xref: /openbmc/linux/drivers/nvme/host/fc.c (revision 7211ec63)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS	1
38 #define NVME_FC_AQ_BLKMQ_DEPTH	\
39 	(NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE		(NVME_FC_AQ_BLKMQ_DEPTH + 1)
41 
42 enum nvme_fc_queue_flags {
43 	NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45 
46 #define NVMEFC_QUEUE_DELAY	3		/* ms units */
47 
48 struct nvme_fc_queue {
49 	struct nvme_fc_ctrl	*ctrl;
50 	struct device		*dev;
51 	struct blk_mq_hw_ctx	*hctx;
52 	void			*lldd_handle;
53 	int			queue_size;
54 	size_t			cmnd_capsule_len;
55 	u32			qnum;
56 	u32			rqcnt;
57 	u32			seqno;
58 
59 	u64			connection_id;
60 	atomic_t		csn;
61 
62 	unsigned long		flags;
63 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
64 
65 enum nvme_fcop_flags {
66 	FCOP_FLAGS_TERMIO	= (1 << 0),
67 	FCOP_FLAGS_RELEASED	= (1 << 1),
68 	FCOP_FLAGS_COMPLETE	= (1 << 2),
69 	FCOP_FLAGS_AEN		= (1 << 3),
70 };
71 
72 struct nvmefc_ls_req_op {
73 	struct nvmefc_ls_req	ls_req;
74 
75 	struct nvme_fc_rport	*rport;
76 	struct nvme_fc_queue	*queue;
77 	struct request		*rq;
78 	u32			flags;
79 
80 	int			ls_error;
81 	struct completion	ls_done;
82 	struct list_head	lsreq_list;	/* rport->ls_req_list */
83 	bool			req_queued;
84 };
85 
86 enum nvme_fcpop_state {
87 	FCPOP_STATE_UNINIT	= 0,
88 	FCPOP_STATE_IDLE	= 1,
89 	FCPOP_STATE_ACTIVE	= 2,
90 	FCPOP_STATE_ABORTED	= 3,
91 	FCPOP_STATE_COMPLETE	= 4,
92 };
93 
94 struct nvme_fc_fcp_op {
95 	struct nvme_request	nreq;		/*
96 						 * nvme/host/core.c
97 						 * requires this to be
98 						 * the 1st element in the
99 						 * private structure
100 						 * associated with the
101 						 * request.
102 						 */
103 	struct nvmefc_fcp_req	fcp_req;
104 
105 	struct nvme_fc_ctrl	*ctrl;
106 	struct nvme_fc_queue	*queue;
107 	struct request		*rq;
108 
109 	atomic_t		state;
110 	u32			flags;
111 	u32			rqno;
112 	u32			nents;
113 
114 	struct nvme_fc_cmd_iu	cmd_iu;
115 	struct nvme_fc_ersp_iu	rsp_iu;
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 struct nvme_fc_rport {
130 	struct nvme_fc_remote_port	remoteport;
131 
132 	struct list_head		endp_list; /* for lport->endp_list */
133 	struct list_head		ctrl_list;
134 	struct list_head		ls_req_list;
135 	struct device			*dev;	/* physical device for dma */
136 	struct nvme_fc_lport		*lport;
137 	spinlock_t			lock;
138 	struct kref			ref;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			cnum;
152 
153 	u64			association_id;
154 
155 	struct list_head	ctrl_list;	/* rport->ctrl_list */
156 
157 	struct blk_mq_tag_set	admin_tag_set;
158 	struct blk_mq_tag_set	tag_set;
159 
160 	struct work_struct	delete_work;
161 	struct delayed_work	connect_work;
162 
163 	struct kref		ref;
164 	u32			flags;
165 	u32			iocnt;
166 	wait_queue_head_t	ioabort_wait;
167 
168 	struct nvme_fc_fcp_op	aen_ops[NVME_FC_NR_AEN_COMMANDS];
169 
170 	struct nvme_ctrl	ctrl;
171 };
172 
173 static inline struct nvme_fc_ctrl *
174 to_fc_ctrl(struct nvme_ctrl *ctrl)
175 {
176 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177 }
178 
179 static inline struct nvme_fc_lport *
180 localport_to_lport(struct nvme_fc_local_port *portptr)
181 {
182 	return container_of(portptr, struct nvme_fc_lport, localport);
183 }
184 
185 static inline struct nvme_fc_rport *
186 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187 {
188 	return container_of(portptr, struct nvme_fc_rport, remoteport);
189 }
190 
191 static inline struct nvmefc_ls_req_op *
192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193 {
194 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195 }
196 
197 static inline struct nvme_fc_fcp_op *
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199 {
200 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 }
202 
203 
204 
205 /* *************************** Globals **************************** */
206 
207 
208 static DEFINE_SPINLOCK(nvme_fc_lock);
209 
210 static LIST_HEAD(nvme_fc_lport_list);
211 static DEFINE_IDA(nvme_fc_local_port_cnt);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213 
214 
215 
216 
217 /* *********************** FC-NVME Port Management ************************ */
218 
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 			struct nvme_fc_queue *, unsigned int);
222 
223 static void
224 nvme_fc_free_lport(struct kref *ref)
225 {
226 	struct nvme_fc_lport *lport =
227 		container_of(ref, struct nvme_fc_lport, ref);
228 	unsigned long flags;
229 
230 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
231 	WARN_ON(!list_empty(&lport->endp_list));
232 
233 	/* remove from transport list */
234 	spin_lock_irqsave(&nvme_fc_lock, flags);
235 	list_del(&lport->port_list);
236 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
237 
238 	/* let the LLDD know we've finished tearing it down */
239 	lport->ops->localport_delete(&lport->localport);
240 
241 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
242 	ida_destroy(&lport->endp_cnt);
243 
244 	put_device(lport->dev);
245 
246 	kfree(lport);
247 }
248 
249 static void
250 nvme_fc_lport_put(struct nvme_fc_lport *lport)
251 {
252 	kref_put(&lport->ref, nvme_fc_free_lport);
253 }
254 
255 static int
256 nvme_fc_lport_get(struct nvme_fc_lport *lport)
257 {
258 	return kref_get_unless_zero(&lport->ref);
259 }
260 
261 
262 static struct nvme_fc_lport *
263 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo)
264 {
265 	struct nvme_fc_lport *lport;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&nvme_fc_lock, flags);
269 
270 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 		if (lport->localport.node_name != pinfo->node_name ||
272 		    lport->localport.port_name != pinfo->port_name)
273 			continue;
274 
275 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
276 			lport = ERR_PTR(-EEXIST);
277 			goto out_done;
278 		}
279 
280 		if (!nvme_fc_lport_get(lport)) {
281 			/*
282 			 * fails if ref cnt already 0. If so,
283 			 * act as if lport already deleted
284 			 */
285 			lport = NULL;
286 			goto out_done;
287 		}
288 
289 		/* resume the lport */
290 
291 		lport->localport.port_role = pinfo->port_role;
292 		lport->localport.port_id = pinfo->port_id;
293 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
294 
295 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
296 
297 		return lport;
298 	}
299 
300 	lport = NULL;
301 
302 out_done:
303 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
304 
305 	return lport;
306 }
307 
308 /**
309  * nvme_fc_register_localport - transport entry point called by an
310  *                              LLDD to register the existence of a NVME
311  *                              host FC port.
312  * @pinfo:     pointer to information about the port to be registered
313  * @template:  LLDD entrypoints and operational parameters for the port
314  * @dev:       physical hardware device node port corresponds to. Will be
315  *             used for DMA mappings
316  * @lport_p:   pointer to a local port pointer. Upon success, the routine
317  *             will allocate a nvme_fc_local_port structure and place its
318  *             address in the local port pointer. Upon failure, local port
319  *             pointer will be set to 0.
320  *
321  * Returns:
322  * a completion status. Must be 0 upon success; a negative errno
323  * (ex: -ENXIO) upon failure.
324  */
325 int
326 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
327 			struct nvme_fc_port_template *template,
328 			struct device *dev,
329 			struct nvme_fc_local_port **portptr)
330 {
331 	struct nvme_fc_lport *newrec;
332 	unsigned long flags;
333 	int ret, idx;
334 
335 	if (!template->localport_delete || !template->remoteport_delete ||
336 	    !template->ls_req || !template->fcp_io ||
337 	    !template->ls_abort || !template->fcp_abort ||
338 	    !template->max_hw_queues || !template->max_sgl_segments ||
339 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
340 		ret = -EINVAL;
341 		goto out_reghost_failed;
342 	}
343 
344 	/*
345 	 * look to see if there is already a localport that had been
346 	 * deregistered and in the process of waiting for all the
347 	 * references to fully be removed.  If the references haven't
348 	 * expired, we can simply re-enable the localport. Remoteports
349 	 * and controller reconnections should resume naturally.
350 	 */
351 	newrec = nvme_fc_attach_to_unreg_lport(pinfo);
352 
353 	/* found an lport, but something about its state is bad */
354 	if (IS_ERR(newrec)) {
355 		ret = PTR_ERR(newrec);
356 		goto out_reghost_failed;
357 
358 	/* found existing lport, which was resumed */
359 	} else if (newrec) {
360 		*portptr = &newrec->localport;
361 		return 0;
362 	}
363 
364 	/* nothing found - allocate a new localport struct */
365 
366 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
367 			 GFP_KERNEL);
368 	if (!newrec) {
369 		ret = -ENOMEM;
370 		goto out_reghost_failed;
371 	}
372 
373 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
374 	if (idx < 0) {
375 		ret = -ENOSPC;
376 		goto out_fail_kfree;
377 	}
378 
379 	if (!get_device(dev) && dev) {
380 		ret = -ENODEV;
381 		goto out_ida_put;
382 	}
383 
384 	INIT_LIST_HEAD(&newrec->port_list);
385 	INIT_LIST_HEAD(&newrec->endp_list);
386 	kref_init(&newrec->ref);
387 	newrec->ops = template;
388 	newrec->dev = dev;
389 	ida_init(&newrec->endp_cnt);
390 	newrec->localport.private = &newrec[1];
391 	newrec->localport.node_name = pinfo->node_name;
392 	newrec->localport.port_name = pinfo->port_name;
393 	newrec->localport.port_role = pinfo->port_role;
394 	newrec->localport.port_id = pinfo->port_id;
395 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
396 	newrec->localport.port_num = idx;
397 
398 	spin_lock_irqsave(&nvme_fc_lock, flags);
399 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
400 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
401 
402 	if (dev)
403 		dma_set_seg_boundary(dev, template->dma_boundary);
404 
405 	*portptr = &newrec->localport;
406 	return 0;
407 
408 out_ida_put:
409 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
410 out_fail_kfree:
411 	kfree(newrec);
412 out_reghost_failed:
413 	*portptr = NULL;
414 
415 	return ret;
416 }
417 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
418 
419 /**
420  * nvme_fc_unregister_localport - transport entry point called by an
421  *                              LLDD to deregister/remove a previously
422  *                              registered a NVME host FC port.
423  * @localport: pointer to the (registered) local port that is to be
424  *             deregistered.
425  *
426  * Returns:
427  * a completion status. Must be 0 upon success; a negative errno
428  * (ex: -ENXIO) upon failure.
429  */
430 int
431 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
432 {
433 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
434 	unsigned long flags;
435 
436 	if (!portptr)
437 		return -EINVAL;
438 
439 	spin_lock_irqsave(&nvme_fc_lock, flags);
440 
441 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
442 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
443 		return -EINVAL;
444 	}
445 	portptr->port_state = FC_OBJSTATE_DELETED;
446 
447 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
448 
449 	nvme_fc_lport_put(lport);
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
454 
455 /**
456  * nvme_fc_register_remoteport - transport entry point called by an
457  *                              LLDD to register the existence of a NVME
458  *                              subsystem FC port on its fabric.
459  * @localport: pointer to the (registered) local port that the remote
460  *             subsystem port is connected to.
461  * @pinfo:     pointer to information about the port to be registered
462  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
463  *             will allocate a nvme_fc_remote_port structure and place its
464  *             address in the remote port pointer. Upon failure, remote port
465  *             pointer will be set to 0.
466  *
467  * Returns:
468  * a completion status. Must be 0 upon success; a negative errno
469  * (ex: -ENXIO) upon failure.
470  */
471 int
472 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
473 				struct nvme_fc_port_info *pinfo,
474 				struct nvme_fc_remote_port **portptr)
475 {
476 	struct nvme_fc_lport *lport = localport_to_lport(localport);
477 	struct nvme_fc_rport *newrec;
478 	unsigned long flags;
479 	int ret, idx;
480 
481 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
482 			 GFP_KERNEL);
483 	if (!newrec) {
484 		ret = -ENOMEM;
485 		goto out_reghost_failed;
486 	}
487 
488 	if (!nvme_fc_lport_get(lport)) {
489 		ret = -ESHUTDOWN;
490 		goto out_kfree_rport;
491 	}
492 
493 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
494 	if (idx < 0) {
495 		ret = -ENOSPC;
496 		goto out_lport_put;
497 	}
498 
499 	INIT_LIST_HEAD(&newrec->endp_list);
500 	INIT_LIST_HEAD(&newrec->ctrl_list);
501 	INIT_LIST_HEAD(&newrec->ls_req_list);
502 	kref_init(&newrec->ref);
503 	spin_lock_init(&newrec->lock);
504 	newrec->remoteport.localport = &lport->localport;
505 	newrec->dev = lport->dev;
506 	newrec->lport = lport;
507 	newrec->remoteport.private = &newrec[1];
508 	newrec->remoteport.port_role = pinfo->port_role;
509 	newrec->remoteport.node_name = pinfo->node_name;
510 	newrec->remoteport.port_name = pinfo->port_name;
511 	newrec->remoteport.port_id = pinfo->port_id;
512 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
513 	newrec->remoteport.port_num = idx;
514 
515 	spin_lock_irqsave(&nvme_fc_lock, flags);
516 	list_add_tail(&newrec->endp_list, &lport->endp_list);
517 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
518 
519 	*portptr = &newrec->remoteport;
520 	return 0;
521 
522 out_lport_put:
523 	nvme_fc_lport_put(lport);
524 out_kfree_rport:
525 	kfree(newrec);
526 out_reghost_failed:
527 	*portptr = NULL;
528 	return ret;
529 }
530 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
531 
532 static void
533 nvme_fc_free_rport(struct kref *ref)
534 {
535 	struct nvme_fc_rport *rport =
536 		container_of(ref, struct nvme_fc_rport, ref);
537 	struct nvme_fc_lport *lport =
538 			localport_to_lport(rport->remoteport.localport);
539 	unsigned long flags;
540 
541 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
542 	WARN_ON(!list_empty(&rport->ctrl_list));
543 
544 	/* remove from lport list */
545 	spin_lock_irqsave(&nvme_fc_lock, flags);
546 	list_del(&rport->endp_list);
547 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
548 
549 	/* let the LLDD know we've finished tearing it down */
550 	lport->ops->remoteport_delete(&rport->remoteport);
551 
552 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
553 
554 	kfree(rport);
555 
556 	nvme_fc_lport_put(lport);
557 }
558 
559 static void
560 nvme_fc_rport_put(struct nvme_fc_rport *rport)
561 {
562 	kref_put(&rport->ref, nvme_fc_free_rport);
563 }
564 
565 static int
566 nvme_fc_rport_get(struct nvme_fc_rport *rport)
567 {
568 	return kref_get_unless_zero(&rport->ref);
569 }
570 
571 static int
572 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
573 {
574 	struct nvmefc_ls_req_op *lsop;
575 	unsigned long flags;
576 
577 restart:
578 	spin_lock_irqsave(&rport->lock, flags);
579 
580 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
581 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
582 			lsop->flags |= FCOP_FLAGS_TERMIO;
583 			spin_unlock_irqrestore(&rport->lock, flags);
584 			rport->lport->ops->ls_abort(&rport->lport->localport,
585 						&rport->remoteport,
586 						&lsop->ls_req);
587 			goto restart;
588 		}
589 	}
590 	spin_unlock_irqrestore(&rport->lock, flags);
591 
592 	return 0;
593 }
594 
595 /**
596  * nvme_fc_unregister_remoteport - transport entry point called by an
597  *                              LLDD to deregister/remove a previously
598  *                              registered a NVME subsystem FC port.
599  * @remoteport: pointer to the (registered) remote port that is to be
600  *              deregistered.
601  *
602  * Returns:
603  * a completion status. Must be 0 upon success; a negative errno
604  * (ex: -ENXIO) upon failure.
605  */
606 int
607 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
608 {
609 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
610 	struct nvme_fc_ctrl *ctrl;
611 	unsigned long flags;
612 
613 	if (!portptr)
614 		return -EINVAL;
615 
616 	spin_lock_irqsave(&rport->lock, flags);
617 
618 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
619 		spin_unlock_irqrestore(&rport->lock, flags);
620 		return -EINVAL;
621 	}
622 	portptr->port_state = FC_OBJSTATE_DELETED;
623 
624 	/* tear down all associations to the remote port */
625 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
626 		__nvme_fc_del_ctrl(ctrl);
627 
628 	spin_unlock_irqrestore(&rport->lock, flags);
629 
630 	nvme_fc_abort_lsops(rport);
631 
632 	nvme_fc_rport_put(rport);
633 	return 0;
634 }
635 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
636 
637 
638 /* *********************** FC-NVME DMA Handling **************************** */
639 
640 /*
641  * The fcloop device passes in a NULL device pointer. Real LLD's will
642  * pass in a valid device pointer. If NULL is passed to the dma mapping
643  * routines, depending on the platform, it may or may not succeed, and
644  * may crash.
645  *
646  * As such:
647  * Wrapper all the dma routines and check the dev pointer.
648  *
649  * If simple mappings (return just a dma address, we'll noop them,
650  * returning a dma address of 0.
651  *
652  * On more complex mappings (dma_map_sg), a pseudo routine fills
653  * in the scatter list, setting all dma addresses to 0.
654  */
655 
656 static inline dma_addr_t
657 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
658 		enum dma_data_direction dir)
659 {
660 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
661 }
662 
663 static inline int
664 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
665 {
666 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
667 }
668 
669 static inline void
670 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
671 	enum dma_data_direction dir)
672 {
673 	if (dev)
674 		dma_unmap_single(dev, addr, size, dir);
675 }
676 
677 static inline void
678 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
679 		enum dma_data_direction dir)
680 {
681 	if (dev)
682 		dma_sync_single_for_cpu(dev, addr, size, dir);
683 }
684 
685 static inline void
686 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
687 		enum dma_data_direction dir)
688 {
689 	if (dev)
690 		dma_sync_single_for_device(dev, addr, size, dir);
691 }
692 
693 /* pseudo dma_map_sg call */
694 static int
695 fc_map_sg(struct scatterlist *sg, int nents)
696 {
697 	struct scatterlist *s;
698 	int i;
699 
700 	WARN_ON(nents == 0 || sg[0].length == 0);
701 
702 	for_each_sg(sg, s, nents, i) {
703 		s->dma_address = 0L;
704 #ifdef CONFIG_NEED_SG_DMA_LENGTH
705 		s->dma_length = s->length;
706 #endif
707 	}
708 	return nents;
709 }
710 
711 static inline int
712 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
713 		enum dma_data_direction dir)
714 {
715 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
716 }
717 
718 static inline void
719 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
720 		enum dma_data_direction dir)
721 {
722 	if (dev)
723 		dma_unmap_sg(dev, sg, nents, dir);
724 }
725 
726 
727 /* *********************** FC-NVME LS Handling **************************** */
728 
729 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
730 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
731 
732 
733 static void
734 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
735 {
736 	struct nvme_fc_rport *rport = lsop->rport;
737 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
738 	unsigned long flags;
739 
740 	spin_lock_irqsave(&rport->lock, flags);
741 
742 	if (!lsop->req_queued) {
743 		spin_unlock_irqrestore(&rport->lock, flags);
744 		return;
745 	}
746 
747 	list_del(&lsop->lsreq_list);
748 
749 	lsop->req_queued = false;
750 
751 	spin_unlock_irqrestore(&rport->lock, flags);
752 
753 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
754 				  (lsreq->rqstlen + lsreq->rsplen),
755 				  DMA_BIDIRECTIONAL);
756 
757 	nvme_fc_rport_put(rport);
758 }
759 
760 static int
761 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
762 		struct nvmefc_ls_req_op *lsop,
763 		void (*done)(struct nvmefc_ls_req *req, int status))
764 {
765 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
766 	unsigned long flags;
767 	int ret = 0;
768 
769 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
770 		return -ECONNREFUSED;
771 
772 	if (!nvme_fc_rport_get(rport))
773 		return -ESHUTDOWN;
774 
775 	lsreq->done = done;
776 	lsop->rport = rport;
777 	lsop->req_queued = false;
778 	INIT_LIST_HEAD(&lsop->lsreq_list);
779 	init_completion(&lsop->ls_done);
780 
781 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
782 				  lsreq->rqstlen + lsreq->rsplen,
783 				  DMA_BIDIRECTIONAL);
784 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
785 		ret = -EFAULT;
786 		goto out_putrport;
787 	}
788 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
789 
790 	spin_lock_irqsave(&rport->lock, flags);
791 
792 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
793 
794 	lsop->req_queued = true;
795 
796 	spin_unlock_irqrestore(&rport->lock, flags);
797 
798 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
799 					&rport->remoteport, lsreq);
800 	if (ret)
801 		goto out_unlink;
802 
803 	return 0;
804 
805 out_unlink:
806 	lsop->ls_error = ret;
807 	spin_lock_irqsave(&rport->lock, flags);
808 	lsop->req_queued = false;
809 	list_del(&lsop->lsreq_list);
810 	spin_unlock_irqrestore(&rport->lock, flags);
811 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
812 				  (lsreq->rqstlen + lsreq->rsplen),
813 				  DMA_BIDIRECTIONAL);
814 out_putrport:
815 	nvme_fc_rport_put(rport);
816 
817 	return ret;
818 }
819 
820 static void
821 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
822 {
823 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
824 
825 	lsop->ls_error = status;
826 	complete(&lsop->ls_done);
827 }
828 
829 static int
830 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
831 {
832 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
833 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
834 	int ret;
835 
836 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
837 
838 	if (!ret) {
839 		/*
840 		 * No timeout/not interruptible as we need the struct
841 		 * to exist until the lldd calls us back. Thus mandate
842 		 * wait until driver calls back. lldd responsible for
843 		 * the timeout action
844 		 */
845 		wait_for_completion(&lsop->ls_done);
846 
847 		__nvme_fc_finish_ls_req(lsop);
848 
849 		ret = lsop->ls_error;
850 	}
851 
852 	if (ret)
853 		return ret;
854 
855 	/* ACC or RJT payload ? */
856 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
857 		return -ENXIO;
858 
859 	return 0;
860 }
861 
862 static int
863 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
864 		struct nvmefc_ls_req_op *lsop,
865 		void (*done)(struct nvmefc_ls_req *req, int status))
866 {
867 	/* don't wait for completion */
868 
869 	return __nvme_fc_send_ls_req(rport, lsop, done);
870 }
871 
872 /* Validation Error indexes into the string table below */
873 enum {
874 	VERR_NO_ERROR		= 0,
875 	VERR_LSACC		= 1,
876 	VERR_LSDESC_RQST	= 2,
877 	VERR_LSDESC_RQST_LEN	= 3,
878 	VERR_ASSOC_ID		= 4,
879 	VERR_ASSOC_ID_LEN	= 5,
880 	VERR_CONN_ID		= 6,
881 	VERR_CONN_ID_LEN	= 7,
882 	VERR_CR_ASSOC		= 8,
883 	VERR_CR_ASSOC_ACC_LEN	= 9,
884 	VERR_CR_CONN		= 10,
885 	VERR_CR_CONN_ACC_LEN	= 11,
886 	VERR_DISCONN		= 12,
887 	VERR_DISCONN_ACC_LEN	= 13,
888 };
889 
890 static char *validation_errors[] = {
891 	"OK",
892 	"Not LS_ACC",
893 	"Not LSDESC_RQST",
894 	"Bad LSDESC_RQST Length",
895 	"Not Association ID",
896 	"Bad Association ID Length",
897 	"Not Connection ID",
898 	"Bad Connection ID Length",
899 	"Not CR_ASSOC Rqst",
900 	"Bad CR_ASSOC ACC Length",
901 	"Not CR_CONN Rqst",
902 	"Bad CR_CONN ACC Length",
903 	"Not Disconnect Rqst",
904 	"Bad Disconnect ACC Length",
905 };
906 
907 static int
908 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
909 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
910 {
911 	struct nvmefc_ls_req_op *lsop;
912 	struct nvmefc_ls_req *lsreq;
913 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
914 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
915 	int ret, fcret = 0;
916 
917 	lsop = kzalloc((sizeof(*lsop) +
918 			 ctrl->lport->ops->lsrqst_priv_sz +
919 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
920 	if (!lsop) {
921 		ret = -ENOMEM;
922 		goto out_no_memory;
923 	}
924 	lsreq = &lsop->ls_req;
925 
926 	lsreq->private = (void *)&lsop[1];
927 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
928 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
929 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
930 
931 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
932 	assoc_rqst->desc_list_len =
933 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
934 
935 	assoc_rqst->assoc_cmd.desc_tag =
936 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
937 	assoc_rqst->assoc_cmd.desc_len =
938 			fcnvme_lsdesc_len(
939 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
940 
941 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
942 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
943 	/* Linux supports only Dynamic controllers */
944 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
945 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
946 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
947 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
948 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
949 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
950 
951 	lsop->queue = queue;
952 	lsreq->rqstaddr = assoc_rqst;
953 	lsreq->rqstlen = sizeof(*assoc_rqst);
954 	lsreq->rspaddr = assoc_acc;
955 	lsreq->rsplen = sizeof(*assoc_acc);
956 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
957 
958 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
959 	if (ret)
960 		goto out_free_buffer;
961 
962 	/* process connect LS completion */
963 
964 	/* validate the ACC response */
965 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
966 		fcret = VERR_LSACC;
967 	else if (assoc_acc->hdr.desc_list_len !=
968 			fcnvme_lsdesc_len(
969 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
970 		fcret = VERR_CR_ASSOC_ACC_LEN;
971 	else if (assoc_acc->hdr.rqst.desc_tag !=
972 			cpu_to_be32(FCNVME_LSDESC_RQST))
973 		fcret = VERR_LSDESC_RQST;
974 	else if (assoc_acc->hdr.rqst.desc_len !=
975 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
976 		fcret = VERR_LSDESC_RQST_LEN;
977 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
978 		fcret = VERR_CR_ASSOC;
979 	else if (assoc_acc->associd.desc_tag !=
980 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
981 		fcret = VERR_ASSOC_ID;
982 	else if (assoc_acc->associd.desc_len !=
983 			fcnvme_lsdesc_len(
984 				sizeof(struct fcnvme_lsdesc_assoc_id)))
985 		fcret = VERR_ASSOC_ID_LEN;
986 	else if (assoc_acc->connectid.desc_tag !=
987 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
988 		fcret = VERR_CONN_ID;
989 	else if (assoc_acc->connectid.desc_len !=
990 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
991 		fcret = VERR_CONN_ID_LEN;
992 
993 	if (fcret) {
994 		ret = -EBADF;
995 		dev_err(ctrl->dev,
996 			"q %d connect failed: %s\n",
997 			queue->qnum, validation_errors[fcret]);
998 	} else {
999 		ctrl->association_id =
1000 			be64_to_cpu(assoc_acc->associd.association_id);
1001 		queue->connection_id =
1002 			be64_to_cpu(assoc_acc->connectid.connection_id);
1003 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1004 	}
1005 
1006 out_free_buffer:
1007 	kfree(lsop);
1008 out_no_memory:
1009 	if (ret)
1010 		dev_err(ctrl->dev,
1011 			"queue %d connect admin queue failed (%d).\n",
1012 			queue->qnum, ret);
1013 	return ret;
1014 }
1015 
1016 static int
1017 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1018 			u16 qsize, u16 ersp_ratio)
1019 {
1020 	struct nvmefc_ls_req_op *lsop;
1021 	struct nvmefc_ls_req *lsreq;
1022 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1023 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1024 	int ret, fcret = 0;
1025 
1026 	lsop = kzalloc((sizeof(*lsop) +
1027 			 ctrl->lport->ops->lsrqst_priv_sz +
1028 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1029 	if (!lsop) {
1030 		ret = -ENOMEM;
1031 		goto out_no_memory;
1032 	}
1033 	lsreq = &lsop->ls_req;
1034 
1035 	lsreq->private = (void *)&lsop[1];
1036 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1037 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1038 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1039 
1040 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1041 	conn_rqst->desc_list_len = cpu_to_be32(
1042 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1043 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1044 
1045 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1046 	conn_rqst->associd.desc_len =
1047 			fcnvme_lsdesc_len(
1048 				sizeof(struct fcnvme_lsdesc_assoc_id));
1049 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1050 	conn_rqst->connect_cmd.desc_tag =
1051 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1052 	conn_rqst->connect_cmd.desc_len =
1053 			fcnvme_lsdesc_len(
1054 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1055 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1056 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1057 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1058 
1059 	lsop->queue = queue;
1060 	lsreq->rqstaddr = conn_rqst;
1061 	lsreq->rqstlen = sizeof(*conn_rqst);
1062 	lsreq->rspaddr = conn_acc;
1063 	lsreq->rsplen = sizeof(*conn_acc);
1064 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1065 
1066 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1067 	if (ret)
1068 		goto out_free_buffer;
1069 
1070 	/* process connect LS completion */
1071 
1072 	/* validate the ACC response */
1073 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1074 		fcret = VERR_LSACC;
1075 	else if (conn_acc->hdr.desc_list_len !=
1076 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1077 		fcret = VERR_CR_CONN_ACC_LEN;
1078 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1079 		fcret = VERR_LSDESC_RQST;
1080 	else if (conn_acc->hdr.rqst.desc_len !=
1081 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1082 		fcret = VERR_LSDESC_RQST_LEN;
1083 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1084 		fcret = VERR_CR_CONN;
1085 	else if (conn_acc->connectid.desc_tag !=
1086 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1087 		fcret = VERR_CONN_ID;
1088 	else if (conn_acc->connectid.desc_len !=
1089 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1090 		fcret = VERR_CONN_ID_LEN;
1091 
1092 	if (fcret) {
1093 		ret = -EBADF;
1094 		dev_err(ctrl->dev,
1095 			"q %d connect failed: %s\n",
1096 			queue->qnum, validation_errors[fcret]);
1097 	} else {
1098 		queue->connection_id =
1099 			be64_to_cpu(conn_acc->connectid.connection_id);
1100 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1101 	}
1102 
1103 out_free_buffer:
1104 	kfree(lsop);
1105 out_no_memory:
1106 	if (ret)
1107 		dev_err(ctrl->dev,
1108 			"queue %d connect command failed (%d).\n",
1109 			queue->qnum, ret);
1110 	return ret;
1111 }
1112 
1113 static void
1114 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1115 {
1116 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1117 
1118 	__nvme_fc_finish_ls_req(lsop);
1119 
1120 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1121 
1122 	kfree(lsop);
1123 }
1124 
1125 /*
1126  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1127  * the FC-NVME Association.  Terminating the association also
1128  * terminates the FC-NVME connections (per queue, both admin and io
1129  * queues) that are part of the association. E.g. things are torn
1130  * down, and the related FC-NVME Association ID and Connection IDs
1131  * become invalid.
1132  *
1133  * The behavior of the fc-nvme initiator is such that it's
1134  * understanding of the association and connections will implicitly
1135  * be torn down. The action is implicit as it may be due to a loss of
1136  * connectivity with the fc-nvme target, so you may never get a
1137  * response even if you tried.  As such, the action of this routine
1138  * is to asynchronously send the LS, ignore any results of the LS, and
1139  * continue on with terminating the association. If the fc-nvme target
1140  * is present and receives the LS, it too can tear down.
1141  */
1142 static void
1143 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1144 {
1145 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1146 	struct fcnvme_ls_disconnect_acc *discon_acc;
1147 	struct nvmefc_ls_req_op *lsop;
1148 	struct nvmefc_ls_req *lsreq;
1149 	int ret;
1150 
1151 	lsop = kzalloc((sizeof(*lsop) +
1152 			 ctrl->lport->ops->lsrqst_priv_sz +
1153 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1154 			GFP_KERNEL);
1155 	if (!lsop)
1156 		/* couldn't sent it... too bad */
1157 		return;
1158 
1159 	lsreq = &lsop->ls_req;
1160 
1161 	lsreq->private = (void *)&lsop[1];
1162 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1163 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1164 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1165 
1166 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1167 	discon_rqst->desc_list_len = cpu_to_be32(
1168 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1169 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1170 
1171 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1172 	discon_rqst->associd.desc_len =
1173 			fcnvme_lsdesc_len(
1174 				sizeof(struct fcnvme_lsdesc_assoc_id));
1175 
1176 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1177 
1178 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1179 						FCNVME_LSDESC_DISCONN_CMD);
1180 	discon_rqst->discon_cmd.desc_len =
1181 			fcnvme_lsdesc_len(
1182 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1183 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1184 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1185 
1186 	lsreq->rqstaddr = discon_rqst;
1187 	lsreq->rqstlen = sizeof(*discon_rqst);
1188 	lsreq->rspaddr = discon_acc;
1189 	lsreq->rsplen = sizeof(*discon_acc);
1190 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1191 
1192 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1193 				nvme_fc_disconnect_assoc_done);
1194 	if (ret)
1195 		kfree(lsop);
1196 
1197 	/* only meaningful part to terminating the association */
1198 	ctrl->association_id = 0;
1199 }
1200 
1201 
1202 /* *********************** NVME Ctrl Routines **************************** */
1203 
1204 static void __nvme_fc_final_op_cleanup(struct request *rq);
1205 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1206 
1207 static int
1208 nvme_fc_reinit_request(void *data, struct request *rq)
1209 {
1210 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1211 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1212 
1213 	memset(cmdiu, 0, sizeof(*cmdiu));
1214 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1215 	cmdiu->fc_id = NVME_CMD_FC_ID;
1216 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1217 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1218 
1219 	return 0;
1220 }
1221 
1222 static void
1223 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1224 		struct nvme_fc_fcp_op *op)
1225 {
1226 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1227 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1228 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1229 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1230 
1231 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1232 }
1233 
1234 static void
1235 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1236 		unsigned int hctx_idx)
1237 {
1238 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1239 
1240 	return __nvme_fc_exit_request(set->driver_data, op);
1241 }
1242 
1243 static int
1244 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1245 {
1246 	int state;
1247 
1248 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1249 	if (state != FCPOP_STATE_ACTIVE) {
1250 		atomic_set(&op->state, state);
1251 		return -ECANCELED;
1252 	}
1253 
1254 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1255 					&ctrl->rport->remoteport,
1256 					op->queue->lldd_handle,
1257 					&op->fcp_req);
1258 
1259 	return 0;
1260 }
1261 
1262 static void
1263 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1264 {
1265 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1266 	unsigned long flags;
1267 	int i, ret;
1268 
1269 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1270 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1271 			continue;
1272 
1273 		spin_lock_irqsave(&ctrl->lock, flags);
1274 		if (ctrl->flags & FCCTRL_TERMIO) {
1275 			ctrl->iocnt++;
1276 			aen_op->flags |= FCOP_FLAGS_TERMIO;
1277 		}
1278 		spin_unlock_irqrestore(&ctrl->lock, flags);
1279 
1280 		ret = __nvme_fc_abort_op(ctrl, aen_op);
1281 		if (ret) {
1282 			/*
1283 			 * if __nvme_fc_abort_op failed the io wasn't
1284 			 * active. Thus this call path is running in
1285 			 * parallel to the io complete. Treat as non-error.
1286 			 */
1287 
1288 			/* back out the flags/counters */
1289 			spin_lock_irqsave(&ctrl->lock, flags);
1290 			if (ctrl->flags & FCCTRL_TERMIO)
1291 				ctrl->iocnt--;
1292 			aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1293 			spin_unlock_irqrestore(&ctrl->lock, flags);
1294 			return;
1295 		}
1296 	}
1297 }
1298 
1299 static inline int
1300 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1301 		struct nvme_fc_fcp_op *op)
1302 {
1303 	unsigned long flags;
1304 	bool complete_rq = false;
1305 
1306 	spin_lock_irqsave(&ctrl->lock, flags);
1307 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1308 		if (ctrl->flags & FCCTRL_TERMIO) {
1309 			if (!--ctrl->iocnt)
1310 				wake_up(&ctrl->ioabort_wait);
1311 		}
1312 	}
1313 	if (op->flags & FCOP_FLAGS_RELEASED)
1314 		complete_rq = true;
1315 	else
1316 		op->flags |= FCOP_FLAGS_COMPLETE;
1317 	spin_unlock_irqrestore(&ctrl->lock, flags);
1318 
1319 	return complete_rq;
1320 }
1321 
1322 static void
1323 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1324 {
1325 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1326 	struct request *rq = op->rq;
1327 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1328 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1329 	struct nvme_fc_queue *queue = op->queue;
1330 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1331 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1332 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1333 	union nvme_result result;
1334 	bool complete_rq, terminate_assoc = true;
1335 
1336 	/*
1337 	 * WARNING:
1338 	 * The current linux implementation of a nvme controller
1339 	 * allocates a single tag set for all io queues and sizes
1340 	 * the io queues to fully hold all possible tags. Thus, the
1341 	 * implementation does not reference or care about the sqhd
1342 	 * value as it never needs to use the sqhd/sqtail pointers
1343 	 * for submission pacing.
1344 	 *
1345 	 * This affects the FC-NVME implementation in two ways:
1346 	 * 1) As the value doesn't matter, we don't need to waste
1347 	 *    cycles extracting it from ERSPs and stamping it in the
1348 	 *    cases where the transport fabricates CQEs on successful
1349 	 *    completions.
1350 	 * 2) The FC-NVME implementation requires that delivery of
1351 	 *    ERSP completions are to go back to the nvme layer in order
1352 	 *    relative to the rsn, such that the sqhd value will always
1353 	 *    be "in order" for the nvme layer. As the nvme layer in
1354 	 *    linux doesn't care about sqhd, there's no need to return
1355 	 *    them in order.
1356 	 *
1357 	 * Additionally:
1358 	 * As the core nvme layer in linux currently does not look at
1359 	 * every field in the cqe - in cases where the FC transport must
1360 	 * fabricate a CQE, the following fields will not be set as they
1361 	 * are not referenced:
1362 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1363 	 *
1364 	 * Failure or error of an individual i/o, in a transport
1365 	 * detected fashion unrelated to the nvme completion status,
1366 	 * potentially cause the initiator and target sides to get out
1367 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1368 	 * Per FC-NVME spec, failure of an individual command requires
1369 	 * the connection to be terminated, which in turn requires the
1370 	 * association to be terminated.
1371 	 */
1372 
1373 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1374 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1375 
1376 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1377 		status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1378 	else if (freq->status)
1379 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1380 
1381 	/*
1382 	 * For the linux implementation, if we have an unsuccesful
1383 	 * status, they blk-mq layer can typically be called with the
1384 	 * non-zero status and the content of the cqe isn't important.
1385 	 */
1386 	if (status)
1387 		goto done;
1388 
1389 	/*
1390 	 * command completed successfully relative to the wire
1391 	 * protocol. However, validate anything received and
1392 	 * extract the status and result from the cqe (create it
1393 	 * where necessary).
1394 	 */
1395 
1396 	switch (freq->rcv_rsplen) {
1397 
1398 	case 0:
1399 	case NVME_FC_SIZEOF_ZEROS_RSP:
1400 		/*
1401 		 * No response payload or 12 bytes of payload (which
1402 		 * should all be zeros) are considered successful and
1403 		 * no payload in the CQE by the transport.
1404 		 */
1405 		if (freq->transferred_length !=
1406 			be32_to_cpu(op->cmd_iu.data_len)) {
1407 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1408 			goto done;
1409 		}
1410 		result.u64 = 0;
1411 		break;
1412 
1413 	case sizeof(struct nvme_fc_ersp_iu):
1414 		/*
1415 		 * The ERSP IU contains a full completion with CQE.
1416 		 * Validate ERSP IU and look at cqe.
1417 		 */
1418 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1419 					(freq->rcv_rsplen / 4) ||
1420 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1421 					freq->transferred_length ||
1422 			     op->rsp_iu.status_code ||
1423 			     sqe->common.command_id != cqe->command_id)) {
1424 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1425 			goto done;
1426 		}
1427 		result = cqe->result;
1428 		status = cqe->status;
1429 		break;
1430 
1431 	default:
1432 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1433 		goto done;
1434 	}
1435 
1436 	terminate_assoc = false;
1437 
1438 done:
1439 	if (op->flags & FCOP_FLAGS_AEN) {
1440 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1441 		complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1442 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1443 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1444 		nvme_fc_ctrl_put(ctrl);
1445 		goto check_error;
1446 	}
1447 
1448 	complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1449 	if (!complete_rq) {
1450 		if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1451 			status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1452 			if (blk_queue_dying(rq->q))
1453 				status |= cpu_to_le16(NVME_SC_DNR << 1);
1454 		}
1455 		nvme_end_request(rq, status, result);
1456 	} else
1457 		__nvme_fc_final_op_cleanup(rq);
1458 
1459 check_error:
1460 	if (terminate_assoc)
1461 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1462 }
1463 
1464 static int
1465 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1466 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1467 		struct request *rq, u32 rqno)
1468 {
1469 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1470 	int ret = 0;
1471 
1472 	memset(op, 0, sizeof(*op));
1473 	op->fcp_req.cmdaddr = &op->cmd_iu;
1474 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1475 	op->fcp_req.rspaddr = &op->rsp_iu;
1476 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1477 	op->fcp_req.done = nvme_fc_fcpio_done;
1478 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1479 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1480 	op->ctrl = ctrl;
1481 	op->queue = queue;
1482 	op->rq = rq;
1483 	op->rqno = rqno;
1484 
1485 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486 	cmdiu->fc_id = NVME_CMD_FC_ID;
1487 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488 
1489 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1490 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1491 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1492 		dev_err(ctrl->dev,
1493 			"FCP Op failed - cmdiu dma mapping failed.\n");
1494 		ret = EFAULT;
1495 		goto out_on_error;
1496 	}
1497 
1498 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1499 				&op->rsp_iu, sizeof(op->rsp_iu),
1500 				DMA_FROM_DEVICE);
1501 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1502 		dev_err(ctrl->dev,
1503 			"FCP Op failed - rspiu dma mapping failed.\n");
1504 		ret = EFAULT;
1505 	}
1506 
1507 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1508 out_on_error:
1509 	return ret;
1510 }
1511 
1512 static int
1513 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1514 		unsigned int hctx_idx, unsigned int numa_node)
1515 {
1516 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1517 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1518 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1519 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1520 
1521 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1522 }
1523 
1524 static int
1525 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1526 {
1527 	struct nvme_fc_fcp_op *aen_op;
1528 	struct nvme_fc_cmd_iu *cmdiu;
1529 	struct nvme_command *sqe;
1530 	void *private;
1531 	int i, ret;
1532 
1533 	aen_op = ctrl->aen_ops;
1534 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1535 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1536 						GFP_KERNEL);
1537 		if (!private)
1538 			return -ENOMEM;
1539 
1540 		cmdiu = &aen_op->cmd_iu;
1541 		sqe = &cmdiu->sqe;
1542 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1543 				aen_op, (struct request *)NULL,
1544 				(AEN_CMDID_BASE + i));
1545 		if (ret) {
1546 			kfree(private);
1547 			return ret;
1548 		}
1549 
1550 		aen_op->flags = FCOP_FLAGS_AEN;
1551 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1552 		aen_op->fcp_req.private = private;
1553 
1554 		memset(sqe, 0, sizeof(*sqe));
1555 		sqe->common.opcode = nvme_admin_async_event;
1556 		/* Note: core layer may overwrite the sqe.command_id value */
1557 		sqe->common.command_id = AEN_CMDID_BASE + i;
1558 	}
1559 	return 0;
1560 }
1561 
1562 static void
1563 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1564 {
1565 	struct nvme_fc_fcp_op *aen_op;
1566 	int i;
1567 
1568 	aen_op = ctrl->aen_ops;
1569 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1570 		if (!aen_op->fcp_req.private)
1571 			continue;
1572 
1573 		__nvme_fc_exit_request(ctrl, aen_op);
1574 
1575 		kfree(aen_op->fcp_req.private);
1576 		aen_op->fcp_req.private = NULL;
1577 	}
1578 }
1579 
1580 static inline void
1581 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1582 		unsigned int qidx)
1583 {
1584 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1585 
1586 	hctx->driver_data = queue;
1587 	queue->hctx = hctx;
1588 }
1589 
1590 static int
1591 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1592 		unsigned int hctx_idx)
1593 {
1594 	struct nvme_fc_ctrl *ctrl = data;
1595 
1596 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1597 
1598 	return 0;
1599 }
1600 
1601 static int
1602 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1603 		unsigned int hctx_idx)
1604 {
1605 	struct nvme_fc_ctrl *ctrl = data;
1606 
1607 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1608 
1609 	return 0;
1610 }
1611 
1612 static void
1613 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1614 {
1615 	struct nvme_fc_queue *queue;
1616 
1617 	queue = &ctrl->queues[idx];
1618 	memset(queue, 0, sizeof(*queue));
1619 	queue->ctrl = ctrl;
1620 	queue->qnum = idx;
1621 	atomic_set(&queue->csn, 1);
1622 	queue->dev = ctrl->dev;
1623 
1624 	if (idx > 0)
1625 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1626 	else
1627 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1628 
1629 	queue->queue_size = queue_size;
1630 
1631 	/*
1632 	 * Considered whether we should allocate buffers for all SQEs
1633 	 * and CQEs and dma map them - mapping their respective entries
1634 	 * into the request structures (kernel vm addr and dma address)
1635 	 * thus the driver could use the buffers/mappings directly.
1636 	 * It only makes sense if the LLDD would use them for its
1637 	 * messaging api. It's very unlikely most adapter api's would use
1638 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1639 	 * structures were used instead.
1640 	 */
1641 }
1642 
1643 /*
1644  * This routine terminates a queue at the transport level.
1645  * The transport has already ensured that all outstanding ios on
1646  * the queue have been terminated.
1647  * The transport will send a Disconnect LS request to terminate
1648  * the queue's connection. Termination of the admin queue will also
1649  * terminate the association at the target.
1650  */
1651 static void
1652 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1653 {
1654 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1655 		return;
1656 
1657 	/*
1658 	 * Current implementation never disconnects a single queue.
1659 	 * It always terminates a whole association. So there is never
1660 	 * a disconnect(queue) LS sent to the target.
1661 	 */
1662 
1663 	queue->connection_id = 0;
1664 	clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1665 }
1666 
1667 static void
1668 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1669 	struct nvme_fc_queue *queue, unsigned int qidx)
1670 {
1671 	if (ctrl->lport->ops->delete_queue)
1672 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1673 				queue->lldd_handle);
1674 	queue->lldd_handle = NULL;
1675 }
1676 
1677 static void
1678 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1679 {
1680 	int i;
1681 
1682 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1683 		nvme_fc_free_queue(&ctrl->queues[i]);
1684 }
1685 
1686 static int
1687 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1688 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1689 {
1690 	int ret = 0;
1691 
1692 	queue->lldd_handle = NULL;
1693 	if (ctrl->lport->ops->create_queue)
1694 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1695 				qidx, qsize, &queue->lldd_handle);
1696 
1697 	return ret;
1698 }
1699 
1700 static void
1701 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1702 {
1703 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1704 	int i;
1705 
1706 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1707 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1708 }
1709 
1710 static int
1711 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1712 {
1713 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1714 	int i, ret;
1715 
1716 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1717 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1718 		if (ret)
1719 			goto delete_queues;
1720 	}
1721 
1722 	return 0;
1723 
1724 delete_queues:
1725 	for (; i >= 0; i--)
1726 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1727 	return ret;
1728 }
1729 
1730 static int
1731 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1732 {
1733 	int i, ret = 0;
1734 
1735 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1736 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1737 					(qsize / 5));
1738 		if (ret)
1739 			break;
1740 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1741 		if (ret)
1742 			break;
1743 	}
1744 
1745 	return ret;
1746 }
1747 
1748 static void
1749 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1750 {
1751 	int i;
1752 
1753 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1754 		nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1755 }
1756 
1757 static void
1758 nvme_fc_ctrl_free(struct kref *ref)
1759 {
1760 	struct nvme_fc_ctrl *ctrl =
1761 		container_of(ref, struct nvme_fc_ctrl, ref);
1762 	unsigned long flags;
1763 
1764 	if (ctrl->ctrl.tagset) {
1765 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1766 		blk_mq_free_tag_set(&ctrl->tag_set);
1767 	}
1768 
1769 	/* remove from rport list */
1770 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1771 	list_del(&ctrl->ctrl_list);
1772 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1773 
1774 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1775 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1776 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1777 
1778 	kfree(ctrl->queues);
1779 
1780 	put_device(ctrl->dev);
1781 	nvme_fc_rport_put(ctrl->rport);
1782 
1783 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1784 	if (ctrl->ctrl.opts)
1785 		nvmf_free_options(ctrl->ctrl.opts);
1786 	kfree(ctrl);
1787 }
1788 
1789 static void
1790 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1791 {
1792 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1793 }
1794 
1795 static int
1796 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1797 {
1798 	return kref_get_unless_zero(&ctrl->ref);
1799 }
1800 
1801 /*
1802  * All accesses from nvme core layer done - can now free the
1803  * controller. Called after last nvme_put_ctrl() call
1804  */
1805 static void
1806 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1807 {
1808 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1809 
1810 	WARN_ON(nctrl != &ctrl->ctrl);
1811 
1812 	nvme_fc_ctrl_put(ctrl);
1813 }
1814 
1815 static void
1816 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1817 {
1818 	/* only proceed if in LIVE state - e.g. on first error */
1819 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1820 		return;
1821 
1822 	dev_warn(ctrl->ctrl.device,
1823 		"NVME-FC{%d}: transport association error detected: %s\n",
1824 		ctrl->cnum, errmsg);
1825 	dev_warn(ctrl->ctrl.device,
1826 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1827 
1828 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1829 		dev_err(ctrl->ctrl.device,
1830 			"NVME-FC{%d}: error_recovery: Couldn't change state "
1831 			"to RECONNECTING\n", ctrl->cnum);
1832 		return;
1833 	}
1834 
1835 	nvme_reset_ctrl(&ctrl->ctrl);
1836 }
1837 
1838 static enum blk_eh_timer_return
1839 nvme_fc_timeout(struct request *rq, bool reserved)
1840 {
1841 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1842 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1843 	int ret;
1844 
1845 	if (reserved)
1846 		return BLK_EH_RESET_TIMER;
1847 
1848 	ret = __nvme_fc_abort_op(ctrl, op);
1849 	if (ret)
1850 		/* io wasn't active to abort consider it done */
1851 		return BLK_EH_HANDLED;
1852 
1853 	/*
1854 	 * we can't individually ABTS an io without affecting the queue,
1855 	 * thus killing the queue, adn thus the association.
1856 	 * So resolve by performing a controller reset, which will stop
1857 	 * the host/io stack, terminate the association on the link,
1858 	 * and recreate an association on the link.
1859 	 */
1860 	nvme_fc_error_recovery(ctrl, "io timeout error");
1861 
1862 	return BLK_EH_HANDLED;
1863 }
1864 
1865 static int
1866 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1867 		struct nvme_fc_fcp_op *op)
1868 {
1869 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1870 	enum dma_data_direction dir;
1871 	int ret;
1872 
1873 	freq->sg_cnt = 0;
1874 
1875 	if (!blk_rq_payload_bytes(rq))
1876 		return 0;
1877 
1878 	freq->sg_table.sgl = freq->first_sgl;
1879 	ret = sg_alloc_table_chained(&freq->sg_table,
1880 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1881 	if (ret)
1882 		return -ENOMEM;
1883 
1884 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1885 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1886 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1887 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1888 				op->nents, dir);
1889 	if (unlikely(freq->sg_cnt <= 0)) {
1890 		sg_free_table_chained(&freq->sg_table, true);
1891 		freq->sg_cnt = 0;
1892 		return -EFAULT;
1893 	}
1894 
1895 	/*
1896 	 * TODO: blk_integrity_rq(rq)  for DIF
1897 	 */
1898 	return 0;
1899 }
1900 
1901 static void
1902 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1903 		struct nvme_fc_fcp_op *op)
1904 {
1905 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1906 
1907 	if (!freq->sg_cnt)
1908 		return;
1909 
1910 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1911 				((rq_data_dir(rq) == WRITE) ?
1912 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
1913 
1914 	nvme_cleanup_cmd(rq);
1915 
1916 	sg_free_table_chained(&freq->sg_table, true);
1917 
1918 	freq->sg_cnt = 0;
1919 }
1920 
1921 /*
1922  * In FC, the queue is a logical thing. At transport connect, the target
1923  * creates its "queue" and returns a handle that is to be given to the
1924  * target whenever it posts something to the corresponding SQ.  When an
1925  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1926  * command contained within the SQE, an io, and assigns a FC exchange
1927  * to it. The SQE and the associated SQ handle are sent in the initial
1928  * CMD IU sents on the exchange. All transfers relative to the io occur
1929  * as part of the exchange.  The CQE is the last thing for the io,
1930  * which is transferred (explicitly or implicitly) with the RSP IU
1931  * sent on the exchange. After the CQE is received, the FC exchange is
1932  * terminaed and the Exchange may be used on a different io.
1933  *
1934  * The transport to LLDD api has the transport making a request for a
1935  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1936  * resource and transfers the command. The LLDD will then process all
1937  * steps to complete the io. Upon completion, the transport done routine
1938  * is called.
1939  *
1940  * So - while the operation is outstanding to the LLDD, there is a link
1941  * level FC exchange resource that is also outstanding. This must be
1942  * considered in all cleanup operations.
1943  */
1944 static blk_status_t
1945 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1946 	struct nvme_fc_fcp_op *op, u32 data_len,
1947 	enum nvmefc_fcp_datadir	io_dir)
1948 {
1949 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1950 	struct nvme_command *sqe = &cmdiu->sqe;
1951 	u32 csn;
1952 	int ret;
1953 
1954 	/*
1955 	 * before attempting to send the io, check to see if we believe
1956 	 * the target device is present
1957 	 */
1958 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1959 		goto busy;
1960 
1961 	if (!nvme_fc_ctrl_get(ctrl))
1962 		return BLK_STS_IOERR;
1963 
1964 	/* format the FC-NVME CMD IU and fcp_req */
1965 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1966 	csn = atomic_inc_return(&queue->csn);
1967 	cmdiu->csn = cpu_to_be32(csn);
1968 	cmdiu->data_len = cpu_to_be32(data_len);
1969 	switch (io_dir) {
1970 	case NVMEFC_FCP_WRITE:
1971 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1972 		break;
1973 	case NVMEFC_FCP_READ:
1974 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1975 		break;
1976 	case NVMEFC_FCP_NODATA:
1977 		cmdiu->flags = 0;
1978 		break;
1979 	}
1980 	op->fcp_req.payload_length = data_len;
1981 	op->fcp_req.io_dir = io_dir;
1982 	op->fcp_req.transferred_length = 0;
1983 	op->fcp_req.rcv_rsplen = 0;
1984 	op->fcp_req.status = NVME_SC_SUCCESS;
1985 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1986 
1987 	/*
1988 	 * validate per fabric rules, set fields mandated by fabric spec
1989 	 * as well as those by FC-NVME spec.
1990 	 */
1991 	WARN_ON_ONCE(sqe->common.metadata);
1992 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
1993 
1994 	/*
1995 	 * format SQE DPTR field per FC-NVME rules:
1996 	 *    type=0x5     Transport SGL Data Block Descriptor
1997 	 *    subtype=0xA  Transport-specific value
1998 	 *    address=0
1999 	 *    length=length of the data series
2000 	 */
2001 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2002 					NVME_SGL_FMT_TRANSPORT_A;
2003 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2004 	sqe->rw.dptr.sgl.addr = 0;
2005 
2006 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2007 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2008 		if (ret < 0) {
2009 			nvme_cleanup_cmd(op->rq);
2010 			nvme_fc_ctrl_put(ctrl);
2011 			if (ret == -ENOMEM || ret == -EAGAIN)
2012 				return BLK_STS_RESOURCE;
2013 			return BLK_STS_IOERR;
2014 		}
2015 	}
2016 
2017 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2018 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2019 
2020 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2021 
2022 	if (!(op->flags & FCOP_FLAGS_AEN))
2023 		blk_mq_start_request(op->rq);
2024 
2025 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2026 					&ctrl->rport->remoteport,
2027 					queue->lldd_handle, &op->fcp_req);
2028 
2029 	if (ret) {
2030 		if (!(op->flags & FCOP_FLAGS_AEN))
2031 			nvme_fc_unmap_data(ctrl, op->rq, op);
2032 
2033 		nvme_fc_ctrl_put(ctrl);
2034 
2035 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2036 				ret != -EBUSY)
2037 			return BLK_STS_IOERR;
2038 
2039 		goto busy;
2040 	}
2041 
2042 	return BLK_STS_OK;
2043 
2044 busy:
2045 	if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2046 		blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2047 
2048 	return BLK_STS_RESOURCE;
2049 }
2050 
2051 static blk_status_t
2052 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2053 			const struct blk_mq_queue_data *bd)
2054 {
2055 	struct nvme_ns *ns = hctx->queue->queuedata;
2056 	struct nvme_fc_queue *queue = hctx->driver_data;
2057 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2058 	struct request *rq = bd->rq;
2059 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2060 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2061 	struct nvme_command *sqe = &cmdiu->sqe;
2062 	enum nvmefc_fcp_datadir	io_dir;
2063 	u32 data_len;
2064 	blk_status_t ret;
2065 
2066 	ret = nvme_setup_cmd(ns, rq, sqe);
2067 	if (ret)
2068 		return ret;
2069 
2070 	data_len = blk_rq_payload_bytes(rq);
2071 	if (data_len)
2072 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2073 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2074 	else
2075 		io_dir = NVMEFC_FCP_NODATA;
2076 
2077 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2078 }
2079 
2080 static struct blk_mq_tags *
2081 nvme_fc_tagset(struct nvme_fc_queue *queue)
2082 {
2083 	if (queue->qnum == 0)
2084 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2085 
2086 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2087 }
2088 
2089 static int
2090 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2091 
2092 {
2093 	struct nvme_fc_queue *queue = hctx->driver_data;
2094 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2095 	struct request *req;
2096 	struct nvme_fc_fcp_op *op;
2097 
2098 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2099 	if (!req)
2100 		return 0;
2101 
2102 	op = blk_mq_rq_to_pdu(req);
2103 
2104 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2105 		 (ctrl->lport->ops->poll_queue))
2106 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2107 						 queue->lldd_handle);
2108 
2109 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2110 }
2111 
2112 static void
2113 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2114 {
2115 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2116 	struct nvme_fc_fcp_op *aen_op;
2117 	unsigned long flags;
2118 	bool terminating = false;
2119 	blk_status_t ret;
2120 
2121 	if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2122 		return;
2123 
2124 	spin_lock_irqsave(&ctrl->lock, flags);
2125 	if (ctrl->flags & FCCTRL_TERMIO)
2126 		terminating = true;
2127 	spin_unlock_irqrestore(&ctrl->lock, flags);
2128 
2129 	if (terminating)
2130 		return;
2131 
2132 	aen_op = &ctrl->aen_ops[aer_idx];
2133 
2134 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2135 					NVMEFC_FCP_NODATA);
2136 	if (ret)
2137 		dev_err(ctrl->ctrl.device,
2138 			"failed async event work [%d]\n", aer_idx);
2139 }
2140 
2141 static void
2142 __nvme_fc_final_op_cleanup(struct request *rq)
2143 {
2144 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2145 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2146 
2147 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2148 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2149 			FCOP_FLAGS_COMPLETE);
2150 
2151 	nvme_fc_unmap_data(ctrl, rq, op);
2152 	nvme_complete_rq(rq);
2153 	nvme_fc_ctrl_put(ctrl);
2154 
2155 }
2156 
2157 static void
2158 nvme_fc_complete_rq(struct request *rq)
2159 {
2160 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2161 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2162 	unsigned long flags;
2163 	bool completed = false;
2164 
2165 	/*
2166 	 * the core layer, on controller resets after calling
2167 	 * nvme_shutdown_ctrl(), calls complete_rq without our
2168 	 * calling blk_mq_complete_request(), thus there may still
2169 	 * be live i/o outstanding with the LLDD. Means transport has
2170 	 * to track complete calls vs fcpio_done calls to know what
2171 	 * path to take on completes and dones.
2172 	 */
2173 	spin_lock_irqsave(&ctrl->lock, flags);
2174 	if (op->flags & FCOP_FLAGS_COMPLETE)
2175 		completed = true;
2176 	else
2177 		op->flags |= FCOP_FLAGS_RELEASED;
2178 	spin_unlock_irqrestore(&ctrl->lock, flags);
2179 
2180 	if (completed)
2181 		__nvme_fc_final_op_cleanup(rq);
2182 }
2183 
2184 /*
2185  * This routine is used by the transport when it needs to find active
2186  * io on a queue that is to be terminated. The transport uses
2187  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2188  * this routine to kill them on a 1 by 1 basis.
2189  *
2190  * As FC allocates FC exchange for each io, the transport must contact
2191  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2192  * After terminating the exchange the LLDD will call the transport's
2193  * normal io done path for the request, but it will have an aborted
2194  * status. The done path will return the io request back to the block
2195  * layer with an error status.
2196  */
2197 static void
2198 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2199 {
2200 	struct nvme_ctrl *nctrl = data;
2201 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2202 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2203 	unsigned long flags;
2204 	int status;
2205 
2206 	if (!blk_mq_request_started(req))
2207 		return;
2208 
2209 	spin_lock_irqsave(&ctrl->lock, flags);
2210 	if (ctrl->flags & FCCTRL_TERMIO) {
2211 		ctrl->iocnt++;
2212 		op->flags |= FCOP_FLAGS_TERMIO;
2213 	}
2214 	spin_unlock_irqrestore(&ctrl->lock, flags);
2215 
2216 	status = __nvme_fc_abort_op(ctrl, op);
2217 	if (status) {
2218 		/*
2219 		 * if __nvme_fc_abort_op failed the io wasn't
2220 		 * active. Thus this call path is running in
2221 		 * parallel to the io complete. Treat as non-error.
2222 		 */
2223 
2224 		/* back out the flags/counters */
2225 		spin_lock_irqsave(&ctrl->lock, flags);
2226 		if (ctrl->flags & FCCTRL_TERMIO)
2227 			ctrl->iocnt--;
2228 		op->flags &= ~FCOP_FLAGS_TERMIO;
2229 		spin_unlock_irqrestore(&ctrl->lock, flags);
2230 		return;
2231 	}
2232 }
2233 
2234 
2235 static const struct blk_mq_ops nvme_fc_mq_ops = {
2236 	.queue_rq	= nvme_fc_queue_rq,
2237 	.complete	= nvme_fc_complete_rq,
2238 	.init_request	= nvme_fc_init_request,
2239 	.exit_request	= nvme_fc_exit_request,
2240 	.init_hctx	= nvme_fc_init_hctx,
2241 	.poll		= nvme_fc_poll,
2242 	.timeout	= nvme_fc_timeout,
2243 };
2244 
2245 static int
2246 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2247 {
2248 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2249 	unsigned int nr_io_queues;
2250 	int ret;
2251 
2252 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2253 				ctrl->lport->ops->max_hw_queues);
2254 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2255 	if (ret) {
2256 		dev_info(ctrl->ctrl.device,
2257 			"set_queue_count failed: %d\n", ret);
2258 		return ret;
2259 	}
2260 
2261 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2262 	if (!nr_io_queues)
2263 		return 0;
2264 
2265 	nvme_fc_init_io_queues(ctrl);
2266 
2267 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2268 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2269 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2270 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2271 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2272 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2273 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2274 					(SG_CHUNK_SIZE *
2275 						sizeof(struct scatterlist)) +
2276 					ctrl->lport->ops->fcprqst_priv_sz;
2277 	ctrl->tag_set.driver_data = ctrl;
2278 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2279 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2280 
2281 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2282 	if (ret)
2283 		return ret;
2284 
2285 	ctrl->ctrl.tagset = &ctrl->tag_set;
2286 
2287 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2288 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2289 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2290 		goto out_free_tag_set;
2291 	}
2292 
2293 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2294 	if (ret)
2295 		goto out_cleanup_blk_queue;
2296 
2297 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2298 	if (ret)
2299 		goto out_delete_hw_queues;
2300 
2301 	return 0;
2302 
2303 out_delete_hw_queues:
2304 	nvme_fc_delete_hw_io_queues(ctrl);
2305 out_cleanup_blk_queue:
2306 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2307 out_free_tag_set:
2308 	blk_mq_free_tag_set(&ctrl->tag_set);
2309 	nvme_fc_free_io_queues(ctrl);
2310 
2311 	/* force put free routine to ignore io queues */
2312 	ctrl->ctrl.tagset = NULL;
2313 
2314 	return ret;
2315 }
2316 
2317 static int
2318 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2319 {
2320 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2321 	unsigned int nr_io_queues;
2322 	int ret;
2323 
2324 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2325 				ctrl->lport->ops->max_hw_queues);
2326 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2327 	if (ret) {
2328 		dev_info(ctrl->ctrl.device,
2329 			"set_queue_count failed: %d\n", ret);
2330 		return ret;
2331 	}
2332 
2333 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2334 	/* check for io queues existing */
2335 	if (ctrl->ctrl.queue_count == 1)
2336 		return 0;
2337 
2338 	nvme_fc_init_io_queues(ctrl);
2339 
2340 	ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request);
2341 	if (ret)
2342 		goto out_free_io_queues;
2343 
2344 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2345 	if (ret)
2346 		goto out_free_io_queues;
2347 
2348 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2349 	if (ret)
2350 		goto out_delete_hw_queues;
2351 
2352 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2353 
2354 	return 0;
2355 
2356 out_delete_hw_queues:
2357 	nvme_fc_delete_hw_io_queues(ctrl);
2358 out_free_io_queues:
2359 	nvme_fc_free_io_queues(ctrl);
2360 	return ret;
2361 }
2362 
2363 /*
2364  * This routine restarts the controller on the host side, and
2365  * on the link side, recreates the controller association.
2366  */
2367 static int
2368 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2369 {
2370 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2371 	u32 segs;
2372 	int ret;
2373 	bool changed;
2374 
2375 	++ctrl->ctrl.nr_reconnects;
2376 
2377 	/*
2378 	 * Create the admin queue
2379 	 */
2380 
2381 	nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2382 
2383 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2384 				NVME_FC_AQ_BLKMQ_DEPTH);
2385 	if (ret)
2386 		goto out_free_queue;
2387 
2388 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2389 				NVME_FC_AQ_BLKMQ_DEPTH,
2390 				(NVME_FC_AQ_BLKMQ_DEPTH / 4));
2391 	if (ret)
2392 		goto out_delete_hw_queue;
2393 
2394 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2395 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2396 
2397 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2398 	if (ret)
2399 		goto out_disconnect_admin_queue;
2400 
2401 	/*
2402 	 * Check controller capabilities
2403 	 *
2404 	 * todo:- add code to check if ctrl attributes changed from
2405 	 * prior connection values
2406 	 */
2407 
2408 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2409 	if (ret) {
2410 		dev_err(ctrl->ctrl.device,
2411 			"prop_get NVME_REG_CAP failed\n");
2412 		goto out_disconnect_admin_queue;
2413 	}
2414 
2415 	ctrl->ctrl.sqsize =
2416 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2417 
2418 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2419 	if (ret)
2420 		goto out_disconnect_admin_queue;
2421 
2422 	segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2423 			ctrl->lport->ops->max_sgl_segments);
2424 	ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2425 
2426 	ret = nvme_init_identify(&ctrl->ctrl);
2427 	if (ret)
2428 		goto out_disconnect_admin_queue;
2429 
2430 	/* sanity checks */
2431 
2432 	/* FC-NVME does not have other data in the capsule */
2433 	if (ctrl->ctrl.icdoff) {
2434 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2435 				ctrl->ctrl.icdoff);
2436 		goto out_disconnect_admin_queue;
2437 	}
2438 
2439 	/* FC-NVME supports normal SGL Data Block Descriptors */
2440 
2441 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2442 		/* warn if maxcmd is lower than queue_size */
2443 		dev_warn(ctrl->ctrl.device,
2444 			"queue_size %zu > ctrl maxcmd %u, reducing "
2445 			"to queue_size\n",
2446 			opts->queue_size, ctrl->ctrl.maxcmd);
2447 		opts->queue_size = ctrl->ctrl.maxcmd;
2448 	}
2449 
2450 	ret = nvme_fc_init_aen_ops(ctrl);
2451 	if (ret)
2452 		goto out_term_aen_ops;
2453 
2454 	/*
2455 	 * Create the io queues
2456 	 */
2457 
2458 	if (ctrl->ctrl.queue_count > 1) {
2459 		if (ctrl->ctrl.state == NVME_CTRL_NEW)
2460 			ret = nvme_fc_create_io_queues(ctrl);
2461 		else
2462 			ret = nvme_fc_reinit_io_queues(ctrl);
2463 		if (ret)
2464 			goto out_term_aen_ops;
2465 	}
2466 
2467 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2468 	WARN_ON_ONCE(!changed);
2469 
2470 	ctrl->ctrl.nr_reconnects = 0;
2471 
2472 	nvme_start_ctrl(&ctrl->ctrl);
2473 
2474 	return 0;	/* Success */
2475 
2476 out_term_aen_ops:
2477 	nvme_fc_term_aen_ops(ctrl);
2478 out_disconnect_admin_queue:
2479 	/* send a Disconnect(association) LS to fc-nvme target */
2480 	nvme_fc_xmt_disconnect_assoc(ctrl);
2481 out_delete_hw_queue:
2482 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2483 out_free_queue:
2484 	nvme_fc_free_queue(&ctrl->queues[0]);
2485 
2486 	return ret;
2487 }
2488 
2489 /*
2490  * This routine stops operation of the controller on the host side.
2491  * On the host os stack side: Admin and IO queues are stopped,
2492  *   outstanding ios on them terminated via FC ABTS.
2493  * On the link side: the association is terminated.
2494  */
2495 static void
2496 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2497 {
2498 	unsigned long flags;
2499 
2500 	spin_lock_irqsave(&ctrl->lock, flags);
2501 	ctrl->flags |= FCCTRL_TERMIO;
2502 	ctrl->iocnt = 0;
2503 	spin_unlock_irqrestore(&ctrl->lock, flags);
2504 
2505 	/*
2506 	 * If io queues are present, stop them and terminate all outstanding
2507 	 * ios on them. As FC allocates FC exchange for each io, the
2508 	 * transport must contact the LLDD to terminate the exchange,
2509 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2510 	 * to tell us what io's are busy and invoke a transport routine
2511 	 * to kill them with the LLDD.  After terminating the exchange
2512 	 * the LLDD will call the transport's normal io done path, but it
2513 	 * will have an aborted status. The done path will return the
2514 	 * io requests back to the block layer as part of normal completions
2515 	 * (but with error status).
2516 	 */
2517 	if (ctrl->ctrl.queue_count > 1) {
2518 		nvme_stop_queues(&ctrl->ctrl);
2519 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2520 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2521 	}
2522 
2523 	/*
2524 	 * Other transports, which don't have link-level contexts bound
2525 	 * to sqe's, would try to gracefully shutdown the controller by
2526 	 * writing the registers for shutdown and polling (call
2527 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2528 	 * just aborted and we will wait on those contexts, and given
2529 	 * there was no indication of how live the controlelr is on the
2530 	 * link, don't send more io to create more contexts for the
2531 	 * shutdown. Let the controller fail via keepalive failure if
2532 	 * its still present.
2533 	 */
2534 
2535 	/*
2536 	 * clean up the admin queue. Same thing as above.
2537 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2538 	 * terminate the exchanges.
2539 	 */
2540 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2541 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2542 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2543 
2544 	/* kill the aens as they are a separate path */
2545 	nvme_fc_abort_aen_ops(ctrl);
2546 
2547 	/* wait for all io that had to be aborted */
2548 	spin_lock_irqsave(&ctrl->lock, flags);
2549 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2550 	ctrl->flags &= ~FCCTRL_TERMIO;
2551 	spin_unlock_irqrestore(&ctrl->lock, flags);
2552 
2553 	nvme_fc_term_aen_ops(ctrl);
2554 
2555 	/*
2556 	 * send a Disconnect(association) LS to fc-nvme target
2557 	 * Note: could have been sent at top of process, but
2558 	 * cleaner on link traffic if after the aborts complete.
2559 	 * Note: if association doesn't exist, association_id will be 0
2560 	 */
2561 	if (ctrl->association_id)
2562 		nvme_fc_xmt_disconnect_assoc(ctrl);
2563 
2564 	if (ctrl->ctrl.tagset) {
2565 		nvme_fc_delete_hw_io_queues(ctrl);
2566 		nvme_fc_free_io_queues(ctrl);
2567 	}
2568 
2569 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2570 	nvme_fc_free_queue(&ctrl->queues[0]);
2571 }
2572 
2573 static void
2574 nvme_fc_delete_ctrl_work(struct work_struct *work)
2575 {
2576 	struct nvme_fc_ctrl *ctrl =
2577 		container_of(work, struct nvme_fc_ctrl, delete_work);
2578 
2579 	cancel_work_sync(&ctrl->ctrl.reset_work);
2580 	cancel_delayed_work_sync(&ctrl->connect_work);
2581 	nvme_stop_ctrl(&ctrl->ctrl);
2582 	nvme_remove_namespaces(&ctrl->ctrl);
2583 	/*
2584 	 * kill the association on the link side.  this will block
2585 	 * waiting for io to terminate
2586 	 */
2587 	nvme_fc_delete_association(ctrl);
2588 
2589 	/*
2590 	 * tear down the controller
2591 	 * After the last reference on the nvme ctrl is removed,
2592 	 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2593 	 * invoked. From there, the transport will tear down it's
2594 	 * logical queues and association.
2595 	 */
2596 	nvme_uninit_ctrl(&ctrl->ctrl);
2597 
2598 	nvme_put_ctrl(&ctrl->ctrl);
2599 }
2600 
2601 static bool
2602 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2603 {
2604 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2605 		return true;
2606 
2607 	if (!queue_work(nvme_wq, &ctrl->delete_work))
2608 		return true;
2609 
2610 	return false;
2611 }
2612 
2613 static int
2614 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2615 {
2616 	return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2617 }
2618 
2619 /*
2620  * Request from nvme core layer to delete the controller
2621  */
2622 static int
2623 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2624 {
2625 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2626 	int ret;
2627 
2628 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2629 		return -EBUSY;
2630 
2631 	ret = __nvme_fc_del_ctrl(ctrl);
2632 
2633 	if (!ret)
2634 		flush_workqueue(nvme_wq);
2635 
2636 	nvme_put_ctrl(&ctrl->ctrl);
2637 
2638 	return ret;
2639 }
2640 
2641 static void
2642 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2643 {
2644 	/* If we are resetting/deleting then do nothing */
2645 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2646 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2647 			ctrl->ctrl.state == NVME_CTRL_LIVE);
2648 		return;
2649 	}
2650 
2651 	dev_info(ctrl->ctrl.device,
2652 		"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2653 		ctrl->cnum, status);
2654 
2655 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
2656 		dev_info(ctrl->ctrl.device,
2657 			"NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2658 			ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2659 		queue_delayed_work(nvme_wq, &ctrl->connect_work,
2660 				ctrl->ctrl.opts->reconnect_delay * HZ);
2661 	} else {
2662 		dev_warn(ctrl->ctrl.device,
2663 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2664 				"reached. Removing controller\n",
2665 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2666 		WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2667 	}
2668 }
2669 
2670 static void
2671 nvme_fc_reset_ctrl_work(struct work_struct *work)
2672 {
2673 	struct nvme_fc_ctrl *ctrl =
2674 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2675 	int ret;
2676 
2677 	nvme_stop_ctrl(&ctrl->ctrl);
2678 	/* will block will waiting for io to terminate */
2679 	nvme_fc_delete_association(ctrl);
2680 
2681 	ret = nvme_fc_create_association(ctrl);
2682 	if (ret)
2683 		nvme_fc_reconnect_or_delete(ctrl, ret);
2684 	else
2685 		dev_info(ctrl->ctrl.device,
2686 			"NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2687 }
2688 
2689 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2690 	.name			= "fc",
2691 	.module			= THIS_MODULE,
2692 	.flags			= NVME_F_FABRICS,
2693 	.reg_read32		= nvmf_reg_read32,
2694 	.reg_read64		= nvmf_reg_read64,
2695 	.reg_write32		= nvmf_reg_write32,
2696 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2697 	.submit_async_event	= nvme_fc_submit_async_event,
2698 	.delete_ctrl		= nvme_fc_del_nvme_ctrl,
2699 	.get_address		= nvmf_get_address,
2700 };
2701 
2702 static void
2703 nvme_fc_connect_ctrl_work(struct work_struct *work)
2704 {
2705 	int ret;
2706 
2707 	struct nvme_fc_ctrl *ctrl =
2708 			container_of(to_delayed_work(work),
2709 				struct nvme_fc_ctrl, connect_work);
2710 
2711 	ret = nvme_fc_create_association(ctrl);
2712 	if (ret)
2713 		nvme_fc_reconnect_or_delete(ctrl, ret);
2714 	else
2715 		dev_info(ctrl->ctrl.device,
2716 			"NVME-FC{%d}: controller reconnect complete\n",
2717 			ctrl->cnum);
2718 }
2719 
2720 
2721 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2722 	.queue_rq	= nvme_fc_queue_rq,
2723 	.complete	= nvme_fc_complete_rq,
2724 	.init_request	= nvme_fc_init_request,
2725 	.exit_request	= nvme_fc_exit_request,
2726 	.init_hctx	= nvme_fc_init_admin_hctx,
2727 	.timeout	= nvme_fc_timeout,
2728 };
2729 
2730 
2731 static struct nvme_ctrl *
2732 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2733 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2734 {
2735 	struct nvme_fc_ctrl *ctrl;
2736 	unsigned long flags;
2737 	int ret, idx;
2738 
2739 	if (!(rport->remoteport.port_role &
2740 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2741 		ret = -EBADR;
2742 		goto out_fail;
2743 	}
2744 
2745 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2746 	if (!ctrl) {
2747 		ret = -ENOMEM;
2748 		goto out_fail;
2749 	}
2750 
2751 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2752 	if (idx < 0) {
2753 		ret = -ENOSPC;
2754 		goto out_free_ctrl;
2755 	}
2756 
2757 	ctrl->ctrl.opts = opts;
2758 	INIT_LIST_HEAD(&ctrl->ctrl_list);
2759 	ctrl->lport = lport;
2760 	ctrl->rport = rport;
2761 	ctrl->dev = lport->dev;
2762 	ctrl->cnum = idx;
2763 
2764 	get_device(ctrl->dev);
2765 	kref_init(&ctrl->ref);
2766 
2767 	INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2768 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2769 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2770 	spin_lock_init(&ctrl->lock);
2771 
2772 	/* io queue count */
2773 	ctrl->ctrl.queue_count = min_t(unsigned int,
2774 				opts->nr_io_queues,
2775 				lport->ops->max_hw_queues);
2776 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
2777 
2778 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2779 	ctrl->ctrl.kato = opts->kato;
2780 
2781 	ret = -ENOMEM;
2782 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2783 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
2784 	if (!ctrl->queues)
2785 		goto out_free_ida;
2786 
2787 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2788 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2789 	ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2790 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2791 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2792 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2793 					(SG_CHUNK_SIZE *
2794 						sizeof(struct scatterlist)) +
2795 					ctrl->lport->ops->fcprqst_priv_sz;
2796 	ctrl->admin_tag_set.driver_data = ctrl;
2797 	ctrl->admin_tag_set.nr_hw_queues = 1;
2798 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2799 
2800 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2801 	if (ret)
2802 		goto out_free_queues;
2803 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
2804 
2805 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2806 	if (IS_ERR(ctrl->ctrl.admin_q)) {
2807 		ret = PTR_ERR(ctrl->ctrl.admin_q);
2808 		goto out_free_admin_tag_set;
2809 	}
2810 
2811 	/*
2812 	 * Would have been nice to init io queues tag set as well.
2813 	 * However, we require interaction from the controller
2814 	 * for max io queue count before we can do so.
2815 	 * Defer this to the connect path.
2816 	 */
2817 
2818 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2819 	if (ret)
2820 		goto out_cleanup_admin_q;
2821 
2822 	/* at this point, teardown path changes to ref counting on nvme ctrl */
2823 
2824 	spin_lock_irqsave(&rport->lock, flags);
2825 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2826 	spin_unlock_irqrestore(&rport->lock, flags);
2827 
2828 	ret = nvme_fc_create_association(ctrl);
2829 	if (ret) {
2830 		ctrl->ctrl.opts = NULL;
2831 		/* initiate nvme ctrl ref counting teardown */
2832 		nvme_uninit_ctrl(&ctrl->ctrl);
2833 		nvme_put_ctrl(&ctrl->ctrl);
2834 
2835 		/* Remove core ctrl ref. */
2836 		nvme_put_ctrl(&ctrl->ctrl);
2837 
2838 		/* as we're past the point where we transition to the ref
2839 		 * counting teardown path, if we return a bad pointer here,
2840 		 * the calling routine, thinking it's prior to the
2841 		 * transition, will do an rport put. Since the teardown
2842 		 * path also does a rport put, we do an extra get here to
2843 		 * so proper order/teardown happens.
2844 		 */
2845 		nvme_fc_rport_get(rport);
2846 
2847 		if (ret > 0)
2848 			ret = -EIO;
2849 		return ERR_PTR(ret);
2850 	}
2851 
2852 	kref_get(&ctrl->ctrl.kref);
2853 
2854 	dev_info(ctrl->ctrl.device,
2855 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2856 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2857 
2858 	return &ctrl->ctrl;
2859 
2860 out_cleanup_admin_q:
2861 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2862 out_free_admin_tag_set:
2863 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2864 out_free_queues:
2865 	kfree(ctrl->queues);
2866 out_free_ida:
2867 	put_device(ctrl->dev);
2868 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2869 out_free_ctrl:
2870 	kfree(ctrl);
2871 out_fail:
2872 	/* exit via here doesn't follow ctlr ref points */
2873 	return ERR_PTR(ret);
2874 }
2875 
2876 
2877 struct nvmet_fc_traddr {
2878 	u64	nn;
2879 	u64	pn;
2880 };
2881 
2882 static int
2883 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2884 {
2885 	u64 token64;
2886 
2887 	if (match_u64(sstr, &token64))
2888 		return -EINVAL;
2889 	*val = token64;
2890 
2891 	return 0;
2892 }
2893 
2894 /*
2895  * This routine validates and extracts the WWN's from the TRADDR string.
2896  * As kernel parsers need the 0x to determine number base, universally
2897  * build string to parse with 0x prefix before parsing name strings.
2898  */
2899 static int
2900 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2901 {
2902 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2903 	substring_t wwn = { name, &name[sizeof(name)-1] };
2904 	int nnoffset, pnoffset;
2905 
2906 	/* validate it string one of the 2 allowed formats */
2907 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2908 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2909 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2910 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2911 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2912 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2913 						NVME_FC_TRADDR_OXNNLEN;
2914 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2915 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2916 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2917 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2918 		nnoffset = NVME_FC_TRADDR_NNLEN;
2919 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2920 	} else
2921 		goto out_einval;
2922 
2923 	name[0] = '0';
2924 	name[1] = 'x';
2925 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2926 
2927 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2928 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2929 		goto out_einval;
2930 
2931 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2932 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2933 		goto out_einval;
2934 
2935 	return 0;
2936 
2937 out_einval:
2938 	pr_warn("%s: bad traddr string\n", __func__);
2939 	return -EINVAL;
2940 }
2941 
2942 static struct nvme_ctrl *
2943 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2944 {
2945 	struct nvme_fc_lport *lport;
2946 	struct nvme_fc_rport *rport;
2947 	struct nvme_ctrl *ctrl;
2948 	struct nvmet_fc_traddr laddr = { 0L, 0L };
2949 	struct nvmet_fc_traddr raddr = { 0L, 0L };
2950 	unsigned long flags;
2951 	int ret;
2952 
2953 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2954 	if (ret || !raddr.nn || !raddr.pn)
2955 		return ERR_PTR(-EINVAL);
2956 
2957 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2958 	if (ret || !laddr.nn || !laddr.pn)
2959 		return ERR_PTR(-EINVAL);
2960 
2961 	/* find the host and remote ports to connect together */
2962 	spin_lock_irqsave(&nvme_fc_lock, flags);
2963 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2964 		if (lport->localport.node_name != laddr.nn ||
2965 		    lport->localport.port_name != laddr.pn)
2966 			continue;
2967 
2968 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
2969 			if (rport->remoteport.node_name != raddr.nn ||
2970 			    rport->remoteport.port_name != raddr.pn)
2971 				continue;
2972 
2973 			/* if fail to get reference fall through. Will error */
2974 			if (!nvme_fc_rport_get(rport))
2975 				break;
2976 
2977 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
2978 
2979 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2980 			if (IS_ERR(ctrl))
2981 				nvme_fc_rport_put(rport);
2982 			return ctrl;
2983 		}
2984 	}
2985 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
2986 
2987 	return ERR_PTR(-ENOENT);
2988 }
2989 
2990 
2991 static struct nvmf_transport_ops nvme_fc_transport = {
2992 	.name		= "fc",
2993 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2994 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2995 	.create_ctrl	= nvme_fc_create_ctrl,
2996 };
2997 
2998 static int __init nvme_fc_init_module(void)
2999 {
3000 	return nvmf_register_transport(&nvme_fc_transport);
3001 }
3002 
3003 static void __exit nvme_fc_exit_module(void)
3004 {
3005 	/* sanity check - all lports should be removed */
3006 	if (!list_empty(&nvme_fc_lport_list))
3007 		pr_warn("%s: localport list not empty\n", __func__);
3008 
3009 	nvmf_unregister_transport(&nvme_fc_transport);
3010 
3011 	ida_destroy(&nvme_fc_local_port_cnt);
3012 	ida_destroy(&nvme_fc_ctrl_cnt);
3013 }
3014 
3015 module_init(nvme_fc_init_module);
3016 module_exit(nvme_fc_exit_module);
3017 
3018 MODULE_LICENSE("GPL v2");
3019