr = conn_rqst;
993 	lsreq->rqstlen = sizeof(*conn_rqst);
994 	lsreq->rspaddr = conn_acc;
995 	lsreq->rsplen = sizeof(*conn_acc);
996 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
997 
998 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
999 	if (ret)
1000 		goto out_free_buffer;
1001 
1002 	/* process connect LS completion */
1003 
1004 	/* validate the ACC response */
1005 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1006 		fcret = VERR_LSACC;
1007 	else if (conn_acc->hdr.desc_list_len !=
1008 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1009 		fcret = VERR_CR_CONN_ACC_LEN;
1010 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1011 		fcret = VERR_LSDESC_RQST;
1012 	else if (conn_acc->hdr.rqst.desc_len !=
1013 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1014 		fcret = VERR_LSDESC_RQST_LEN;
1015 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1016 		fcret = VERR_CR_CONN;
1017 	else if (conn_acc->connectid.desc_tag !=
1018 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1019 		fcret = VERR_CONN_ID;
1020 	else if (conn_acc->connectid.desc_len !=
1021 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1022 		fcret = VERR_CONN_ID_LEN;
1023 
1024 	if (fcret) {
1025 		ret = -EBADF;
1026 		dev_err(ctrl->dev,
1027 			"q %d connect failed: %s\n",
1028 			queue->qnum, validation_errors[fcret]);
1029 	} else {
1030 		queue->connection_id =
1031 			be64_to_cpu(conn_acc->connectid.connection_id);
1032 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1033 	}
1034 
1035 out_free_buffer:
1036 	kfree(lsop);
1037 out_no_memory:
1038 	if (ret)
1039 		dev_err(ctrl->dev,
1040 			"queue %d connect command failed (%d).\n",
1041 			queue->qnum, ret);
1042 	return ret;
1043 }
1044 
1045 static void
1046 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1047 {
1048 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1049 
1050 	__nvme_fc_finish_ls_req(lsop);
1051 
1052 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1053 
1054 	kfree(lsop);
1055 }
1056 
1057 /*
1058  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1059  * the FC-NVME Association.  Terminating the association also
1060  * terminates the FC-NVME connections (per queue, both admin and io
1061  * queues) that are part of the association. E.g. things are torn
1062  * down, and the related FC-NVME Association ID and Connection IDs
1063  * become invalid.
1064  *
1065  * The behavior of the fc-nvme initiator is such that it's
1066  * understanding of the association and connections will implicitly
1067  * be torn down. The action is implicit as it may be due to a loss of
1068  * connectivity with the fc-nvme target, so you may never get a
1069  * response even if you tried.  As such, the action of this routine
1070  * is to asynchronously send the LS, ignore any results of the LS, and
1071  * continue on with terminating the association. If the fc-nvme target
1072  * is present and receives the LS, it too can tear down.
1073  */
1074 static void
1075 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1076 {
1077 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1078 	struct fcnvme_ls_disconnect_acc *discon_acc;
1079 	struct nvmefc_ls_req_op *lsop;
1080 	struct nvmefc_ls_req *lsreq;
1081 	int ret;
1082 
1083 	lsop = kzalloc((sizeof(*lsop) +
1084 			 ctrl->lport->ops->lsrqst_priv_sz +
1085 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1086 			GFP_KERNEL);
1087 	if (!lsop)
1088 		/* couldn't sent it... too bad */
1089 		return;
1090 
1091 	lsreq = &lsop->ls_req;
1092 
1093 	lsreq->private = (void *)&lsop[1];
1094 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1095 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1096 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1097 
1098 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1099 	discon_rqst->desc_list_len = cpu_to_be32(
1100 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1101 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1102 
1103 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1104 	discon_rqst->associd.desc_len =
1105 			fcnvme_lsdesc_len(
1106 				sizeof(struct fcnvme_lsdesc_assoc_id));
1107 
1108 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1109 
1110 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1111 						FCNVME_LSDESC_DISCONN_CMD);
1112 	discon_rqst->discon_cmd.desc_len =
1113 			fcnvme_lsdesc_len(
1114 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1115 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1116 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1117 
1118 	lsreq->rqstaddr = discon_rqst;
1119 	lsreq->rqstlen = sizeof(*discon_rqst);
1120 	lsreq->rspaddr = discon_acc;
1121 	lsreq->rsplen = sizeof(*discon_acc);
1122 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1123 
1124 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1125 				nvme_fc_disconnect_assoc_done);
1126 	if (ret)
1127 		kfree(lsop);
1128 
1129 	/* only meaningful part to terminating the association */
1130 	ctrl->association_id = 0;
1131 }
1132 
1133 
1134 /* *********************** NVME Ctrl Routines **************************** */
1135 
1136 static void __nvme_fc_final_op_cleanup(struct request *rq);
1137 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1138 
1139 static int
1140 nvme_fc_reinit_request(void *data, struct request *rq)
1141 {
1142 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1143 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1144 
1145 	memset(cmdiu, 0, sizeof(*cmdiu));
1146 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1147 	cmdiu->fc_id = NVME_CMD_FC_ID;
1148 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1149 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1150 
1151 	return 0;
1152 }
1153 
1154 static void
1155 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1156 		struct nvme_fc_fcp_op *op)
1157 {
1158 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1159 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1160 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1161 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1162 
1163 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1164 }
1165 
1166 static void
1167 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1168 		unsigned int hctx_idx)
1169 {
1170 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1171 
1172 	return __nvme_fc_exit_request(set->driver_data, op);
1173 }
1174 
1175 static int
1176 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1177 {
1178 	int state;
1179 
1180 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1181 	if (state != FCPOP_STATE_ACTIVE) {
1182 		atomic_set(&op->state, state);
1183 		return -ECANCELED;
1184 	}
1185 
1186 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1187 					&ctrl->rport->remoteport,
1188 					op->queue->lldd_handle,
1189 					&op->fcp_req);
1190 
1191 	return 0;
1192 }
1193 
1194 static void
1195 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1196 {
1197 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1198 	unsigned long flags;
1199 	int i, ret;
1200 
1201 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1202 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1203 			continue;
1204 
1205 		spin_lock_irqsave(&ctrl->lock, flags);
1206 		if (ctrl->flags & FCCTRL_TERMIO) {
1207 			ctrl->iocnt++;
1208 			aen_op->flags |= FCOP_FLAGS_TERMIO;
1209 		}
1210 		spin_unlock_irqrestore(&ctrl->lock, flags);
1211 
1212 		ret = __nvme_fc_abort_op(ctrl, aen_op);
1213 		if (ret) {
1214 			/*
1215 			 * if __nvme_fc_abort_op failed the io wasn't
1216 			 * active. Thus this call path is running in
1217 			 * parallel to the io complete. Treat as non-error.
1218 			 */
1219 
1220 			/* back out the flags/counters */
1221 			spin_lock_irqsave(&ctrl->lock, flags);
1222 			if (ctrl->flags & FCCTRL_TERMIO)
1223 				ctrl->iocnt--;
1224 			aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1225 			spin_unlock_irqrestore(&ctrl->lock, flags);
1226 			return;
1227 		}
1228 	}
1229 }
1230 
1231 static inline int
1232 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1233 		struct nvme_fc_fcp_op *op)
1234 {
1235 	unsigned long flags;
1236 	bool complete_rq = false;
1237 
1238 	spin_lock_irqsave(&ctrl->lock, flags);
1239 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1240 		if (ctrl->flags & FCCTRL_TERMIO) {
1241 			if (!--ctrl->iocnt)
1242 				wake_up(&ctrl->ioabort_wait);
1243 		}
1244 	}
1245 	if (op->flags & FCOP_FLAGS_RELEASED)
1246 		complete_rq = true;
1247 	else
1248 		op->flags |= FCOP_FLAGS_COMPLETE;
1249 	spin_unlock_irqrestore(&ctrl->lock, flags);
1250 
1251 	return complete_rq;
1252 }
1253 
1254 static void
1255 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1256 {
1257 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1258 	struct request *rq = op->rq;
1259 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1260 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1261 	struct nvme_fc_queue *queue = op->queue;
1262 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1263 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1264 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1265 	union nvme_result result;
1266 	bool complete_rq, terminate_assoc = true;
1267 
1268 	/*
1269 	 * WARNING:
1270 	 * The current linux implementation of a nvme controller
1271 	 * allocates a single tag set for all io queues and sizes
1272 	 * the io queues to fully hold all possible tags. Thus, the
1273 	 * implementation does not reference or care about the sqhd
1274 	 * value as it never needs to use the sqhd/sqtail pointers
1275 	 * for submission pacing.
1276 	 *
1277 	 * This affects the FC-NVME implementation in two ways:
1278 	 * 1) As the value doesn't matter, we don't need to waste
1279 	 *    cycles extracting it from ERSPs and stamping it in the
1280 	 *    cases where the transport fabricates CQEs on successful
1281 	 *    completions.
1282 	 * 2) The FC-NVME implementation requires that delivery of
1283 	 *    ERSP completions are to go back to the nvme layer in order
1284 	 *    relative to the rsn, such that the sqhd value will always
1285 	 *    be "in order" for the nvme layer. As the nvme layer in
1286 	 *    linux doesn't care about sqhd, there's no need to return
1287 	 *    them in order.
1288 	 *
1289 	 * Additionally:
1290 	 * As the core nvme layer in linux currently does not look at
1291 	 * every field in the cqe - in cases where the FC transport must
1292 	 * fabricate a CQE, the following fields will not be set as they
1293 	 * are not referenced:
1294 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1295 	 *
1296 	 * Failure or error of an individual i/o, in a transport
1297 	 * detected fashion unrelated to the nvme completion status,
1298 	 * potentially cause the initiator and target sides to get out
1299 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1300 	 * Per FC-NVME spec, failure of an individual command requires
1301 	 * the connection to be terminated, which in turn requires the
1302 	 * association to be terminated.
1303 	 */
1304 
1305 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1306 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1307 
1308 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1309 		status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1310 	else if (freq->status)
1311 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1312 
1313 	/*
1314 	 * For the linux implementation, if we have an unsuccesful
1315 	 * status, they blk-mq layer can typically be called with the
1316 	 * non-zero status and the content of the cqe isn't important.
1317 	 */
1318 	if (status)
1319 		goto done;
1320 
1321 	/*
1322 	 * command completed successfully relative to the wire
1323 	 * protocol. However, validate anything received and
1324 	 * extract the status and result from the cqe (create it
1325 	 * where necessary).
1326 	 */
1327 
1328 	switch (freq->rcv_rsplen) {
1329 
1330 	case 0:
1331 	case NVME_FC_SIZEOF_ZEROS_RSP:
1332 		/*
1333 		 * No response payload or 12 bytes of payload (which
1334 		 * should all be zeros) are considered successful and
1335 		 * no payload in the CQE by the transport.
1336 		 */
1337 		if (freq->transferred_length !=
1338 			be32_to_cpu(op->cmd_iu.data_len)) {
1339 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1340 			goto done;
1341 		}
1342 		result.u64 = 0;
1343 		break;
1344 
1345 	case sizeof(struct nvme_fc_ersp_iu):
1346 		/*
1347 		 * The ERSP IU contains a full completion with CQE.
1348 		 * Validate ERSP IU and look at cqe.
1349 		 */
1350 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1351 					(freq->rcv_rsplen / 4) ||
1352 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1353 					freq->transferred_length ||
1354 			     op->rsp_iu.status_code ||
1355 			     sqe->common.command_id != cqe->command_id)) {
1356 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1357 			goto done;
1358 		}
1359 		result = cqe->result;
1360 		status = cqe->status;
1361 		break;
1362 
1363 	default:
1364 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1365 		goto done;
1366 	}
1367 
1368 	terminate_assoc = false;
1369 
1370 done:
1371 	if (op->flags & FCOP_FLAGS_AEN) {
1372 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1373 		complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1374 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1375 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1376 		nvme_fc_ctrl_put(ctrl);
1377 		goto check_error;
1378 	}
1379 
1380 	complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1381 	if (!complete_rq) {
1382 		if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1383 			status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1384 			if (blk_queue_dying(rq->q))
1385 				status |= cpu_to_le16(NVME_SC_DNR << 1);
1386 		}
1387 		nvme_end_request(rq, status, result);
1388 	} else
1389 		__nvme_fc_final_op_cleanup(rq);
1390 
1391 check_error:
1392 	if (terminate_assoc)
1393 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1394 }
1395 
1396 static int
1397 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1398 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1399 		struct request *rq, u32 rqno)
1400 {
1401 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1402 	int ret = 0;
1403 
1404 	memset(op, 0, sizeof(*op));
1405 	op->fcp_req.cmdaddr = &op->cmd_iu;
1406 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1407 	op->fcp_req.rspaddr = &op->rsp_iu;
1408 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1409 	op->fcp_req.done = nvme_fc_fcpio_done;
1410 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1411 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1412 	op->ctrl = ctrl;
1413 	op->queue = queue;
1414 	op->rq = rq;
1415 	op->rqno = rqno;
1416 
1417 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1418 	cmdiu->fc_id = NVME_CMD_FC_ID;
1419 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1420 
1421 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1422 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1423 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1424 		dev_err(ctrl->dev,
1425 			"FCP Op failed - cmdiu dma mapping failed.\n");
1426 		ret = EFAULT;
1427 		goto out_on_error;
1428 	}
1429 
1430 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1431 				&op->rsp_iu, sizeof(op->rsp_iu),
1432 				DMA_FROM_DEVICE);
1433 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1434 		dev_err(ctrl->dev,
1435 			"FCP Op failed - rspiu dma mapping failed.\n");
1436 		ret = EFAULT;
1437 	}
1438 
1439 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1440 out_on_error:
1441 	return ret;
1442 }
1443 
1444 static int
1445 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1446 		unsigned int hctx_idx, unsigned int numa_node)
1447 {
1448 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1449 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1450 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1451 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1452 
1453 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454 }
1455 
1456 static int
1457 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1458 {
1459 	struct nvme_fc_fcp_op *aen_op;
1460 	struct nvme_fc_cmd_iu *cmdiu;
1461 	struct nvme_command *sqe;
1462 	void *private;
1463 	int i, ret;
1464 
1465 	aen_op = ctrl->aen_ops;
1466 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1467 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1468 						GFP_KERNEL);
1469 		if (!private)
1470 			return -ENOMEM;
1471 
1472 		cmdiu = &aen_op->cmd_iu;
1473 		sqe = &cmdiu->sqe;
1474 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1475 				aen_op, (struct request *)NULL,
1476 				(AEN_CMDID_BASE + i));
1477 		if (ret) {
1478 			kfree(private);
1479 			return ret;
1480 		}
1481 
1482 		aen_op->flags = FCOP_FLAGS_AEN;
1483 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1484 		aen_op->fcp_req.private = private;
1485 
1486 		memset(sqe, 0, sizeof(*sqe));
1487 		sqe->common.opcode = nvme_admin_async_event;
1488 		/* Note: core layer may overwrite the sqe.command_id value */
1489 		sqe->common.command_id = AEN_CMDID_BASE + i;
1490 	}
1491 	return 0;
1492 }
1493 
1494 static void
1495 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1496 {
1497 	struct nvme_fc_fcp_op *aen_op;
1498 	int i;
1499 
1500 	aen_op = ctrl->aen_ops;
1501 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1502 		if (!aen_op->fcp_req.private)
1503 			continue;
1504 
1505 		__nvme_fc_exit_request(ctrl, aen_op);
1506 
1507 		kfree(aen_op->fcp_req.private);
1508 		aen_op->fcp_req.private = NULL;
1509 	}
1510 }
1511 
1512 static inline void
1513 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1514 		unsigned int qidx)
1515 {
1516 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1517 
1518 	hctx->driver_data = queue;
1519 	queue->hctx = hctx;
1520 }
1521 
1522 static int
1523 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1524 		unsigned int hctx_idx)
1525 {
1526 	struct nvme_fc_ctrl *ctrl = data;
1527 
1528 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1529 
1530 	return 0;
1531 }
1532 
1533 static int
1534 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535 		unsigned int hctx_idx)
1536 {
1537 	struct nvme_fc_ctrl *ctrl = data;
1538 
1539 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1540 
1541 	return 0;
1542 }
1543 
1544 static void
1545 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1546 {
1547 	struct nvme_fc_queue *queue;
1548 
1549 	queue = &ctrl->queues[idx];
1550 	memset(queue, 0, sizeof(*queue));
1551 	queue->ctrl = ctrl;
1552 	queue->qnum = idx;
1553 	atomic_set(&queue->csn, 1);
1554 	queue->dev = ctrl->dev;
1555 
1556 	if (idx > 0)
1557 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1558 	else
1559 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1560 
1561 	queue->queue_size = queue_size;
1562 
1563 	/*
1564 	 * Considered whether we should allocate buffers for all SQEs
1565 	 * and CQEs and dma map them - mapping their respective entries
1566 	 * into the request structures (kernel vm addr and dma address)
1567 	 * thus the driver could use the buffers/mappings directly.
1568 	 * It only makes sense if the LLDD would use them for its
1569 	 * messaging api. It's very unlikely most adapter api's would use
1570 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571 	 * structures were used instead.
1572 	 */
1573 }
1574 
1575 /*
1576  * This routine terminates a queue at the transport level.
1577  * The transport has already ensured that all outstanding ios on
1578  * the queue have been terminated.
1579  * The transport will send a Disconnect LS request to terminate
1580  * the queue's connection. Termination of the admin queue will also
1581  * terminate the association at the target.
1582  */
1583 static void
1584 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1585 {
1586 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1587 		return;
1588 
1589 	/*
1590 	 * Current implementation never disconnects a single queue.
1591 	 * It always terminates a whole association. So there is never
1592 	 * a disconnect(queue) LS sent to the target.
1593 	 */
1594 
1595 	queue->connection_id = 0;
1596 	clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1597 }
1598 
1599 static void
1600 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1601 	struct nvme_fc_queue *queue, unsigned int qidx)
1602 {
1603 	if (ctrl->lport->ops->delete_queue)
1604 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1605 				queue->lldd_handle);
1606 	queue->lldd_handle = NULL;
1607 }
1608 
1609 static void
1610 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1611 {
1612 	int i;
1613 
1614 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1615 		nvme_fc_free_queue(&ctrl->queues[i]);
1616 }
1617 
1618 static int
1619 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1620 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1621 {
1622 	int ret = 0;
1623 
1624 	queue->lldd_handle = NULL;
1625 	if (ctrl->lport->ops->create_queue)
1626 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1627 				qidx, qsize, &queue->lldd_handle);
1628 
1629 	return ret;
1630 }
1631 
1632 static void
1633 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1634 {
1635 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1636 	int i;
1637 
1638 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1639 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1640 }
1641 
1642 static int
1643 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1644 {
1645 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1646 	int i, ret;
1647 
1648 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1649 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1650 		if (ret)
1651 			goto delete_queues;
1652 	}
1653 
1654 	return 0;
1655 
1656 delete_queues:
1657 	for (; i >= 0; i--)
1658 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1659 	return ret;
1660 }
1661 
1662 static int
1663 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1664 {
1665 	int i, ret = 0;
1666 
1667 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1668 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1669 					(qsize / 5));
1670 		if (ret)
1671 			break;
1672 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1673 		if (ret)
1674 			break;
1675 	}
1676 
1677 	return ret;
1678 }
1679 
1680 static void
1681 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1682 {
1683 	int i;
1684 
1685 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1686 		nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1687 }
1688 
1689 static void
1690 nvme_fc_ctrl_free(struct kref *ref)
1691 {
1692 	struct nvme_fc_ctrl *ctrl =
1693 		container_of(ref, struct nvme_fc_ctrl, ref);
1694 	unsigned long flags;
1695 
1696 	if (ctrl->ctrl.tagset) {
1697 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1698 		blk_mq_free_tag_set(&ctrl->tag_set);
1699 	}
1700 
1701 	/* remove from rport list */
1702 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1703 	list_del(&ctrl->ctrl_list);
1704 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1705 
1706 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1707 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1708 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1709 
1710 	kfree(ctrl->queues);
1711 
1712 	put_device(ctrl->dev);
1713 	nvme_fc_rport_put(ctrl->rport);
1714 
1715 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1716 	if (ctrl->ctrl.opts)
1717 		nvmf_free_options(ctrl->ctrl.opts);
1718 	kfree(ctrl);
1719 }
1720 
1721 static void
1722 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1723 {
1724 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1725 }
1726 
1727 static int
1728 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1729 {
1730 	return kref_get_unless_zero(&ctrl->ref);
1731 }
1732 
1733 /*
1734  * All accesses from nvme core layer done - can now free the
1735  * controller. Called after last nvme_put_ctrl() call
1736  */
1737 static void
1738 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1739 {
1740 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1741 
1742 	WARN_ON(nctrl != &ctrl->ctrl);
1743 
1744 	nvme_fc_ctrl_put(ctrl);
1745 }
1746 
1747 static void
1748 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1749 {
1750 	/* only proceed if in LIVE state - e.g. on first error */
1751 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1752 		return;
1753 
1754 	dev_warn(ctrl->ctrl.device,
1755 		"NVME-FC{%d}: transport association error detected: %s\n",
1756 		ctrl->cnum, errmsg);
1757 	dev_warn(ctrl->ctrl.device,
1758 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1759 
1760 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1761 		dev_err(ctrl->ctrl.device,
1762 			"NVME-FC{%d}: error_recovery: Couldn't change state "
1763 			"to RECONNECTING\n", ctrl->cnum);
1764 		return;
1765 	}
1766 
1767 	nvme_reset_ctrl(&ctrl->ctrl);
1768 }
1769 
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1775 	int ret;
1776 
1777 	if (reserved)
1778 		return BLK_EH_RESET_TIMER;
1779 
1780 	ret = __nvme_fc_abort_op(ctrl, op);
1781 	if (ret)
1782 		/* io wasn't active to abort consider it done */
1783 		return BLK_EH_HANDLED;
1784 
1785 	/*
1786 	 * we can't individually ABTS an io without affecting the queue,
1787 	 * thus killing the queue, adn thus the association.
1788 	 * So resolve by performing a controller reset, which will stop
1789 	 * the host/io stack, terminate the association on the link,
1790 	 * and recreate an association on the link.
1791 	 */
1792 	nvme_fc_error_recovery(ctrl, "io timeout error");
1793 
1794 	return BLK_EH_HANDLED;
1795 }
1796 
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799 		struct nvme_fc_fcp_op *op)
1800 {
1801 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1802 	enum dma_data_direction dir;
1803 	int ret;
1804 
1805 	freq->sg_cnt = 0;
1806 
1807 	if (!blk_rq_payload_bytes(rq))
1808 		return 0;
1809 
1810 	freq->sg_table.sgl = freq->first_sgl;
1811 	ret = sg_alloc_table_chained(&freq->sg_table,
1812 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813 	if (ret)
1814 		return -ENOMEM;
1815 
1816 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820 				op->nents, dir);
1821 	if (unlikely(freq->sg_cnt <= 0)) {
1822 		sg_free_table_chained(&freq->sg_table, true);
1823 		freq->sg_cnt = 0;
1824 		return -EFAULT;
1825 	}
1826 
1827 	/*
1828 	 * TODO: blk_integrity_rq(rq)  for DIF
1829 	 */
1830 	return 0;
1831 }
1832 
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835 		struct nvme_fc_fcp_op *op)
1836 {
1837 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1838 
1839 	if (!freq->sg_cnt)
1840 		return;
1841 
1842 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843 				((rq_data_dir(rq) == WRITE) ?
1844 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845 
1846 	nvme_cleanup_cmd(rq);
1847 
1848 	sg_free_table_chained(&freq->sg_table, true);
1849 
1850 	freq->sg_cnt = 0;
1851 }
1852 
1853 /*
1854  * In FC, the queue is a logical thing. At transport connect, the target
1855  * creates its "queue" and returns a handle that is to be given to the
1856  * target whenever it posts something to the corresponding SQ.  When an
1857  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858  * command contained within the SQE, an io, and assigns a FC exchange
1859  * to it. The SQE and the associated SQ handle are sent in the initial
1860  * CMD IU sents on the exchange. All transfers relative to the io occur
1861  * as part of the exchange.  The CQE is the last thing for the io,
1862  * which is transferred (explicitly or implicitly) with the RSP IU
1863  * sent on the exchange. After the CQE is received, the FC exchange is
1864  * terminaed and the Exchange may be used on a different io.
1865  *
1866  * The transport to LLDD api has the transport making a request for a
1867  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868  * resource and transfers the command. The LLDD will then process all
1869  * steps to complete the io. Upon completion, the transport done routine
1870  * is called.
1871  *
1872  * So - while the operation is outstanding to the LLDD, there is a link
1873  * level FC exchange resource that is also outstanding. This must be
1874  * considered in all cleanup operations.
1875  */
1876 static blk_status_t
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878 	struct nvme_fc_fcp_op *op, u32 data_len,
1879 	enum nvmefc_fcp_datadir	io_dir)
1880 {
1881 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882 	struct nvme_command *sqe = &cmdiu->sqe;
1883 	u32 csn;
1884 	int ret;
1885 
1886 	/*
1887 	 * before attempting to send the io, check to see if we believe
1888 	 * the target device is present
1889 	 */
1890 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891 		goto busy;
1892 
1893 	if (!nvme_fc_ctrl_get(ctrl))
1894 		return BLK_STS_IOERR;
1895 
1896 	/* format the FC-NVME CMD IU and fcp_req */
1897 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898 	csn = atomic_inc_return(&queue->csn);
1899 	cmdiu->csn = cpu_to_be32(csn);
1900 	cmdiu->data_len = cpu_to_be32(data_len);
1901 	switch (io_dir) {
1902 	case NVMEFC_FCP_WRITE:
1903 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904 		break;
1905 	case NVMEFC_FCP_READ:
1906 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907 		break;
1908 	case NVMEFC_FCP_NODATA:
1909 		cmdiu->flags = 0;
1910 		break;
1911 	}
1912 	op->fcp_req.payload_length = data_len;
1913 	op->fcp_req.io_dir = io_dir;
1914 	op->fcp_req.transferred_length = 0;
1915 	op->fcp_req.rcv_rsplen = 0;
1916 	op->fcp_req.status = NVME_SC_SUCCESS;
1917 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918 
1919 	/*
1920 	 * validate per fabric rules, set fields mandated by fabric spec
1921 	 * as well as those by FC-NVME spec.
1922 	 */
1923 	WARN_ON_ONCE(sqe->common.metadata);
1924 	WARN_ON_ONCE(sqe->common.dptr.prp1);
1925 	WARN_ON_ONCE(sqe->common.dptr.prp2);
1926 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927 
1928 	/*
1929 	 * format SQE DPTR field per FC-NVME rules
1930 	 *    type=data block descr; subtype=offset;
1931 	 *    offset is currently 0.
1932 	 */
1933 	sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935 	sqe->rw.dptr.sgl.addr = 0;
1936 
1937 	if (!(op->flags & FCOP_FLAGS_AEN)) {
1938 		ret = nvme_fc_map_data(ctrl, op->rq, op);
1939 		if (ret < 0) {
1940 			nvme_cleanup_cmd(op->rq);
1941 			nvme_fc_ctrl_put(ctrl);
1942 			if (ret == -ENOMEM || ret == -EAGAIN)
1943 				return BLK_STS_RESOURCE;
1944 			return BLK_STS_IOERR;
1945 		}
1946 	}
1947 
1948 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1949 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
1950 
1951 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1952 
1953 	if (!(op->flags & FCOP_FLAGS_AEN))
1954 		blk_mq_start_request(op->rq);
1955 
1956 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1957 					&ctrl->rport->remoteport,
1958 					queue->lldd_handle, &op->fcp_req);
1959 
1960 	if (ret) {
1961 		if (!(op->flags & FCOP_FLAGS_AEN))
1962 			nvme_fc_unmap_data(ctrl, op->rq, op);
1963 
1964 		nvme_fc_ctrl_put(ctrl);
1965 
1966 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
1967 				ret != -EBUSY)
1968 			return BLK_STS_IOERR;
1969 
1970 		goto busy;
1971 	}
1972 
1973 	return BLK_STS_OK;
1974 
1975 busy:
1976 	if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
1977 		blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1978 
1979 	return BLK_STS_RESOURCE;
1980 }
1981 
1982 static blk_status_t
1983 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1984 			const struct blk_mq_queue_data *bd)
1985 {
1986 	struct nvme_ns *ns = hctx->queue->queuedata;
1987 	struct nvme_fc_queue *queue = hctx->driver_data;
1988 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
1989 	struct request *rq = bd->rq;
1990 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1991 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1992 	struct nvme_command *sqe = &cmdiu->sqe;
1993 	enum nvmefc_fcp_datadir	io_dir;
1994 	u32 data_len;
1995 	blk_status_t ret;
1996 
1997 	ret = nvme_setup_cmd(ns, rq, sqe);
1998 	if (ret)
1999 		return ret;
2000 
2001 	data_len = blk_rq_payload_bytes(rq);
2002 	if (data_len)
2003 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2004 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2005 	else
2006 		io_dir = NVMEFC_FCP_NODATA;
2007 
2008 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2009 }
2010 
2011 static struct blk_mq_tags *
2012 nvme_fc_tagset(struct nvme_fc_queue *queue)
2013 {
2014 	if (queue->qnum == 0)
2015 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2016 
2017 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2018 }
2019 
2020 static int
2021 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2022 
2023 {
2024 	struct nvme_fc_queue *queue = hctx->driver_data;
2025 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2026 	struct request *req;
2027 	struct nvme_fc_fcp_op *op;
2028 
2029 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2030 	if (!req)
2031 		return 0;
2032 
2033 	op = blk_mq_rq_to_pdu(req);
2034 
2035 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2036 		 (ctrl->lport->ops->poll_queue))
2037 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2038 						 queue->lldd_handle);
2039 
2040 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2041 }
2042 
2043 static void
2044 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2045 {
2046 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2047 	struct nvme_fc_fcp_op *aen_op;
2048 	unsigned long flags;
2049 	bool terminating = false;
2050 	blk_status_t ret;
2051 
2052 	if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2053 		return;
2054 
2055 	spin_lock_irqsave(&ctrl->lock, flags);
2056 	if (ctrl->flags & FCCTRL_TERMIO)
2057 		terminating = true;
2058 	spin_unlock_irqrestore(&ctrl->lock, flags);
2059 
2060 	if (terminating)
2061 		return;
2062 
2063 	aen_op = &ctrl->aen_ops[aer_idx];
2064 
2065 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2066 					NVMEFC_FCP_NODATA);
2067 	if (ret)
2068 		dev_err(ctrl->ctrl.device,
2069 			"failed async event work [%d]\n", aer_idx);
2070 }
2071 
2072 static void
2073 __nvme_fc_final_op_cleanup(struct request *rq)
2074 {
2075 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2076 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2077 
2078 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2079 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2080 			FCOP_FLAGS_COMPLETE);
2081 
2082 	nvme_fc_unmap_data(ctrl, rq, op);
2083 	nvme_complete_rq(rq);
2084 	nvme_fc_ctrl_put(ctrl);
2085 
2086 }
2087 
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2093 	unsigned long flags;
2094 	bool completed = false;
2095 
2096 	/*
2097 	 * the core layer, on controller resets after calling
2098 	 * nvme_shutdown_ctrl(), calls complete_rq without our
2099 	 * calling blk_mq_complete_request(), thus there may still
2100 	 * be live i/o outstanding with the LLDD. Means transport has
2101 	 * to track complete calls vs fcpio_done calls to know what
2102 	 * path to take on completes and dones.
2103 	 */
2104 	spin_lock_irqsave(&ctrl->lock, flags);
2105 	if (op->flags & FCOP_FLAGS_COMPLETE)
2106 		completed = true;
2107 	else
2108 		op->flags |= FCOP_FLAGS_RELEASED;
2109 	spin_unlock_irqrestore(&ctrl->lock, flags);
2110 
2111 	if (completed)
2112 		__nvme_fc_final_op_cleanup(rq);
2113 }
2114 
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131 	struct nvme_ctrl *nctrl = data;
2132 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134 	unsigned long flags;
2135 	int status;
2136 
2137 	if (!blk_mq_request_started(req))
2138 		return;
2139 
2140 	spin_lock_irqsave(&ctrl->lock, flags);
2141 	if (ctrl->flags & FCCTRL_TERMIO) {
2142 		ctrl->iocnt++;
2143 		op->flags |= FCOP_FLAGS_TERMIO;
2144 	}
2145 	spin_unlock_irqrestore(&ctrl->lock, flags);
2146 
2147 	status = __nvme_fc_abort_op(ctrl, op);
2148 	if (status) {
2149 		/*
2150 		 * if __nvme_fc_abort_op failed the io wasn't
2151 		 * active. Thus this call path is running in
2152 		 * parallel to the io complete. Treat as non-error.
2153 		 */
2154 
2155 		/* back out the flags/counters */
2156 		spin_lock_irqsave(&ctrl->lock, flags);
2157 		if (ctrl->flags & FCCTRL_TERMIO)
2158 			ctrl->iocnt--;
2159 		op->flags &= ~FCOP_FLAGS_TERMIO;
2160 		spin_unlock_irqrestore(&ctrl->lock, flags);
2161 		return;
2162 	}
2163 }
2164 
2165 
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167 	.queue_rq	= nvme_fc_queue_rq,
2168 	.complete	= nvme_fc_complete_rq,
2169 	.init_request	= nvme_fc_init_request,
2170 	.exit_request	= nvme_fc_exit_request,
2171 	.reinit_request	= nvme_fc_reinit_request,
2172 	.init_hctx	= nvme_fc_init_hctx,
2173 	.poll		= nvme_fc_poll,
2174 	.timeout	= nvme_fc_timeout,
2175 };
2176 
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181 	unsigned int nr_io_queues;
2182 	int ret;
2183 
2184 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2185 				ctrl->lport->ops->max_hw_queues);
2186 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2187 	if (ret) {
2188 		dev_info(ctrl->ctrl.device,
2189 			"set_queue_count failed: %d\n", ret);
2190 		return ret;
2191 	}
2192 
2193 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2194 	if (!nr_io_queues)
2195 		return 0;
2196 
2197 	nvme_fc_init_io_queues(ctrl);
2198 
2199 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2200 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2201 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2202 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2203 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2204 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2205 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2206 					(SG_CHUNK_SIZE *
2207 						sizeof(struct scatterlist)) +
2208 					ctrl->lport->ops->fcprqst_priv_sz;
2209 	ctrl->tag_set.driver_data = ctrl;
2210 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2211 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2212 
2213 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2214 	if (ret)
2215 		return ret;
2216 
2217 	ctrl->ctrl.tagset = &ctrl->tag_set;
2218 
2219 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2220 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2221 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2222 		goto out_free_tag_set;
2223 	}
2224 
2225 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2226 	if (ret)
2227 		goto out_cleanup_blk_queue;
2228 
2229 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2230 	if (ret)
2231 		goto out_delete_hw_queues;
2232 
2233 	return 0;
2234 
2235 out_delete_hw_queues:
2236 	nvme_fc_delete_hw_io_queues(ctrl);
2237 out_cleanup_blk_queue:
2238 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2239 out_free_tag_set:
2240 	blk_mq_free_tag_set(&ctrl->tag_set);
2241 	nvme_fc_free_io_queues(ctrl);
2242 
2243 	/* force put free routine to ignore io queues */
2244 	ctrl->ctrl.tagset = NULL;
2245 
2246 	return ret;
2247 }
2248 
2249 static int
2250 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2251 {
2252 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2253 	unsigned int nr_io_queues;
2254 	int ret;
2255 
2256 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2257 				ctrl->lport->ops->max_hw_queues);
2258 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2259 	if (ret) {
2260 		dev_info(ctrl->ctrl.device,
2261 			"set_queue_count failed: %d\n", ret);
2262 		return ret;
2263 	}
2264 
2265 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2266 	/* check for io queues existing */
2267 	if (ctrl->ctrl.queue_count == 1)
2268 		return 0;
2269 
2270 	nvme_fc_init_io_queues(ctrl);
2271 
2272 	ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2273 	if (ret)
2274 		goto out_free_io_queues;
2275 
2276 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2277 	if (ret)
2278 		goto out_free_io_queues;
2279 
2280 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2281 	if (ret)
2282 		goto out_delete_hw_queues;
2283 
2284 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2285 
2286 	return 0;
2287 
2288 out_delete_hw_queues:
2289 	nvme_fc_delete_hw_io_queues(ctrl);
2290 out_free_io_queues:
2291 	nvme_fc_free_io_queues(ctrl);
2292 	return ret;
2293 }
2294 
2295 /*
2296  * This routine restarts the controller on the host side, and
2297  * on the link side, recreates the controller association.
2298  */
2299 static int
2300 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2301 {
2302 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2303 	u32 segs;
2304 	int ret;
2305 	bool changed;
2306 
2307 	++ctrl->ctrl.nr_reconnects;
2308 
2309 	/*
2310 	 * Create the admin queue
2311 	 */
2312 
2313 	nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2314 
2315 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2316 				NVME_FC_AQ_BLKMQ_DEPTH);
2317 	if (ret)
2318 		goto out_free_queue;
2319 
2320 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2321 				NVME_FC_AQ_BLKMQ_DEPTH,
2322 				(NVME_FC_AQ_BLKMQ_DEPTH / 4));
2323 	if (ret)
2324 		goto out_delete_hw_queue;
2325 
2326 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2327 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2328 
2329 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2330 	if (ret)
2331 		goto out_disconnect_admin_queue;
2332 
2333 	/*
2334 	 * Check controller capabilities
2335 	 *
2336 	 * todo:- add code to check if ctrl attributes changed from
2337 	 * prior connection values
2338 	 */
2339 
2340 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2341 	if (ret) {
2342 		dev_err(ctrl->ctrl.device,
2343 			"prop_get NVME_REG_CAP failed\n");
2344 		goto out_disconnect_admin_queue;
2345 	}
2346 
2347 	ctrl->ctrl.sqsize =
2348 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2349 
2350 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2351 	if (ret)
2352 		goto out_disconnect_admin_queue;
2353 
2354 	segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2355 			ctrl->lport->ops->max_sgl_segments);
2356 	ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2357 
2358 	ret = nvme_init_identify(&ctrl->ctrl);
2359 	if (ret)
2360 		goto out_disconnect_admin_queue;
2361 
2362 	/* sanity checks */
2363 
2364 	/* FC-NVME does not have other data in the capsule */
2365 	if (ctrl->ctrl.icdoff) {
2366 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2367 				ctrl->ctrl.icdoff);
2368 		goto out_disconnect_admin_queue;
2369 	}
2370 
2371 	/* FC-NVME supports normal SGL Data Block Descriptors */
2372 
2373 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2374 		/* warn if maxcmd is lower than queue_size */
2375 		dev_warn(ctrl->ctrl.device,
2376 			"queue_size %zu > ctrl maxcmd %u, reducing "
2377 			"to queue_size\n",
2378 			opts->queue_size, ctrl->ctrl.maxcmd);
2379 		opts->queue_size = ctrl->ctrl.maxcmd;
2380 	}
2381 
2382 	ret = nvme_fc_init_aen_ops(ctrl);
2383 	if (ret)
2384 		goto out_term_aen_ops;
2385 
2386 	/*
2387 	 * Create the io queues
2388 	 */
2389 
2390 	if (ctrl->ctrl.queue_count > 1) {
2391 		if (ctrl->ctrl.state == NVME_CTRL_NEW)
2392 			ret = nvme_fc_create_io_queues(ctrl);
2393 		else
2394 			ret = nvme_fc_reinit_io_queues(ctrl);
2395 		if (ret)
2396 			goto out_term_aen_ops;
2397 	}
2398 
2399 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2400 	WARN_ON_ONCE(!changed);
2401 
2402 	ctrl->ctrl.nr_reconnects = 0;
2403 
2404 	nvme_start_ctrl(&ctrl->ctrl);
2405 
2406 	return 0;	/* Success */
2407 
2408 out_term_aen_ops:
2409 	nvme_fc_term_aen_ops(ctrl);
2410 out_disconnect_admin_queue:
2411 	/* send a Disconnect(association) LS to fc-nvme target */
2412 	nvme_fc_xmt_disconnect_assoc(ctrl);
2413 out_delete_hw_queue:
2414 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2415 out_free_queue:
2416 	nvme_fc_free_queue(&ctrl->queues[0]);
2417 
2418 	return ret;
2419 }
2420 
2421 /*
2422  * This routine stops operation of the controller on the host side.
2423  * On the host os stack side: Admin and IO queues are stopped,
2424  *   outstanding ios on them terminated via FC ABTS.
2425  * On the link side: the association is terminated.
2426  */
2427 static void
2428 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2429 {
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&ctrl->lock, flags);
2433 	ctrl->flags |= FCCTRL_TERMIO;
2434 	ctrl->iocnt = 0;
2435 	spin_unlock_irqrestore(&ctrl->lock, flags);
2436 
2437 	/*
2438 	 * If io queues are present, stop them and terminate all outstanding
2439 	 * ios on them. As FC allocates FC exchange for each io, the
2440 	 * transport must contact the LLDD to terminate the exchange,
2441 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2442 	 * to tell us what io's are busy and invoke a transport routine
2443 	 * to kill them with the LLDD.  After terminating the exchange
2444 	 * the LLDD will call the transport's normal io done path, but it
2445 	 * will have an aborted status. The done path will return the
2446 	 * io requests back to the block layer as part of normal completions
2447 	 * (but with error status).
2448 	 */
2449 	if (ctrl->ctrl.queue_count > 1) {
2450 		nvme_stop_queues(&ctrl->ctrl);
2451 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2452 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2453 	}
2454 
2455 	/*
2456 	 * Other transports, which don't have link-level contexts bound
2457 	 * to sqe's, would try to gracefully shutdown the controller by
2458 	 * writing the registers for shutdown and polling (call
2459 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2460 	 * just aborted and we will wait on those contexts, and given
2461 	 * there was no indication of how live the controlelr is on the
2462 	 * link, don't send more io to create more contexts for the
2463 	 * shutdown. Let the controller fail via keepalive failure if
2464 	 * its still present.
2465 	 */
2466 
2467 	/*
2468 	 * clean up the admin queue. Same thing as above.
2469 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2470 	 * terminate the exchanges.
2471 	 */
2472 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2473 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2474 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2475 
2476 	/* kill the aens as they are a separate path */
2477 	nvme_fc_abort_aen_ops(ctrl);
2478 
2479 	/* wait for all io that had to be aborted */
2480 	spin_lock_irqsave(&ctrl->lock, flags);
2481 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2482 	ctrl->flags &= ~FCCTRL_TERMIO;
2483 	spin_unlock_irqrestore(&ctrl->lock, flags);
2484 
2485 	nvme_fc_term_aen_ops(ctrl);
2486 
2487 	/*
2488 	 * send a Disconnect(association) LS to fc-nvme target
2489 	 * Note: could have been sent at top of process, but
2490 	 * cleaner on link traffic if after the aborts complete.
2491 	 * Note: if association doesn't exist, association_id will be 0
2492 	 */
2493 	if (ctrl->association_id)
2494 		nvme_fc_xmt_disconnect_assoc(ctrl);
2495 
2496 	if (ctrl->ctrl.tagset) {
2497 		nvme_fc_delete_hw_io_queues(ctrl);
2498 		nvme_fc_free_io_queues(ctrl);
2499 	}
2500 
2501 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2502 	nvme_fc_free_queue(&ctrl->queues[0]);
2503 }
2504 
2505 static void
2506 nvme_fc_delete_ctrl_work(struct work_struct *work)
2507 {
2508 	struct nvme_fc_ctrl *ctrl =
2509 		container_of(work, struct nvme_fc_ctrl, delete_work);
2510 
2511 	cancel_work_sync(&ctrl->ctrl.reset_work);
2512 	cancel_delayed_work_sync(&ctrl->connect_work);
2513 	nvme_stop_ctrl(&ctrl->ctrl);
2514 	nvme_remove_namespaces(&ctrl->ctrl);
2515 	/*
2516 	 * kill the association on the link side.  this will block
2517 	 * waiting for io to terminate
2518 	 */
2519 	nvme_fc_delete_association(ctrl);
2520 
2521 	/*
2522 	 * tear down the controller
2523 	 * After the last reference on the nvme ctrl is removed,
2524 	 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2525 	 * invoked. From there, the transport will tear down it's
2526 	 * logical queues and association.
2527 	 */
2528 	nvme_uninit_ctrl(&ctrl->ctrl);
2529 
2530 	nvme_put_ctrl(&ctrl->ctrl);
2531 }
2532 
2533 static bool
2534 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2535 {
2536 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2537 		return true;
2538 
2539 	if (!queue_work(nvme_wq, &ctrl->delete_work))
2540 		return true;
2541 
2542 	return false;
2543 }
2544 
2545 static int
2546 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2547 {
2548 	return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2549 }
2550 
2551 /*
2552  * Request from nvme core layer to delete the controller
2553  */
2554 static int
2555 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2556 {
2557 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2558 	int ret;
2559 
2560 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2561 		return -EBUSY;
2562 
2563 	ret = __nvme_fc_del_ctrl(ctrl);
2564 
2565 	if (!ret)
2566 		flush_workqueue(nvme_wq);
2567 
2568 	nvme_put_ctrl(&ctrl->ctrl);
2569 
2570 	return ret;
2571 }
2572 
2573 static void
2574 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2575 {
2576 	/* If we are resetting/deleting then do nothing */
2577 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2578 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2579 			ctrl->ctrl.state == NVME_CTRL_LIVE);
2580 		return;
2581 	}
2582 
2583 	dev_info(ctrl->ctrl.device,
2584 		"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2585 		ctrl->cnum, status);
2586 
2587 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
2588 		dev_info(ctrl->ctrl.device,
2589 			"NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2590 			ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2591 		queue_delayed_work(nvme_wq, &ctrl->connect_work,
2592 				ctrl->ctrl.opts->reconnect_delay * HZ);
2593 	} else {
2594 		dev_warn(ctrl->ctrl.device,
2595 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2596 				"reached. Removing controller\n",
2597 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2598 		WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2599 	}
2600 }
2601 
2602 static void
2603 nvme_fc_reset_ctrl_work(struct work_struct *work)
2604 {
2605 	struct nvme_fc_ctrl *ctrl =
2606 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2607 	int ret;
2608 
2609 	nvme_stop_ctrl(&ctrl->ctrl);
2610 	/* will block will waiting for io to terminate */
2611 	nvme_fc_delete_association(ctrl);
2612 
2613 	ret = nvme_fc_create_association(ctrl);
2614 	if (ret)
2615 		nvme_fc_reconnect_or_delete(ctrl, ret);
2616 	else
2617 		dev_info(ctrl->ctrl.device,
2618 			"NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2619 }
2620 
2621 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2622 	.name			= "fc",
2623 	.module			= THIS_MODULE,
2624 	.flags			= NVME_F_FABRICS,
2625 	.reg_read32		= nvmf_reg_read32,
2626 	.reg_read64		= nvmf_reg_read64,
2627 	.reg_write32		= nvmf_reg_write32,
2628 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2629 	.submit_async_event	= nvme_fc_submit_async_event,
2630 	.delete_ctrl		= nvme_fc_del_nvme_ctrl,
2631 	.get_address		= nvmf_get_address,
2632 };
2633 
2634 static void
2635 nvme_fc_connect_ctrl_work(struct work_struct *work)
2636 {
2637 	int ret;
2638 
2639 	struct nvme_fc_ctrl *ctrl =
2640 			container_of(to_delayed_work(work),
2641 				struct nvme_fc_ctrl, connect_work);
2642 
2643 	ret = nvme_fc_create_association(ctrl);
2644 	if (ret)
2645 		nvme_fc_reconnect_or_delete(ctrl, ret);
2646 	else
2647 		dev_info(ctrl->ctrl.device,
2648 			"NVME-FC{%d}: controller reconnect complete\n",
2649 			ctrl->cnum);
2650 }
2651 
2652 
2653 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2654 	.queue_rq	= nvme_fc_queue_rq,
2655 	.complete	= nvme_fc_complete_rq,
2656 	.init_request	= nvme_fc_init_request,
2657 	.exit_request	= nvme_fc_exit_request,
2658 	.reinit_request	= nvme_fc_reinit_request,
2659 	.init_hctx	= nvme_fc_init_admin_hctx,
2660 	.timeout	= nvme_fc_timeout,
2661 };
2662 
2663 
2664 static struct nvme_ctrl *
2665 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2666 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2667 {
2668 	struct nvme_fc_ctrl *ctrl;
2669 	unsigned long flags;
2670 	int ret, idx;
2671 
2672 	if (!(rport->remoteport.port_role &
2673 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2674 		ret = -EBADR;
2675 		goto out_fail;
2676 	}
2677 
2678 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2679 	if (!ctrl) {
2680 		ret = -ENOMEM;
2681 		goto out_fail;
2682 	}
2683 
2684 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2685 	if (idx < 0) {
2686 		ret = -ENOSPC;
2687 		goto out_free_ctrl;
2688 	}
2689 
2690 	ctrl->ctrl.opts = opts;
2691 	INIT_LIST_HEAD(&ctrl->ctrl_list);
2692 	ctrl->lport = lport;
2693 	ctrl->rport = rport;
2694 	ctrl->dev = lport->dev;
2695 	ctrl->cnum = idx;
2696 
2697 	get_device(ctrl->dev);
2698 	kref_init(&ctrl->ref);
2699 
2700 	INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2701 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2702 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2703 	spin_lock_init(&ctrl->lock);
2704 
2705 	/* io queue count */
2706 	ctrl->ctrl.queue_count = min_t(unsigned int,
2707 				opts->nr_io_queues,
2708 				lport->ops->max_hw_queues);
2709 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
2710 
2711 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2712 	ctrl->ctrl.kato = opts->kato;
2713 
2714 	ret = -ENOMEM;
2715 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2716 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
2717 	if (!ctrl->queues)
2718 		goto out_free_ida;
2719 
2720 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2721 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2722 	ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2723 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2724 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2725 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2726 					(SG_CHUNK_SIZE *
2727 						sizeof(struct scatterlist)) +
2728 					ctrl->lport->ops->fcprqst_priv_sz;
2729 	ctrl->admin_tag_set.driver_data = ctrl;
2730 	ctrl->admin_tag_set.nr_hw_queues = 1;
2731 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2732 
2733 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2734 	if (ret)
2735 		goto out_free_queues;
2736 
2737 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2738 	if (IS_ERR(ctrl->ctrl.admin_q)) {
2739 		ret = PTR_ERR(ctrl->ctrl.admin_q);
2740 		goto out_free_admin_tag_set;
2741 	}
2742 
2743 	/*
2744 	 * Would have been nice to init io queues tag set as well.
2745 	 * However, we require interaction from the controller
2746 	 * for max io queue count before we can do so.
2747 	 * Defer this to the connect path.
2748 	 */
2749 
2750 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2751 	if (ret)
2752 		goto out_cleanup_admin_q;
2753 
2754 	/* at this point, teardown path changes to ref counting on nvme ctrl */
2755 
2756 	spin_lock_irqsave(&rport->lock, flags);
2757 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2758 	spin_unlock_irqrestore(&rport->lock, flags);
2759 
2760 	ret = nvme_fc_create_association(ctrl);
2761 	if (ret) {
2762 		ctrl->ctrl.opts = NULL;
2763 		/* initiate nvme ctrl ref counting teardown */
2764 		nvme_uninit_ctrl(&ctrl->ctrl);
2765 		nvme_put_ctrl(&ctrl->ctrl);
2766 
2767 		/* Remove core ctrl ref. */
2768 		nvme_put_ctrl(&ctrl->ctrl);
2769 
2770 		/* as we're past the point where we transition to the ref
2771 		 * counting teardown path, if we return a bad pointer here,
2772 		 * the calling routine, thinking it's prior to the
2773 		 * transition, will do an rport put. Since the teardown
2774 		 * path also does a rport put, we do an extra get here to
2775 		 * so proper order/teardown happens.
2776 		 */
2777 		nvme_fc_rport_get(rport);
2778 
2779 		if (ret > 0)
2780 			ret = -EIO;
2781 		return ERR_PTR(ret);
2782 	}
2783 
2784 	kref_get(&ctrl->ctrl.kref);
2785 
2786 	dev_info(ctrl->ctrl.device,
2787 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2788 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2789 
2790 	return &ctrl->ctrl;
2791 
2792 out_cleanup_admin_q:
2793 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2794 out_free_admin_tag_set:
2795 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2796 out_free_queues:
2797 	kfree(ctrl->queues);
2798 out_free_ida:
2799 	put_device(ctrl->dev);
2800 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2801 out_free_ctrl:
2802 	kfree(ctrl);
2803 out_fail:
2804 	/* exit via here doesn't follow ctlr ref points */
2805 	return ERR_PTR(ret);
2806 }
2807 
2808 
2809 struct nvmet_fc_traddr {
2810 	u64	nn;
2811 	u64	pn;
2812 };
2813 
2814 static int
2815 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2816 {
2817 	u64 token64;
2818 
2819 	if (match_u64(sstr, &token64))
2820 		return -EINVAL;
2821 	*val = token64;
2822 
2823 	return 0;
2824 }
2825 
2826 /*
2827  * This routine validates and extracts the WWN's from the TRADDR string.
2828  * As kernel parsers need the 0x to determine number base, universally
2829  * build string to parse with 0x prefix before parsing name strings.
2830  */
2831 static int
2832 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2833 {
2834 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2835 	substring_t wwn = { name, &name[sizeof(name)-1] };
2836 	int nnoffset, pnoffset;
2837 
2838 	/* validate it string one of the 2 allowed formats */
2839 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2840 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2841 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2842 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2843 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2844 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2845 						NVME_FC_TRADDR_OXNNLEN;
2846 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2847 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2848 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2849 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2850 		nnoffset = NVME_FC_TRADDR_NNLEN;
2851 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2852 	} else
2853 		goto out_einval;
2854 
2855 	name[0] = '0';
2856 	name[1] = 'x';
2857 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2858 
2859 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2860 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2861 		goto out_einval;
2862 
2863 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2864 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2865 		goto out_einval;
2866 
2867 	return 0;
2868 
2869 out_einval:
2870 	pr_warn("%s: bad traddr string\n", __func__);
2871 	return -EINVAL;
2872 }
2873 
2874 static struct nvme_ctrl *
2875 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2876 {
2877 	struct nvme_fc_lport *lport;
2878 	struct nvme_fc_rport *rport;
2879 	struct nvme_ctrl *ctrl;
2880 	struct nvmet_fc_traddr laddr = { 0L, 0L };
2881 	struct nvmet_fc_traddr raddr = { 0L, 0L };
2882 	unsigned long flags;
2883 	int ret;
2884 
2885 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2886 	if (ret || !raddr.nn || !raddr.pn)
2887 		return ERR_PTR(-EINVAL);
2888 
2889 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2890 	if (ret || !laddr.nn || !laddr.pn)
2891 		return ERR_PTR(-EINVAL);
2892 
2893 	/* find the host and remote ports to connect together */
2894 	spin_lock_irqsave(&nvme_fc_lock, flags);
2895 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2896 		if (lport->localport.node_name != laddr.nn ||
2897 		    lport->localport.port_name != laddr.pn)
2898 			continue;
2899 
2900 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
2901 			if (rport->remoteport.node_name != raddr.nn ||
2902 			    rport->remoteport.port_name != raddr.pn)
2903 				continue;
2904 
2905 			/* if fail to get reference fall through. Will error */
2906 			if (!nvme_fc_rport_get(rport))
2907 				break;
2908 
2909 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
2910 
2911 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2912 			if (IS_ERR(ctrl))
2913 				nvme_fc_rport_put(rport);
2914 			return ctrl;
2915 		}
2916 	}
2917 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
2918 
2919 	return ERR_PTR(-ENOENT);
2920 }
2921 
2922 
2923 static struct nvmf_transport_ops nvme_fc_transport = {
2924 	.name		= "fc",
2925 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2926 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2927 	.create_ctrl	= nvme_fc_create_ctrl,
2928 };
2929 
2930 static int __init nvme_fc_init_module(void)
2931 {
2932 	return nvmf_register_transport(&nvme_fc_transport);
2933 }
2934 
2935 static void __exit nvme_fc_exit_module(void)
2936 {
2937 	/* sanity check - all lports should be removed */
2938 	if (!list_empty(&nvme_fc_lport_list))
2939 		pr_warn("%s: localport list not empty\n", __func__);
2940 
2941 	nvmf_unregister_transport(&nvme_fc_transport);
2942 
2943 	ida_destroy(&nvme_fc_local_port_cnt);
2944 	ida_destroy(&nvme_fc_ctrl_cnt);
2945 }
2946 
2947 module_init(nvme_fc_init_module);
2948 module_exit(nvme_fc_exit_module);
2949 
2950 MODULE_LICENSE("GPL v2");
2951