xref: /openbmc/linux/drivers/nvme/host/fc.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 #include <linux/overflow.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 enum nvme_fc_queue_flags {
35 	NVME_FC_Q_CONNECTED = 0,
36 	NVME_FC_Q_LIVE,
37 };
38 
39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
40 
41 struct nvme_fc_queue {
42 	struct nvme_fc_ctrl	*ctrl;
43 	struct device		*dev;
44 	struct blk_mq_hw_ctx	*hctx;
45 	void			*lldd_handle;
46 	size_t			cmnd_capsule_len;
47 	u32			qnum;
48 	u32			rqcnt;
49 	u32			seqno;
50 
51 	u64			connection_id;
52 	atomic_t		csn;
53 
54 	unsigned long		flags;
55 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
56 
57 enum nvme_fcop_flags {
58 	FCOP_FLAGS_TERMIO	= (1 << 0),
59 	FCOP_FLAGS_AEN		= (1 << 1),
60 };
61 
62 struct nvmefc_ls_req_op {
63 	struct nvmefc_ls_req	ls_req;
64 
65 	struct nvme_fc_rport	*rport;
66 	struct nvme_fc_queue	*queue;
67 	struct request		*rq;
68 	u32			flags;
69 
70 	int			ls_error;
71 	struct completion	ls_done;
72 	struct list_head	lsreq_list;	/* rport->ls_req_list */
73 	bool			req_queued;
74 };
75 
76 enum nvme_fcpop_state {
77 	FCPOP_STATE_UNINIT	= 0,
78 	FCPOP_STATE_IDLE	= 1,
79 	FCPOP_STATE_ACTIVE	= 2,
80 	FCPOP_STATE_ABORTED	= 3,
81 	FCPOP_STATE_COMPLETE	= 4,
82 };
83 
84 struct nvme_fc_fcp_op {
85 	struct nvme_request	nreq;		/*
86 						 * nvme/host/core.c
87 						 * requires this to be
88 						 * the 1st element in the
89 						 * private structure
90 						 * associated with the
91 						 * request.
92 						 */
93 	struct nvmefc_fcp_req	fcp_req;
94 
95 	struct nvme_fc_ctrl	*ctrl;
96 	struct nvme_fc_queue	*queue;
97 	struct request		*rq;
98 
99 	atomic_t		state;
100 	u32			flags;
101 	u32			rqno;
102 	u32			nents;
103 
104 	struct nvme_fc_cmd_iu	cmd_iu;
105 	struct nvme_fc_ersp_iu	rsp_iu;
106 };
107 
108 struct nvme_fcp_op_w_sgl {
109 	struct nvme_fc_fcp_op	op;
110 	struct scatterlist	sgl[SG_CHUNK_SIZE];
111 	uint8_t			priv[0];
112 };
113 
114 struct nvme_fc_lport {
115 	struct nvme_fc_local_port	localport;
116 
117 	struct ida			endp_cnt;
118 	struct list_head		port_list;	/* nvme_fc_port_list */
119 	struct list_head		endp_list;
120 	struct device			*dev;	/* physical device for dma */
121 	struct nvme_fc_port_template	*ops;
122 	struct kref			ref;
123 	atomic_t                        act_rport_cnt;
124 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
125 
126 struct nvme_fc_rport {
127 	struct nvme_fc_remote_port	remoteport;
128 
129 	struct list_head		endp_list; /* for lport->endp_list */
130 	struct list_head		ctrl_list;
131 	struct list_head		ls_req_list;
132 	struct list_head		disc_list;
133 	struct device			*dev;	/* physical device for dma */
134 	struct nvme_fc_lport		*lport;
135 	spinlock_t			lock;
136 	struct kref			ref;
137 	atomic_t                        act_ctrl_cnt;
138 	unsigned long			dev_loss_end;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			cnum;
152 
153 	bool			ioq_live;
154 	bool			assoc_active;
155 	atomic_t		err_work_active;
156 	u64			association_id;
157 
158 	struct list_head	ctrl_list;	/* rport->ctrl_list */
159 
160 	struct blk_mq_tag_set	admin_tag_set;
161 	struct blk_mq_tag_set	tag_set;
162 
163 	struct delayed_work	connect_work;
164 	struct work_struct	err_work;
165 
166 	struct kref		ref;
167 	u32			flags;
168 	u32			iocnt;
169 	wait_queue_head_t	ioabort_wait;
170 
171 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
172 
173 	struct nvme_ctrl	ctrl;
174 };
175 
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181 
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185 	return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187 
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191 	return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193 
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199 
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205 
206 
207 
208 /* *************************** Globals **************************** */
209 
210 
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212 
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216 
217 
218 
219 /*
220  * These items are short-term. They will eventually be moved into
221  * a generic FC class. See comments in module init.
222  */
223 static struct device *fc_udev_device;
224 
225 
226 /* *********************** FC-NVME Port Management ************************ */
227 
228 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
229 			struct nvme_fc_queue *, unsigned int);
230 
231 static void
232 nvme_fc_free_lport(struct kref *ref)
233 {
234 	struct nvme_fc_lport *lport =
235 		container_of(ref, struct nvme_fc_lport, ref);
236 	unsigned long flags;
237 
238 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
239 	WARN_ON(!list_empty(&lport->endp_list));
240 
241 	/* remove from transport list */
242 	spin_lock_irqsave(&nvme_fc_lock, flags);
243 	list_del(&lport->port_list);
244 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
245 
246 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
247 	ida_destroy(&lport->endp_cnt);
248 
249 	put_device(lport->dev);
250 
251 	kfree(lport);
252 }
253 
254 static void
255 nvme_fc_lport_put(struct nvme_fc_lport *lport)
256 {
257 	kref_put(&lport->ref, nvme_fc_free_lport);
258 }
259 
260 static int
261 nvme_fc_lport_get(struct nvme_fc_lport *lport)
262 {
263 	return kref_get_unless_zero(&lport->ref);
264 }
265 
266 
267 static struct nvme_fc_lport *
268 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
269 			struct nvme_fc_port_template *ops,
270 			struct device *dev)
271 {
272 	struct nvme_fc_lport *lport;
273 	unsigned long flags;
274 
275 	spin_lock_irqsave(&nvme_fc_lock, flags);
276 
277 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
278 		if (lport->localport.node_name != pinfo->node_name ||
279 		    lport->localport.port_name != pinfo->port_name)
280 			continue;
281 
282 		if (lport->dev != dev) {
283 			lport = ERR_PTR(-EXDEV);
284 			goto out_done;
285 		}
286 
287 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
288 			lport = ERR_PTR(-EEXIST);
289 			goto out_done;
290 		}
291 
292 		if (!nvme_fc_lport_get(lport)) {
293 			/*
294 			 * fails if ref cnt already 0. If so,
295 			 * act as if lport already deleted
296 			 */
297 			lport = NULL;
298 			goto out_done;
299 		}
300 
301 		/* resume the lport */
302 
303 		lport->ops = ops;
304 		lport->localport.port_role = pinfo->port_role;
305 		lport->localport.port_id = pinfo->port_id;
306 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
307 
308 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
309 
310 		return lport;
311 	}
312 
313 	lport = NULL;
314 
315 out_done:
316 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
317 
318 	return lport;
319 }
320 
321 /**
322  * nvme_fc_register_localport - transport entry point called by an
323  *                              LLDD to register the existence of a NVME
324  *                              host FC port.
325  * @pinfo:     pointer to information about the port to be registered
326  * @template:  LLDD entrypoints and operational parameters for the port
327  * @dev:       physical hardware device node port corresponds to. Will be
328  *             used for DMA mappings
329  * @portptr:   pointer to a local port pointer. Upon success, the routine
330  *             will allocate a nvme_fc_local_port structure and place its
331  *             address in the local port pointer. Upon failure, local port
332  *             pointer will be set to 0.
333  *
334  * Returns:
335  * a completion status. Must be 0 upon success; a negative errno
336  * (ex: -ENXIO) upon failure.
337  */
338 int
339 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
340 			struct nvme_fc_port_template *template,
341 			struct device *dev,
342 			struct nvme_fc_local_port **portptr)
343 {
344 	struct nvme_fc_lport *newrec;
345 	unsigned long flags;
346 	int ret, idx;
347 
348 	if (!template->localport_delete || !template->remoteport_delete ||
349 	    !template->ls_req || !template->fcp_io ||
350 	    !template->ls_abort || !template->fcp_abort ||
351 	    !template->max_hw_queues || !template->max_sgl_segments ||
352 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
353 		ret = -EINVAL;
354 		goto out_reghost_failed;
355 	}
356 
357 	/*
358 	 * look to see if there is already a localport that had been
359 	 * deregistered and in the process of waiting for all the
360 	 * references to fully be removed.  If the references haven't
361 	 * expired, we can simply re-enable the localport. Remoteports
362 	 * and controller reconnections should resume naturally.
363 	 */
364 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
365 
366 	/* found an lport, but something about its state is bad */
367 	if (IS_ERR(newrec)) {
368 		ret = PTR_ERR(newrec);
369 		goto out_reghost_failed;
370 
371 	/* found existing lport, which was resumed */
372 	} else if (newrec) {
373 		*portptr = &newrec->localport;
374 		return 0;
375 	}
376 
377 	/* nothing found - allocate a new localport struct */
378 
379 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
380 			 GFP_KERNEL);
381 	if (!newrec) {
382 		ret = -ENOMEM;
383 		goto out_reghost_failed;
384 	}
385 
386 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
387 	if (idx < 0) {
388 		ret = -ENOSPC;
389 		goto out_fail_kfree;
390 	}
391 
392 	if (!get_device(dev) && dev) {
393 		ret = -ENODEV;
394 		goto out_ida_put;
395 	}
396 
397 	INIT_LIST_HEAD(&newrec->port_list);
398 	INIT_LIST_HEAD(&newrec->endp_list);
399 	kref_init(&newrec->ref);
400 	atomic_set(&newrec->act_rport_cnt, 0);
401 	newrec->ops = template;
402 	newrec->dev = dev;
403 	ida_init(&newrec->endp_cnt);
404 	newrec->localport.private = &newrec[1];
405 	newrec->localport.node_name = pinfo->node_name;
406 	newrec->localport.port_name = pinfo->port_name;
407 	newrec->localport.port_role = pinfo->port_role;
408 	newrec->localport.port_id = pinfo->port_id;
409 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
410 	newrec->localport.port_num = idx;
411 
412 	spin_lock_irqsave(&nvme_fc_lock, flags);
413 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
414 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
415 
416 	if (dev)
417 		dma_set_seg_boundary(dev, template->dma_boundary);
418 
419 	*portptr = &newrec->localport;
420 	return 0;
421 
422 out_ida_put:
423 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
424 out_fail_kfree:
425 	kfree(newrec);
426 out_reghost_failed:
427 	*portptr = NULL;
428 
429 	return ret;
430 }
431 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
432 
433 /**
434  * nvme_fc_unregister_localport - transport entry point called by an
435  *                              LLDD to deregister/remove a previously
436  *                              registered a NVME host FC port.
437  * @portptr: pointer to the (registered) local port that is to be deregistered.
438  *
439  * Returns:
440  * a completion status. Must be 0 upon success; a negative errno
441  * (ex: -ENXIO) upon failure.
442  */
443 int
444 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
445 {
446 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
447 	unsigned long flags;
448 
449 	if (!portptr)
450 		return -EINVAL;
451 
452 	spin_lock_irqsave(&nvme_fc_lock, flags);
453 
454 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
455 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
456 		return -EINVAL;
457 	}
458 	portptr->port_state = FC_OBJSTATE_DELETED;
459 
460 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
461 
462 	if (atomic_read(&lport->act_rport_cnt) == 0)
463 		lport->ops->localport_delete(&lport->localport);
464 
465 	nvme_fc_lport_put(lport);
466 
467 	return 0;
468 }
469 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
470 
471 /*
472  * TRADDR strings, per FC-NVME are fixed format:
473  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
474  * udev event will only differ by prefix of what field is
475  * being specified:
476  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
477  *  19 + 43 + null_fudge = 64 characters
478  */
479 #define FCNVME_TRADDR_LENGTH		64
480 
481 static void
482 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
483 		struct nvme_fc_rport *rport)
484 {
485 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
486 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
487 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
488 
489 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
490 		return;
491 
492 	snprintf(hostaddr, sizeof(hostaddr),
493 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
494 		lport->localport.node_name, lport->localport.port_name);
495 	snprintf(tgtaddr, sizeof(tgtaddr),
496 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
497 		rport->remoteport.node_name, rport->remoteport.port_name);
498 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
499 }
500 
501 static void
502 nvme_fc_free_rport(struct kref *ref)
503 {
504 	struct nvme_fc_rport *rport =
505 		container_of(ref, struct nvme_fc_rport, ref);
506 	struct nvme_fc_lport *lport =
507 			localport_to_lport(rport->remoteport.localport);
508 	unsigned long flags;
509 
510 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
511 	WARN_ON(!list_empty(&rport->ctrl_list));
512 
513 	/* remove from lport list */
514 	spin_lock_irqsave(&nvme_fc_lock, flags);
515 	list_del(&rport->endp_list);
516 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
517 
518 	WARN_ON(!list_empty(&rport->disc_list));
519 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
520 
521 	kfree(rport);
522 
523 	nvme_fc_lport_put(lport);
524 }
525 
526 static void
527 nvme_fc_rport_put(struct nvme_fc_rport *rport)
528 {
529 	kref_put(&rport->ref, nvme_fc_free_rport);
530 }
531 
532 static int
533 nvme_fc_rport_get(struct nvme_fc_rport *rport)
534 {
535 	return kref_get_unless_zero(&rport->ref);
536 }
537 
538 static void
539 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
540 {
541 	switch (ctrl->ctrl.state) {
542 	case NVME_CTRL_NEW:
543 	case NVME_CTRL_CONNECTING:
544 		/*
545 		 * As all reconnects were suppressed, schedule a
546 		 * connect.
547 		 */
548 		dev_info(ctrl->ctrl.device,
549 			"NVME-FC{%d}: connectivity re-established. "
550 			"Attempting reconnect\n", ctrl->cnum);
551 
552 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
553 		break;
554 
555 	case NVME_CTRL_RESETTING:
556 		/*
557 		 * Controller is already in the process of terminating the
558 		 * association. No need to do anything further. The reconnect
559 		 * step will naturally occur after the reset completes.
560 		 */
561 		break;
562 
563 	default:
564 		/* no action to take - let it delete */
565 		break;
566 	}
567 }
568 
569 static struct nvme_fc_rport *
570 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
571 				struct nvme_fc_port_info *pinfo)
572 {
573 	struct nvme_fc_rport *rport;
574 	struct nvme_fc_ctrl *ctrl;
575 	unsigned long flags;
576 
577 	spin_lock_irqsave(&nvme_fc_lock, flags);
578 
579 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
580 		if (rport->remoteport.node_name != pinfo->node_name ||
581 		    rport->remoteport.port_name != pinfo->port_name)
582 			continue;
583 
584 		if (!nvme_fc_rport_get(rport)) {
585 			rport = ERR_PTR(-ENOLCK);
586 			goto out_done;
587 		}
588 
589 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
590 
591 		spin_lock_irqsave(&rport->lock, flags);
592 
593 		/* has it been unregistered */
594 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
595 			/* means lldd called us twice */
596 			spin_unlock_irqrestore(&rport->lock, flags);
597 			nvme_fc_rport_put(rport);
598 			return ERR_PTR(-ESTALE);
599 		}
600 
601 		rport->remoteport.port_role = pinfo->port_role;
602 		rport->remoteport.port_id = pinfo->port_id;
603 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
604 		rport->dev_loss_end = 0;
605 
606 		/*
607 		 * kick off a reconnect attempt on all associations to the
608 		 * remote port. A successful reconnects will resume i/o.
609 		 */
610 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
611 			nvme_fc_resume_controller(ctrl);
612 
613 		spin_unlock_irqrestore(&rport->lock, flags);
614 
615 		return rport;
616 	}
617 
618 	rport = NULL;
619 
620 out_done:
621 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
622 
623 	return rport;
624 }
625 
626 static inline void
627 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
628 			struct nvme_fc_port_info *pinfo)
629 {
630 	if (pinfo->dev_loss_tmo)
631 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
632 	else
633 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
634 }
635 
636 /**
637  * nvme_fc_register_remoteport - transport entry point called by an
638  *                              LLDD to register the existence of a NVME
639  *                              subsystem FC port on its fabric.
640  * @localport: pointer to the (registered) local port that the remote
641  *             subsystem port is connected to.
642  * @pinfo:     pointer to information about the port to be registered
643  * @portptr:   pointer to a remote port pointer. Upon success, the routine
644  *             will allocate a nvme_fc_remote_port structure and place its
645  *             address in the remote port pointer. Upon failure, remote port
646  *             pointer will be set to 0.
647  *
648  * Returns:
649  * a completion status. Must be 0 upon success; a negative errno
650  * (ex: -ENXIO) upon failure.
651  */
652 int
653 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
654 				struct nvme_fc_port_info *pinfo,
655 				struct nvme_fc_remote_port **portptr)
656 {
657 	struct nvme_fc_lport *lport = localport_to_lport(localport);
658 	struct nvme_fc_rport *newrec;
659 	unsigned long flags;
660 	int ret, idx;
661 
662 	if (!nvme_fc_lport_get(lport)) {
663 		ret = -ESHUTDOWN;
664 		goto out_reghost_failed;
665 	}
666 
667 	/*
668 	 * look to see if there is already a remoteport that is waiting
669 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
670 	 * If so, transition to it and reconnect.
671 	 */
672 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
673 
674 	/* found an rport, but something about its state is bad */
675 	if (IS_ERR(newrec)) {
676 		ret = PTR_ERR(newrec);
677 		goto out_lport_put;
678 
679 	/* found existing rport, which was resumed */
680 	} else if (newrec) {
681 		nvme_fc_lport_put(lport);
682 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
683 		nvme_fc_signal_discovery_scan(lport, newrec);
684 		*portptr = &newrec->remoteport;
685 		return 0;
686 	}
687 
688 	/* nothing found - allocate a new remoteport struct */
689 
690 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
691 			 GFP_KERNEL);
692 	if (!newrec) {
693 		ret = -ENOMEM;
694 		goto out_lport_put;
695 	}
696 
697 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
698 	if (idx < 0) {
699 		ret = -ENOSPC;
700 		goto out_kfree_rport;
701 	}
702 
703 	INIT_LIST_HEAD(&newrec->endp_list);
704 	INIT_LIST_HEAD(&newrec->ctrl_list);
705 	INIT_LIST_HEAD(&newrec->ls_req_list);
706 	INIT_LIST_HEAD(&newrec->disc_list);
707 	kref_init(&newrec->ref);
708 	atomic_set(&newrec->act_ctrl_cnt, 0);
709 	spin_lock_init(&newrec->lock);
710 	newrec->remoteport.localport = &lport->localport;
711 	newrec->dev = lport->dev;
712 	newrec->lport = lport;
713 	newrec->remoteport.private = &newrec[1];
714 	newrec->remoteport.port_role = pinfo->port_role;
715 	newrec->remoteport.node_name = pinfo->node_name;
716 	newrec->remoteport.port_name = pinfo->port_name;
717 	newrec->remoteport.port_id = pinfo->port_id;
718 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
719 	newrec->remoteport.port_num = idx;
720 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
721 
722 	spin_lock_irqsave(&nvme_fc_lock, flags);
723 	list_add_tail(&newrec->endp_list, &lport->endp_list);
724 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
725 
726 	nvme_fc_signal_discovery_scan(lport, newrec);
727 
728 	*portptr = &newrec->remoteport;
729 	return 0;
730 
731 out_kfree_rport:
732 	kfree(newrec);
733 out_lport_put:
734 	nvme_fc_lport_put(lport);
735 out_reghost_failed:
736 	*portptr = NULL;
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
740 
741 static int
742 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
743 {
744 	struct nvmefc_ls_req_op *lsop;
745 	unsigned long flags;
746 
747 restart:
748 	spin_lock_irqsave(&rport->lock, flags);
749 
750 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
751 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
752 			lsop->flags |= FCOP_FLAGS_TERMIO;
753 			spin_unlock_irqrestore(&rport->lock, flags);
754 			rport->lport->ops->ls_abort(&rport->lport->localport,
755 						&rport->remoteport,
756 						&lsop->ls_req);
757 			goto restart;
758 		}
759 	}
760 	spin_unlock_irqrestore(&rport->lock, flags);
761 
762 	return 0;
763 }
764 
765 static void
766 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
767 {
768 	dev_info(ctrl->ctrl.device,
769 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
770 		"Reconnect", ctrl->cnum);
771 
772 	switch (ctrl->ctrl.state) {
773 	case NVME_CTRL_NEW:
774 	case NVME_CTRL_LIVE:
775 		/*
776 		 * Schedule a controller reset. The reset will terminate the
777 		 * association and schedule the reconnect timer.  Reconnects
778 		 * will be attempted until either the ctlr_loss_tmo
779 		 * (max_retries * connect_delay) expires or the remoteport's
780 		 * dev_loss_tmo expires.
781 		 */
782 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
783 			dev_warn(ctrl->ctrl.device,
784 				"NVME-FC{%d}: Couldn't schedule reset.\n",
785 				ctrl->cnum);
786 			nvme_delete_ctrl(&ctrl->ctrl);
787 		}
788 		break;
789 
790 	case NVME_CTRL_CONNECTING:
791 		/*
792 		 * The association has already been terminated and the
793 		 * controller is attempting reconnects.  No need to do anything
794 		 * futher.  Reconnects will be attempted until either the
795 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
796 		 * remoteport's dev_loss_tmo expires.
797 		 */
798 		break;
799 
800 	case NVME_CTRL_RESETTING:
801 		/*
802 		 * Controller is already in the process of terminating the
803 		 * association.  No need to do anything further. The reconnect
804 		 * step will kick in naturally after the association is
805 		 * terminated.
806 		 */
807 		break;
808 
809 	case NVME_CTRL_DELETING:
810 	default:
811 		/* no action to take - let it delete */
812 		break;
813 	}
814 }
815 
816 /**
817  * nvme_fc_unregister_remoteport - transport entry point called by an
818  *                              LLDD to deregister/remove a previously
819  *                              registered a NVME subsystem FC port.
820  * @portptr: pointer to the (registered) remote port that is to be
821  *           deregistered.
822  *
823  * Returns:
824  * a completion status. Must be 0 upon success; a negative errno
825  * (ex: -ENXIO) upon failure.
826  */
827 int
828 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
829 {
830 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
831 	struct nvme_fc_ctrl *ctrl;
832 	unsigned long flags;
833 
834 	if (!portptr)
835 		return -EINVAL;
836 
837 	spin_lock_irqsave(&rport->lock, flags);
838 
839 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
840 		spin_unlock_irqrestore(&rport->lock, flags);
841 		return -EINVAL;
842 	}
843 	portptr->port_state = FC_OBJSTATE_DELETED;
844 
845 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
846 
847 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
848 		/* if dev_loss_tmo==0, dev loss is immediate */
849 		if (!portptr->dev_loss_tmo) {
850 			dev_warn(ctrl->ctrl.device,
851 				"NVME-FC{%d}: controller connectivity lost.\n",
852 				ctrl->cnum);
853 			nvme_delete_ctrl(&ctrl->ctrl);
854 		} else
855 			nvme_fc_ctrl_connectivity_loss(ctrl);
856 	}
857 
858 	spin_unlock_irqrestore(&rport->lock, flags);
859 
860 	nvme_fc_abort_lsops(rport);
861 
862 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
863 		rport->lport->ops->remoteport_delete(portptr);
864 
865 	/*
866 	 * release the reference, which will allow, if all controllers
867 	 * go away, which should only occur after dev_loss_tmo occurs,
868 	 * for the rport to be torn down.
869 	 */
870 	nvme_fc_rport_put(rport);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
875 
876 /**
877  * nvme_fc_rescan_remoteport - transport entry point called by an
878  *                              LLDD to request a nvme device rescan.
879  * @remoteport: pointer to the (registered) remote port that is to be
880  *              rescanned.
881  *
882  * Returns: N/A
883  */
884 void
885 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
886 {
887 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
888 
889 	nvme_fc_signal_discovery_scan(rport->lport, rport);
890 }
891 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
892 
893 int
894 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
895 			u32 dev_loss_tmo)
896 {
897 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
898 	unsigned long flags;
899 
900 	spin_lock_irqsave(&rport->lock, flags);
901 
902 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
903 		spin_unlock_irqrestore(&rport->lock, flags);
904 		return -EINVAL;
905 	}
906 
907 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
908 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
909 
910 	spin_unlock_irqrestore(&rport->lock, flags);
911 
912 	return 0;
913 }
914 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
915 
916 
917 /* *********************** FC-NVME DMA Handling **************************** */
918 
919 /*
920  * The fcloop device passes in a NULL device pointer. Real LLD's will
921  * pass in a valid device pointer. If NULL is passed to the dma mapping
922  * routines, depending on the platform, it may or may not succeed, and
923  * may crash.
924  *
925  * As such:
926  * Wrapper all the dma routines and check the dev pointer.
927  *
928  * If simple mappings (return just a dma address, we'll noop them,
929  * returning a dma address of 0.
930  *
931  * On more complex mappings (dma_map_sg), a pseudo routine fills
932  * in the scatter list, setting all dma addresses to 0.
933  */
934 
935 static inline dma_addr_t
936 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
937 		enum dma_data_direction dir)
938 {
939 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
940 }
941 
942 static inline int
943 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
944 {
945 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
946 }
947 
948 static inline void
949 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
950 	enum dma_data_direction dir)
951 {
952 	if (dev)
953 		dma_unmap_single(dev, addr, size, dir);
954 }
955 
956 static inline void
957 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
958 		enum dma_data_direction dir)
959 {
960 	if (dev)
961 		dma_sync_single_for_cpu(dev, addr, size, dir);
962 }
963 
964 static inline void
965 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
966 		enum dma_data_direction dir)
967 {
968 	if (dev)
969 		dma_sync_single_for_device(dev, addr, size, dir);
970 }
971 
972 /* pseudo dma_map_sg call */
973 static int
974 fc_map_sg(struct scatterlist *sg, int nents)
975 {
976 	struct scatterlist *s;
977 	int i;
978 
979 	WARN_ON(nents == 0 || sg[0].length == 0);
980 
981 	for_each_sg(sg, s, nents, i) {
982 		s->dma_address = 0L;
983 #ifdef CONFIG_NEED_SG_DMA_LENGTH
984 		s->dma_length = s->length;
985 #endif
986 	}
987 	return nents;
988 }
989 
990 static inline int
991 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
992 		enum dma_data_direction dir)
993 {
994 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
995 }
996 
997 static inline void
998 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
999 		enum dma_data_direction dir)
1000 {
1001 	if (dev)
1002 		dma_unmap_sg(dev, sg, nents, dir);
1003 }
1004 
1005 /* *********************** FC-NVME LS Handling **************************** */
1006 
1007 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1008 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1009 
1010 
1011 static void
1012 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1013 {
1014 	struct nvme_fc_rport *rport = lsop->rport;
1015 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&rport->lock, flags);
1019 
1020 	if (!lsop->req_queued) {
1021 		spin_unlock_irqrestore(&rport->lock, flags);
1022 		return;
1023 	}
1024 
1025 	list_del(&lsop->lsreq_list);
1026 
1027 	lsop->req_queued = false;
1028 
1029 	spin_unlock_irqrestore(&rport->lock, flags);
1030 
1031 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1032 				  (lsreq->rqstlen + lsreq->rsplen),
1033 				  DMA_BIDIRECTIONAL);
1034 
1035 	nvme_fc_rport_put(rport);
1036 }
1037 
1038 static int
1039 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1040 		struct nvmefc_ls_req_op *lsop,
1041 		void (*done)(struct nvmefc_ls_req *req, int status))
1042 {
1043 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1044 	unsigned long flags;
1045 	int ret = 0;
1046 
1047 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1048 		return -ECONNREFUSED;
1049 
1050 	if (!nvme_fc_rport_get(rport))
1051 		return -ESHUTDOWN;
1052 
1053 	lsreq->done = done;
1054 	lsop->rport = rport;
1055 	lsop->req_queued = false;
1056 	INIT_LIST_HEAD(&lsop->lsreq_list);
1057 	init_completion(&lsop->ls_done);
1058 
1059 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1060 				  lsreq->rqstlen + lsreq->rsplen,
1061 				  DMA_BIDIRECTIONAL);
1062 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1063 		ret = -EFAULT;
1064 		goto out_putrport;
1065 	}
1066 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1067 
1068 	spin_lock_irqsave(&rport->lock, flags);
1069 
1070 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1071 
1072 	lsop->req_queued = true;
1073 
1074 	spin_unlock_irqrestore(&rport->lock, flags);
1075 
1076 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1077 					&rport->remoteport, lsreq);
1078 	if (ret)
1079 		goto out_unlink;
1080 
1081 	return 0;
1082 
1083 out_unlink:
1084 	lsop->ls_error = ret;
1085 	spin_lock_irqsave(&rport->lock, flags);
1086 	lsop->req_queued = false;
1087 	list_del(&lsop->lsreq_list);
1088 	spin_unlock_irqrestore(&rport->lock, flags);
1089 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1090 				  (lsreq->rqstlen + lsreq->rsplen),
1091 				  DMA_BIDIRECTIONAL);
1092 out_putrport:
1093 	nvme_fc_rport_put(rport);
1094 
1095 	return ret;
1096 }
1097 
1098 static void
1099 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1100 {
1101 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1102 
1103 	lsop->ls_error = status;
1104 	complete(&lsop->ls_done);
1105 }
1106 
1107 static int
1108 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1109 {
1110 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1111 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1112 	int ret;
1113 
1114 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1115 
1116 	if (!ret) {
1117 		/*
1118 		 * No timeout/not interruptible as we need the struct
1119 		 * to exist until the lldd calls us back. Thus mandate
1120 		 * wait until driver calls back. lldd responsible for
1121 		 * the timeout action
1122 		 */
1123 		wait_for_completion(&lsop->ls_done);
1124 
1125 		__nvme_fc_finish_ls_req(lsop);
1126 
1127 		ret = lsop->ls_error;
1128 	}
1129 
1130 	if (ret)
1131 		return ret;
1132 
1133 	/* ACC or RJT payload ? */
1134 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1135 		return -ENXIO;
1136 
1137 	return 0;
1138 }
1139 
1140 static int
1141 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1142 		struct nvmefc_ls_req_op *lsop,
1143 		void (*done)(struct nvmefc_ls_req *req, int status))
1144 {
1145 	/* don't wait for completion */
1146 
1147 	return __nvme_fc_send_ls_req(rport, lsop, done);
1148 }
1149 
1150 /* Validation Error indexes into the string table below */
1151 enum {
1152 	VERR_NO_ERROR		= 0,
1153 	VERR_LSACC		= 1,
1154 	VERR_LSDESC_RQST	= 2,
1155 	VERR_LSDESC_RQST_LEN	= 3,
1156 	VERR_ASSOC_ID		= 4,
1157 	VERR_ASSOC_ID_LEN	= 5,
1158 	VERR_CONN_ID		= 6,
1159 	VERR_CONN_ID_LEN	= 7,
1160 	VERR_CR_ASSOC		= 8,
1161 	VERR_CR_ASSOC_ACC_LEN	= 9,
1162 	VERR_CR_CONN		= 10,
1163 	VERR_CR_CONN_ACC_LEN	= 11,
1164 	VERR_DISCONN		= 12,
1165 	VERR_DISCONN_ACC_LEN	= 13,
1166 };
1167 
1168 static char *validation_errors[] = {
1169 	"OK",
1170 	"Not LS_ACC",
1171 	"Not LSDESC_RQST",
1172 	"Bad LSDESC_RQST Length",
1173 	"Not Association ID",
1174 	"Bad Association ID Length",
1175 	"Not Connection ID",
1176 	"Bad Connection ID Length",
1177 	"Not CR_ASSOC Rqst",
1178 	"Bad CR_ASSOC ACC Length",
1179 	"Not CR_CONN Rqst",
1180 	"Bad CR_CONN ACC Length",
1181 	"Not Disconnect Rqst",
1182 	"Bad Disconnect ACC Length",
1183 };
1184 
1185 static int
1186 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1187 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1188 {
1189 	struct nvmefc_ls_req_op *lsop;
1190 	struct nvmefc_ls_req *lsreq;
1191 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1192 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1193 	int ret, fcret = 0;
1194 
1195 	lsop = kzalloc((sizeof(*lsop) +
1196 			 ctrl->lport->ops->lsrqst_priv_sz +
1197 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1198 	if (!lsop) {
1199 		ret = -ENOMEM;
1200 		goto out_no_memory;
1201 	}
1202 	lsreq = &lsop->ls_req;
1203 
1204 	lsreq->private = (void *)&lsop[1];
1205 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1206 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1207 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1208 
1209 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1210 	assoc_rqst->desc_list_len =
1211 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1212 
1213 	assoc_rqst->assoc_cmd.desc_tag =
1214 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1215 	assoc_rqst->assoc_cmd.desc_len =
1216 			fcnvme_lsdesc_len(
1217 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1218 
1219 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1220 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1221 	/* Linux supports only Dynamic controllers */
1222 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1223 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1224 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1225 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1226 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1227 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1228 
1229 	lsop->queue = queue;
1230 	lsreq->rqstaddr = assoc_rqst;
1231 	lsreq->rqstlen = sizeof(*assoc_rqst);
1232 	lsreq->rspaddr = assoc_acc;
1233 	lsreq->rsplen = sizeof(*assoc_acc);
1234 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1235 
1236 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1237 	if (ret)
1238 		goto out_free_buffer;
1239 
1240 	/* process connect LS completion */
1241 
1242 	/* validate the ACC response */
1243 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1244 		fcret = VERR_LSACC;
1245 	else if (assoc_acc->hdr.desc_list_len !=
1246 			fcnvme_lsdesc_len(
1247 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1248 		fcret = VERR_CR_ASSOC_ACC_LEN;
1249 	else if (assoc_acc->hdr.rqst.desc_tag !=
1250 			cpu_to_be32(FCNVME_LSDESC_RQST))
1251 		fcret = VERR_LSDESC_RQST;
1252 	else if (assoc_acc->hdr.rqst.desc_len !=
1253 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1254 		fcret = VERR_LSDESC_RQST_LEN;
1255 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1256 		fcret = VERR_CR_ASSOC;
1257 	else if (assoc_acc->associd.desc_tag !=
1258 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1259 		fcret = VERR_ASSOC_ID;
1260 	else if (assoc_acc->associd.desc_len !=
1261 			fcnvme_lsdesc_len(
1262 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1263 		fcret = VERR_ASSOC_ID_LEN;
1264 	else if (assoc_acc->connectid.desc_tag !=
1265 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1266 		fcret = VERR_CONN_ID;
1267 	else if (assoc_acc->connectid.desc_len !=
1268 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1269 		fcret = VERR_CONN_ID_LEN;
1270 
1271 	if (fcret) {
1272 		ret = -EBADF;
1273 		dev_err(ctrl->dev,
1274 			"q %d connect failed: %s\n",
1275 			queue->qnum, validation_errors[fcret]);
1276 	} else {
1277 		ctrl->association_id =
1278 			be64_to_cpu(assoc_acc->associd.association_id);
1279 		queue->connection_id =
1280 			be64_to_cpu(assoc_acc->connectid.connection_id);
1281 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1282 	}
1283 
1284 out_free_buffer:
1285 	kfree(lsop);
1286 out_no_memory:
1287 	if (ret)
1288 		dev_err(ctrl->dev,
1289 			"queue %d connect admin queue failed (%d).\n",
1290 			queue->qnum, ret);
1291 	return ret;
1292 }
1293 
1294 static int
1295 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1296 			u16 qsize, u16 ersp_ratio)
1297 {
1298 	struct nvmefc_ls_req_op *lsop;
1299 	struct nvmefc_ls_req *lsreq;
1300 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1301 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1302 	int ret, fcret = 0;
1303 
1304 	lsop = kzalloc((sizeof(*lsop) +
1305 			 ctrl->lport->ops->lsrqst_priv_sz +
1306 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1307 	if (!lsop) {
1308 		ret = -ENOMEM;
1309 		goto out_no_memory;
1310 	}
1311 	lsreq = &lsop->ls_req;
1312 
1313 	lsreq->private = (void *)&lsop[1];
1314 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1315 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1316 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1317 
1318 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1319 	conn_rqst->desc_list_len = cpu_to_be32(
1320 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1321 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1322 
1323 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1324 	conn_rqst->associd.desc_len =
1325 			fcnvme_lsdesc_len(
1326 				sizeof(struct fcnvme_lsdesc_assoc_id));
1327 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1328 	conn_rqst->connect_cmd.desc_tag =
1329 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1330 	conn_rqst->connect_cmd.desc_len =
1331 			fcnvme_lsdesc_len(
1332 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1333 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1334 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1335 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1336 
1337 	lsop->queue = queue;
1338 	lsreq->rqstaddr = conn_rqst;
1339 	lsreq->rqstlen = sizeof(*conn_rqst);
1340 	lsreq->rspaddr = conn_acc;
1341 	lsreq->rsplen = sizeof(*conn_acc);
1342 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1343 
1344 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1345 	if (ret)
1346 		goto out_free_buffer;
1347 
1348 	/* process connect LS completion */
1349 
1350 	/* validate the ACC response */
1351 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1352 		fcret = VERR_LSACC;
1353 	else if (conn_acc->hdr.desc_list_len !=
1354 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1355 		fcret = VERR_CR_CONN_ACC_LEN;
1356 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1357 		fcret = VERR_LSDESC_RQST;
1358 	else if (conn_acc->hdr.rqst.desc_len !=
1359 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1360 		fcret = VERR_LSDESC_RQST_LEN;
1361 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1362 		fcret = VERR_CR_CONN;
1363 	else if (conn_acc->connectid.desc_tag !=
1364 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1365 		fcret = VERR_CONN_ID;
1366 	else if (conn_acc->connectid.desc_len !=
1367 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1368 		fcret = VERR_CONN_ID_LEN;
1369 
1370 	if (fcret) {
1371 		ret = -EBADF;
1372 		dev_err(ctrl->dev,
1373 			"q %d connect failed: %s\n",
1374 			queue->qnum, validation_errors[fcret]);
1375 	} else {
1376 		queue->connection_id =
1377 			be64_to_cpu(conn_acc->connectid.connection_id);
1378 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1379 	}
1380 
1381 out_free_buffer:
1382 	kfree(lsop);
1383 out_no_memory:
1384 	if (ret)
1385 		dev_err(ctrl->dev,
1386 			"queue %d connect command failed (%d).\n",
1387 			queue->qnum, ret);
1388 	return ret;
1389 }
1390 
1391 static void
1392 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1393 {
1394 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1395 
1396 	__nvme_fc_finish_ls_req(lsop);
1397 
1398 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1399 
1400 	kfree(lsop);
1401 }
1402 
1403 /*
1404  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1405  * the FC-NVME Association.  Terminating the association also
1406  * terminates the FC-NVME connections (per queue, both admin and io
1407  * queues) that are part of the association. E.g. things are torn
1408  * down, and the related FC-NVME Association ID and Connection IDs
1409  * become invalid.
1410  *
1411  * The behavior of the fc-nvme initiator is such that it's
1412  * understanding of the association and connections will implicitly
1413  * be torn down. The action is implicit as it may be due to a loss of
1414  * connectivity with the fc-nvme target, so you may never get a
1415  * response even if you tried.  As such, the action of this routine
1416  * is to asynchronously send the LS, ignore any results of the LS, and
1417  * continue on with terminating the association. If the fc-nvme target
1418  * is present and receives the LS, it too can tear down.
1419  */
1420 static void
1421 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1422 {
1423 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1424 	struct fcnvme_ls_disconnect_acc *discon_acc;
1425 	struct nvmefc_ls_req_op *lsop;
1426 	struct nvmefc_ls_req *lsreq;
1427 	int ret;
1428 
1429 	lsop = kzalloc((sizeof(*lsop) +
1430 			 ctrl->lport->ops->lsrqst_priv_sz +
1431 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1432 			GFP_KERNEL);
1433 	if (!lsop)
1434 		/* couldn't sent it... too bad */
1435 		return;
1436 
1437 	lsreq = &lsop->ls_req;
1438 
1439 	lsreq->private = (void *)&lsop[1];
1440 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1441 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1442 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1443 
1444 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1445 	discon_rqst->desc_list_len = cpu_to_be32(
1446 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1447 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1448 
1449 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1450 	discon_rqst->associd.desc_len =
1451 			fcnvme_lsdesc_len(
1452 				sizeof(struct fcnvme_lsdesc_assoc_id));
1453 
1454 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1455 
1456 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1457 						FCNVME_LSDESC_DISCONN_CMD);
1458 	discon_rqst->discon_cmd.desc_len =
1459 			fcnvme_lsdesc_len(
1460 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1461 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1462 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1463 
1464 	lsreq->rqstaddr = discon_rqst;
1465 	lsreq->rqstlen = sizeof(*discon_rqst);
1466 	lsreq->rspaddr = discon_acc;
1467 	lsreq->rsplen = sizeof(*discon_acc);
1468 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1469 
1470 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1471 				nvme_fc_disconnect_assoc_done);
1472 	if (ret)
1473 		kfree(lsop);
1474 
1475 	/* only meaningful part to terminating the association */
1476 	ctrl->association_id = 0;
1477 }
1478 
1479 
1480 /* *********************** NVME Ctrl Routines **************************** */
1481 
1482 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1483 
1484 static void
1485 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1486 		struct nvme_fc_fcp_op *op)
1487 {
1488 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1489 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1490 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1491 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1492 
1493 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1494 }
1495 
1496 static void
1497 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1498 		unsigned int hctx_idx)
1499 {
1500 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1501 
1502 	return __nvme_fc_exit_request(set->driver_data, op);
1503 }
1504 
1505 static int
1506 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1507 {
1508 	unsigned long flags;
1509 	int opstate;
1510 
1511 	spin_lock_irqsave(&ctrl->lock, flags);
1512 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1513 	if (opstate != FCPOP_STATE_ACTIVE)
1514 		atomic_set(&op->state, opstate);
1515 	else if (ctrl->flags & FCCTRL_TERMIO)
1516 		ctrl->iocnt++;
1517 	spin_unlock_irqrestore(&ctrl->lock, flags);
1518 
1519 	if (opstate != FCPOP_STATE_ACTIVE)
1520 		return -ECANCELED;
1521 
1522 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1523 					&ctrl->rport->remoteport,
1524 					op->queue->lldd_handle,
1525 					&op->fcp_req);
1526 
1527 	return 0;
1528 }
1529 
1530 static void
1531 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1532 {
1533 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1534 	int i;
1535 
1536 	/* ensure we've initialized the ops once */
1537 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1538 		return;
1539 
1540 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1541 		__nvme_fc_abort_op(ctrl, aen_op);
1542 }
1543 
1544 static inline void
1545 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1546 		struct nvme_fc_fcp_op *op, int opstate)
1547 {
1548 	unsigned long flags;
1549 
1550 	if (opstate == FCPOP_STATE_ABORTED) {
1551 		spin_lock_irqsave(&ctrl->lock, flags);
1552 		if (ctrl->flags & FCCTRL_TERMIO) {
1553 			if (!--ctrl->iocnt)
1554 				wake_up(&ctrl->ioabort_wait);
1555 		}
1556 		spin_unlock_irqrestore(&ctrl->lock, flags);
1557 	}
1558 }
1559 
1560 static void
1561 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1562 {
1563 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1564 	struct request *rq = op->rq;
1565 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1566 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1567 	struct nvme_fc_queue *queue = op->queue;
1568 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1569 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1570 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1571 	union nvme_result result;
1572 	bool terminate_assoc = true;
1573 	int opstate;
1574 
1575 	/*
1576 	 * WARNING:
1577 	 * The current linux implementation of a nvme controller
1578 	 * allocates a single tag set for all io queues and sizes
1579 	 * the io queues to fully hold all possible tags. Thus, the
1580 	 * implementation does not reference or care about the sqhd
1581 	 * value as it never needs to use the sqhd/sqtail pointers
1582 	 * for submission pacing.
1583 	 *
1584 	 * This affects the FC-NVME implementation in two ways:
1585 	 * 1) As the value doesn't matter, we don't need to waste
1586 	 *    cycles extracting it from ERSPs and stamping it in the
1587 	 *    cases where the transport fabricates CQEs on successful
1588 	 *    completions.
1589 	 * 2) The FC-NVME implementation requires that delivery of
1590 	 *    ERSP completions are to go back to the nvme layer in order
1591 	 *    relative to the rsn, such that the sqhd value will always
1592 	 *    be "in order" for the nvme layer. As the nvme layer in
1593 	 *    linux doesn't care about sqhd, there's no need to return
1594 	 *    them in order.
1595 	 *
1596 	 * Additionally:
1597 	 * As the core nvme layer in linux currently does not look at
1598 	 * every field in the cqe - in cases where the FC transport must
1599 	 * fabricate a CQE, the following fields will not be set as they
1600 	 * are not referenced:
1601 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1602 	 *
1603 	 * Failure or error of an individual i/o, in a transport
1604 	 * detected fashion unrelated to the nvme completion status,
1605 	 * potentially cause the initiator and target sides to get out
1606 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1607 	 * Per FC-NVME spec, failure of an individual command requires
1608 	 * the connection to be terminated, which in turn requires the
1609 	 * association to be terminated.
1610 	 */
1611 
1612 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1613 
1614 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1615 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1616 
1617 	if (opstate == FCPOP_STATE_ABORTED)
1618 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1619 	else if (freq->status)
1620 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1621 
1622 	/*
1623 	 * For the linux implementation, if we have an unsuccesful
1624 	 * status, they blk-mq layer can typically be called with the
1625 	 * non-zero status and the content of the cqe isn't important.
1626 	 */
1627 	if (status)
1628 		goto done;
1629 
1630 	/*
1631 	 * command completed successfully relative to the wire
1632 	 * protocol. However, validate anything received and
1633 	 * extract the status and result from the cqe (create it
1634 	 * where necessary).
1635 	 */
1636 
1637 	switch (freq->rcv_rsplen) {
1638 
1639 	case 0:
1640 	case NVME_FC_SIZEOF_ZEROS_RSP:
1641 		/*
1642 		 * No response payload or 12 bytes of payload (which
1643 		 * should all be zeros) are considered successful and
1644 		 * no payload in the CQE by the transport.
1645 		 */
1646 		if (freq->transferred_length !=
1647 			be32_to_cpu(op->cmd_iu.data_len)) {
1648 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1649 			goto done;
1650 		}
1651 		result.u64 = 0;
1652 		break;
1653 
1654 	case sizeof(struct nvme_fc_ersp_iu):
1655 		/*
1656 		 * The ERSP IU contains a full completion with CQE.
1657 		 * Validate ERSP IU and look at cqe.
1658 		 */
1659 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1660 					(freq->rcv_rsplen / 4) ||
1661 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1662 					freq->transferred_length ||
1663 			     op->rsp_iu.status_code ||
1664 			     sqe->common.command_id != cqe->command_id)) {
1665 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666 			goto done;
1667 		}
1668 		result = cqe->result;
1669 		status = cqe->status;
1670 		break;
1671 
1672 	default:
1673 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1674 		goto done;
1675 	}
1676 
1677 	terminate_assoc = false;
1678 
1679 done:
1680 	if (op->flags & FCOP_FLAGS_AEN) {
1681 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1682 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1684 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1685 		nvme_fc_ctrl_put(ctrl);
1686 		goto check_error;
1687 	}
1688 
1689 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1690 	nvme_end_request(rq, status, result);
1691 
1692 check_error:
1693 	if (terminate_assoc)
1694 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1695 }
1696 
1697 static int
1698 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1699 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1700 		struct request *rq, u32 rqno)
1701 {
1702 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1703 		container_of(op, typeof(*op_w_sgl), op);
1704 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1705 	int ret = 0;
1706 
1707 	memset(op, 0, sizeof(*op));
1708 	op->fcp_req.cmdaddr = &op->cmd_iu;
1709 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1710 	op->fcp_req.rspaddr = &op->rsp_iu;
1711 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1712 	op->fcp_req.done = nvme_fc_fcpio_done;
1713 	op->ctrl = ctrl;
1714 	op->queue = queue;
1715 	op->rq = rq;
1716 	op->rqno = rqno;
1717 
1718 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1719 	cmdiu->fc_id = NVME_CMD_FC_ID;
1720 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1721 
1722 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1723 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1724 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1725 		dev_err(ctrl->dev,
1726 			"FCP Op failed - cmdiu dma mapping failed.\n");
1727 		ret = EFAULT;
1728 		goto out_on_error;
1729 	}
1730 
1731 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1732 				&op->rsp_iu, sizeof(op->rsp_iu),
1733 				DMA_FROM_DEVICE);
1734 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1735 		dev_err(ctrl->dev,
1736 			"FCP Op failed - rspiu dma mapping failed.\n");
1737 		ret = EFAULT;
1738 	}
1739 
1740 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1741 out_on_error:
1742 	return ret;
1743 }
1744 
1745 static int
1746 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747 		unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1750 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1751 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1752 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1753 	int res;
1754 
1755 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1756 	if (res)
1757 		return res;
1758 	op->op.fcp_req.first_sgl = &op->sgl[0];
1759 	op->op.fcp_req.private = &op->priv[0];
1760 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1761 	return res;
1762 }
1763 
1764 static int
1765 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1766 {
1767 	struct nvme_fc_fcp_op *aen_op;
1768 	struct nvme_fc_cmd_iu *cmdiu;
1769 	struct nvme_command *sqe;
1770 	void *private;
1771 	int i, ret;
1772 
1773 	aen_op = ctrl->aen_ops;
1774 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1775 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1776 						GFP_KERNEL);
1777 		if (!private)
1778 			return -ENOMEM;
1779 
1780 		cmdiu = &aen_op->cmd_iu;
1781 		sqe = &cmdiu->sqe;
1782 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1783 				aen_op, (struct request *)NULL,
1784 				(NVME_AQ_BLK_MQ_DEPTH + i));
1785 		if (ret) {
1786 			kfree(private);
1787 			return ret;
1788 		}
1789 
1790 		aen_op->flags = FCOP_FLAGS_AEN;
1791 		aen_op->fcp_req.private = private;
1792 
1793 		memset(sqe, 0, sizeof(*sqe));
1794 		sqe->common.opcode = nvme_admin_async_event;
1795 		/* Note: core layer may overwrite the sqe.command_id value */
1796 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1797 	}
1798 	return 0;
1799 }
1800 
1801 static void
1802 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1803 {
1804 	struct nvme_fc_fcp_op *aen_op;
1805 	int i;
1806 
1807 	aen_op = ctrl->aen_ops;
1808 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1809 		if (!aen_op->fcp_req.private)
1810 			continue;
1811 
1812 		__nvme_fc_exit_request(ctrl, aen_op);
1813 
1814 		kfree(aen_op->fcp_req.private);
1815 		aen_op->fcp_req.private = NULL;
1816 	}
1817 }
1818 
1819 static inline void
1820 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1821 		unsigned int qidx)
1822 {
1823 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1824 
1825 	hctx->driver_data = queue;
1826 	queue->hctx = hctx;
1827 }
1828 
1829 static int
1830 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1831 		unsigned int hctx_idx)
1832 {
1833 	struct nvme_fc_ctrl *ctrl = data;
1834 
1835 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1836 
1837 	return 0;
1838 }
1839 
1840 static int
1841 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1842 		unsigned int hctx_idx)
1843 {
1844 	struct nvme_fc_ctrl *ctrl = data;
1845 
1846 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1847 
1848 	return 0;
1849 }
1850 
1851 static void
1852 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1853 {
1854 	struct nvme_fc_queue *queue;
1855 
1856 	queue = &ctrl->queues[idx];
1857 	memset(queue, 0, sizeof(*queue));
1858 	queue->ctrl = ctrl;
1859 	queue->qnum = idx;
1860 	atomic_set(&queue->csn, 1);
1861 	queue->dev = ctrl->dev;
1862 
1863 	if (idx > 0)
1864 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1865 	else
1866 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1867 
1868 	/*
1869 	 * Considered whether we should allocate buffers for all SQEs
1870 	 * and CQEs and dma map them - mapping their respective entries
1871 	 * into the request structures (kernel vm addr and dma address)
1872 	 * thus the driver could use the buffers/mappings directly.
1873 	 * It only makes sense if the LLDD would use them for its
1874 	 * messaging api. It's very unlikely most adapter api's would use
1875 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1876 	 * structures were used instead.
1877 	 */
1878 }
1879 
1880 /*
1881  * This routine terminates a queue at the transport level.
1882  * The transport has already ensured that all outstanding ios on
1883  * the queue have been terminated.
1884  * The transport will send a Disconnect LS request to terminate
1885  * the queue's connection. Termination of the admin queue will also
1886  * terminate the association at the target.
1887  */
1888 static void
1889 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1890 {
1891 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1892 		return;
1893 
1894 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1895 	/*
1896 	 * Current implementation never disconnects a single queue.
1897 	 * It always terminates a whole association. So there is never
1898 	 * a disconnect(queue) LS sent to the target.
1899 	 */
1900 
1901 	queue->connection_id = 0;
1902 	atomic_set(&queue->csn, 1);
1903 }
1904 
1905 static void
1906 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1907 	struct nvme_fc_queue *queue, unsigned int qidx)
1908 {
1909 	if (ctrl->lport->ops->delete_queue)
1910 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1911 				queue->lldd_handle);
1912 	queue->lldd_handle = NULL;
1913 }
1914 
1915 static void
1916 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1917 {
1918 	int i;
1919 
1920 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1921 		nvme_fc_free_queue(&ctrl->queues[i]);
1922 }
1923 
1924 static int
1925 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1926 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1927 {
1928 	int ret = 0;
1929 
1930 	queue->lldd_handle = NULL;
1931 	if (ctrl->lport->ops->create_queue)
1932 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1933 				qidx, qsize, &queue->lldd_handle);
1934 
1935 	return ret;
1936 }
1937 
1938 static void
1939 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1940 {
1941 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1942 	int i;
1943 
1944 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1945 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1946 }
1947 
1948 static int
1949 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1950 {
1951 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1952 	int i, ret;
1953 
1954 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1955 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1956 		if (ret)
1957 			goto delete_queues;
1958 	}
1959 
1960 	return 0;
1961 
1962 delete_queues:
1963 	for (; i >= 0; i--)
1964 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1965 	return ret;
1966 }
1967 
1968 static int
1969 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1970 {
1971 	int i, ret = 0;
1972 
1973 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1974 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1975 					(qsize / 5));
1976 		if (ret)
1977 			break;
1978 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1979 		if (ret)
1980 			break;
1981 
1982 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1983 	}
1984 
1985 	return ret;
1986 }
1987 
1988 static void
1989 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1990 {
1991 	int i;
1992 
1993 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1994 		nvme_fc_init_queue(ctrl, i);
1995 }
1996 
1997 static void
1998 nvme_fc_ctrl_free(struct kref *ref)
1999 {
2000 	struct nvme_fc_ctrl *ctrl =
2001 		container_of(ref, struct nvme_fc_ctrl, ref);
2002 	unsigned long flags;
2003 
2004 	if (ctrl->ctrl.tagset) {
2005 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2006 		blk_mq_free_tag_set(&ctrl->tag_set);
2007 	}
2008 
2009 	/* remove from rport list */
2010 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2011 	list_del(&ctrl->ctrl_list);
2012 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2013 
2014 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2015 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2016 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2017 
2018 	kfree(ctrl->queues);
2019 
2020 	put_device(ctrl->dev);
2021 	nvme_fc_rport_put(ctrl->rport);
2022 
2023 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2024 	if (ctrl->ctrl.opts)
2025 		nvmf_free_options(ctrl->ctrl.opts);
2026 	kfree(ctrl);
2027 }
2028 
2029 static void
2030 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2031 {
2032 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2033 }
2034 
2035 static int
2036 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2037 {
2038 	return kref_get_unless_zero(&ctrl->ref);
2039 }
2040 
2041 /*
2042  * All accesses from nvme core layer done - can now free the
2043  * controller. Called after last nvme_put_ctrl() call
2044  */
2045 static void
2046 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2047 {
2048 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2049 
2050 	WARN_ON(nctrl != &ctrl->ctrl);
2051 
2052 	nvme_fc_ctrl_put(ctrl);
2053 }
2054 
2055 static void
2056 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2057 {
2058 	int active;
2059 
2060 	/*
2061 	 * if an error (io timeout, etc) while (re)connecting,
2062 	 * it's an error on creating the new association.
2063 	 * Start the error recovery thread if it hasn't already
2064 	 * been started. It is expected there could be multiple
2065 	 * ios hitting this path before things are cleaned up.
2066 	 */
2067 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2068 		active = atomic_xchg(&ctrl->err_work_active, 1);
2069 		if (!active && !schedule_work(&ctrl->err_work)) {
2070 			atomic_set(&ctrl->err_work_active, 0);
2071 			WARN_ON(1);
2072 		}
2073 		return;
2074 	}
2075 
2076 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2077 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2078 		return;
2079 
2080 	dev_warn(ctrl->ctrl.device,
2081 		"NVME-FC{%d}: transport association error detected: %s\n",
2082 		ctrl->cnum, errmsg);
2083 	dev_warn(ctrl->ctrl.device,
2084 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2085 
2086 	nvme_reset_ctrl(&ctrl->ctrl);
2087 }
2088 
2089 static enum blk_eh_timer_return
2090 nvme_fc_timeout(struct request *rq, bool reserved)
2091 {
2092 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2093 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2094 
2095 	/*
2096 	 * we can't individually ABTS an io without affecting the queue,
2097 	 * thus killing the queue, and thus the association.
2098 	 * So resolve by performing a controller reset, which will stop
2099 	 * the host/io stack, terminate the association on the link,
2100 	 * and recreate an association on the link.
2101 	 */
2102 	nvme_fc_error_recovery(ctrl, "io timeout error");
2103 
2104 	/*
2105 	 * the io abort has been initiated. Have the reset timer
2106 	 * restarted and the abort completion will complete the io
2107 	 * shortly. Avoids a synchronous wait while the abort finishes.
2108 	 */
2109 	return BLK_EH_RESET_TIMER;
2110 }
2111 
2112 static int
2113 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2114 		struct nvme_fc_fcp_op *op)
2115 {
2116 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2117 	enum dma_data_direction dir;
2118 	int ret;
2119 
2120 	freq->sg_cnt = 0;
2121 
2122 	if (!blk_rq_payload_bytes(rq))
2123 		return 0;
2124 
2125 	freq->sg_table.sgl = freq->first_sgl;
2126 	ret = sg_alloc_table_chained(&freq->sg_table,
2127 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2128 	if (ret)
2129 		return -ENOMEM;
2130 
2131 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2132 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2133 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2134 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2135 				op->nents, dir);
2136 	if (unlikely(freq->sg_cnt <= 0)) {
2137 		sg_free_table_chained(&freq->sg_table, true);
2138 		freq->sg_cnt = 0;
2139 		return -EFAULT;
2140 	}
2141 
2142 	/*
2143 	 * TODO: blk_integrity_rq(rq)  for DIF
2144 	 */
2145 	return 0;
2146 }
2147 
2148 static void
2149 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2150 		struct nvme_fc_fcp_op *op)
2151 {
2152 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2153 
2154 	if (!freq->sg_cnt)
2155 		return;
2156 
2157 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2158 				((rq_data_dir(rq) == WRITE) ?
2159 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2160 
2161 	nvme_cleanup_cmd(rq);
2162 
2163 	sg_free_table_chained(&freq->sg_table, true);
2164 
2165 	freq->sg_cnt = 0;
2166 }
2167 
2168 /*
2169  * In FC, the queue is a logical thing. At transport connect, the target
2170  * creates its "queue" and returns a handle that is to be given to the
2171  * target whenever it posts something to the corresponding SQ.  When an
2172  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2173  * command contained within the SQE, an io, and assigns a FC exchange
2174  * to it. The SQE and the associated SQ handle are sent in the initial
2175  * CMD IU sents on the exchange. All transfers relative to the io occur
2176  * as part of the exchange.  The CQE is the last thing for the io,
2177  * which is transferred (explicitly or implicitly) with the RSP IU
2178  * sent on the exchange. After the CQE is received, the FC exchange is
2179  * terminaed and the Exchange may be used on a different io.
2180  *
2181  * The transport to LLDD api has the transport making a request for a
2182  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2183  * resource and transfers the command. The LLDD will then process all
2184  * steps to complete the io. Upon completion, the transport done routine
2185  * is called.
2186  *
2187  * So - while the operation is outstanding to the LLDD, there is a link
2188  * level FC exchange resource that is also outstanding. This must be
2189  * considered in all cleanup operations.
2190  */
2191 static blk_status_t
2192 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2193 	struct nvme_fc_fcp_op *op, u32 data_len,
2194 	enum nvmefc_fcp_datadir	io_dir)
2195 {
2196 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2197 	struct nvme_command *sqe = &cmdiu->sqe;
2198 	u32 csn;
2199 	int ret, opstate;
2200 
2201 	/*
2202 	 * before attempting to send the io, check to see if we believe
2203 	 * the target device is present
2204 	 */
2205 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2206 		return BLK_STS_RESOURCE;
2207 
2208 	if (!nvme_fc_ctrl_get(ctrl))
2209 		return BLK_STS_IOERR;
2210 
2211 	/* format the FC-NVME CMD IU and fcp_req */
2212 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2213 	csn = atomic_inc_return(&queue->csn);
2214 	cmdiu->csn = cpu_to_be32(csn);
2215 	cmdiu->data_len = cpu_to_be32(data_len);
2216 	switch (io_dir) {
2217 	case NVMEFC_FCP_WRITE:
2218 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2219 		break;
2220 	case NVMEFC_FCP_READ:
2221 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2222 		break;
2223 	case NVMEFC_FCP_NODATA:
2224 		cmdiu->flags = 0;
2225 		break;
2226 	}
2227 	op->fcp_req.payload_length = data_len;
2228 	op->fcp_req.io_dir = io_dir;
2229 	op->fcp_req.transferred_length = 0;
2230 	op->fcp_req.rcv_rsplen = 0;
2231 	op->fcp_req.status = NVME_SC_SUCCESS;
2232 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2233 
2234 	/*
2235 	 * validate per fabric rules, set fields mandated by fabric spec
2236 	 * as well as those by FC-NVME spec.
2237 	 */
2238 	WARN_ON_ONCE(sqe->common.metadata);
2239 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2240 
2241 	/*
2242 	 * format SQE DPTR field per FC-NVME rules:
2243 	 *    type=0x5     Transport SGL Data Block Descriptor
2244 	 *    subtype=0xA  Transport-specific value
2245 	 *    address=0
2246 	 *    length=length of the data series
2247 	 */
2248 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2249 					NVME_SGL_FMT_TRANSPORT_A;
2250 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2251 	sqe->rw.dptr.sgl.addr = 0;
2252 
2253 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2254 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2255 		if (ret < 0) {
2256 			nvme_cleanup_cmd(op->rq);
2257 			nvme_fc_ctrl_put(ctrl);
2258 			if (ret == -ENOMEM || ret == -EAGAIN)
2259 				return BLK_STS_RESOURCE;
2260 			return BLK_STS_IOERR;
2261 		}
2262 	}
2263 
2264 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2265 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2266 
2267 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2268 
2269 	if (!(op->flags & FCOP_FLAGS_AEN))
2270 		blk_mq_start_request(op->rq);
2271 
2272 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2273 					&ctrl->rport->remoteport,
2274 					queue->lldd_handle, &op->fcp_req);
2275 
2276 	if (ret) {
2277 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2278 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2279 
2280 		if (!(op->flags & FCOP_FLAGS_AEN))
2281 			nvme_fc_unmap_data(ctrl, op->rq, op);
2282 
2283 		nvme_fc_ctrl_put(ctrl);
2284 
2285 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2286 				ret != -EBUSY)
2287 			return BLK_STS_IOERR;
2288 
2289 		return BLK_STS_RESOURCE;
2290 	}
2291 
2292 	return BLK_STS_OK;
2293 }
2294 
2295 static blk_status_t
2296 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2297 			const struct blk_mq_queue_data *bd)
2298 {
2299 	struct nvme_ns *ns = hctx->queue->queuedata;
2300 	struct nvme_fc_queue *queue = hctx->driver_data;
2301 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2302 	struct request *rq = bd->rq;
2303 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2304 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2305 	struct nvme_command *sqe = &cmdiu->sqe;
2306 	enum nvmefc_fcp_datadir	io_dir;
2307 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2308 	u32 data_len;
2309 	blk_status_t ret;
2310 
2311 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2312 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2313 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2314 
2315 	ret = nvme_setup_cmd(ns, rq, sqe);
2316 	if (ret)
2317 		return ret;
2318 
2319 	data_len = blk_rq_payload_bytes(rq);
2320 	if (data_len)
2321 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2322 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2323 	else
2324 		io_dir = NVMEFC_FCP_NODATA;
2325 
2326 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2327 }
2328 
2329 static void
2330 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2331 {
2332 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2333 	struct nvme_fc_fcp_op *aen_op;
2334 	unsigned long flags;
2335 	bool terminating = false;
2336 	blk_status_t ret;
2337 
2338 	spin_lock_irqsave(&ctrl->lock, flags);
2339 	if (ctrl->flags & FCCTRL_TERMIO)
2340 		terminating = true;
2341 	spin_unlock_irqrestore(&ctrl->lock, flags);
2342 
2343 	if (terminating)
2344 		return;
2345 
2346 	aen_op = &ctrl->aen_ops[0];
2347 
2348 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2349 					NVMEFC_FCP_NODATA);
2350 	if (ret)
2351 		dev_err(ctrl->ctrl.device,
2352 			"failed async event work\n");
2353 }
2354 
2355 static void
2356 nvme_fc_complete_rq(struct request *rq)
2357 {
2358 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2359 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2360 
2361 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2362 
2363 	nvme_fc_unmap_data(ctrl, rq, op);
2364 	nvme_complete_rq(rq);
2365 	nvme_fc_ctrl_put(ctrl);
2366 }
2367 
2368 /*
2369  * This routine is used by the transport when it needs to find active
2370  * io on a queue that is to be terminated. The transport uses
2371  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2372  * this routine to kill them on a 1 by 1 basis.
2373  *
2374  * As FC allocates FC exchange for each io, the transport must contact
2375  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2376  * After terminating the exchange the LLDD will call the transport's
2377  * normal io done path for the request, but it will have an aborted
2378  * status. The done path will return the io request back to the block
2379  * layer with an error status.
2380  */
2381 static bool
2382 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2383 {
2384 	struct nvme_ctrl *nctrl = data;
2385 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2386 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2387 
2388 	__nvme_fc_abort_op(ctrl, op);
2389 	return true;
2390 }
2391 
2392 
2393 static const struct blk_mq_ops nvme_fc_mq_ops = {
2394 	.queue_rq	= nvme_fc_queue_rq,
2395 	.complete	= nvme_fc_complete_rq,
2396 	.init_request	= nvme_fc_init_request,
2397 	.exit_request	= nvme_fc_exit_request,
2398 	.init_hctx	= nvme_fc_init_hctx,
2399 	.timeout	= nvme_fc_timeout,
2400 };
2401 
2402 static int
2403 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2404 {
2405 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2406 	unsigned int nr_io_queues;
2407 	int ret;
2408 
2409 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2410 				ctrl->lport->ops->max_hw_queues);
2411 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2412 	if (ret) {
2413 		dev_info(ctrl->ctrl.device,
2414 			"set_queue_count failed: %d\n", ret);
2415 		return ret;
2416 	}
2417 
2418 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2419 	if (!nr_io_queues)
2420 		return 0;
2421 
2422 	nvme_fc_init_io_queues(ctrl);
2423 
2424 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2425 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2426 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2427 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2428 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2429 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2430 	ctrl->tag_set.cmd_size =
2431 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2432 			    ctrl->lport->ops->fcprqst_priv_sz);
2433 	ctrl->tag_set.driver_data = ctrl;
2434 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2435 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2436 
2437 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2438 	if (ret)
2439 		return ret;
2440 
2441 	ctrl->ctrl.tagset = &ctrl->tag_set;
2442 
2443 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2444 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2445 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2446 		goto out_free_tag_set;
2447 	}
2448 
2449 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2450 	if (ret)
2451 		goto out_cleanup_blk_queue;
2452 
2453 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2454 	if (ret)
2455 		goto out_delete_hw_queues;
2456 
2457 	ctrl->ioq_live = true;
2458 
2459 	return 0;
2460 
2461 out_delete_hw_queues:
2462 	nvme_fc_delete_hw_io_queues(ctrl);
2463 out_cleanup_blk_queue:
2464 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2465 out_free_tag_set:
2466 	blk_mq_free_tag_set(&ctrl->tag_set);
2467 	nvme_fc_free_io_queues(ctrl);
2468 
2469 	/* force put free routine to ignore io queues */
2470 	ctrl->ctrl.tagset = NULL;
2471 
2472 	return ret;
2473 }
2474 
2475 static int
2476 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2477 {
2478 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2479 	unsigned int nr_io_queues;
2480 	int ret;
2481 
2482 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2483 				ctrl->lport->ops->max_hw_queues);
2484 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2485 	if (ret) {
2486 		dev_info(ctrl->ctrl.device,
2487 			"set_queue_count failed: %d\n", ret);
2488 		return ret;
2489 	}
2490 
2491 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2492 	/* check for io queues existing */
2493 	if (ctrl->ctrl.queue_count == 1)
2494 		return 0;
2495 
2496 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2497 	if (ret)
2498 		goto out_free_io_queues;
2499 
2500 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2501 	if (ret)
2502 		goto out_delete_hw_queues;
2503 
2504 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2505 
2506 	return 0;
2507 
2508 out_delete_hw_queues:
2509 	nvme_fc_delete_hw_io_queues(ctrl);
2510 out_free_io_queues:
2511 	nvme_fc_free_io_queues(ctrl);
2512 	return ret;
2513 }
2514 
2515 static void
2516 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2517 {
2518 	struct nvme_fc_lport *lport = rport->lport;
2519 
2520 	atomic_inc(&lport->act_rport_cnt);
2521 }
2522 
2523 static void
2524 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2525 {
2526 	struct nvme_fc_lport *lport = rport->lport;
2527 	u32 cnt;
2528 
2529 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2530 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2531 		lport->ops->localport_delete(&lport->localport);
2532 }
2533 
2534 static int
2535 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2536 {
2537 	struct nvme_fc_rport *rport = ctrl->rport;
2538 	u32 cnt;
2539 
2540 	if (ctrl->assoc_active)
2541 		return 1;
2542 
2543 	ctrl->assoc_active = true;
2544 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2545 	if (cnt == 1)
2546 		nvme_fc_rport_active_on_lport(rport);
2547 
2548 	return 0;
2549 }
2550 
2551 static int
2552 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2553 {
2554 	struct nvme_fc_rport *rport = ctrl->rport;
2555 	struct nvme_fc_lport *lport = rport->lport;
2556 	u32 cnt;
2557 
2558 	/* ctrl->assoc_active=false will be set independently */
2559 
2560 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2561 	if (cnt == 0) {
2562 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2563 			lport->ops->remoteport_delete(&rport->remoteport);
2564 		nvme_fc_rport_inactive_on_lport(rport);
2565 	}
2566 
2567 	return 0;
2568 }
2569 
2570 /*
2571  * This routine restarts the controller on the host side, and
2572  * on the link side, recreates the controller association.
2573  */
2574 static int
2575 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2576 {
2577 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2578 	int ret;
2579 	bool changed;
2580 
2581 	++ctrl->ctrl.nr_reconnects;
2582 
2583 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2584 		return -ENODEV;
2585 
2586 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2587 		return -ENOTUNIQ;
2588 
2589 	/*
2590 	 * Create the admin queue
2591 	 */
2592 
2593 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2594 				NVME_AQ_DEPTH);
2595 	if (ret)
2596 		goto out_free_queue;
2597 
2598 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2599 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2600 	if (ret)
2601 		goto out_delete_hw_queue;
2602 
2603 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2604 
2605 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2606 	if (ret)
2607 		goto out_disconnect_admin_queue;
2608 
2609 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2610 
2611 	/*
2612 	 * Check controller capabilities
2613 	 *
2614 	 * todo:- add code to check if ctrl attributes changed from
2615 	 * prior connection values
2616 	 */
2617 
2618 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2619 	if (ret) {
2620 		dev_err(ctrl->ctrl.device,
2621 			"prop_get NVME_REG_CAP failed\n");
2622 		goto out_disconnect_admin_queue;
2623 	}
2624 
2625 	ctrl->ctrl.sqsize =
2626 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2627 
2628 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2629 	if (ret)
2630 		goto out_disconnect_admin_queue;
2631 
2632 	ctrl->ctrl.max_hw_sectors =
2633 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2634 
2635 	ret = nvme_init_identify(&ctrl->ctrl);
2636 	if (ret)
2637 		goto out_disconnect_admin_queue;
2638 
2639 	/* sanity checks */
2640 
2641 	/* FC-NVME does not have other data in the capsule */
2642 	if (ctrl->ctrl.icdoff) {
2643 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2644 				ctrl->ctrl.icdoff);
2645 		goto out_disconnect_admin_queue;
2646 	}
2647 
2648 	/* FC-NVME supports normal SGL Data Block Descriptors */
2649 
2650 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2651 		/* warn if maxcmd is lower than queue_size */
2652 		dev_warn(ctrl->ctrl.device,
2653 			"queue_size %zu > ctrl maxcmd %u, reducing "
2654 			"to queue_size\n",
2655 			opts->queue_size, ctrl->ctrl.maxcmd);
2656 		opts->queue_size = ctrl->ctrl.maxcmd;
2657 	}
2658 
2659 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2660 		/* warn if sqsize is lower than queue_size */
2661 		dev_warn(ctrl->ctrl.device,
2662 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2663 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2664 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2665 	}
2666 
2667 	ret = nvme_fc_init_aen_ops(ctrl);
2668 	if (ret)
2669 		goto out_term_aen_ops;
2670 
2671 	/*
2672 	 * Create the io queues
2673 	 */
2674 
2675 	if (ctrl->ctrl.queue_count > 1) {
2676 		if (!ctrl->ioq_live)
2677 			ret = nvme_fc_create_io_queues(ctrl);
2678 		else
2679 			ret = nvme_fc_recreate_io_queues(ctrl);
2680 		if (ret)
2681 			goto out_term_aen_ops;
2682 	}
2683 
2684 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2685 
2686 	ctrl->ctrl.nr_reconnects = 0;
2687 
2688 	if (changed)
2689 		nvme_start_ctrl(&ctrl->ctrl);
2690 
2691 	return 0;	/* Success */
2692 
2693 out_term_aen_ops:
2694 	nvme_fc_term_aen_ops(ctrl);
2695 out_disconnect_admin_queue:
2696 	/* send a Disconnect(association) LS to fc-nvme target */
2697 	nvme_fc_xmt_disconnect_assoc(ctrl);
2698 out_delete_hw_queue:
2699 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2700 out_free_queue:
2701 	nvme_fc_free_queue(&ctrl->queues[0]);
2702 	ctrl->assoc_active = false;
2703 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2704 
2705 	return ret;
2706 }
2707 
2708 /*
2709  * This routine stops operation of the controller on the host side.
2710  * On the host os stack side: Admin and IO queues are stopped,
2711  *   outstanding ios on them terminated via FC ABTS.
2712  * On the link side: the association is terminated.
2713  */
2714 static void
2715 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2716 {
2717 	unsigned long flags;
2718 
2719 	if (!ctrl->assoc_active)
2720 		return;
2721 	ctrl->assoc_active = false;
2722 
2723 	spin_lock_irqsave(&ctrl->lock, flags);
2724 	ctrl->flags |= FCCTRL_TERMIO;
2725 	ctrl->iocnt = 0;
2726 	spin_unlock_irqrestore(&ctrl->lock, flags);
2727 
2728 	/*
2729 	 * If io queues are present, stop them and terminate all outstanding
2730 	 * ios on them. As FC allocates FC exchange for each io, the
2731 	 * transport must contact the LLDD to terminate the exchange,
2732 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2733 	 * to tell us what io's are busy and invoke a transport routine
2734 	 * to kill them with the LLDD.  After terminating the exchange
2735 	 * the LLDD will call the transport's normal io done path, but it
2736 	 * will have an aborted status. The done path will return the
2737 	 * io requests back to the block layer as part of normal completions
2738 	 * (but with error status).
2739 	 */
2740 	if (ctrl->ctrl.queue_count > 1) {
2741 		nvme_stop_queues(&ctrl->ctrl);
2742 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2743 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2744 	}
2745 
2746 	/*
2747 	 * Other transports, which don't have link-level contexts bound
2748 	 * to sqe's, would try to gracefully shutdown the controller by
2749 	 * writing the registers for shutdown and polling (call
2750 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2751 	 * just aborted and we will wait on those contexts, and given
2752 	 * there was no indication of how live the controlelr is on the
2753 	 * link, don't send more io to create more contexts for the
2754 	 * shutdown. Let the controller fail via keepalive failure if
2755 	 * its still present.
2756 	 */
2757 
2758 	/*
2759 	 * clean up the admin queue. Same thing as above.
2760 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2761 	 * terminate the exchanges.
2762 	 */
2763 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2764 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2765 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2766 
2767 	/* kill the aens as they are a separate path */
2768 	nvme_fc_abort_aen_ops(ctrl);
2769 
2770 	/* wait for all io that had to be aborted */
2771 	spin_lock_irq(&ctrl->lock);
2772 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2773 	ctrl->flags &= ~FCCTRL_TERMIO;
2774 	spin_unlock_irq(&ctrl->lock);
2775 
2776 	nvme_fc_term_aen_ops(ctrl);
2777 
2778 	/*
2779 	 * send a Disconnect(association) LS to fc-nvme target
2780 	 * Note: could have been sent at top of process, but
2781 	 * cleaner on link traffic if after the aborts complete.
2782 	 * Note: if association doesn't exist, association_id will be 0
2783 	 */
2784 	if (ctrl->association_id)
2785 		nvme_fc_xmt_disconnect_assoc(ctrl);
2786 
2787 	if (ctrl->ctrl.tagset) {
2788 		nvme_fc_delete_hw_io_queues(ctrl);
2789 		nvme_fc_free_io_queues(ctrl);
2790 	}
2791 
2792 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2793 	nvme_fc_free_queue(&ctrl->queues[0]);
2794 
2795 	/* re-enable the admin_q so anything new can fast fail */
2796 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2797 
2798 	/* resume the io queues so that things will fast fail */
2799 	nvme_start_queues(&ctrl->ctrl);
2800 
2801 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2802 }
2803 
2804 static void
2805 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2806 {
2807 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2808 
2809 	cancel_work_sync(&ctrl->err_work);
2810 	cancel_delayed_work_sync(&ctrl->connect_work);
2811 	/*
2812 	 * kill the association on the link side.  this will block
2813 	 * waiting for io to terminate
2814 	 */
2815 	nvme_fc_delete_association(ctrl);
2816 }
2817 
2818 static void
2819 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2820 {
2821 	struct nvme_fc_rport *rport = ctrl->rport;
2822 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2823 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2824 	bool recon = true;
2825 
2826 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2827 		return;
2828 
2829 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2830 		dev_info(ctrl->ctrl.device,
2831 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2832 			ctrl->cnum, status);
2833 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2834 		recon = false;
2835 
2836 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2837 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2838 			dev_info(ctrl->ctrl.device,
2839 				"NVME-FC{%d}: Reconnect attempt in %ld "
2840 				"seconds\n",
2841 				ctrl->cnum, recon_delay / HZ);
2842 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2843 			recon_delay = rport->dev_loss_end - jiffies;
2844 
2845 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2846 	} else {
2847 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2848 			dev_warn(ctrl->ctrl.device,
2849 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2850 				"reached.\n",
2851 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2852 		else
2853 			dev_warn(ctrl->ctrl.device,
2854 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2855 				"while waiting for remoteport connectivity.\n",
2856 				ctrl->cnum, portptr->dev_loss_tmo);
2857 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2858 	}
2859 }
2860 
2861 static void
2862 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2863 {
2864 	nvme_stop_keep_alive(&ctrl->ctrl);
2865 
2866 	/* will block will waiting for io to terminate */
2867 	nvme_fc_delete_association(ctrl);
2868 
2869 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2870 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2871 		dev_err(ctrl->ctrl.device,
2872 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2873 			"to CONNECTING\n", ctrl->cnum);
2874 }
2875 
2876 static void
2877 nvme_fc_reset_ctrl_work(struct work_struct *work)
2878 {
2879 	struct nvme_fc_ctrl *ctrl =
2880 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2881 	int ret;
2882 
2883 	__nvme_fc_terminate_io(ctrl);
2884 
2885 	nvme_stop_ctrl(&ctrl->ctrl);
2886 
2887 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2888 		ret = nvme_fc_create_association(ctrl);
2889 	else
2890 		ret = -ENOTCONN;
2891 
2892 	if (ret)
2893 		nvme_fc_reconnect_or_delete(ctrl, ret);
2894 	else
2895 		dev_info(ctrl->ctrl.device,
2896 			"NVME-FC{%d}: controller reset complete\n",
2897 			ctrl->cnum);
2898 }
2899 
2900 static void
2901 nvme_fc_connect_err_work(struct work_struct *work)
2902 {
2903 	struct nvme_fc_ctrl *ctrl =
2904 			container_of(work, struct nvme_fc_ctrl, err_work);
2905 
2906 	__nvme_fc_terminate_io(ctrl);
2907 
2908 	atomic_set(&ctrl->err_work_active, 0);
2909 
2910 	/*
2911 	 * Rescheduling the connection after recovering
2912 	 * from the io error is left to the reconnect work
2913 	 * item, which is what should have stalled waiting on
2914 	 * the io that had the error that scheduled this work.
2915 	 */
2916 }
2917 
2918 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2919 	.name			= "fc",
2920 	.module			= THIS_MODULE,
2921 	.flags			= NVME_F_FABRICS,
2922 	.reg_read32		= nvmf_reg_read32,
2923 	.reg_read64		= nvmf_reg_read64,
2924 	.reg_write32		= nvmf_reg_write32,
2925 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2926 	.submit_async_event	= nvme_fc_submit_async_event,
2927 	.delete_ctrl		= nvme_fc_delete_ctrl,
2928 	.get_address		= nvmf_get_address,
2929 };
2930 
2931 static void
2932 nvme_fc_connect_ctrl_work(struct work_struct *work)
2933 {
2934 	int ret;
2935 
2936 	struct nvme_fc_ctrl *ctrl =
2937 			container_of(to_delayed_work(work),
2938 				struct nvme_fc_ctrl, connect_work);
2939 
2940 	ret = nvme_fc_create_association(ctrl);
2941 	if (ret)
2942 		nvme_fc_reconnect_or_delete(ctrl, ret);
2943 	else
2944 		dev_info(ctrl->ctrl.device,
2945 			"NVME-FC{%d}: controller connect complete\n",
2946 			ctrl->cnum);
2947 }
2948 
2949 
2950 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2951 	.queue_rq	= nvme_fc_queue_rq,
2952 	.complete	= nvme_fc_complete_rq,
2953 	.init_request	= nvme_fc_init_request,
2954 	.exit_request	= nvme_fc_exit_request,
2955 	.init_hctx	= nvme_fc_init_admin_hctx,
2956 	.timeout	= nvme_fc_timeout,
2957 };
2958 
2959 
2960 /*
2961  * Fails a controller request if it matches an existing controller
2962  * (association) with the same tuple:
2963  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2964  *
2965  * The ports don't need to be compared as they are intrinsically
2966  * already matched by the port pointers supplied.
2967  */
2968 static bool
2969 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2970 		struct nvmf_ctrl_options *opts)
2971 {
2972 	struct nvme_fc_ctrl *ctrl;
2973 	unsigned long flags;
2974 	bool found = false;
2975 
2976 	spin_lock_irqsave(&rport->lock, flags);
2977 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2978 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2979 		if (found)
2980 			break;
2981 	}
2982 	spin_unlock_irqrestore(&rport->lock, flags);
2983 
2984 	return found;
2985 }
2986 
2987 static struct nvme_ctrl *
2988 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2989 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2990 {
2991 	struct nvme_fc_ctrl *ctrl;
2992 	unsigned long flags;
2993 	int ret, idx;
2994 
2995 	if (!(rport->remoteport.port_role &
2996 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2997 		ret = -EBADR;
2998 		goto out_fail;
2999 	}
3000 
3001 	if (!opts->duplicate_connect &&
3002 	    nvme_fc_existing_controller(rport, opts)) {
3003 		ret = -EALREADY;
3004 		goto out_fail;
3005 	}
3006 
3007 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3008 	if (!ctrl) {
3009 		ret = -ENOMEM;
3010 		goto out_fail;
3011 	}
3012 
3013 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3014 	if (idx < 0) {
3015 		ret = -ENOSPC;
3016 		goto out_free_ctrl;
3017 	}
3018 
3019 	ctrl->ctrl.opts = opts;
3020 	ctrl->ctrl.nr_reconnects = 0;
3021 	ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3022 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3023 	ctrl->lport = lport;
3024 	ctrl->rport = rport;
3025 	ctrl->dev = lport->dev;
3026 	ctrl->cnum = idx;
3027 	ctrl->ioq_live = false;
3028 	ctrl->assoc_active = false;
3029 	atomic_set(&ctrl->err_work_active, 0);
3030 	init_waitqueue_head(&ctrl->ioabort_wait);
3031 
3032 	get_device(ctrl->dev);
3033 	kref_init(&ctrl->ref);
3034 
3035 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3036 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3037 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3038 	spin_lock_init(&ctrl->lock);
3039 
3040 	/* io queue count */
3041 	ctrl->ctrl.queue_count = min_t(unsigned int,
3042 				opts->nr_io_queues,
3043 				lport->ops->max_hw_queues);
3044 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3045 
3046 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3047 	ctrl->ctrl.kato = opts->kato;
3048 	ctrl->ctrl.cntlid = 0xffff;
3049 
3050 	ret = -ENOMEM;
3051 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3052 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3053 	if (!ctrl->queues)
3054 		goto out_free_ida;
3055 
3056 	nvme_fc_init_queue(ctrl, 0);
3057 
3058 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3059 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3060 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3061 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3062 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3063 	ctrl->admin_tag_set.cmd_size =
3064 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3065 			    ctrl->lport->ops->fcprqst_priv_sz);
3066 	ctrl->admin_tag_set.driver_data = ctrl;
3067 	ctrl->admin_tag_set.nr_hw_queues = 1;
3068 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3069 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3070 
3071 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3072 	if (ret)
3073 		goto out_free_queues;
3074 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3075 
3076 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3077 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3078 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3079 		goto out_free_admin_tag_set;
3080 	}
3081 
3082 	/*
3083 	 * Would have been nice to init io queues tag set as well.
3084 	 * However, we require interaction from the controller
3085 	 * for max io queue count before we can do so.
3086 	 * Defer this to the connect path.
3087 	 */
3088 
3089 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3090 	if (ret)
3091 		goto out_cleanup_admin_q;
3092 
3093 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3094 
3095 	spin_lock_irqsave(&rport->lock, flags);
3096 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3097 	spin_unlock_irqrestore(&rport->lock, flags);
3098 
3099 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3100 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3101 		dev_err(ctrl->ctrl.device,
3102 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3103 		goto fail_ctrl;
3104 	}
3105 
3106 	nvme_get_ctrl(&ctrl->ctrl);
3107 
3108 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3109 		nvme_put_ctrl(&ctrl->ctrl);
3110 		dev_err(ctrl->ctrl.device,
3111 			"NVME-FC{%d}: failed to schedule initial connect\n",
3112 			ctrl->cnum);
3113 		goto fail_ctrl;
3114 	}
3115 
3116 	flush_delayed_work(&ctrl->connect_work);
3117 
3118 	dev_info(ctrl->ctrl.device,
3119 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3120 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3121 
3122 	return &ctrl->ctrl;
3123 
3124 fail_ctrl:
3125 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3126 	cancel_work_sync(&ctrl->ctrl.reset_work);
3127 	cancel_work_sync(&ctrl->err_work);
3128 	cancel_delayed_work_sync(&ctrl->connect_work);
3129 
3130 	ctrl->ctrl.opts = NULL;
3131 
3132 	/* initiate nvme ctrl ref counting teardown */
3133 	nvme_uninit_ctrl(&ctrl->ctrl);
3134 
3135 	/* Remove core ctrl ref. */
3136 	nvme_put_ctrl(&ctrl->ctrl);
3137 
3138 	/* as we're past the point where we transition to the ref
3139 	 * counting teardown path, if we return a bad pointer here,
3140 	 * the calling routine, thinking it's prior to the
3141 	 * transition, will do an rport put. Since the teardown
3142 	 * path also does a rport put, we do an extra get here to
3143 	 * so proper order/teardown happens.
3144 	 */
3145 	nvme_fc_rport_get(rport);
3146 
3147 	return ERR_PTR(-EIO);
3148 
3149 out_cleanup_admin_q:
3150 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3151 out_free_admin_tag_set:
3152 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3153 out_free_queues:
3154 	kfree(ctrl->queues);
3155 out_free_ida:
3156 	put_device(ctrl->dev);
3157 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3158 out_free_ctrl:
3159 	kfree(ctrl);
3160 out_fail:
3161 	/* exit via here doesn't follow ctlr ref points */
3162 	return ERR_PTR(ret);
3163 }
3164 
3165 
3166 struct nvmet_fc_traddr {
3167 	u64	nn;
3168 	u64	pn;
3169 };
3170 
3171 static int
3172 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3173 {
3174 	u64 token64;
3175 
3176 	if (match_u64(sstr, &token64))
3177 		return -EINVAL;
3178 	*val = token64;
3179 
3180 	return 0;
3181 }
3182 
3183 /*
3184  * This routine validates and extracts the WWN's from the TRADDR string.
3185  * As kernel parsers need the 0x to determine number base, universally
3186  * build string to parse with 0x prefix before parsing name strings.
3187  */
3188 static int
3189 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3190 {
3191 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3192 	substring_t wwn = { name, &name[sizeof(name)-1] };
3193 	int nnoffset, pnoffset;
3194 
3195 	/* validate if string is one of the 2 allowed formats */
3196 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3197 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3198 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3199 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3200 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3201 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3202 						NVME_FC_TRADDR_OXNNLEN;
3203 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3204 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3205 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3206 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3207 		nnoffset = NVME_FC_TRADDR_NNLEN;
3208 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3209 	} else
3210 		goto out_einval;
3211 
3212 	name[0] = '0';
3213 	name[1] = 'x';
3214 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3215 
3216 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3217 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3218 		goto out_einval;
3219 
3220 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3221 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3222 		goto out_einval;
3223 
3224 	return 0;
3225 
3226 out_einval:
3227 	pr_warn("%s: bad traddr string\n", __func__);
3228 	return -EINVAL;
3229 }
3230 
3231 static struct nvme_ctrl *
3232 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3233 {
3234 	struct nvme_fc_lport *lport;
3235 	struct nvme_fc_rport *rport;
3236 	struct nvme_ctrl *ctrl;
3237 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3238 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3239 	unsigned long flags;
3240 	int ret;
3241 
3242 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3243 	if (ret || !raddr.nn || !raddr.pn)
3244 		return ERR_PTR(-EINVAL);
3245 
3246 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3247 	if (ret || !laddr.nn || !laddr.pn)
3248 		return ERR_PTR(-EINVAL);
3249 
3250 	/* find the host and remote ports to connect together */
3251 	spin_lock_irqsave(&nvme_fc_lock, flags);
3252 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3253 		if (lport->localport.node_name != laddr.nn ||
3254 		    lport->localport.port_name != laddr.pn)
3255 			continue;
3256 
3257 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3258 			if (rport->remoteport.node_name != raddr.nn ||
3259 			    rport->remoteport.port_name != raddr.pn)
3260 				continue;
3261 
3262 			/* if fail to get reference fall through. Will error */
3263 			if (!nvme_fc_rport_get(rport))
3264 				break;
3265 
3266 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3267 
3268 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3269 			if (IS_ERR(ctrl))
3270 				nvme_fc_rport_put(rport);
3271 			return ctrl;
3272 		}
3273 	}
3274 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3275 
3276 	pr_warn("%s: %s - %s combination not found\n",
3277 		__func__, opts->traddr, opts->host_traddr);
3278 	return ERR_PTR(-ENOENT);
3279 }
3280 
3281 
3282 static struct nvmf_transport_ops nvme_fc_transport = {
3283 	.name		= "fc",
3284 	.module		= THIS_MODULE,
3285 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3286 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3287 	.create_ctrl	= nvme_fc_create_ctrl,
3288 };
3289 
3290 /* Arbitrary successive failures max. With lots of subsystems could be high */
3291 #define DISCOVERY_MAX_FAIL	20
3292 
3293 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3294 		struct device_attribute *attr, const char *buf, size_t count)
3295 {
3296 	unsigned long flags;
3297 	LIST_HEAD(local_disc_list);
3298 	struct nvme_fc_lport *lport;
3299 	struct nvme_fc_rport *rport;
3300 	int failcnt = 0;
3301 
3302 	spin_lock_irqsave(&nvme_fc_lock, flags);
3303 restart:
3304 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3305 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3306 			if (!nvme_fc_lport_get(lport))
3307 				continue;
3308 			if (!nvme_fc_rport_get(rport)) {
3309 				/*
3310 				 * This is a temporary condition. Upon restart
3311 				 * this rport will be gone from the list.
3312 				 *
3313 				 * Revert the lport put and retry.  Anything
3314 				 * added to the list already will be skipped (as
3315 				 * they are no longer list_empty).  Loops should
3316 				 * resume at rports that were not yet seen.
3317 				 */
3318 				nvme_fc_lport_put(lport);
3319 
3320 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3321 					goto restart;
3322 
3323 				pr_err("nvme_discovery: too many reference "
3324 				       "failures\n");
3325 				goto process_local_list;
3326 			}
3327 			if (list_empty(&rport->disc_list))
3328 				list_add_tail(&rport->disc_list,
3329 					      &local_disc_list);
3330 		}
3331 	}
3332 
3333 process_local_list:
3334 	while (!list_empty(&local_disc_list)) {
3335 		rport = list_first_entry(&local_disc_list,
3336 					 struct nvme_fc_rport, disc_list);
3337 		list_del_init(&rport->disc_list);
3338 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3339 
3340 		lport = rport->lport;
3341 		/* signal discovery. Won't hurt if it repeats */
3342 		nvme_fc_signal_discovery_scan(lport, rport);
3343 		nvme_fc_rport_put(rport);
3344 		nvme_fc_lport_put(lport);
3345 
3346 		spin_lock_irqsave(&nvme_fc_lock, flags);
3347 	}
3348 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3349 
3350 	return count;
3351 }
3352 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3353 
3354 static struct attribute *nvme_fc_attrs[] = {
3355 	&dev_attr_nvme_discovery.attr,
3356 	NULL
3357 };
3358 
3359 static struct attribute_group nvme_fc_attr_group = {
3360 	.attrs = nvme_fc_attrs,
3361 };
3362 
3363 static const struct attribute_group *nvme_fc_attr_groups[] = {
3364 	&nvme_fc_attr_group,
3365 	NULL
3366 };
3367 
3368 static struct class fc_class = {
3369 	.name = "fc",
3370 	.dev_groups = nvme_fc_attr_groups,
3371 	.owner = THIS_MODULE,
3372 };
3373 
3374 static int __init nvme_fc_init_module(void)
3375 {
3376 	int ret;
3377 
3378 	/*
3379 	 * NOTE:
3380 	 * It is expected that in the future the kernel will combine
3381 	 * the FC-isms that are currently under scsi and now being
3382 	 * added to by NVME into a new standalone FC class. The SCSI
3383 	 * and NVME protocols and their devices would be under this
3384 	 * new FC class.
3385 	 *
3386 	 * As we need something to post FC-specific udev events to,
3387 	 * specifically for nvme probe events, start by creating the
3388 	 * new device class.  When the new standalone FC class is
3389 	 * put in place, this code will move to a more generic
3390 	 * location for the class.
3391 	 */
3392 	ret = class_register(&fc_class);
3393 	if (ret) {
3394 		pr_err("couldn't register class fc\n");
3395 		return ret;
3396 	}
3397 
3398 	/*
3399 	 * Create a device for the FC-centric udev events
3400 	 */
3401 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3402 				"fc_udev_device");
3403 	if (IS_ERR(fc_udev_device)) {
3404 		pr_err("couldn't create fc_udev device!\n");
3405 		ret = PTR_ERR(fc_udev_device);
3406 		goto out_destroy_class;
3407 	}
3408 
3409 	ret = nvmf_register_transport(&nvme_fc_transport);
3410 	if (ret)
3411 		goto out_destroy_device;
3412 
3413 	return 0;
3414 
3415 out_destroy_device:
3416 	device_destroy(&fc_class, MKDEV(0, 0));
3417 out_destroy_class:
3418 	class_unregister(&fc_class);
3419 	return ret;
3420 }
3421 
3422 static void __exit nvme_fc_exit_module(void)
3423 {
3424 	/* sanity check - all lports should be removed */
3425 	if (!list_empty(&nvme_fc_lport_list))
3426 		pr_warn("%s: localport list not empty\n", __func__);
3427 
3428 	nvmf_unregister_transport(&nvme_fc_transport);
3429 
3430 	ida_destroy(&nvme_fc_local_port_cnt);
3431 	ida_destroy(&nvme_fc_ctrl_cnt);
3432 
3433 	device_destroy(&fc_class, MKDEV(0, 0));
3434 	class_unregister(&fc_class);
3435 }
3436 
3437 module_init(nvme_fc_init_module);
3438 module_exit(nvme_fc_exit_module);
3439 
3440 MODULE_LICENSE("GPL v2");
3441