1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 /* 34 * We handle AEN commands ourselves and don't even let the 35 * block layer know about them. 36 */ 37 #define NVME_FC_NR_AEN_COMMANDS 1 38 #define NVME_FC_AQ_BLKMQ_DEPTH \ 39 (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS) 40 #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1) 41 42 enum nvme_fc_queue_flags { 43 NVME_FC_Q_CONNECTED = (1 << 0), 44 }; 45 46 #define NVMEFC_QUEUE_DELAY 3 /* ms units */ 47 48 struct nvme_fc_queue { 49 struct nvme_fc_ctrl *ctrl; 50 struct device *dev; 51 struct blk_mq_hw_ctx *hctx; 52 void *lldd_handle; 53 int queue_size; 54 size_t cmnd_capsule_len; 55 u32 qnum; 56 u32 rqcnt; 57 u32 seqno; 58 59 u64 connection_id; 60 atomic_t csn; 61 62 unsigned long flags; 63 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 64 65 enum nvme_fcop_flags { 66 FCOP_FLAGS_TERMIO = (1 << 0), 67 FCOP_FLAGS_RELEASED = (1 << 1), 68 FCOP_FLAGS_COMPLETE = (1 << 2), 69 FCOP_FLAGS_AEN = (1 << 3), 70 }; 71 72 struct nvmefc_ls_req_op { 73 struct nvmefc_ls_req ls_req; 74 75 struct nvme_fc_rport *rport; 76 struct nvme_fc_queue *queue; 77 struct request *rq; 78 u32 flags; 79 80 int ls_error; 81 struct completion ls_done; 82 struct list_head lsreq_list; /* rport->ls_req_list */ 83 bool req_queued; 84 }; 85 86 enum nvme_fcpop_state { 87 FCPOP_STATE_UNINIT = 0, 88 FCPOP_STATE_IDLE = 1, 89 FCPOP_STATE_ACTIVE = 2, 90 FCPOP_STATE_ABORTED = 3, 91 FCPOP_STATE_COMPLETE = 4, 92 }; 93 94 struct nvme_fc_fcp_op { 95 struct nvme_request nreq; /* 96 * nvme/host/core.c 97 * requires this to be 98 * the 1st element in the 99 * private structure 100 * associated with the 101 * request. 102 */ 103 struct nvmefc_fcp_req fcp_req; 104 105 struct nvme_fc_ctrl *ctrl; 106 struct nvme_fc_queue *queue; 107 struct request *rq; 108 109 atomic_t state; 110 u32 flags; 111 u32 rqno; 112 u32 nents; 113 114 struct nvme_fc_cmd_iu cmd_iu; 115 struct nvme_fc_ersp_iu rsp_iu; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 128 129 struct nvme_fc_rport { 130 struct nvme_fc_remote_port remoteport; 131 132 struct list_head endp_list; /* for lport->endp_list */ 133 struct list_head ctrl_list; 134 struct list_head ls_req_list; 135 struct device *dev; /* physical device for dma */ 136 struct nvme_fc_lport *lport; 137 spinlock_t lock; 138 struct kref ref; 139 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 140 141 enum nvme_fcctrl_flags { 142 FCCTRL_TERMIO = (1 << 0), 143 }; 144 145 struct nvme_fc_ctrl { 146 spinlock_t lock; 147 struct nvme_fc_queue *queues; 148 struct device *dev; 149 struct nvme_fc_lport *lport; 150 struct nvme_fc_rport *rport; 151 u32 cnum; 152 153 u64 association_id; 154 155 struct list_head ctrl_list; /* rport->ctrl_list */ 156 157 struct blk_mq_tag_set admin_tag_set; 158 struct blk_mq_tag_set tag_set; 159 160 struct work_struct delete_work; 161 struct delayed_work connect_work; 162 163 struct kref ref; 164 u32 flags; 165 u32 iocnt; 166 wait_queue_head_t ioabort_wait; 167 168 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS]; 169 170 struct nvme_ctrl ctrl; 171 }; 172 173 static inline struct nvme_fc_ctrl * 174 to_fc_ctrl(struct nvme_ctrl *ctrl) 175 { 176 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 177 } 178 179 static inline struct nvme_fc_lport * 180 localport_to_lport(struct nvme_fc_local_port *portptr) 181 { 182 return container_of(portptr, struct nvme_fc_lport, localport); 183 } 184 185 static inline struct nvme_fc_rport * 186 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 187 { 188 return container_of(portptr, struct nvme_fc_rport, remoteport); 189 } 190 191 static inline struct nvmefc_ls_req_op * 192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 193 { 194 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 195 } 196 197 static inline struct nvme_fc_fcp_op * 198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 199 { 200 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 201 } 202 203 204 205 /* *************************** Globals **************************** */ 206 207 208 static DEFINE_SPINLOCK(nvme_fc_lock); 209 210 static LIST_HEAD(nvme_fc_lport_list); 211 static DEFINE_IDA(nvme_fc_local_port_cnt); 212 static DEFINE_IDA(nvme_fc_ctrl_cnt); 213 214 215 216 217 /* *********************** FC-NVME Port Management ************************ */ 218 219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *); 220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 221 struct nvme_fc_queue *, unsigned int); 222 223 static void 224 nvme_fc_free_lport(struct kref *ref) 225 { 226 struct nvme_fc_lport *lport = 227 container_of(ref, struct nvme_fc_lport, ref); 228 unsigned long flags; 229 230 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 231 WARN_ON(!list_empty(&lport->endp_list)); 232 233 /* remove from transport list */ 234 spin_lock_irqsave(&nvme_fc_lock, flags); 235 list_del(&lport->port_list); 236 spin_unlock_irqrestore(&nvme_fc_lock, flags); 237 238 /* let the LLDD know we've finished tearing it down */ 239 lport->ops->localport_delete(&lport->localport); 240 241 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 242 ida_destroy(&lport->endp_cnt); 243 244 put_device(lport->dev); 245 246 kfree(lport); 247 } 248 249 static void 250 nvme_fc_lport_put(struct nvme_fc_lport *lport) 251 { 252 kref_put(&lport->ref, nvme_fc_free_lport); 253 } 254 255 static int 256 nvme_fc_lport_get(struct nvme_fc_lport *lport) 257 { 258 return kref_get_unless_zero(&lport->ref); 259 } 260 261 262 static struct nvme_fc_lport * 263 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo) 264 { 265 struct nvme_fc_lport *lport; 266 unsigned long flags; 267 268 spin_lock_irqsave(&nvme_fc_lock, flags); 269 270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 271 if (lport->localport.node_name != pinfo->node_name || 272 lport->localport.port_name != pinfo->port_name) 273 continue; 274 275 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 276 lport = ERR_PTR(-EEXIST); 277 goto out_done; 278 } 279 280 if (!nvme_fc_lport_get(lport)) { 281 /* 282 * fails if ref cnt already 0. If so, 283 * act as if lport already deleted 284 */ 285 lport = NULL; 286 goto out_done; 287 } 288 289 /* resume the lport */ 290 291 lport->localport.port_role = pinfo->port_role; 292 lport->localport.port_id = pinfo->port_id; 293 lport->localport.port_state = FC_OBJSTATE_ONLINE; 294 295 spin_unlock_irqrestore(&nvme_fc_lock, flags); 296 297 return lport; 298 } 299 300 lport = NULL; 301 302 out_done: 303 spin_unlock_irqrestore(&nvme_fc_lock, flags); 304 305 return lport; 306 } 307 308 /** 309 * nvme_fc_register_localport - transport entry point called by an 310 * LLDD to register the existence of a NVME 311 * host FC port. 312 * @pinfo: pointer to information about the port to be registered 313 * @template: LLDD entrypoints and operational parameters for the port 314 * @dev: physical hardware device node port corresponds to. Will be 315 * used for DMA mappings 316 * @lport_p: pointer to a local port pointer. Upon success, the routine 317 * will allocate a nvme_fc_local_port structure and place its 318 * address in the local port pointer. Upon failure, local port 319 * pointer will be set to 0. 320 * 321 * Returns: 322 * a completion status. Must be 0 upon success; a negative errno 323 * (ex: -ENXIO) upon failure. 324 */ 325 int 326 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 327 struct nvme_fc_port_template *template, 328 struct device *dev, 329 struct nvme_fc_local_port **portptr) 330 { 331 struct nvme_fc_lport *newrec; 332 unsigned long flags; 333 int ret, idx; 334 335 if (!template->localport_delete || !template->remoteport_delete || 336 !template->ls_req || !template->fcp_io || 337 !template->ls_abort || !template->fcp_abort || 338 !template->max_hw_queues || !template->max_sgl_segments || 339 !template->max_dif_sgl_segments || !template->dma_boundary) { 340 ret = -EINVAL; 341 goto out_reghost_failed; 342 } 343 344 /* 345 * look to see if there is already a localport that had been 346 * deregistered and in the process of waiting for all the 347 * references to fully be removed. If the references haven't 348 * expired, we can simply re-enable the localport. Remoteports 349 * and controller reconnections should resume naturally. 350 */ 351 newrec = nvme_fc_attach_to_unreg_lport(pinfo); 352 353 /* found an lport, but something about its state is bad */ 354 if (IS_ERR(newrec)) { 355 ret = PTR_ERR(newrec); 356 goto out_reghost_failed; 357 358 /* found existing lport, which was resumed */ 359 } else if (newrec) { 360 *portptr = &newrec->localport; 361 return 0; 362 } 363 364 /* nothing found - allocate a new localport struct */ 365 366 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 367 GFP_KERNEL); 368 if (!newrec) { 369 ret = -ENOMEM; 370 goto out_reghost_failed; 371 } 372 373 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 374 if (idx < 0) { 375 ret = -ENOSPC; 376 goto out_fail_kfree; 377 } 378 379 if (!get_device(dev) && dev) { 380 ret = -ENODEV; 381 goto out_ida_put; 382 } 383 384 INIT_LIST_HEAD(&newrec->port_list); 385 INIT_LIST_HEAD(&newrec->endp_list); 386 kref_init(&newrec->ref); 387 newrec->ops = template; 388 newrec->dev = dev; 389 ida_init(&newrec->endp_cnt); 390 newrec->localport.private = &newrec[1]; 391 newrec->localport.node_name = pinfo->node_name; 392 newrec->localport.port_name = pinfo->port_name; 393 newrec->localport.port_role = pinfo->port_role; 394 newrec->localport.port_id = pinfo->port_id; 395 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 396 newrec->localport.port_num = idx; 397 398 spin_lock_irqsave(&nvme_fc_lock, flags); 399 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 400 spin_unlock_irqrestore(&nvme_fc_lock, flags); 401 402 if (dev) 403 dma_set_seg_boundary(dev, template->dma_boundary); 404 405 *portptr = &newrec->localport; 406 return 0; 407 408 out_ida_put: 409 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 410 out_fail_kfree: 411 kfree(newrec); 412 out_reghost_failed: 413 *portptr = NULL; 414 415 return ret; 416 } 417 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 418 419 /** 420 * nvme_fc_unregister_localport - transport entry point called by an 421 * LLDD to deregister/remove a previously 422 * registered a NVME host FC port. 423 * @localport: pointer to the (registered) local port that is to be 424 * deregistered. 425 * 426 * Returns: 427 * a completion status. Must be 0 upon success; a negative errno 428 * (ex: -ENXIO) upon failure. 429 */ 430 int 431 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 432 { 433 struct nvme_fc_lport *lport = localport_to_lport(portptr); 434 unsigned long flags; 435 436 if (!portptr) 437 return -EINVAL; 438 439 spin_lock_irqsave(&nvme_fc_lock, flags); 440 441 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 442 spin_unlock_irqrestore(&nvme_fc_lock, flags); 443 return -EINVAL; 444 } 445 portptr->port_state = FC_OBJSTATE_DELETED; 446 447 spin_unlock_irqrestore(&nvme_fc_lock, flags); 448 449 nvme_fc_lport_put(lport); 450 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 454 455 /** 456 * nvme_fc_register_remoteport - transport entry point called by an 457 * LLDD to register the existence of a NVME 458 * subsystem FC port on its fabric. 459 * @localport: pointer to the (registered) local port that the remote 460 * subsystem port is connected to. 461 * @pinfo: pointer to information about the port to be registered 462 * @rport_p: pointer to a remote port pointer. Upon success, the routine 463 * will allocate a nvme_fc_remote_port structure and place its 464 * address in the remote port pointer. Upon failure, remote port 465 * pointer will be set to 0. 466 * 467 * Returns: 468 * a completion status. Must be 0 upon success; a negative errno 469 * (ex: -ENXIO) upon failure. 470 */ 471 int 472 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 473 struct nvme_fc_port_info *pinfo, 474 struct nvme_fc_remote_port **portptr) 475 { 476 struct nvme_fc_lport *lport = localport_to_lport(localport); 477 struct nvme_fc_rport *newrec; 478 unsigned long flags; 479 int ret, idx; 480 481 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 482 GFP_KERNEL); 483 if (!newrec) { 484 ret = -ENOMEM; 485 goto out_reghost_failed; 486 } 487 488 if (!nvme_fc_lport_get(lport)) { 489 ret = -ESHUTDOWN; 490 goto out_kfree_rport; 491 } 492 493 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 494 if (idx < 0) { 495 ret = -ENOSPC; 496 goto out_lport_put; 497 } 498 499 INIT_LIST_HEAD(&newrec->endp_list); 500 INIT_LIST_HEAD(&newrec->ctrl_list); 501 INIT_LIST_HEAD(&newrec->ls_req_list); 502 kref_init(&newrec->ref); 503 spin_lock_init(&newrec->lock); 504 newrec->remoteport.localport = &lport->localport; 505 newrec->dev = lport->dev; 506 newrec->lport = lport; 507 newrec->remoteport.private = &newrec[1]; 508 newrec->remoteport.port_role = pinfo->port_role; 509 newrec->remoteport.node_name = pinfo->node_name; 510 newrec->remoteport.port_name = pinfo->port_name; 511 newrec->remoteport.port_id = pinfo->port_id; 512 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 513 newrec->remoteport.port_num = idx; 514 515 spin_lock_irqsave(&nvme_fc_lock, flags); 516 list_add_tail(&newrec->endp_list, &lport->endp_list); 517 spin_unlock_irqrestore(&nvme_fc_lock, flags); 518 519 *portptr = &newrec->remoteport; 520 return 0; 521 522 out_lport_put: 523 nvme_fc_lport_put(lport); 524 out_kfree_rport: 525 kfree(newrec); 526 out_reghost_failed: 527 *portptr = NULL; 528 return ret; 529 } 530 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 531 532 static void 533 nvme_fc_free_rport(struct kref *ref) 534 { 535 struct nvme_fc_rport *rport = 536 container_of(ref, struct nvme_fc_rport, ref); 537 struct nvme_fc_lport *lport = 538 localport_to_lport(rport->remoteport.localport); 539 unsigned long flags; 540 541 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 542 WARN_ON(!list_empty(&rport->ctrl_list)); 543 544 /* remove from lport list */ 545 spin_lock_irqsave(&nvme_fc_lock, flags); 546 list_del(&rport->endp_list); 547 spin_unlock_irqrestore(&nvme_fc_lock, flags); 548 549 /* let the LLDD know we've finished tearing it down */ 550 lport->ops->remoteport_delete(&rport->remoteport); 551 552 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 553 554 kfree(rport); 555 556 nvme_fc_lport_put(lport); 557 } 558 559 static void 560 nvme_fc_rport_put(struct nvme_fc_rport *rport) 561 { 562 kref_put(&rport->ref, nvme_fc_free_rport); 563 } 564 565 static int 566 nvme_fc_rport_get(struct nvme_fc_rport *rport) 567 { 568 return kref_get_unless_zero(&rport->ref); 569 } 570 571 static int 572 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 573 { 574 struct nvmefc_ls_req_op *lsop; 575 unsigned long flags; 576 577 restart: 578 spin_lock_irqsave(&rport->lock, flags); 579 580 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 581 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 582 lsop->flags |= FCOP_FLAGS_TERMIO; 583 spin_unlock_irqrestore(&rport->lock, flags); 584 rport->lport->ops->ls_abort(&rport->lport->localport, 585 &rport->remoteport, 586 &lsop->ls_req); 587 goto restart; 588 } 589 } 590 spin_unlock_irqrestore(&rport->lock, flags); 591 592 return 0; 593 } 594 595 /** 596 * nvme_fc_unregister_remoteport - transport entry point called by an 597 * LLDD to deregister/remove a previously 598 * registered a NVME subsystem FC port. 599 * @remoteport: pointer to the (registered) remote port that is to be 600 * deregistered. 601 * 602 * Returns: 603 * a completion status. Must be 0 upon success; a negative errno 604 * (ex: -ENXIO) upon failure. 605 */ 606 int 607 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 608 { 609 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 610 struct nvme_fc_ctrl *ctrl; 611 unsigned long flags; 612 613 if (!portptr) 614 return -EINVAL; 615 616 spin_lock_irqsave(&rport->lock, flags); 617 618 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 619 spin_unlock_irqrestore(&rport->lock, flags); 620 return -EINVAL; 621 } 622 portptr->port_state = FC_OBJSTATE_DELETED; 623 624 /* tear down all associations to the remote port */ 625 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 626 __nvme_fc_del_ctrl(ctrl); 627 628 spin_unlock_irqrestore(&rport->lock, flags); 629 630 nvme_fc_abort_lsops(rport); 631 632 nvme_fc_rport_put(rport); 633 return 0; 634 } 635 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 636 637 638 /* *********************** FC-NVME DMA Handling **************************** */ 639 640 /* 641 * The fcloop device passes in a NULL device pointer. Real LLD's will 642 * pass in a valid device pointer. If NULL is passed to the dma mapping 643 * routines, depending on the platform, it may or may not succeed, and 644 * may crash. 645 * 646 * As such: 647 * Wrapper all the dma routines and check the dev pointer. 648 * 649 * If simple mappings (return just a dma address, we'll noop them, 650 * returning a dma address of 0. 651 * 652 * On more complex mappings (dma_map_sg), a pseudo routine fills 653 * in the scatter list, setting all dma addresses to 0. 654 */ 655 656 static inline dma_addr_t 657 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 658 enum dma_data_direction dir) 659 { 660 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 661 } 662 663 static inline int 664 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 665 { 666 return dev ? dma_mapping_error(dev, dma_addr) : 0; 667 } 668 669 static inline void 670 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 671 enum dma_data_direction dir) 672 { 673 if (dev) 674 dma_unmap_single(dev, addr, size, dir); 675 } 676 677 static inline void 678 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 679 enum dma_data_direction dir) 680 { 681 if (dev) 682 dma_sync_single_for_cpu(dev, addr, size, dir); 683 } 684 685 static inline void 686 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 687 enum dma_data_direction dir) 688 { 689 if (dev) 690 dma_sync_single_for_device(dev, addr, size, dir); 691 } 692 693 /* pseudo dma_map_sg call */ 694 static int 695 fc_map_sg(struct scatterlist *sg, int nents) 696 { 697 struct scatterlist *s; 698 int i; 699 700 WARN_ON(nents == 0 || sg[0].length == 0); 701 702 for_each_sg(sg, s, nents, i) { 703 s->dma_address = 0L; 704 #ifdef CONFIG_NEED_SG_DMA_LENGTH 705 s->dma_length = s->length; 706 #endif 707 } 708 return nents; 709 } 710 711 static inline int 712 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 713 enum dma_data_direction dir) 714 { 715 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 716 } 717 718 static inline void 719 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 720 enum dma_data_direction dir) 721 { 722 if (dev) 723 dma_unmap_sg(dev, sg, nents, dir); 724 } 725 726 727 /* *********************** FC-NVME LS Handling **************************** */ 728 729 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 730 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 731 732 733 static void 734 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 735 { 736 struct nvme_fc_rport *rport = lsop->rport; 737 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 738 unsigned long flags; 739 740 spin_lock_irqsave(&rport->lock, flags); 741 742 if (!lsop->req_queued) { 743 spin_unlock_irqrestore(&rport->lock, flags); 744 return; 745 } 746 747 list_del(&lsop->lsreq_list); 748 749 lsop->req_queued = false; 750 751 spin_unlock_irqrestore(&rport->lock, flags); 752 753 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 754 (lsreq->rqstlen + lsreq->rsplen), 755 DMA_BIDIRECTIONAL); 756 757 nvme_fc_rport_put(rport); 758 } 759 760 static int 761 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 762 struct nvmefc_ls_req_op *lsop, 763 void (*done)(struct nvmefc_ls_req *req, int status)) 764 { 765 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 766 unsigned long flags; 767 int ret = 0; 768 769 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 770 return -ECONNREFUSED; 771 772 if (!nvme_fc_rport_get(rport)) 773 return -ESHUTDOWN; 774 775 lsreq->done = done; 776 lsop->rport = rport; 777 lsop->req_queued = false; 778 INIT_LIST_HEAD(&lsop->lsreq_list); 779 init_completion(&lsop->ls_done); 780 781 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 782 lsreq->rqstlen + lsreq->rsplen, 783 DMA_BIDIRECTIONAL); 784 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 785 ret = -EFAULT; 786 goto out_putrport; 787 } 788 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 789 790 spin_lock_irqsave(&rport->lock, flags); 791 792 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 793 794 lsop->req_queued = true; 795 796 spin_unlock_irqrestore(&rport->lock, flags); 797 798 ret = rport->lport->ops->ls_req(&rport->lport->localport, 799 &rport->remoteport, lsreq); 800 if (ret) 801 goto out_unlink; 802 803 return 0; 804 805 out_unlink: 806 lsop->ls_error = ret; 807 spin_lock_irqsave(&rport->lock, flags); 808 lsop->req_queued = false; 809 list_del(&lsop->lsreq_list); 810 spin_unlock_irqrestore(&rport->lock, flags); 811 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 812 (lsreq->rqstlen + lsreq->rsplen), 813 DMA_BIDIRECTIONAL); 814 out_putrport: 815 nvme_fc_rport_put(rport); 816 817 return ret; 818 } 819 820 static void 821 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 822 { 823 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 824 825 lsop->ls_error = status; 826 complete(&lsop->ls_done); 827 } 828 829 static int 830 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 831 { 832 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 833 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 834 int ret; 835 836 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 837 838 if (!ret) { 839 /* 840 * No timeout/not interruptible as we need the struct 841 * to exist until the lldd calls us back. Thus mandate 842 * wait until driver calls back. lldd responsible for 843 * the timeout action 844 */ 845 wait_for_completion(&lsop->ls_done); 846 847 __nvme_fc_finish_ls_req(lsop); 848 849 ret = lsop->ls_error; 850 } 851 852 if (ret) 853 return ret; 854 855 /* ACC or RJT payload ? */ 856 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 857 return -ENXIO; 858 859 return 0; 860 } 861 862 static int 863 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 864 struct nvmefc_ls_req_op *lsop, 865 void (*done)(struct nvmefc_ls_req *req, int status)) 866 { 867 /* don't wait for completion */ 868 869 return __nvme_fc_send_ls_req(rport, lsop, done); 870 } 871 872 /* Validation Error indexes into the string table below */ 873 enum { 874 VERR_NO_ERROR = 0, 875 VERR_LSACC = 1, 876 VERR_LSDESC_RQST = 2, 877 VERR_LSDESC_RQST_LEN = 3, 878 VERR_ASSOC_ID = 4, 879 VERR_ASSOC_ID_LEN = 5, 880 VERR_CONN_ID = 6, 881 VERR_CONN_ID_LEN = 7, 882 VERR_CR_ASSOC = 8, 883 VERR_CR_ASSOC_ACC_LEN = 9, 884 VERR_CR_CONN = 10, 885 VERR_CR_CONN_ACC_LEN = 11, 886 VERR_DISCONN = 12, 887 VERR_DISCONN_ACC_LEN = 13, 888 }; 889 890 static char *validation_errors[] = { 891 "OK", 892 "Not LS_ACC", 893 "Not LSDESC_RQST", 894 "Bad LSDESC_RQST Length", 895 "Not Association ID", 896 "Bad Association ID Length", 897 "Not Connection ID", 898 "Bad Connection ID Length", 899 "Not CR_ASSOC Rqst", 900 "Bad CR_ASSOC ACC Length", 901 "Not CR_CONN Rqst", 902 "Bad CR_CONN ACC Length", 903 "Not Disconnect Rqst", 904 "Bad Disconnect ACC Length", 905 }; 906 907 static int 908 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 909 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 910 { 911 struct nvmefc_ls_req_op *lsop; 912 struct nvmefc_ls_req *lsreq; 913 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 914 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 915 int ret, fcret = 0; 916 917 lsop = kzalloc((sizeof(*lsop) + 918 ctrl->lport->ops->lsrqst_priv_sz + 919 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 920 if (!lsop) { 921 ret = -ENOMEM; 922 goto out_no_memory; 923 } 924 lsreq = &lsop->ls_req; 925 926 lsreq->private = (void *)&lsop[1]; 927 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 928 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 929 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 930 931 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 932 assoc_rqst->desc_list_len = 933 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 934 935 assoc_rqst->assoc_cmd.desc_tag = 936 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 937 assoc_rqst->assoc_cmd.desc_len = 938 fcnvme_lsdesc_len( 939 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 940 941 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 942 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); 943 /* Linux supports only Dynamic controllers */ 944 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 945 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 946 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 947 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 948 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 949 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 950 951 lsop->queue = queue; 952 lsreq->rqstaddr = assoc_rqst; 953 lsreq->rqstlen = sizeof(*assoc_rqst); 954 lsreq->rspaddr = assoc_acc; 955 lsreq->rsplen = sizeof(*assoc_acc); 956 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 957 958 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 959 if (ret) 960 goto out_free_buffer; 961 962 /* process connect LS completion */ 963 964 /* validate the ACC response */ 965 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 966 fcret = VERR_LSACC; 967 else if (assoc_acc->hdr.desc_list_len != 968 fcnvme_lsdesc_len( 969 sizeof(struct fcnvme_ls_cr_assoc_acc))) 970 fcret = VERR_CR_ASSOC_ACC_LEN; 971 else if (assoc_acc->hdr.rqst.desc_tag != 972 cpu_to_be32(FCNVME_LSDESC_RQST)) 973 fcret = VERR_LSDESC_RQST; 974 else if (assoc_acc->hdr.rqst.desc_len != 975 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 976 fcret = VERR_LSDESC_RQST_LEN; 977 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 978 fcret = VERR_CR_ASSOC; 979 else if (assoc_acc->associd.desc_tag != 980 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 981 fcret = VERR_ASSOC_ID; 982 else if (assoc_acc->associd.desc_len != 983 fcnvme_lsdesc_len( 984 sizeof(struct fcnvme_lsdesc_assoc_id))) 985 fcret = VERR_ASSOC_ID_LEN; 986 else if (assoc_acc->connectid.desc_tag != 987 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 988 fcret = VERR_CONN_ID; 989 else if (assoc_acc->connectid.desc_len != 990 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 991 fcret = VERR_CONN_ID_LEN; 992 993 if (fcret) { 994 ret = -EBADF; 995 dev_err(ctrl->dev, 996 "q %d connect failed: %s\n", 997 queue->qnum, validation_errors[fcret]); 998 } else { 999 ctrl->association_id = 1000 be64_to_cpu(assoc_acc->associd.association_id); 1001 queue->connection_id = 1002 be64_to_cpu(assoc_acc->connectid.connection_id); 1003 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1004 } 1005 1006 out_free_buffer: 1007 kfree(lsop); 1008 out_no_memory: 1009 if (ret) 1010 dev_err(ctrl->dev, 1011 "queue %d connect admin queue failed (%d).\n", 1012 queue->qnum, ret); 1013 return ret; 1014 } 1015 1016 static int 1017 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1018 u16 qsize, u16 ersp_ratio) 1019 { 1020 struct nvmefc_ls_req_op *lsop; 1021 struct nvmefc_ls_req *lsreq; 1022 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1023 struct fcnvme_ls_cr_conn_acc *conn_acc; 1024 int ret, fcret = 0; 1025 1026 lsop = kzalloc((sizeof(*lsop) + 1027 ctrl->lport->ops->lsrqst_priv_sz + 1028 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1029 if (!lsop) { 1030 ret = -ENOMEM; 1031 goto out_no_memory; 1032 } 1033 lsreq = &lsop->ls_req; 1034 1035 lsreq->private = (void *)&lsop[1]; 1036 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1037 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1038 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1039 1040 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1041 conn_rqst->desc_list_len = cpu_to_be32( 1042 sizeof(struct fcnvme_lsdesc_assoc_id) + 1043 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1044 1045 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1046 conn_rqst->associd.desc_len = 1047 fcnvme_lsdesc_len( 1048 sizeof(struct fcnvme_lsdesc_assoc_id)); 1049 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1050 conn_rqst->connect_cmd.desc_tag = 1051 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1052 conn_rqst->connect_cmd.desc_len = 1053 fcnvme_lsdesc_len( 1054 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1055 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1056 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1057 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); 1058 1059 lsop->queue = queue; 1060 lsreq->rqstaddr = conn_rqst; 1061 lsreq->rqstlen = sizeof(*conn_rqst); 1062 lsreq->rspaddr = conn_acc; 1063 lsreq->rsplen = sizeof(*conn_acc); 1064 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1065 1066 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1067 if (ret) 1068 goto out_free_buffer; 1069 1070 /* process connect LS completion */ 1071 1072 /* validate the ACC response */ 1073 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1074 fcret = VERR_LSACC; 1075 else if (conn_acc->hdr.desc_list_len != 1076 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1077 fcret = VERR_CR_CONN_ACC_LEN; 1078 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1079 fcret = VERR_LSDESC_RQST; 1080 else if (conn_acc->hdr.rqst.desc_len != 1081 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1082 fcret = VERR_LSDESC_RQST_LEN; 1083 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1084 fcret = VERR_CR_CONN; 1085 else if (conn_acc->connectid.desc_tag != 1086 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1087 fcret = VERR_CONN_ID; 1088 else if (conn_acc->connectid.desc_len != 1089 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1090 fcret = VERR_CONN_ID_LEN; 1091 1092 if (fcret) { 1093 ret = -EBADF; 1094 dev_err(ctrl->dev, 1095 "q %d connect failed: %s\n", 1096 queue->qnum, validation_errors[fcret]); 1097 } else { 1098 queue->connection_id = 1099 be64_to_cpu(conn_acc->connectid.connection_id); 1100 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1101 } 1102 1103 out_free_buffer: 1104 kfree(lsop); 1105 out_no_memory: 1106 if (ret) 1107 dev_err(ctrl->dev, 1108 "queue %d connect command failed (%d).\n", 1109 queue->qnum, ret); 1110 return ret; 1111 } 1112 1113 static void 1114 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1115 { 1116 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1117 1118 __nvme_fc_finish_ls_req(lsop); 1119 1120 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1121 1122 kfree(lsop); 1123 } 1124 1125 /* 1126 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1127 * the FC-NVME Association. Terminating the association also 1128 * terminates the FC-NVME connections (per queue, both admin and io 1129 * queues) that are part of the association. E.g. things are torn 1130 * down, and the related FC-NVME Association ID and Connection IDs 1131 * become invalid. 1132 * 1133 * The behavior of the fc-nvme initiator is such that it's 1134 * understanding of the association and connections will implicitly 1135 * be torn down. The action is implicit as it may be due to a loss of 1136 * connectivity with the fc-nvme target, so you may never get a 1137 * response even if you tried. As such, the action of this routine 1138 * is to asynchronously send the LS, ignore any results of the LS, and 1139 * continue on with terminating the association. If the fc-nvme target 1140 * is present and receives the LS, it too can tear down. 1141 */ 1142 static void 1143 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1144 { 1145 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1146 struct fcnvme_ls_disconnect_acc *discon_acc; 1147 struct nvmefc_ls_req_op *lsop; 1148 struct nvmefc_ls_req *lsreq; 1149 int ret; 1150 1151 lsop = kzalloc((sizeof(*lsop) + 1152 ctrl->lport->ops->lsrqst_priv_sz + 1153 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1154 GFP_KERNEL); 1155 if (!lsop) 1156 /* couldn't sent it... too bad */ 1157 return; 1158 1159 lsreq = &lsop->ls_req; 1160 1161 lsreq->private = (void *)&lsop[1]; 1162 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1163 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1164 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1165 1166 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1167 discon_rqst->desc_list_len = cpu_to_be32( 1168 sizeof(struct fcnvme_lsdesc_assoc_id) + 1169 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1170 1171 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1172 discon_rqst->associd.desc_len = 1173 fcnvme_lsdesc_len( 1174 sizeof(struct fcnvme_lsdesc_assoc_id)); 1175 1176 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1177 1178 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1179 FCNVME_LSDESC_DISCONN_CMD); 1180 discon_rqst->discon_cmd.desc_len = 1181 fcnvme_lsdesc_len( 1182 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1183 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1184 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1185 1186 lsreq->rqstaddr = discon_rqst; 1187 lsreq->rqstlen = sizeof(*discon_rqst); 1188 lsreq->rspaddr = discon_acc; 1189 lsreq->rsplen = sizeof(*discon_acc); 1190 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1191 1192 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1193 nvme_fc_disconnect_assoc_done); 1194 if (ret) 1195 kfree(lsop); 1196 1197 /* only meaningful part to terminating the association */ 1198 ctrl->association_id = 0; 1199 } 1200 1201 1202 /* *********************** NVME Ctrl Routines **************************** */ 1203 1204 static void __nvme_fc_final_op_cleanup(struct request *rq); 1205 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1206 1207 static int 1208 nvme_fc_reinit_request(void *data, struct request *rq) 1209 { 1210 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1211 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1212 1213 memset(cmdiu, 0, sizeof(*cmdiu)); 1214 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1215 cmdiu->fc_id = NVME_CMD_FC_ID; 1216 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1217 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); 1218 1219 return 0; 1220 } 1221 1222 static void 1223 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1224 struct nvme_fc_fcp_op *op) 1225 { 1226 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1227 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1228 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1229 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1230 1231 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1232 } 1233 1234 static void 1235 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1236 unsigned int hctx_idx) 1237 { 1238 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1239 1240 return __nvme_fc_exit_request(set->driver_data, op); 1241 } 1242 1243 static int 1244 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1245 { 1246 int state; 1247 1248 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1249 if (state != FCPOP_STATE_ACTIVE) { 1250 atomic_set(&op->state, state); 1251 return -ECANCELED; 1252 } 1253 1254 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1255 &ctrl->rport->remoteport, 1256 op->queue->lldd_handle, 1257 &op->fcp_req); 1258 1259 return 0; 1260 } 1261 1262 static void 1263 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1264 { 1265 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1266 unsigned long flags; 1267 int i, ret; 1268 1269 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1270 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) 1271 continue; 1272 1273 spin_lock_irqsave(&ctrl->lock, flags); 1274 if (ctrl->flags & FCCTRL_TERMIO) { 1275 ctrl->iocnt++; 1276 aen_op->flags |= FCOP_FLAGS_TERMIO; 1277 } 1278 spin_unlock_irqrestore(&ctrl->lock, flags); 1279 1280 ret = __nvme_fc_abort_op(ctrl, aen_op); 1281 if (ret) { 1282 /* 1283 * if __nvme_fc_abort_op failed the io wasn't 1284 * active. Thus this call path is running in 1285 * parallel to the io complete. Treat as non-error. 1286 */ 1287 1288 /* back out the flags/counters */ 1289 spin_lock_irqsave(&ctrl->lock, flags); 1290 if (ctrl->flags & FCCTRL_TERMIO) 1291 ctrl->iocnt--; 1292 aen_op->flags &= ~FCOP_FLAGS_TERMIO; 1293 spin_unlock_irqrestore(&ctrl->lock, flags); 1294 return; 1295 } 1296 } 1297 } 1298 1299 static inline int 1300 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1301 struct nvme_fc_fcp_op *op) 1302 { 1303 unsigned long flags; 1304 bool complete_rq = false; 1305 1306 spin_lock_irqsave(&ctrl->lock, flags); 1307 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1308 if (ctrl->flags & FCCTRL_TERMIO) { 1309 if (!--ctrl->iocnt) 1310 wake_up(&ctrl->ioabort_wait); 1311 } 1312 } 1313 if (op->flags & FCOP_FLAGS_RELEASED) 1314 complete_rq = true; 1315 else 1316 op->flags |= FCOP_FLAGS_COMPLETE; 1317 spin_unlock_irqrestore(&ctrl->lock, flags); 1318 1319 return complete_rq; 1320 } 1321 1322 static void 1323 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1324 { 1325 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1326 struct request *rq = op->rq; 1327 struct nvmefc_fcp_req *freq = &op->fcp_req; 1328 struct nvme_fc_ctrl *ctrl = op->ctrl; 1329 struct nvme_fc_queue *queue = op->queue; 1330 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1331 struct nvme_command *sqe = &op->cmd_iu.sqe; 1332 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1333 union nvme_result result; 1334 bool complete_rq, terminate_assoc = true; 1335 1336 /* 1337 * WARNING: 1338 * The current linux implementation of a nvme controller 1339 * allocates a single tag set for all io queues and sizes 1340 * the io queues to fully hold all possible tags. Thus, the 1341 * implementation does not reference or care about the sqhd 1342 * value as it never needs to use the sqhd/sqtail pointers 1343 * for submission pacing. 1344 * 1345 * This affects the FC-NVME implementation in two ways: 1346 * 1) As the value doesn't matter, we don't need to waste 1347 * cycles extracting it from ERSPs and stamping it in the 1348 * cases where the transport fabricates CQEs on successful 1349 * completions. 1350 * 2) The FC-NVME implementation requires that delivery of 1351 * ERSP completions are to go back to the nvme layer in order 1352 * relative to the rsn, such that the sqhd value will always 1353 * be "in order" for the nvme layer. As the nvme layer in 1354 * linux doesn't care about sqhd, there's no need to return 1355 * them in order. 1356 * 1357 * Additionally: 1358 * As the core nvme layer in linux currently does not look at 1359 * every field in the cqe - in cases where the FC transport must 1360 * fabricate a CQE, the following fields will not be set as they 1361 * are not referenced: 1362 * cqe.sqid, cqe.sqhd, cqe.command_id 1363 * 1364 * Failure or error of an individual i/o, in a transport 1365 * detected fashion unrelated to the nvme completion status, 1366 * potentially cause the initiator and target sides to get out 1367 * of sync on SQ head/tail (aka outstanding io count allowed). 1368 * Per FC-NVME spec, failure of an individual command requires 1369 * the connection to be terminated, which in turn requires the 1370 * association to be terminated. 1371 */ 1372 1373 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1374 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1375 1376 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED) 1377 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); 1378 else if (freq->status) 1379 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1380 1381 /* 1382 * For the linux implementation, if we have an unsuccesful 1383 * status, they blk-mq layer can typically be called with the 1384 * non-zero status and the content of the cqe isn't important. 1385 */ 1386 if (status) 1387 goto done; 1388 1389 /* 1390 * command completed successfully relative to the wire 1391 * protocol. However, validate anything received and 1392 * extract the status and result from the cqe (create it 1393 * where necessary). 1394 */ 1395 1396 switch (freq->rcv_rsplen) { 1397 1398 case 0: 1399 case NVME_FC_SIZEOF_ZEROS_RSP: 1400 /* 1401 * No response payload or 12 bytes of payload (which 1402 * should all be zeros) are considered successful and 1403 * no payload in the CQE by the transport. 1404 */ 1405 if (freq->transferred_length != 1406 be32_to_cpu(op->cmd_iu.data_len)) { 1407 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1408 goto done; 1409 } 1410 result.u64 = 0; 1411 break; 1412 1413 case sizeof(struct nvme_fc_ersp_iu): 1414 /* 1415 * The ERSP IU contains a full completion with CQE. 1416 * Validate ERSP IU and look at cqe. 1417 */ 1418 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1419 (freq->rcv_rsplen / 4) || 1420 be32_to_cpu(op->rsp_iu.xfrd_len) != 1421 freq->transferred_length || 1422 op->rsp_iu.status_code || 1423 sqe->common.command_id != cqe->command_id)) { 1424 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1425 goto done; 1426 } 1427 result = cqe->result; 1428 status = cqe->status; 1429 break; 1430 1431 default: 1432 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1433 goto done; 1434 } 1435 1436 terminate_assoc = false; 1437 1438 done: 1439 if (op->flags & FCOP_FLAGS_AEN) { 1440 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1441 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1442 atomic_set(&op->state, FCPOP_STATE_IDLE); 1443 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1444 nvme_fc_ctrl_put(ctrl); 1445 goto check_error; 1446 } 1447 1448 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1449 if (!complete_rq) { 1450 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1451 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); 1452 if (blk_queue_dying(rq->q)) 1453 status |= cpu_to_le16(NVME_SC_DNR << 1); 1454 } 1455 nvme_end_request(rq, status, result); 1456 } else 1457 __nvme_fc_final_op_cleanup(rq); 1458 1459 check_error: 1460 if (terminate_assoc) 1461 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1462 } 1463 1464 static int 1465 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1466 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1467 struct request *rq, u32 rqno) 1468 { 1469 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1470 int ret = 0; 1471 1472 memset(op, 0, sizeof(*op)); 1473 op->fcp_req.cmdaddr = &op->cmd_iu; 1474 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1475 op->fcp_req.rspaddr = &op->rsp_iu; 1476 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1477 op->fcp_req.done = nvme_fc_fcpio_done; 1478 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1479 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1480 op->ctrl = ctrl; 1481 op->queue = queue; 1482 op->rq = rq; 1483 op->rqno = rqno; 1484 1485 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1486 cmdiu->fc_id = NVME_CMD_FC_ID; 1487 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1488 1489 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1490 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1491 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1492 dev_err(ctrl->dev, 1493 "FCP Op failed - cmdiu dma mapping failed.\n"); 1494 ret = EFAULT; 1495 goto out_on_error; 1496 } 1497 1498 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1499 &op->rsp_iu, sizeof(op->rsp_iu), 1500 DMA_FROM_DEVICE); 1501 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1502 dev_err(ctrl->dev, 1503 "FCP Op failed - rspiu dma mapping failed.\n"); 1504 ret = EFAULT; 1505 } 1506 1507 atomic_set(&op->state, FCPOP_STATE_IDLE); 1508 out_on_error: 1509 return ret; 1510 } 1511 1512 static int 1513 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1514 unsigned int hctx_idx, unsigned int numa_node) 1515 { 1516 struct nvme_fc_ctrl *ctrl = set->driver_data; 1517 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1518 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1519 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1520 1521 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1522 } 1523 1524 static int 1525 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1526 { 1527 struct nvme_fc_fcp_op *aen_op; 1528 struct nvme_fc_cmd_iu *cmdiu; 1529 struct nvme_command *sqe; 1530 void *private; 1531 int i, ret; 1532 1533 aen_op = ctrl->aen_ops; 1534 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1535 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1536 GFP_KERNEL); 1537 if (!private) 1538 return -ENOMEM; 1539 1540 cmdiu = &aen_op->cmd_iu; 1541 sqe = &cmdiu->sqe; 1542 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1543 aen_op, (struct request *)NULL, 1544 (AEN_CMDID_BASE + i)); 1545 if (ret) { 1546 kfree(private); 1547 return ret; 1548 } 1549 1550 aen_op->flags = FCOP_FLAGS_AEN; 1551 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1552 aen_op->fcp_req.private = private; 1553 1554 memset(sqe, 0, sizeof(*sqe)); 1555 sqe->common.opcode = nvme_admin_async_event; 1556 /* Note: core layer may overwrite the sqe.command_id value */ 1557 sqe->common.command_id = AEN_CMDID_BASE + i; 1558 } 1559 return 0; 1560 } 1561 1562 static void 1563 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1564 { 1565 struct nvme_fc_fcp_op *aen_op; 1566 int i; 1567 1568 aen_op = ctrl->aen_ops; 1569 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1570 if (!aen_op->fcp_req.private) 1571 continue; 1572 1573 __nvme_fc_exit_request(ctrl, aen_op); 1574 1575 kfree(aen_op->fcp_req.private); 1576 aen_op->fcp_req.private = NULL; 1577 } 1578 } 1579 1580 static inline void 1581 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1582 unsigned int qidx) 1583 { 1584 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1585 1586 hctx->driver_data = queue; 1587 queue->hctx = hctx; 1588 } 1589 1590 static int 1591 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1592 unsigned int hctx_idx) 1593 { 1594 struct nvme_fc_ctrl *ctrl = data; 1595 1596 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1597 1598 return 0; 1599 } 1600 1601 static int 1602 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1603 unsigned int hctx_idx) 1604 { 1605 struct nvme_fc_ctrl *ctrl = data; 1606 1607 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1608 1609 return 0; 1610 } 1611 1612 static void 1613 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size) 1614 { 1615 struct nvme_fc_queue *queue; 1616 1617 queue = &ctrl->queues[idx]; 1618 memset(queue, 0, sizeof(*queue)); 1619 queue->ctrl = ctrl; 1620 queue->qnum = idx; 1621 atomic_set(&queue->csn, 1); 1622 queue->dev = ctrl->dev; 1623 1624 if (idx > 0) 1625 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1626 else 1627 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1628 1629 queue->queue_size = queue_size; 1630 1631 /* 1632 * Considered whether we should allocate buffers for all SQEs 1633 * and CQEs and dma map them - mapping their respective entries 1634 * into the request structures (kernel vm addr and dma address) 1635 * thus the driver could use the buffers/mappings directly. 1636 * It only makes sense if the LLDD would use them for its 1637 * messaging api. It's very unlikely most adapter api's would use 1638 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1639 * structures were used instead. 1640 */ 1641 } 1642 1643 /* 1644 * This routine terminates a queue at the transport level. 1645 * The transport has already ensured that all outstanding ios on 1646 * the queue have been terminated. 1647 * The transport will send a Disconnect LS request to terminate 1648 * the queue's connection. Termination of the admin queue will also 1649 * terminate the association at the target. 1650 */ 1651 static void 1652 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1653 { 1654 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1655 return; 1656 1657 /* 1658 * Current implementation never disconnects a single queue. 1659 * It always terminates a whole association. So there is never 1660 * a disconnect(queue) LS sent to the target. 1661 */ 1662 1663 queue->connection_id = 0; 1664 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1665 } 1666 1667 static void 1668 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1669 struct nvme_fc_queue *queue, unsigned int qidx) 1670 { 1671 if (ctrl->lport->ops->delete_queue) 1672 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1673 queue->lldd_handle); 1674 queue->lldd_handle = NULL; 1675 } 1676 1677 static void 1678 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1679 { 1680 int i; 1681 1682 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1683 nvme_fc_free_queue(&ctrl->queues[i]); 1684 } 1685 1686 static int 1687 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1688 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1689 { 1690 int ret = 0; 1691 1692 queue->lldd_handle = NULL; 1693 if (ctrl->lport->ops->create_queue) 1694 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1695 qidx, qsize, &queue->lldd_handle); 1696 1697 return ret; 1698 } 1699 1700 static void 1701 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1702 { 1703 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1704 int i; 1705 1706 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1707 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1708 } 1709 1710 static int 1711 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1712 { 1713 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1714 int i, ret; 1715 1716 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1717 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1718 if (ret) 1719 goto delete_queues; 1720 } 1721 1722 return 0; 1723 1724 delete_queues: 1725 for (; i >= 0; i--) 1726 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1727 return ret; 1728 } 1729 1730 static int 1731 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1732 { 1733 int i, ret = 0; 1734 1735 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 1736 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 1737 (qsize / 5)); 1738 if (ret) 1739 break; 1740 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 1741 if (ret) 1742 break; 1743 } 1744 1745 return ret; 1746 } 1747 1748 static void 1749 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 1750 { 1751 int i; 1752 1753 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1754 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize); 1755 } 1756 1757 static void 1758 nvme_fc_ctrl_free(struct kref *ref) 1759 { 1760 struct nvme_fc_ctrl *ctrl = 1761 container_of(ref, struct nvme_fc_ctrl, ref); 1762 unsigned long flags; 1763 1764 if (ctrl->ctrl.tagset) { 1765 blk_cleanup_queue(ctrl->ctrl.connect_q); 1766 blk_mq_free_tag_set(&ctrl->tag_set); 1767 } 1768 1769 /* remove from rport list */ 1770 spin_lock_irqsave(&ctrl->rport->lock, flags); 1771 list_del(&ctrl->ctrl_list); 1772 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 1773 1774 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1775 blk_cleanup_queue(ctrl->ctrl.admin_q); 1776 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1777 1778 kfree(ctrl->queues); 1779 1780 put_device(ctrl->dev); 1781 nvme_fc_rport_put(ctrl->rport); 1782 1783 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 1784 if (ctrl->ctrl.opts) 1785 nvmf_free_options(ctrl->ctrl.opts); 1786 kfree(ctrl); 1787 } 1788 1789 static void 1790 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 1791 { 1792 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 1793 } 1794 1795 static int 1796 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 1797 { 1798 return kref_get_unless_zero(&ctrl->ref); 1799 } 1800 1801 /* 1802 * All accesses from nvme core layer done - can now free the 1803 * controller. Called after last nvme_put_ctrl() call 1804 */ 1805 static void 1806 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 1807 { 1808 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 1809 1810 WARN_ON(nctrl != &ctrl->ctrl); 1811 1812 nvme_fc_ctrl_put(ctrl); 1813 } 1814 1815 static void 1816 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 1817 { 1818 /* only proceed if in LIVE state - e.g. on first error */ 1819 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 1820 return; 1821 1822 dev_warn(ctrl->ctrl.device, 1823 "NVME-FC{%d}: transport association error detected: %s\n", 1824 ctrl->cnum, errmsg); 1825 dev_warn(ctrl->ctrl.device, 1826 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 1827 1828 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 1829 dev_err(ctrl->ctrl.device, 1830 "NVME-FC{%d}: error_recovery: Couldn't change state " 1831 "to RECONNECTING\n", ctrl->cnum); 1832 return; 1833 } 1834 1835 nvme_reset_ctrl(&ctrl->ctrl); 1836 } 1837 1838 static enum blk_eh_timer_return 1839 nvme_fc_timeout(struct request *rq, bool reserved) 1840 { 1841 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1842 struct nvme_fc_ctrl *ctrl = op->ctrl; 1843 int ret; 1844 1845 if (reserved) 1846 return BLK_EH_RESET_TIMER; 1847 1848 ret = __nvme_fc_abort_op(ctrl, op); 1849 if (ret) 1850 /* io wasn't active to abort consider it done */ 1851 return BLK_EH_HANDLED; 1852 1853 /* 1854 * we can't individually ABTS an io without affecting the queue, 1855 * thus killing the queue, adn thus the association. 1856 * So resolve by performing a controller reset, which will stop 1857 * the host/io stack, terminate the association on the link, 1858 * and recreate an association on the link. 1859 */ 1860 nvme_fc_error_recovery(ctrl, "io timeout error"); 1861 1862 return BLK_EH_HANDLED; 1863 } 1864 1865 static int 1866 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 1867 struct nvme_fc_fcp_op *op) 1868 { 1869 struct nvmefc_fcp_req *freq = &op->fcp_req; 1870 enum dma_data_direction dir; 1871 int ret; 1872 1873 freq->sg_cnt = 0; 1874 1875 if (!blk_rq_payload_bytes(rq)) 1876 return 0; 1877 1878 freq->sg_table.sgl = freq->first_sgl; 1879 ret = sg_alloc_table_chained(&freq->sg_table, 1880 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 1881 if (ret) 1882 return -ENOMEM; 1883 1884 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 1885 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 1886 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 1887 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 1888 op->nents, dir); 1889 if (unlikely(freq->sg_cnt <= 0)) { 1890 sg_free_table_chained(&freq->sg_table, true); 1891 freq->sg_cnt = 0; 1892 return -EFAULT; 1893 } 1894 1895 /* 1896 * TODO: blk_integrity_rq(rq) for DIF 1897 */ 1898 return 0; 1899 } 1900 1901 static void 1902 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 1903 struct nvme_fc_fcp_op *op) 1904 { 1905 struct nvmefc_fcp_req *freq = &op->fcp_req; 1906 1907 if (!freq->sg_cnt) 1908 return; 1909 1910 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 1911 ((rq_data_dir(rq) == WRITE) ? 1912 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1913 1914 nvme_cleanup_cmd(rq); 1915 1916 sg_free_table_chained(&freq->sg_table, true); 1917 1918 freq->sg_cnt = 0; 1919 } 1920 1921 /* 1922 * In FC, the queue is a logical thing. At transport connect, the target 1923 * creates its "queue" and returns a handle that is to be given to the 1924 * target whenever it posts something to the corresponding SQ. When an 1925 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 1926 * command contained within the SQE, an io, and assigns a FC exchange 1927 * to it. The SQE and the associated SQ handle are sent in the initial 1928 * CMD IU sents on the exchange. All transfers relative to the io occur 1929 * as part of the exchange. The CQE is the last thing for the io, 1930 * which is transferred (explicitly or implicitly) with the RSP IU 1931 * sent on the exchange. After the CQE is received, the FC exchange is 1932 * terminaed and the Exchange may be used on a different io. 1933 * 1934 * The transport to LLDD api has the transport making a request for a 1935 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 1936 * resource and transfers the command. The LLDD will then process all 1937 * steps to complete the io. Upon completion, the transport done routine 1938 * is called. 1939 * 1940 * So - while the operation is outstanding to the LLDD, there is a link 1941 * level FC exchange resource that is also outstanding. This must be 1942 * considered in all cleanup operations. 1943 */ 1944 static blk_status_t 1945 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1946 struct nvme_fc_fcp_op *op, u32 data_len, 1947 enum nvmefc_fcp_datadir io_dir) 1948 { 1949 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1950 struct nvme_command *sqe = &cmdiu->sqe; 1951 u32 csn; 1952 int ret; 1953 1954 /* 1955 * before attempting to send the io, check to see if we believe 1956 * the target device is present 1957 */ 1958 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1959 goto busy; 1960 1961 if (!nvme_fc_ctrl_get(ctrl)) 1962 return BLK_STS_IOERR; 1963 1964 /* format the FC-NVME CMD IU and fcp_req */ 1965 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 1966 csn = atomic_inc_return(&queue->csn); 1967 cmdiu->csn = cpu_to_be32(csn); 1968 cmdiu->data_len = cpu_to_be32(data_len); 1969 switch (io_dir) { 1970 case NVMEFC_FCP_WRITE: 1971 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 1972 break; 1973 case NVMEFC_FCP_READ: 1974 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 1975 break; 1976 case NVMEFC_FCP_NODATA: 1977 cmdiu->flags = 0; 1978 break; 1979 } 1980 op->fcp_req.payload_length = data_len; 1981 op->fcp_req.io_dir = io_dir; 1982 op->fcp_req.transferred_length = 0; 1983 op->fcp_req.rcv_rsplen = 0; 1984 op->fcp_req.status = NVME_SC_SUCCESS; 1985 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 1986 1987 /* 1988 * validate per fabric rules, set fields mandated by fabric spec 1989 * as well as those by FC-NVME spec. 1990 */ 1991 WARN_ON_ONCE(sqe->common.metadata); 1992 sqe->common.flags |= NVME_CMD_SGL_METABUF; 1993 1994 /* 1995 * format SQE DPTR field per FC-NVME rules: 1996 * type=0x5 Transport SGL Data Block Descriptor 1997 * subtype=0xA Transport-specific value 1998 * address=0 1999 * length=length of the data series 2000 */ 2001 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2002 NVME_SGL_FMT_TRANSPORT_A; 2003 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2004 sqe->rw.dptr.sgl.addr = 0; 2005 2006 if (!(op->flags & FCOP_FLAGS_AEN)) { 2007 ret = nvme_fc_map_data(ctrl, op->rq, op); 2008 if (ret < 0) { 2009 nvme_cleanup_cmd(op->rq); 2010 nvme_fc_ctrl_put(ctrl); 2011 if (ret == -ENOMEM || ret == -EAGAIN) 2012 return BLK_STS_RESOURCE; 2013 return BLK_STS_IOERR; 2014 } 2015 } 2016 2017 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2018 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2019 2020 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2021 2022 if (!(op->flags & FCOP_FLAGS_AEN)) 2023 blk_mq_start_request(op->rq); 2024 2025 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2026 &ctrl->rport->remoteport, 2027 queue->lldd_handle, &op->fcp_req); 2028 2029 if (ret) { 2030 if (!(op->flags & FCOP_FLAGS_AEN)) 2031 nvme_fc_unmap_data(ctrl, op->rq, op); 2032 2033 nvme_fc_ctrl_put(ctrl); 2034 2035 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2036 ret != -EBUSY) 2037 return BLK_STS_IOERR; 2038 2039 goto busy; 2040 } 2041 2042 return BLK_STS_OK; 2043 2044 busy: 2045 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx) 2046 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY); 2047 2048 return BLK_STS_RESOURCE; 2049 } 2050 2051 static blk_status_t 2052 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2053 const struct blk_mq_queue_data *bd) 2054 { 2055 struct nvme_ns *ns = hctx->queue->queuedata; 2056 struct nvme_fc_queue *queue = hctx->driver_data; 2057 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2058 struct request *rq = bd->rq; 2059 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2060 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2061 struct nvme_command *sqe = &cmdiu->sqe; 2062 enum nvmefc_fcp_datadir io_dir; 2063 u32 data_len; 2064 blk_status_t ret; 2065 2066 ret = nvme_setup_cmd(ns, rq, sqe); 2067 if (ret) 2068 return ret; 2069 2070 data_len = blk_rq_payload_bytes(rq); 2071 if (data_len) 2072 io_dir = ((rq_data_dir(rq) == WRITE) ? 2073 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2074 else 2075 io_dir = NVMEFC_FCP_NODATA; 2076 2077 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2078 } 2079 2080 static struct blk_mq_tags * 2081 nvme_fc_tagset(struct nvme_fc_queue *queue) 2082 { 2083 if (queue->qnum == 0) 2084 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2085 2086 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2087 } 2088 2089 static int 2090 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2091 2092 { 2093 struct nvme_fc_queue *queue = hctx->driver_data; 2094 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2095 struct request *req; 2096 struct nvme_fc_fcp_op *op; 2097 2098 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2099 if (!req) 2100 return 0; 2101 2102 op = blk_mq_rq_to_pdu(req); 2103 2104 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2105 (ctrl->lport->ops->poll_queue)) 2106 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2107 queue->lldd_handle); 2108 2109 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2110 } 2111 2112 static void 2113 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 2114 { 2115 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2116 struct nvme_fc_fcp_op *aen_op; 2117 unsigned long flags; 2118 bool terminating = false; 2119 blk_status_t ret; 2120 2121 if (aer_idx > NVME_FC_NR_AEN_COMMANDS) 2122 return; 2123 2124 spin_lock_irqsave(&ctrl->lock, flags); 2125 if (ctrl->flags & FCCTRL_TERMIO) 2126 terminating = true; 2127 spin_unlock_irqrestore(&ctrl->lock, flags); 2128 2129 if (terminating) 2130 return; 2131 2132 aen_op = &ctrl->aen_ops[aer_idx]; 2133 2134 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2135 NVMEFC_FCP_NODATA); 2136 if (ret) 2137 dev_err(ctrl->ctrl.device, 2138 "failed async event work [%d]\n", aer_idx); 2139 } 2140 2141 static void 2142 __nvme_fc_final_op_cleanup(struct request *rq) 2143 { 2144 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2145 struct nvme_fc_ctrl *ctrl = op->ctrl; 2146 2147 atomic_set(&op->state, FCPOP_STATE_IDLE); 2148 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | 2149 FCOP_FLAGS_COMPLETE); 2150 2151 nvme_fc_unmap_data(ctrl, rq, op); 2152 nvme_complete_rq(rq); 2153 nvme_fc_ctrl_put(ctrl); 2154 2155 } 2156 2157 static void 2158 nvme_fc_complete_rq(struct request *rq) 2159 { 2160 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2161 struct nvme_fc_ctrl *ctrl = op->ctrl; 2162 unsigned long flags; 2163 bool completed = false; 2164 2165 /* 2166 * the core layer, on controller resets after calling 2167 * nvme_shutdown_ctrl(), calls complete_rq without our 2168 * calling blk_mq_complete_request(), thus there may still 2169 * be live i/o outstanding with the LLDD. Means transport has 2170 * to track complete calls vs fcpio_done calls to know what 2171 * path to take on completes and dones. 2172 */ 2173 spin_lock_irqsave(&ctrl->lock, flags); 2174 if (op->flags & FCOP_FLAGS_COMPLETE) 2175 completed = true; 2176 else 2177 op->flags |= FCOP_FLAGS_RELEASED; 2178 spin_unlock_irqrestore(&ctrl->lock, flags); 2179 2180 if (completed) 2181 __nvme_fc_final_op_cleanup(rq); 2182 } 2183 2184 /* 2185 * This routine is used by the transport when it needs to find active 2186 * io on a queue that is to be terminated. The transport uses 2187 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2188 * this routine to kill them on a 1 by 1 basis. 2189 * 2190 * As FC allocates FC exchange for each io, the transport must contact 2191 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2192 * After terminating the exchange the LLDD will call the transport's 2193 * normal io done path for the request, but it will have an aborted 2194 * status. The done path will return the io request back to the block 2195 * layer with an error status. 2196 */ 2197 static void 2198 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2199 { 2200 struct nvme_ctrl *nctrl = data; 2201 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2202 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2203 unsigned long flags; 2204 int status; 2205 2206 if (!blk_mq_request_started(req)) 2207 return; 2208 2209 spin_lock_irqsave(&ctrl->lock, flags); 2210 if (ctrl->flags & FCCTRL_TERMIO) { 2211 ctrl->iocnt++; 2212 op->flags |= FCOP_FLAGS_TERMIO; 2213 } 2214 spin_unlock_irqrestore(&ctrl->lock, flags); 2215 2216 status = __nvme_fc_abort_op(ctrl, op); 2217 if (status) { 2218 /* 2219 * if __nvme_fc_abort_op failed the io wasn't 2220 * active. Thus this call path is running in 2221 * parallel to the io complete. Treat as non-error. 2222 */ 2223 2224 /* back out the flags/counters */ 2225 spin_lock_irqsave(&ctrl->lock, flags); 2226 if (ctrl->flags & FCCTRL_TERMIO) 2227 ctrl->iocnt--; 2228 op->flags &= ~FCOP_FLAGS_TERMIO; 2229 spin_unlock_irqrestore(&ctrl->lock, flags); 2230 return; 2231 } 2232 } 2233 2234 2235 static const struct blk_mq_ops nvme_fc_mq_ops = { 2236 .queue_rq = nvme_fc_queue_rq, 2237 .complete = nvme_fc_complete_rq, 2238 .init_request = nvme_fc_init_request, 2239 .exit_request = nvme_fc_exit_request, 2240 .init_hctx = nvme_fc_init_hctx, 2241 .poll = nvme_fc_poll, 2242 .timeout = nvme_fc_timeout, 2243 }; 2244 2245 static int 2246 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2247 { 2248 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2249 unsigned int nr_io_queues; 2250 int ret; 2251 2252 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2253 ctrl->lport->ops->max_hw_queues); 2254 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2255 if (ret) { 2256 dev_info(ctrl->ctrl.device, 2257 "set_queue_count failed: %d\n", ret); 2258 return ret; 2259 } 2260 2261 ctrl->ctrl.queue_count = nr_io_queues + 1; 2262 if (!nr_io_queues) 2263 return 0; 2264 2265 nvme_fc_init_io_queues(ctrl); 2266 2267 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2268 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2269 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2270 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2271 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2272 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2273 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2274 (SG_CHUNK_SIZE * 2275 sizeof(struct scatterlist)) + 2276 ctrl->lport->ops->fcprqst_priv_sz; 2277 ctrl->tag_set.driver_data = ctrl; 2278 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2279 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2280 2281 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2282 if (ret) 2283 return ret; 2284 2285 ctrl->ctrl.tagset = &ctrl->tag_set; 2286 2287 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2288 if (IS_ERR(ctrl->ctrl.connect_q)) { 2289 ret = PTR_ERR(ctrl->ctrl.connect_q); 2290 goto out_free_tag_set; 2291 } 2292 2293 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2294 if (ret) 2295 goto out_cleanup_blk_queue; 2296 2297 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2298 if (ret) 2299 goto out_delete_hw_queues; 2300 2301 return 0; 2302 2303 out_delete_hw_queues: 2304 nvme_fc_delete_hw_io_queues(ctrl); 2305 out_cleanup_blk_queue: 2306 blk_cleanup_queue(ctrl->ctrl.connect_q); 2307 out_free_tag_set: 2308 blk_mq_free_tag_set(&ctrl->tag_set); 2309 nvme_fc_free_io_queues(ctrl); 2310 2311 /* force put free routine to ignore io queues */ 2312 ctrl->ctrl.tagset = NULL; 2313 2314 return ret; 2315 } 2316 2317 static int 2318 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) 2319 { 2320 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2321 unsigned int nr_io_queues; 2322 int ret; 2323 2324 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2325 ctrl->lport->ops->max_hw_queues); 2326 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2327 if (ret) { 2328 dev_info(ctrl->ctrl.device, 2329 "set_queue_count failed: %d\n", ret); 2330 return ret; 2331 } 2332 2333 ctrl->ctrl.queue_count = nr_io_queues + 1; 2334 /* check for io queues existing */ 2335 if (ctrl->ctrl.queue_count == 1) 2336 return 0; 2337 2338 nvme_fc_init_io_queues(ctrl); 2339 2340 ret = blk_mq_reinit_tagset(&ctrl->tag_set, nvme_fc_reinit_request); 2341 if (ret) 2342 goto out_free_io_queues; 2343 2344 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2345 if (ret) 2346 goto out_free_io_queues; 2347 2348 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2349 if (ret) 2350 goto out_delete_hw_queues; 2351 2352 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2353 2354 return 0; 2355 2356 out_delete_hw_queues: 2357 nvme_fc_delete_hw_io_queues(ctrl); 2358 out_free_io_queues: 2359 nvme_fc_free_io_queues(ctrl); 2360 return ret; 2361 } 2362 2363 /* 2364 * This routine restarts the controller on the host side, and 2365 * on the link side, recreates the controller association. 2366 */ 2367 static int 2368 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2369 { 2370 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2371 u32 segs; 2372 int ret; 2373 bool changed; 2374 2375 ++ctrl->ctrl.nr_reconnects; 2376 2377 /* 2378 * Create the admin queue 2379 */ 2380 2381 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH); 2382 2383 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2384 NVME_FC_AQ_BLKMQ_DEPTH); 2385 if (ret) 2386 goto out_free_queue; 2387 2388 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2389 NVME_FC_AQ_BLKMQ_DEPTH, 2390 (NVME_FC_AQ_BLKMQ_DEPTH / 4)); 2391 if (ret) 2392 goto out_delete_hw_queue; 2393 2394 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2395 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2396 2397 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2398 if (ret) 2399 goto out_disconnect_admin_queue; 2400 2401 /* 2402 * Check controller capabilities 2403 * 2404 * todo:- add code to check if ctrl attributes changed from 2405 * prior connection values 2406 */ 2407 2408 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 2409 if (ret) { 2410 dev_err(ctrl->ctrl.device, 2411 "prop_get NVME_REG_CAP failed\n"); 2412 goto out_disconnect_admin_queue; 2413 } 2414 2415 ctrl->ctrl.sqsize = 2416 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); 2417 2418 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 2419 if (ret) 2420 goto out_disconnect_admin_queue; 2421 2422 segs = min_t(u32, NVME_FC_MAX_SEGMENTS, 2423 ctrl->lport->ops->max_sgl_segments); 2424 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9); 2425 2426 ret = nvme_init_identify(&ctrl->ctrl); 2427 if (ret) 2428 goto out_disconnect_admin_queue; 2429 2430 /* sanity checks */ 2431 2432 /* FC-NVME does not have other data in the capsule */ 2433 if (ctrl->ctrl.icdoff) { 2434 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2435 ctrl->ctrl.icdoff); 2436 goto out_disconnect_admin_queue; 2437 } 2438 2439 /* FC-NVME supports normal SGL Data Block Descriptors */ 2440 2441 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2442 /* warn if maxcmd is lower than queue_size */ 2443 dev_warn(ctrl->ctrl.device, 2444 "queue_size %zu > ctrl maxcmd %u, reducing " 2445 "to queue_size\n", 2446 opts->queue_size, ctrl->ctrl.maxcmd); 2447 opts->queue_size = ctrl->ctrl.maxcmd; 2448 } 2449 2450 ret = nvme_fc_init_aen_ops(ctrl); 2451 if (ret) 2452 goto out_term_aen_ops; 2453 2454 /* 2455 * Create the io queues 2456 */ 2457 2458 if (ctrl->ctrl.queue_count > 1) { 2459 if (ctrl->ctrl.state == NVME_CTRL_NEW) 2460 ret = nvme_fc_create_io_queues(ctrl); 2461 else 2462 ret = nvme_fc_reinit_io_queues(ctrl); 2463 if (ret) 2464 goto out_term_aen_ops; 2465 } 2466 2467 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2468 WARN_ON_ONCE(!changed); 2469 2470 ctrl->ctrl.nr_reconnects = 0; 2471 2472 nvme_start_ctrl(&ctrl->ctrl); 2473 2474 return 0; /* Success */ 2475 2476 out_term_aen_ops: 2477 nvme_fc_term_aen_ops(ctrl); 2478 out_disconnect_admin_queue: 2479 /* send a Disconnect(association) LS to fc-nvme target */ 2480 nvme_fc_xmt_disconnect_assoc(ctrl); 2481 out_delete_hw_queue: 2482 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2483 out_free_queue: 2484 nvme_fc_free_queue(&ctrl->queues[0]); 2485 2486 return ret; 2487 } 2488 2489 /* 2490 * This routine stops operation of the controller on the host side. 2491 * On the host os stack side: Admin and IO queues are stopped, 2492 * outstanding ios on them terminated via FC ABTS. 2493 * On the link side: the association is terminated. 2494 */ 2495 static void 2496 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2497 { 2498 unsigned long flags; 2499 2500 spin_lock_irqsave(&ctrl->lock, flags); 2501 ctrl->flags |= FCCTRL_TERMIO; 2502 ctrl->iocnt = 0; 2503 spin_unlock_irqrestore(&ctrl->lock, flags); 2504 2505 /* 2506 * If io queues are present, stop them and terminate all outstanding 2507 * ios on them. As FC allocates FC exchange for each io, the 2508 * transport must contact the LLDD to terminate the exchange, 2509 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2510 * to tell us what io's are busy and invoke a transport routine 2511 * to kill them with the LLDD. After terminating the exchange 2512 * the LLDD will call the transport's normal io done path, but it 2513 * will have an aborted status. The done path will return the 2514 * io requests back to the block layer as part of normal completions 2515 * (but with error status). 2516 */ 2517 if (ctrl->ctrl.queue_count > 1) { 2518 nvme_stop_queues(&ctrl->ctrl); 2519 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2520 nvme_fc_terminate_exchange, &ctrl->ctrl); 2521 } 2522 2523 /* 2524 * Other transports, which don't have link-level contexts bound 2525 * to sqe's, would try to gracefully shutdown the controller by 2526 * writing the registers for shutdown and polling (call 2527 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2528 * just aborted and we will wait on those contexts, and given 2529 * there was no indication of how live the controlelr is on the 2530 * link, don't send more io to create more contexts for the 2531 * shutdown. Let the controller fail via keepalive failure if 2532 * its still present. 2533 */ 2534 2535 /* 2536 * clean up the admin queue. Same thing as above. 2537 * use blk_mq_tagset_busy_itr() and the transport routine to 2538 * terminate the exchanges. 2539 */ 2540 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2541 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2542 nvme_fc_terminate_exchange, &ctrl->ctrl); 2543 2544 /* kill the aens as they are a separate path */ 2545 nvme_fc_abort_aen_ops(ctrl); 2546 2547 /* wait for all io that had to be aborted */ 2548 spin_lock_irqsave(&ctrl->lock, flags); 2549 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2550 ctrl->flags &= ~FCCTRL_TERMIO; 2551 spin_unlock_irqrestore(&ctrl->lock, flags); 2552 2553 nvme_fc_term_aen_ops(ctrl); 2554 2555 /* 2556 * send a Disconnect(association) LS to fc-nvme target 2557 * Note: could have been sent at top of process, but 2558 * cleaner on link traffic if after the aborts complete. 2559 * Note: if association doesn't exist, association_id will be 0 2560 */ 2561 if (ctrl->association_id) 2562 nvme_fc_xmt_disconnect_assoc(ctrl); 2563 2564 if (ctrl->ctrl.tagset) { 2565 nvme_fc_delete_hw_io_queues(ctrl); 2566 nvme_fc_free_io_queues(ctrl); 2567 } 2568 2569 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2570 nvme_fc_free_queue(&ctrl->queues[0]); 2571 } 2572 2573 static void 2574 nvme_fc_delete_ctrl_work(struct work_struct *work) 2575 { 2576 struct nvme_fc_ctrl *ctrl = 2577 container_of(work, struct nvme_fc_ctrl, delete_work); 2578 2579 cancel_work_sync(&ctrl->ctrl.reset_work); 2580 cancel_delayed_work_sync(&ctrl->connect_work); 2581 nvme_stop_ctrl(&ctrl->ctrl); 2582 nvme_remove_namespaces(&ctrl->ctrl); 2583 /* 2584 * kill the association on the link side. this will block 2585 * waiting for io to terminate 2586 */ 2587 nvme_fc_delete_association(ctrl); 2588 2589 /* 2590 * tear down the controller 2591 * After the last reference on the nvme ctrl is removed, 2592 * the transport nvme_fc_nvme_ctrl_freed() callback will be 2593 * invoked. From there, the transport will tear down it's 2594 * logical queues and association. 2595 */ 2596 nvme_uninit_ctrl(&ctrl->ctrl); 2597 2598 nvme_put_ctrl(&ctrl->ctrl); 2599 } 2600 2601 static bool 2602 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl) 2603 { 2604 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 2605 return true; 2606 2607 if (!queue_work(nvme_wq, &ctrl->delete_work)) 2608 return true; 2609 2610 return false; 2611 } 2612 2613 static int 2614 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl) 2615 { 2616 return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0; 2617 } 2618 2619 /* 2620 * Request from nvme core layer to delete the controller 2621 */ 2622 static int 2623 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl) 2624 { 2625 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2626 int ret; 2627 2628 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 2629 return -EBUSY; 2630 2631 ret = __nvme_fc_del_ctrl(ctrl); 2632 2633 if (!ret) 2634 flush_workqueue(nvme_wq); 2635 2636 nvme_put_ctrl(&ctrl->ctrl); 2637 2638 return ret; 2639 } 2640 2641 static void 2642 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2643 { 2644 /* If we are resetting/deleting then do nothing */ 2645 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 2646 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 2647 ctrl->ctrl.state == NVME_CTRL_LIVE); 2648 return; 2649 } 2650 2651 dev_info(ctrl->ctrl.device, 2652 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2653 ctrl->cnum, status); 2654 2655 if (nvmf_should_reconnect(&ctrl->ctrl)) { 2656 dev_info(ctrl->ctrl.device, 2657 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n", 2658 ctrl->cnum, ctrl->ctrl.opts->reconnect_delay); 2659 queue_delayed_work(nvme_wq, &ctrl->connect_work, 2660 ctrl->ctrl.opts->reconnect_delay * HZ); 2661 } else { 2662 dev_warn(ctrl->ctrl.device, 2663 "NVME-FC{%d}: Max reconnect attempts (%d) " 2664 "reached. Removing controller\n", 2665 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2666 WARN_ON(__nvme_fc_schedule_delete_work(ctrl)); 2667 } 2668 } 2669 2670 static void 2671 nvme_fc_reset_ctrl_work(struct work_struct *work) 2672 { 2673 struct nvme_fc_ctrl *ctrl = 2674 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2675 int ret; 2676 2677 nvme_stop_ctrl(&ctrl->ctrl); 2678 /* will block will waiting for io to terminate */ 2679 nvme_fc_delete_association(ctrl); 2680 2681 ret = nvme_fc_create_association(ctrl); 2682 if (ret) 2683 nvme_fc_reconnect_or_delete(ctrl, ret); 2684 else 2685 dev_info(ctrl->ctrl.device, 2686 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum); 2687 } 2688 2689 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 2690 .name = "fc", 2691 .module = THIS_MODULE, 2692 .flags = NVME_F_FABRICS, 2693 .reg_read32 = nvmf_reg_read32, 2694 .reg_read64 = nvmf_reg_read64, 2695 .reg_write32 = nvmf_reg_write32, 2696 .free_ctrl = nvme_fc_nvme_ctrl_freed, 2697 .submit_async_event = nvme_fc_submit_async_event, 2698 .delete_ctrl = nvme_fc_del_nvme_ctrl, 2699 .get_address = nvmf_get_address, 2700 }; 2701 2702 static void 2703 nvme_fc_connect_ctrl_work(struct work_struct *work) 2704 { 2705 int ret; 2706 2707 struct nvme_fc_ctrl *ctrl = 2708 container_of(to_delayed_work(work), 2709 struct nvme_fc_ctrl, connect_work); 2710 2711 ret = nvme_fc_create_association(ctrl); 2712 if (ret) 2713 nvme_fc_reconnect_or_delete(ctrl, ret); 2714 else 2715 dev_info(ctrl->ctrl.device, 2716 "NVME-FC{%d}: controller reconnect complete\n", 2717 ctrl->cnum); 2718 } 2719 2720 2721 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 2722 .queue_rq = nvme_fc_queue_rq, 2723 .complete = nvme_fc_complete_rq, 2724 .init_request = nvme_fc_init_request, 2725 .exit_request = nvme_fc_exit_request, 2726 .init_hctx = nvme_fc_init_admin_hctx, 2727 .timeout = nvme_fc_timeout, 2728 }; 2729 2730 2731 static struct nvme_ctrl * 2732 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 2733 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 2734 { 2735 struct nvme_fc_ctrl *ctrl; 2736 unsigned long flags; 2737 int ret, idx; 2738 2739 if (!(rport->remoteport.port_role & 2740 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 2741 ret = -EBADR; 2742 goto out_fail; 2743 } 2744 2745 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2746 if (!ctrl) { 2747 ret = -ENOMEM; 2748 goto out_fail; 2749 } 2750 2751 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 2752 if (idx < 0) { 2753 ret = -ENOSPC; 2754 goto out_free_ctrl; 2755 } 2756 2757 ctrl->ctrl.opts = opts; 2758 INIT_LIST_HEAD(&ctrl->ctrl_list); 2759 ctrl->lport = lport; 2760 ctrl->rport = rport; 2761 ctrl->dev = lport->dev; 2762 ctrl->cnum = idx; 2763 2764 get_device(ctrl->dev); 2765 kref_init(&ctrl->ref); 2766 2767 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work); 2768 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 2769 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 2770 spin_lock_init(&ctrl->lock); 2771 2772 /* io queue count */ 2773 ctrl->ctrl.queue_count = min_t(unsigned int, 2774 opts->nr_io_queues, 2775 lport->ops->max_hw_queues); 2776 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 2777 2778 ctrl->ctrl.sqsize = opts->queue_size - 1; 2779 ctrl->ctrl.kato = opts->kato; 2780 2781 ret = -ENOMEM; 2782 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 2783 sizeof(struct nvme_fc_queue), GFP_KERNEL); 2784 if (!ctrl->queues) 2785 goto out_free_ida; 2786 2787 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 2788 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 2789 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH; 2790 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 2791 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 2792 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2793 (SG_CHUNK_SIZE * 2794 sizeof(struct scatterlist)) + 2795 ctrl->lport->ops->fcprqst_priv_sz; 2796 ctrl->admin_tag_set.driver_data = ctrl; 2797 ctrl->admin_tag_set.nr_hw_queues = 1; 2798 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 2799 2800 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 2801 if (ret) 2802 goto out_free_queues; 2803 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 2804 2805 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 2806 if (IS_ERR(ctrl->ctrl.admin_q)) { 2807 ret = PTR_ERR(ctrl->ctrl.admin_q); 2808 goto out_free_admin_tag_set; 2809 } 2810 2811 /* 2812 * Would have been nice to init io queues tag set as well. 2813 * However, we require interaction from the controller 2814 * for max io queue count before we can do so. 2815 * Defer this to the connect path. 2816 */ 2817 2818 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 2819 if (ret) 2820 goto out_cleanup_admin_q; 2821 2822 /* at this point, teardown path changes to ref counting on nvme ctrl */ 2823 2824 spin_lock_irqsave(&rport->lock, flags); 2825 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 2826 spin_unlock_irqrestore(&rport->lock, flags); 2827 2828 ret = nvme_fc_create_association(ctrl); 2829 if (ret) { 2830 ctrl->ctrl.opts = NULL; 2831 /* initiate nvme ctrl ref counting teardown */ 2832 nvme_uninit_ctrl(&ctrl->ctrl); 2833 nvme_put_ctrl(&ctrl->ctrl); 2834 2835 /* Remove core ctrl ref. */ 2836 nvme_put_ctrl(&ctrl->ctrl); 2837 2838 /* as we're past the point where we transition to the ref 2839 * counting teardown path, if we return a bad pointer here, 2840 * the calling routine, thinking it's prior to the 2841 * transition, will do an rport put. Since the teardown 2842 * path also does a rport put, we do an extra get here to 2843 * so proper order/teardown happens. 2844 */ 2845 nvme_fc_rport_get(rport); 2846 2847 if (ret > 0) 2848 ret = -EIO; 2849 return ERR_PTR(ret); 2850 } 2851 2852 kref_get(&ctrl->ctrl.kref); 2853 2854 dev_info(ctrl->ctrl.device, 2855 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 2856 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 2857 2858 return &ctrl->ctrl; 2859 2860 out_cleanup_admin_q: 2861 blk_cleanup_queue(ctrl->ctrl.admin_q); 2862 out_free_admin_tag_set: 2863 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2864 out_free_queues: 2865 kfree(ctrl->queues); 2866 out_free_ida: 2867 put_device(ctrl->dev); 2868 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2869 out_free_ctrl: 2870 kfree(ctrl); 2871 out_fail: 2872 /* exit via here doesn't follow ctlr ref points */ 2873 return ERR_PTR(ret); 2874 } 2875 2876 2877 struct nvmet_fc_traddr { 2878 u64 nn; 2879 u64 pn; 2880 }; 2881 2882 static int 2883 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2884 { 2885 u64 token64; 2886 2887 if (match_u64(sstr, &token64)) 2888 return -EINVAL; 2889 *val = token64; 2890 2891 return 0; 2892 } 2893 2894 /* 2895 * This routine validates and extracts the WWN's from the TRADDR string. 2896 * As kernel parsers need the 0x to determine number base, universally 2897 * build string to parse with 0x prefix before parsing name strings. 2898 */ 2899 static int 2900 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2901 { 2902 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2903 substring_t wwn = { name, &name[sizeof(name)-1] }; 2904 int nnoffset, pnoffset; 2905 2906 /* validate it string one of the 2 allowed formats */ 2907 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2908 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2909 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2910 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2911 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2912 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2913 NVME_FC_TRADDR_OXNNLEN; 2914 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2915 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2916 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2917 "pn-", NVME_FC_TRADDR_NNLEN))) { 2918 nnoffset = NVME_FC_TRADDR_NNLEN; 2919 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2920 } else 2921 goto out_einval; 2922 2923 name[0] = '0'; 2924 name[1] = 'x'; 2925 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2926 2927 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2928 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2929 goto out_einval; 2930 2931 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2932 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2933 goto out_einval; 2934 2935 return 0; 2936 2937 out_einval: 2938 pr_warn("%s: bad traddr string\n", __func__); 2939 return -EINVAL; 2940 } 2941 2942 static struct nvme_ctrl * 2943 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 2944 { 2945 struct nvme_fc_lport *lport; 2946 struct nvme_fc_rport *rport; 2947 struct nvme_ctrl *ctrl; 2948 struct nvmet_fc_traddr laddr = { 0L, 0L }; 2949 struct nvmet_fc_traddr raddr = { 0L, 0L }; 2950 unsigned long flags; 2951 int ret; 2952 2953 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 2954 if (ret || !raddr.nn || !raddr.pn) 2955 return ERR_PTR(-EINVAL); 2956 2957 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 2958 if (ret || !laddr.nn || !laddr.pn) 2959 return ERR_PTR(-EINVAL); 2960 2961 /* find the host and remote ports to connect together */ 2962 spin_lock_irqsave(&nvme_fc_lock, flags); 2963 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 2964 if (lport->localport.node_name != laddr.nn || 2965 lport->localport.port_name != laddr.pn) 2966 continue; 2967 2968 list_for_each_entry(rport, &lport->endp_list, endp_list) { 2969 if (rport->remoteport.node_name != raddr.nn || 2970 rport->remoteport.port_name != raddr.pn) 2971 continue; 2972 2973 /* if fail to get reference fall through. Will error */ 2974 if (!nvme_fc_rport_get(rport)) 2975 break; 2976 2977 spin_unlock_irqrestore(&nvme_fc_lock, flags); 2978 2979 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 2980 if (IS_ERR(ctrl)) 2981 nvme_fc_rport_put(rport); 2982 return ctrl; 2983 } 2984 } 2985 spin_unlock_irqrestore(&nvme_fc_lock, flags); 2986 2987 return ERR_PTR(-ENOENT); 2988 } 2989 2990 2991 static struct nvmf_transport_ops nvme_fc_transport = { 2992 .name = "fc", 2993 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 2994 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 2995 .create_ctrl = nvme_fc_create_ctrl, 2996 }; 2997 2998 static int __init nvme_fc_init_module(void) 2999 { 3000 return nvmf_register_transport(&nvme_fc_transport); 3001 } 3002 3003 static void __exit nvme_fc_exit_module(void) 3004 { 3005 /* sanity check - all lports should be removed */ 3006 if (!list_empty(&nvme_fc_lport_list)) 3007 pr_warn("%s: localport list not empty\n", __func__); 3008 3009 nvmf_unregister_transport(&nvme_fc_transport); 3010 3011 ida_destroy(&nvme_fc_local_port_cnt); 3012 ida_destroy(&nvme_fc_ctrl_cnt); 3013 } 3014 3015 module_init(nvme_fc_init_module); 3016 module_exit(nvme_fc_exit_module); 3017 3018 MODULE_LICENSE("GPL v2"); 3019