1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 #include <linux/blk-mq-pci.h> 20 21 /* *************************** Data Structures/Defines ****************** */ 22 23 24 enum nvme_fc_queue_flags { 25 NVME_FC_Q_CONNECTED = 0, 26 NVME_FC_Q_LIVE, 27 }; 28 29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 31 * when connected and a 32 * connection failure. 33 */ 34 35 struct nvme_fc_queue { 36 struct nvme_fc_ctrl *ctrl; 37 struct device *dev; 38 struct blk_mq_hw_ctx *hctx; 39 void *lldd_handle; 40 size_t cmnd_capsule_len; 41 u32 qnum; 42 u32 rqcnt; 43 u32 seqno; 44 45 u64 connection_id; 46 atomic_t csn; 47 48 unsigned long flags; 49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 50 51 enum nvme_fcop_flags { 52 FCOP_FLAGS_TERMIO = (1 << 0), 53 FCOP_FLAGS_AEN = (1 << 1), 54 }; 55 56 struct nvmefc_ls_req_op { 57 struct nvmefc_ls_req ls_req; 58 59 struct nvme_fc_rport *rport; 60 struct nvme_fc_queue *queue; 61 struct request *rq; 62 u32 flags; 63 64 int ls_error; 65 struct completion ls_done; 66 struct list_head lsreq_list; /* rport->ls_req_list */ 67 bool req_queued; 68 }; 69 70 struct nvmefc_ls_rcv_op { 71 struct nvme_fc_rport *rport; 72 struct nvmefc_ls_rsp *lsrsp; 73 union nvmefc_ls_requests *rqstbuf; 74 union nvmefc_ls_responses *rspbuf; 75 u16 rqstdatalen; 76 bool handled; 77 dma_addr_t rspdma; 78 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 80 81 enum nvme_fcpop_state { 82 FCPOP_STATE_UNINIT = 0, 83 FCPOP_STATE_IDLE = 1, 84 FCPOP_STATE_ACTIVE = 2, 85 FCPOP_STATE_ABORTED = 3, 86 FCPOP_STATE_COMPLETE = 4, 87 }; 88 89 struct nvme_fc_fcp_op { 90 struct nvme_request nreq; /* 91 * nvme/host/core.c 92 * requires this to be 93 * the 1st element in the 94 * private structure 95 * associated with the 96 * request. 97 */ 98 struct nvmefc_fcp_req fcp_req; 99 100 struct nvme_fc_ctrl *ctrl; 101 struct nvme_fc_queue *queue; 102 struct request *rq; 103 104 atomic_t state; 105 u32 flags; 106 u32 rqno; 107 u32 nents; 108 109 struct nvme_fc_cmd_iu cmd_iu; 110 struct nvme_fc_ersp_iu rsp_iu; 111 }; 112 113 struct nvme_fcp_op_w_sgl { 114 struct nvme_fc_fcp_op op; 115 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 116 uint8_t priv[]; 117 }; 118 119 struct nvme_fc_lport { 120 struct nvme_fc_local_port localport; 121 122 struct ida endp_cnt; 123 struct list_head port_list; /* nvme_fc_port_list */ 124 struct list_head endp_list; 125 struct device *dev; /* physical device for dma */ 126 struct nvme_fc_port_template *ops; 127 struct kref ref; 128 atomic_t act_rport_cnt; 129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 130 131 struct nvme_fc_rport { 132 struct nvme_fc_remote_port remoteport; 133 134 struct list_head endp_list; /* for lport->endp_list */ 135 struct list_head ctrl_list; 136 struct list_head ls_req_list; 137 struct list_head ls_rcv_list; 138 struct list_head disc_list; 139 struct device *dev; /* physical device for dma */ 140 struct nvme_fc_lport *lport; 141 spinlock_t lock; 142 struct kref ref; 143 atomic_t act_ctrl_cnt; 144 unsigned long dev_loss_end; 145 struct work_struct lsrcv_work; 146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 147 148 /* fc_ctrl flags values - specified as bit positions */ 149 #define ASSOC_ACTIVE 0 150 #define ASSOC_FAILED 1 151 #define FCCTRL_TERMIO 2 152 153 struct nvme_fc_ctrl { 154 spinlock_t lock; 155 struct nvme_fc_queue *queues; 156 struct device *dev; 157 struct nvme_fc_lport *lport; 158 struct nvme_fc_rport *rport; 159 u32 cnum; 160 161 bool ioq_live; 162 u64 association_id; 163 struct nvmefc_ls_rcv_op *rcv_disconn; 164 165 struct list_head ctrl_list; /* rport->ctrl_list */ 166 167 struct blk_mq_tag_set admin_tag_set; 168 struct blk_mq_tag_set tag_set; 169 170 struct work_struct ioerr_work; 171 struct delayed_work connect_work; 172 173 struct kref ref; 174 unsigned long flags; 175 u32 iocnt; 176 wait_queue_head_t ioabort_wait; 177 178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 179 180 struct nvme_ctrl ctrl; 181 }; 182 183 static inline struct nvme_fc_ctrl * 184 to_fc_ctrl(struct nvme_ctrl *ctrl) 185 { 186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 187 } 188 189 static inline struct nvme_fc_lport * 190 localport_to_lport(struct nvme_fc_local_port *portptr) 191 { 192 return container_of(portptr, struct nvme_fc_lport, localport); 193 } 194 195 static inline struct nvme_fc_rport * 196 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 197 { 198 return container_of(portptr, struct nvme_fc_rport, remoteport); 199 } 200 201 static inline struct nvmefc_ls_req_op * 202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 203 { 204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 205 } 206 207 static inline struct nvme_fc_fcp_op * 208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 209 { 210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 211 } 212 213 214 215 /* *************************** Globals **************************** */ 216 217 218 static DEFINE_SPINLOCK(nvme_fc_lock); 219 220 static LIST_HEAD(nvme_fc_lport_list); 221 static DEFINE_IDA(nvme_fc_local_port_cnt); 222 static DEFINE_IDA(nvme_fc_ctrl_cnt); 223 224 static struct workqueue_struct *nvme_fc_wq; 225 226 static bool nvme_fc_waiting_to_unload; 227 static DECLARE_COMPLETION(nvme_fc_unload_proceed); 228 229 /* 230 * These items are short-term. They will eventually be moved into 231 * a generic FC class. See comments in module init. 232 */ 233 static struct device *fc_udev_device; 234 235 static void nvme_fc_complete_rq(struct request *rq); 236 237 /* *********************** FC-NVME Port Management ************************ */ 238 239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 240 struct nvme_fc_queue *, unsigned int); 241 242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 243 244 245 static void 246 nvme_fc_free_lport(struct kref *ref) 247 { 248 struct nvme_fc_lport *lport = 249 container_of(ref, struct nvme_fc_lport, ref); 250 unsigned long flags; 251 252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 253 WARN_ON(!list_empty(&lport->endp_list)); 254 255 /* remove from transport list */ 256 spin_lock_irqsave(&nvme_fc_lock, flags); 257 list_del(&lport->port_list); 258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) 259 complete(&nvme_fc_unload_proceed); 260 spin_unlock_irqrestore(&nvme_fc_lock, flags); 261 262 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 263 ida_destroy(&lport->endp_cnt); 264 265 put_device(lport->dev); 266 267 kfree(lport); 268 } 269 270 static void 271 nvme_fc_lport_put(struct nvme_fc_lport *lport) 272 { 273 kref_put(&lport->ref, nvme_fc_free_lport); 274 } 275 276 static int 277 nvme_fc_lport_get(struct nvme_fc_lport *lport) 278 { 279 return kref_get_unless_zero(&lport->ref); 280 } 281 282 283 static struct nvme_fc_lport * 284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 285 struct nvme_fc_port_template *ops, 286 struct device *dev) 287 { 288 struct nvme_fc_lport *lport; 289 unsigned long flags; 290 291 spin_lock_irqsave(&nvme_fc_lock, flags); 292 293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 294 if (lport->localport.node_name != pinfo->node_name || 295 lport->localport.port_name != pinfo->port_name) 296 continue; 297 298 if (lport->dev != dev) { 299 lport = ERR_PTR(-EXDEV); 300 goto out_done; 301 } 302 303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 304 lport = ERR_PTR(-EEXIST); 305 goto out_done; 306 } 307 308 if (!nvme_fc_lport_get(lport)) { 309 /* 310 * fails if ref cnt already 0. If so, 311 * act as if lport already deleted 312 */ 313 lport = NULL; 314 goto out_done; 315 } 316 317 /* resume the lport */ 318 319 lport->ops = ops; 320 lport->localport.port_role = pinfo->port_role; 321 lport->localport.port_id = pinfo->port_id; 322 lport->localport.port_state = FC_OBJSTATE_ONLINE; 323 324 spin_unlock_irqrestore(&nvme_fc_lock, flags); 325 326 return lport; 327 } 328 329 lport = NULL; 330 331 out_done: 332 spin_unlock_irqrestore(&nvme_fc_lock, flags); 333 334 return lport; 335 } 336 337 /** 338 * nvme_fc_register_localport - transport entry point called by an 339 * LLDD to register the existence of a NVME 340 * host FC port. 341 * @pinfo: pointer to information about the port to be registered 342 * @template: LLDD entrypoints and operational parameters for the port 343 * @dev: physical hardware device node port corresponds to. Will be 344 * used for DMA mappings 345 * @portptr: pointer to a local port pointer. Upon success, the routine 346 * will allocate a nvme_fc_local_port structure and place its 347 * address in the local port pointer. Upon failure, local port 348 * pointer will be set to 0. 349 * 350 * Returns: 351 * a completion status. Must be 0 upon success; a negative errno 352 * (ex: -ENXIO) upon failure. 353 */ 354 int 355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 356 struct nvme_fc_port_template *template, 357 struct device *dev, 358 struct nvme_fc_local_port **portptr) 359 { 360 struct nvme_fc_lport *newrec; 361 unsigned long flags; 362 int ret, idx; 363 364 if (!template->localport_delete || !template->remoteport_delete || 365 !template->ls_req || !template->fcp_io || 366 !template->ls_abort || !template->fcp_abort || 367 !template->max_hw_queues || !template->max_sgl_segments || 368 !template->max_dif_sgl_segments || !template->dma_boundary) { 369 ret = -EINVAL; 370 goto out_reghost_failed; 371 } 372 373 /* 374 * look to see if there is already a localport that had been 375 * deregistered and in the process of waiting for all the 376 * references to fully be removed. If the references haven't 377 * expired, we can simply re-enable the localport. Remoteports 378 * and controller reconnections should resume naturally. 379 */ 380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 381 382 /* found an lport, but something about its state is bad */ 383 if (IS_ERR(newrec)) { 384 ret = PTR_ERR(newrec); 385 goto out_reghost_failed; 386 387 /* found existing lport, which was resumed */ 388 } else if (newrec) { 389 *portptr = &newrec->localport; 390 return 0; 391 } 392 393 /* nothing found - allocate a new localport struct */ 394 395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 396 GFP_KERNEL); 397 if (!newrec) { 398 ret = -ENOMEM; 399 goto out_reghost_failed; 400 } 401 402 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 403 if (idx < 0) { 404 ret = -ENOSPC; 405 goto out_fail_kfree; 406 } 407 408 if (!get_device(dev) && dev) { 409 ret = -ENODEV; 410 goto out_ida_put; 411 } 412 413 INIT_LIST_HEAD(&newrec->port_list); 414 INIT_LIST_HEAD(&newrec->endp_list); 415 kref_init(&newrec->ref); 416 atomic_set(&newrec->act_rport_cnt, 0); 417 newrec->ops = template; 418 newrec->dev = dev; 419 ida_init(&newrec->endp_cnt); 420 if (template->local_priv_sz) 421 newrec->localport.private = &newrec[1]; 422 else 423 newrec->localport.private = NULL; 424 newrec->localport.node_name = pinfo->node_name; 425 newrec->localport.port_name = pinfo->port_name; 426 newrec->localport.port_role = pinfo->port_role; 427 newrec->localport.port_id = pinfo->port_id; 428 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 429 newrec->localport.port_num = idx; 430 431 spin_lock_irqsave(&nvme_fc_lock, flags); 432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 433 spin_unlock_irqrestore(&nvme_fc_lock, flags); 434 435 if (dev) 436 dma_set_seg_boundary(dev, template->dma_boundary); 437 438 *portptr = &newrec->localport; 439 return 0; 440 441 out_ida_put: 442 ida_free(&nvme_fc_local_port_cnt, idx); 443 out_fail_kfree: 444 kfree(newrec); 445 out_reghost_failed: 446 *portptr = NULL; 447 448 return ret; 449 } 450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 451 452 /** 453 * nvme_fc_unregister_localport - transport entry point called by an 454 * LLDD to deregister/remove a previously 455 * registered a NVME host FC port. 456 * @portptr: pointer to the (registered) local port that is to be deregistered. 457 * 458 * Returns: 459 * a completion status. Must be 0 upon success; a negative errno 460 * (ex: -ENXIO) upon failure. 461 */ 462 int 463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 464 { 465 struct nvme_fc_lport *lport = localport_to_lport(portptr); 466 unsigned long flags; 467 468 if (!portptr) 469 return -EINVAL; 470 471 spin_lock_irqsave(&nvme_fc_lock, flags); 472 473 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 474 spin_unlock_irqrestore(&nvme_fc_lock, flags); 475 return -EINVAL; 476 } 477 portptr->port_state = FC_OBJSTATE_DELETED; 478 479 spin_unlock_irqrestore(&nvme_fc_lock, flags); 480 481 if (atomic_read(&lport->act_rport_cnt) == 0) 482 lport->ops->localport_delete(&lport->localport); 483 484 nvme_fc_lport_put(lport); 485 486 return 0; 487 } 488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 489 490 /* 491 * TRADDR strings, per FC-NVME are fixed format: 492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 493 * udev event will only differ by prefix of what field is 494 * being specified: 495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 496 * 19 + 43 + null_fudge = 64 characters 497 */ 498 #define FCNVME_TRADDR_LENGTH 64 499 500 static void 501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 502 struct nvme_fc_rport *rport) 503 { 504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 507 508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 509 return; 510 511 snprintf(hostaddr, sizeof(hostaddr), 512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 513 lport->localport.node_name, lport->localport.port_name); 514 snprintf(tgtaddr, sizeof(tgtaddr), 515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 516 rport->remoteport.node_name, rport->remoteport.port_name); 517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 518 } 519 520 static void 521 nvme_fc_free_rport(struct kref *ref) 522 { 523 struct nvme_fc_rport *rport = 524 container_of(ref, struct nvme_fc_rport, ref); 525 struct nvme_fc_lport *lport = 526 localport_to_lport(rport->remoteport.localport); 527 unsigned long flags; 528 529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 530 WARN_ON(!list_empty(&rport->ctrl_list)); 531 532 /* remove from lport list */ 533 spin_lock_irqsave(&nvme_fc_lock, flags); 534 list_del(&rport->endp_list); 535 spin_unlock_irqrestore(&nvme_fc_lock, flags); 536 537 WARN_ON(!list_empty(&rport->disc_list)); 538 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 539 540 kfree(rport); 541 542 nvme_fc_lport_put(lport); 543 } 544 545 static void 546 nvme_fc_rport_put(struct nvme_fc_rport *rport) 547 { 548 kref_put(&rport->ref, nvme_fc_free_rport); 549 } 550 551 static int 552 nvme_fc_rport_get(struct nvme_fc_rport *rport) 553 { 554 return kref_get_unless_zero(&rport->ref); 555 } 556 557 static void 558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 559 { 560 switch (ctrl->ctrl.state) { 561 case NVME_CTRL_NEW: 562 case NVME_CTRL_CONNECTING: 563 /* 564 * As all reconnects were suppressed, schedule a 565 * connect. 566 */ 567 dev_info(ctrl->ctrl.device, 568 "NVME-FC{%d}: connectivity re-established. " 569 "Attempting reconnect\n", ctrl->cnum); 570 571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 572 break; 573 574 case NVME_CTRL_RESETTING: 575 /* 576 * Controller is already in the process of terminating the 577 * association. No need to do anything further. The reconnect 578 * step will naturally occur after the reset completes. 579 */ 580 break; 581 582 default: 583 /* no action to take - let it delete */ 584 break; 585 } 586 } 587 588 static struct nvme_fc_rport * 589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 590 struct nvme_fc_port_info *pinfo) 591 { 592 struct nvme_fc_rport *rport; 593 struct nvme_fc_ctrl *ctrl; 594 unsigned long flags; 595 596 spin_lock_irqsave(&nvme_fc_lock, flags); 597 598 list_for_each_entry(rport, &lport->endp_list, endp_list) { 599 if (rport->remoteport.node_name != pinfo->node_name || 600 rport->remoteport.port_name != pinfo->port_name) 601 continue; 602 603 if (!nvme_fc_rport_get(rport)) { 604 rport = ERR_PTR(-ENOLCK); 605 goto out_done; 606 } 607 608 spin_unlock_irqrestore(&nvme_fc_lock, flags); 609 610 spin_lock_irqsave(&rport->lock, flags); 611 612 /* has it been unregistered */ 613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 614 /* means lldd called us twice */ 615 spin_unlock_irqrestore(&rport->lock, flags); 616 nvme_fc_rport_put(rport); 617 return ERR_PTR(-ESTALE); 618 } 619 620 rport->remoteport.port_role = pinfo->port_role; 621 rport->remoteport.port_id = pinfo->port_id; 622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 623 rport->dev_loss_end = 0; 624 625 /* 626 * kick off a reconnect attempt on all associations to the 627 * remote port. A successful reconnects will resume i/o. 628 */ 629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 630 nvme_fc_resume_controller(ctrl); 631 632 spin_unlock_irqrestore(&rport->lock, flags); 633 634 return rport; 635 } 636 637 rport = NULL; 638 639 out_done: 640 spin_unlock_irqrestore(&nvme_fc_lock, flags); 641 642 return rport; 643 } 644 645 static inline void 646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 647 struct nvme_fc_port_info *pinfo) 648 { 649 if (pinfo->dev_loss_tmo) 650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 651 else 652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 653 } 654 655 /** 656 * nvme_fc_register_remoteport - transport entry point called by an 657 * LLDD to register the existence of a NVME 658 * subsystem FC port on its fabric. 659 * @localport: pointer to the (registered) local port that the remote 660 * subsystem port is connected to. 661 * @pinfo: pointer to information about the port to be registered 662 * @portptr: pointer to a remote port pointer. Upon success, the routine 663 * will allocate a nvme_fc_remote_port structure and place its 664 * address in the remote port pointer. Upon failure, remote port 665 * pointer will be set to 0. 666 * 667 * Returns: 668 * a completion status. Must be 0 upon success; a negative errno 669 * (ex: -ENXIO) upon failure. 670 */ 671 int 672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 673 struct nvme_fc_port_info *pinfo, 674 struct nvme_fc_remote_port **portptr) 675 { 676 struct nvme_fc_lport *lport = localport_to_lport(localport); 677 struct nvme_fc_rport *newrec; 678 unsigned long flags; 679 int ret, idx; 680 681 if (!nvme_fc_lport_get(lport)) { 682 ret = -ESHUTDOWN; 683 goto out_reghost_failed; 684 } 685 686 /* 687 * look to see if there is already a remoteport that is waiting 688 * for a reconnect (within dev_loss_tmo) with the same WWN's. 689 * If so, transition to it and reconnect. 690 */ 691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 692 693 /* found an rport, but something about its state is bad */ 694 if (IS_ERR(newrec)) { 695 ret = PTR_ERR(newrec); 696 goto out_lport_put; 697 698 /* found existing rport, which was resumed */ 699 } else if (newrec) { 700 nvme_fc_lport_put(lport); 701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 702 nvme_fc_signal_discovery_scan(lport, newrec); 703 *portptr = &newrec->remoteport; 704 return 0; 705 } 706 707 /* nothing found - allocate a new remoteport struct */ 708 709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 710 GFP_KERNEL); 711 if (!newrec) { 712 ret = -ENOMEM; 713 goto out_lport_put; 714 } 715 716 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 717 if (idx < 0) { 718 ret = -ENOSPC; 719 goto out_kfree_rport; 720 } 721 722 INIT_LIST_HEAD(&newrec->endp_list); 723 INIT_LIST_HEAD(&newrec->ctrl_list); 724 INIT_LIST_HEAD(&newrec->ls_req_list); 725 INIT_LIST_HEAD(&newrec->disc_list); 726 kref_init(&newrec->ref); 727 atomic_set(&newrec->act_ctrl_cnt, 0); 728 spin_lock_init(&newrec->lock); 729 newrec->remoteport.localport = &lport->localport; 730 INIT_LIST_HEAD(&newrec->ls_rcv_list); 731 newrec->dev = lport->dev; 732 newrec->lport = lport; 733 if (lport->ops->remote_priv_sz) 734 newrec->remoteport.private = &newrec[1]; 735 else 736 newrec->remoteport.private = NULL; 737 newrec->remoteport.port_role = pinfo->port_role; 738 newrec->remoteport.node_name = pinfo->node_name; 739 newrec->remoteport.port_name = pinfo->port_name; 740 newrec->remoteport.port_id = pinfo->port_id; 741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 742 newrec->remoteport.port_num = idx; 743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 745 746 spin_lock_irqsave(&nvme_fc_lock, flags); 747 list_add_tail(&newrec->endp_list, &lport->endp_list); 748 spin_unlock_irqrestore(&nvme_fc_lock, flags); 749 750 nvme_fc_signal_discovery_scan(lport, newrec); 751 752 *portptr = &newrec->remoteport; 753 return 0; 754 755 out_kfree_rport: 756 kfree(newrec); 757 out_lport_put: 758 nvme_fc_lport_put(lport); 759 out_reghost_failed: 760 *portptr = NULL; 761 return ret; 762 } 763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 764 765 static int 766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 767 { 768 struct nvmefc_ls_req_op *lsop; 769 unsigned long flags; 770 771 restart: 772 spin_lock_irqsave(&rport->lock, flags); 773 774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 776 lsop->flags |= FCOP_FLAGS_TERMIO; 777 spin_unlock_irqrestore(&rport->lock, flags); 778 rport->lport->ops->ls_abort(&rport->lport->localport, 779 &rport->remoteport, 780 &lsop->ls_req); 781 goto restart; 782 } 783 } 784 spin_unlock_irqrestore(&rport->lock, flags); 785 786 return 0; 787 } 788 789 static void 790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 791 { 792 dev_info(ctrl->ctrl.device, 793 "NVME-FC{%d}: controller connectivity lost. Awaiting " 794 "Reconnect", ctrl->cnum); 795 796 switch (ctrl->ctrl.state) { 797 case NVME_CTRL_NEW: 798 case NVME_CTRL_LIVE: 799 /* 800 * Schedule a controller reset. The reset will terminate the 801 * association and schedule the reconnect timer. Reconnects 802 * will be attempted until either the ctlr_loss_tmo 803 * (max_retries * connect_delay) expires or the remoteport's 804 * dev_loss_tmo expires. 805 */ 806 if (nvme_reset_ctrl(&ctrl->ctrl)) { 807 dev_warn(ctrl->ctrl.device, 808 "NVME-FC{%d}: Couldn't schedule reset.\n", 809 ctrl->cnum); 810 nvme_delete_ctrl(&ctrl->ctrl); 811 } 812 break; 813 814 case NVME_CTRL_CONNECTING: 815 /* 816 * The association has already been terminated and the 817 * controller is attempting reconnects. No need to do anything 818 * futher. Reconnects will be attempted until either the 819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 820 * remoteport's dev_loss_tmo expires. 821 */ 822 break; 823 824 case NVME_CTRL_RESETTING: 825 /* 826 * Controller is already in the process of terminating the 827 * association. No need to do anything further. The reconnect 828 * step will kick in naturally after the association is 829 * terminated. 830 */ 831 break; 832 833 case NVME_CTRL_DELETING: 834 case NVME_CTRL_DELETING_NOIO: 835 default: 836 /* no action to take - let it delete */ 837 break; 838 } 839 } 840 841 /** 842 * nvme_fc_unregister_remoteport - transport entry point called by an 843 * LLDD to deregister/remove a previously 844 * registered a NVME subsystem FC port. 845 * @portptr: pointer to the (registered) remote port that is to be 846 * deregistered. 847 * 848 * Returns: 849 * a completion status. Must be 0 upon success; a negative errno 850 * (ex: -ENXIO) upon failure. 851 */ 852 int 853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 854 { 855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 856 struct nvme_fc_ctrl *ctrl; 857 unsigned long flags; 858 859 if (!portptr) 860 return -EINVAL; 861 862 spin_lock_irqsave(&rport->lock, flags); 863 864 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 865 spin_unlock_irqrestore(&rport->lock, flags); 866 return -EINVAL; 867 } 868 portptr->port_state = FC_OBJSTATE_DELETED; 869 870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 871 872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 873 /* if dev_loss_tmo==0, dev loss is immediate */ 874 if (!portptr->dev_loss_tmo) { 875 dev_warn(ctrl->ctrl.device, 876 "NVME-FC{%d}: controller connectivity lost.\n", 877 ctrl->cnum); 878 nvme_delete_ctrl(&ctrl->ctrl); 879 } else 880 nvme_fc_ctrl_connectivity_loss(ctrl); 881 } 882 883 spin_unlock_irqrestore(&rport->lock, flags); 884 885 nvme_fc_abort_lsops(rport); 886 887 if (atomic_read(&rport->act_ctrl_cnt) == 0) 888 rport->lport->ops->remoteport_delete(portptr); 889 890 /* 891 * release the reference, which will allow, if all controllers 892 * go away, which should only occur after dev_loss_tmo occurs, 893 * for the rport to be torn down. 894 */ 895 nvme_fc_rport_put(rport); 896 897 return 0; 898 } 899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 900 901 /** 902 * nvme_fc_rescan_remoteport - transport entry point called by an 903 * LLDD to request a nvme device rescan. 904 * @remoteport: pointer to the (registered) remote port that is to be 905 * rescanned. 906 * 907 * Returns: N/A 908 */ 909 void 910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 911 { 912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 913 914 nvme_fc_signal_discovery_scan(rport->lport, rport); 915 } 916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 917 918 int 919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 920 u32 dev_loss_tmo) 921 { 922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 923 unsigned long flags; 924 925 spin_lock_irqsave(&rport->lock, flags); 926 927 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 928 spin_unlock_irqrestore(&rport->lock, flags); 929 return -EINVAL; 930 } 931 932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 933 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 934 935 spin_unlock_irqrestore(&rport->lock, flags); 936 937 return 0; 938 } 939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 940 941 942 /* *********************** FC-NVME DMA Handling **************************** */ 943 944 /* 945 * The fcloop device passes in a NULL device pointer. Real LLD's will 946 * pass in a valid device pointer. If NULL is passed to the dma mapping 947 * routines, depending on the platform, it may or may not succeed, and 948 * may crash. 949 * 950 * As such: 951 * Wrapper all the dma routines and check the dev pointer. 952 * 953 * If simple mappings (return just a dma address, we'll noop them, 954 * returning a dma address of 0. 955 * 956 * On more complex mappings (dma_map_sg), a pseudo routine fills 957 * in the scatter list, setting all dma addresses to 0. 958 */ 959 960 static inline dma_addr_t 961 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 962 enum dma_data_direction dir) 963 { 964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 965 } 966 967 static inline int 968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 969 { 970 return dev ? dma_mapping_error(dev, dma_addr) : 0; 971 } 972 973 static inline void 974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 975 enum dma_data_direction dir) 976 { 977 if (dev) 978 dma_unmap_single(dev, addr, size, dir); 979 } 980 981 static inline void 982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 983 enum dma_data_direction dir) 984 { 985 if (dev) 986 dma_sync_single_for_cpu(dev, addr, size, dir); 987 } 988 989 static inline void 990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 991 enum dma_data_direction dir) 992 { 993 if (dev) 994 dma_sync_single_for_device(dev, addr, size, dir); 995 } 996 997 /* pseudo dma_map_sg call */ 998 static int 999 fc_map_sg(struct scatterlist *sg, int nents) 1000 { 1001 struct scatterlist *s; 1002 int i; 1003 1004 WARN_ON(nents == 0 || sg[0].length == 0); 1005 1006 for_each_sg(sg, s, nents, i) { 1007 s->dma_address = 0L; 1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1009 s->dma_length = s->length; 1010 #endif 1011 } 1012 return nents; 1013 } 1014 1015 static inline int 1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1017 enum dma_data_direction dir) 1018 { 1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 1020 } 1021 1022 static inline void 1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1024 enum dma_data_direction dir) 1025 { 1026 if (dev) 1027 dma_unmap_sg(dev, sg, nents, dir); 1028 } 1029 1030 /* *********************** FC-NVME LS Handling **************************** */ 1031 1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1034 1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1036 1037 static void 1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1039 { 1040 struct nvme_fc_rport *rport = lsop->rport; 1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&rport->lock, flags); 1045 1046 if (!lsop->req_queued) { 1047 spin_unlock_irqrestore(&rport->lock, flags); 1048 return; 1049 } 1050 1051 list_del(&lsop->lsreq_list); 1052 1053 lsop->req_queued = false; 1054 1055 spin_unlock_irqrestore(&rport->lock, flags); 1056 1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1058 (lsreq->rqstlen + lsreq->rsplen), 1059 DMA_BIDIRECTIONAL); 1060 1061 nvme_fc_rport_put(rport); 1062 } 1063 1064 static int 1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1066 struct nvmefc_ls_req_op *lsop, 1067 void (*done)(struct nvmefc_ls_req *req, int status)) 1068 { 1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1070 unsigned long flags; 1071 int ret = 0; 1072 1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1074 return -ECONNREFUSED; 1075 1076 if (!nvme_fc_rport_get(rport)) 1077 return -ESHUTDOWN; 1078 1079 lsreq->done = done; 1080 lsop->rport = rport; 1081 lsop->req_queued = false; 1082 INIT_LIST_HEAD(&lsop->lsreq_list); 1083 init_completion(&lsop->ls_done); 1084 1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1086 lsreq->rqstlen + lsreq->rsplen, 1087 DMA_BIDIRECTIONAL); 1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1089 ret = -EFAULT; 1090 goto out_putrport; 1091 } 1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1093 1094 spin_lock_irqsave(&rport->lock, flags); 1095 1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1097 1098 lsop->req_queued = true; 1099 1100 spin_unlock_irqrestore(&rport->lock, flags); 1101 1102 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1103 &rport->remoteport, lsreq); 1104 if (ret) 1105 goto out_unlink; 1106 1107 return 0; 1108 1109 out_unlink: 1110 lsop->ls_error = ret; 1111 spin_lock_irqsave(&rport->lock, flags); 1112 lsop->req_queued = false; 1113 list_del(&lsop->lsreq_list); 1114 spin_unlock_irqrestore(&rport->lock, flags); 1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1116 (lsreq->rqstlen + lsreq->rsplen), 1117 DMA_BIDIRECTIONAL); 1118 out_putrport: 1119 nvme_fc_rport_put(rport); 1120 1121 return ret; 1122 } 1123 1124 static void 1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1126 { 1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1128 1129 lsop->ls_error = status; 1130 complete(&lsop->ls_done); 1131 } 1132 1133 static int 1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1135 { 1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1138 int ret; 1139 1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1141 1142 if (!ret) { 1143 /* 1144 * No timeout/not interruptible as we need the struct 1145 * to exist until the lldd calls us back. Thus mandate 1146 * wait until driver calls back. lldd responsible for 1147 * the timeout action 1148 */ 1149 wait_for_completion(&lsop->ls_done); 1150 1151 __nvme_fc_finish_ls_req(lsop); 1152 1153 ret = lsop->ls_error; 1154 } 1155 1156 if (ret) 1157 return ret; 1158 1159 /* ACC or RJT payload ? */ 1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1161 return -ENXIO; 1162 1163 return 0; 1164 } 1165 1166 static int 1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1168 struct nvmefc_ls_req_op *lsop, 1169 void (*done)(struct nvmefc_ls_req *req, int status)) 1170 { 1171 /* don't wait for completion */ 1172 1173 return __nvme_fc_send_ls_req(rport, lsop, done); 1174 } 1175 1176 static int 1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1179 { 1180 struct nvmefc_ls_req_op *lsop; 1181 struct nvmefc_ls_req *lsreq; 1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1184 unsigned long flags; 1185 int ret, fcret = 0; 1186 1187 lsop = kzalloc((sizeof(*lsop) + 1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1190 if (!lsop) { 1191 dev_info(ctrl->ctrl.device, 1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1193 ctrl->cnum); 1194 ret = -ENOMEM; 1195 goto out_no_memory; 1196 } 1197 1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1200 lsreq = &lsop->ls_req; 1201 if (ctrl->lport->ops->lsrqst_priv_sz) 1202 lsreq->private = &assoc_acc[1]; 1203 else 1204 lsreq->private = NULL; 1205 1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1207 assoc_rqst->desc_list_len = 1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1209 1210 assoc_rqst->assoc_cmd.desc_tag = 1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1212 assoc_rqst->assoc_cmd.desc_len = 1213 fcnvme_lsdesc_len( 1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1215 1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1218 /* Linux supports only Dynamic controllers */ 1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1225 1226 lsop->queue = queue; 1227 lsreq->rqstaddr = assoc_rqst; 1228 lsreq->rqstlen = sizeof(*assoc_rqst); 1229 lsreq->rspaddr = assoc_acc; 1230 lsreq->rsplen = sizeof(*assoc_acc); 1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1232 1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1234 if (ret) 1235 goto out_free_buffer; 1236 1237 /* process connect LS completion */ 1238 1239 /* validate the ACC response */ 1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1241 fcret = VERR_LSACC; 1242 else if (assoc_acc->hdr.desc_list_len != 1243 fcnvme_lsdesc_len( 1244 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1245 fcret = VERR_CR_ASSOC_ACC_LEN; 1246 else if (assoc_acc->hdr.rqst.desc_tag != 1247 cpu_to_be32(FCNVME_LSDESC_RQST)) 1248 fcret = VERR_LSDESC_RQST; 1249 else if (assoc_acc->hdr.rqst.desc_len != 1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1251 fcret = VERR_LSDESC_RQST_LEN; 1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1253 fcret = VERR_CR_ASSOC; 1254 else if (assoc_acc->associd.desc_tag != 1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1256 fcret = VERR_ASSOC_ID; 1257 else if (assoc_acc->associd.desc_len != 1258 fcnvme_lsdesc_len( 1259 sizeof(struct fcnvme_lsdesc_assoc_id))) 1260 fcret = VERR_ASSOC_ID_LEN; 1261 else if (assoc_acc->connectid.desc_tag != 1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1263 fcret = VERR_CONN_ID; 1264 else if (assoc_acc->connectid.desc_len != 1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1266 fcret = VERR_CONN_ID_LEN; 1267 1268 if (fcret) { 1269 ret = -EBADF; 1270 dev_err(ctrl->dev, 1271 "q %d Create Association LS failed: %s\n", 1272 queue->qnum, validation_errors[fcret]); 1273 } else { 1274 spin_lock_irqsave(&ctrl->lock, flags); 1275 ctrl->association_id = 1276 be64_to_cpu(assoc_acc->associd.association_id); 1277 queue->connection_id = 1278 be64_to_cpu(assoc_acc->connectid.connection_id); 1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1280 spin_unlock_irqrestore(&ctrl->lock, flags); 1281 } 1282 1283 out_free_buffer: 1284 kfree(lsop); 1285 out_no_memory: 1286 if (ret) 1287 dev_err(ctrl->dev, 1288 "queue %d connect admin queue failed (%d).\n", 1289 queue->qnum, ret); 1290 return ret; 1291 } 1292 1293 static int 1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1295 u16 qsize, u16 ersp_ratio) 1296 { 1297 struct nvmefc_ls_req_op *lsop; 1298 struct nvmefc_ls_req *lsreq; 1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1300 struct fcnvme_ls_cr_conn_acc *conn_acc; 1301 int ret, fcret = 0; 1302 1303 lsop = kzalloc((sizeof(*lsop) + 1304 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1306 if (!lsop) { 1307 dev_info(ctrl->ctrl.device, 1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1309 ctrl->cnum); 1310 ret = -ENOMEM; 1311 goto out_no_memory; 1312 } 1313 1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1316 lsreq = &lsop->ls_req; 1317 if (ctrl->lport->ops->lsrqst_priv_sz) 1318 lsreq->private = (void *)&conn_acc[1]; 1319 else 1320 lsreq->private = NULL; 1321 1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1323 conn_rqst->desc_list_len = cpu_to_be32( 1324 sizeof(struct fcnvme_lsdesc_assoc_id) + 1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1326 1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1328 conn_rqst->associd.desc_len = 1329 fcnvme_lsdesc_len( 1330 sizeof(struct fcnvme_lsdesc_assoc_id)); 1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1332 conn_rqst->connect_cmd.desc_tag = 1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1334 conn_rqst->connect_cmd.desc_len = 1335 fcnvme_lsdesc_len( 1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1340 1341 lsop->queue = queue; 1342 lsreq->rqstaddr = conn_rqst; 1343 lsreq->rqstlen = sizeof(*conn_rqst); 1344 lsreq->rspaddr = conn_acc; 1345 lsreq->rsplen = sizeof(*conn_acc); 1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1347 1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1349 if (ret) 1350 goto out_free_buffer; 1351 1352 /* process connect LS completion */ 1353 1354 /* validate the ACC response */ 1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1356 fcret = VERR_LSACC; 1357 else if (conn_acc->hdr.desc_list_len != 1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1359 fcret = VERR_CR_CONN_ACC_LEN; 1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1361 fcret = VERR_LSDESC_RQST; 1362 else if (conn_acc->hdr.rqst.desc_len != 1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1364 fcret = VERR_LSDESC_RQST_LEN; 1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1366 fcret = VERR_CR_CONN; 1367 else if (conn_acc->connectid.desc_tag != 1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1369 fcret = VERR_CONN_ID; 1370 else if (conn_acc->connectid.desc_len != 1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1372 fcret = VERR_CONN_ID_LEN; 1373 1374 if (fcret) { 1375 ret = -EBADF; 1376 dev_err(ctrl->dev, 1377 "q %d Create I/O Connection LS failed: %s\n", 1378 queue->qnum, validation_errors[fcret]); 1379 } else { 1380 queue->connection_id = 1381 be64_to_cpu(conn_acc->connectid.connection_id); 1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1383 } 1384 1385 out_free_buffer: 1386 kfree(lsop); 1387 out_no_memory: 1388 if (ret) 1389 dev_err(ctrl->dev, 1390 "queue %d connect I/O queue failed (%d).\n", 1391 queue->qnum, ret); 1392 return ret; 1393 } 1394 1395 static void 1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1397 { 1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1399 1400 __nvme_fc_finish_ls_req(lsop); 1401 1402 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1403 1404 kfree(lsop); 1405 } 1406 1407 /* 1408 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1409 * the FC-NVME Association. Terminating the association also 1410 * terminates the FC-NVME connections (per queue, both admin and io 1411 * queues) that are part of the association. E.g. things are torn 1412 * down, and the related FC-NVME Association ID and Connection IDs 1413 * become invalid. 1414 * 1415 * The behavior of the fc-nvme initiator is such that it's 1416 * understanding of the association and connections will implicitly 1417 * be torn down. The action is implicit as it may be due to a loss of 1418 * connectivity with the fc-nvme target, so you may never get a 1419 * response even if you tried. As such, the action of this routine 1420 * is to asynchronously send the LS, ignore any results of the LS, and 1421 * continue on with terminating the association. If the fc-nvme target 1422 * is present and receives the LS, it too can tear down. 1423 */ 1424 static void 1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1426 { 1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1429 struct nvmefc_ls_req_op *lsop; 1430 struct nvmefc_ls_req *lsreq; 1431 int ret; 1432 1433 lsop = kzalloc((sizeof(*lsop) + 1434 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1436 if (!lsop) { 1437 dev_info(ctrl->ctrl.device, 1438 "NVME-FC{%d}: send Disconnect Association " 1439 "failed: ENOMEM\n", 1440 ctrl->cnum); 1441 return; 1442 } 1443 1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1446 lsreq = &lsop->ls_req; 1447 if (ctrl->lport->ops->lsrqst_priv_sz) 1448 lsreq->private = (void *)&discon_acc[1]; 1449 else 1450 lsreq->private = NULL; 1451 1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1453 ctrl->association_id); 1454 1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1456 nvme_fc_disconnect_assoc_done); 1457 if (ret) 1458 kfree(lsop); 1459 } 1460 1461 static void 1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1463 { 1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1465 struct nvme_fc_rport *rport = lsop->rport; 1466 struct nvme_fc_lport *lport = rport->lport; 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&rport->lock, flags); 1470 list_del(&lsop->lsrcv_list); 1471 spin_unlock_irqrestore(&rport->lock, flags); 1472 1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1475 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1477 1478 kfree(lsop); 1479 1480 nvme_fc_rport_put(rport); 1481 } 1482 1483 static void 1484 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1485 { 1486 struct nvme_fc_rport *rport = lsop->rport; 1487 struct nvme_fc_lport *lport = rport->lport; 1488 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1489 int ret; 1490 1491 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1492 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1493 1494 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1495 lsop->lsrsp); 1496 if (ret) { 1497 dev_warn(lport->dev, 1498 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1499 w0->ls_cmd, ret); 1500 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1501 return; 1502 } 1503 } 1504 1505 static struct nvme_fc_ctrl * 1506 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1507 struct nvmefc_ls_rcv_op *lsop) 1508 { 1509 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1510 &lsop->rqstbuf->rq_dis_assoc; 1511 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1512 struct nvmefc_ls_rcv_op *oldls = NULL; 1513 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1514 unsigned long flags; 1515 1516 spin_lock_irqsave(&rport->lock, flags); 1517 1518 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1519 if (!nvme_fc_ctrl_get(ctrl)) 1520 continue; 1521 spin_lock(&ctrl->lock); 1522 if (association_id == ctrl->association_id) { 1523 oldls = ctrl->rcv_disconn; 1524 ctrl->rcv_disconn = lsop; 1525 ret = ctrl; 1526 } 1527 spin_unlock(&ctrl->lock); 1528 if (ret) 1529 /* leave the ctrl get reference */ 1530 break; 1531 nvme_fc_ctrl_put(ctrl); 1532 } 1533 1534 spin_unlock_irqrestore(&rport->lock, flags); 1535 1536 /* transmit a response for anything that was pending */ 1537 if (oldls) { 1538 dev_info(rport->lport->dev, 1539 "NVME-FC{%d}: Multiple Disconnect Association " 1540 "LS's received\n", ctrl->cnum); 1541 /* overwrite good response with bogus failure */ 1542 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1543 sizeof(*oldls->rspbuf), 1544 rqst->w0.ls_cmd, 1545 FCNVME_RJT_RC_UNAB, 1546 FCNVME_RJT_EXP_NONE, 0); 1547 nvme_fc_xmt_ls_rsp(oldls); 1548 } 1549 1550 return ret; 1551 } 1552 1553 /* 1554 * returns true to mean LS handled and ls_rsp can be sent 1555 * returns false to defer ls_rsp xmt (will be done as part of 1556 * association termination) 1557 */ 1558 static bool 1559 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1560 { 1561 struct nvme_fc_rport *rport = lsop->rport; 1562 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1563 &lsop->rqstbuf->rq_dis_assoc; 1564 struct fcnvme_ls_disconnect_assoc_acc *acc = 1565 &lsop->rspbuf->rsp_dis_assoc; 1566 struct nvme_fc_ctrl *ctrl = NULL; 1567 int ret = 0; 1568 1569 memset(acc, 0, sizeof(*acc)); 1570 1571 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1572 if (!ret) { 1573 /* match an active association */ 1574 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1575 if (!ctrl) 1576 ret = VERR_NO_ASSOC; 1577 } 1578 1579 if (ret) { 1580 dev_info(rport->lport->dev, 1581 "Disconnect LS failed: %s\n", 1582 validation_errors[ret]); 1583 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1584 sizeof(*acc), rqst->w0.ls_cmd, 1585 (ret == VERR_NO_ASSOC) ? 1586 FCNVME_RJT_RC_INV_ASSOC : 1587 FCNVME_RJT_RC_LOGIC, 1588 FCNVME_RJT_EXP_NONE, 0); 1589 return true; 1590 } 1591 1592 /* format an ACCept response */ 1593 1594 lsop->lsrsp->rsplen = sizeof(*acc); 1595 1596 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1597 fcnvme_lsdesc_len( 1598 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1599 FCNVME_LS_DISCONNECT_ASSOC); 1600 1601 /* 1602 * the transmit of the response will occur after the exchanges 1603 * for the association have been ABTS'd by 1604 * nvme_fc_delete_association(). 1605 */ 1606 1607 /* fail the association */ 1608 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1609 1610 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1611 nvme_fc_ctrl_put(ctrl); 1612 1613 return false; 1614 } 1615 1616 /* 1617 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1618 * returns true if a response should be sent afterward, false if rsp will 1619 * be sent asynchronously. 1620 */ 1621 static bool 1622 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1623 { 1624 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1625 bool ret = true; 1626 1627 lsop->lsrsp->nvme_fc_private = lsop; 1628 lsop->lsrsp->rspbuf = lsop->rspbuf; 1629 lsop->lsrsp->rspdma = lsop->rspdma; 1630 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1631 /* Be preventative. handlers will later set to valid length */ 1632 lsop->lsrsp->rsplen = 0; 1633 1634 /* 1635 * handlers: 1636 * parse request input, execute the request, and format the 1637 * LS response 1638 */ 1639 switch (w0->ls_cmd) { 1640 case FCNVME_LS_DISCONNECT_ASSOC: 1641 ret = nvme_fc_ls_disconnect_assoc(lsop); 1642 break; 1643 case FCNVME_LS_DISCONNECT_CONN: 1644 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1645 sizeof(*lsop->rspbuf), w0->ls_cmd, 1646 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1647 break; 1648 case FCNVME_LS_CREATE_ASSOCIATION: 1649 case FCNVME_LS_CREATE_CONNECTION: 1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1651 sizeof(*lsop->rspbuf), w0->ls_cmd, 1652 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1653 break; 1654 default: 1655 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1656 sizeof(*lsop->rspbuf), w0->ls_cmd, 1657 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1658 break; 1659 } 1660 1661 return(ret); 1662 } 1663 1664 static void 1665 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1666 { 1667 struct nvme_fc_rport *rport = 1668 container_of(work, struct nvme_fc_rport, lsrcv_work); 1669 struct fcnvme_ls_rqst_w0 *w0; 1670 struct nvmefc_ls_rcv_op *lsop; 1671 unsigned long flags; 1672 bool sendrsp; 1673 1674 restart: 1675 sendrsp = true; 1676 spin_lock_irqsave(&rport->lock, flags); 1677 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1678 if (lsop->handled) 1679 continue; 1680 1681 lsop->handled = true; 1682 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1683 spin_unlock_irqrestore(&rport->lock, flags); 1684 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1685 } else { 1686 spin_unlock_irqrestore(&rport->lock, flags); 1687 w0 = &lsop->rqstbuf->w0; 1688 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1689 lsop->rspbuf, 1690 sizeof(*lsop->rspbuf), 1691 w0->ls_cmd, 1692 FCNVME_RJT_RC_UNAB, 1693 FCNVME_RJT_EXP_NONE, 0); 1694 } 1695 if (sendrsp) 1696 nvme_fc_xmt_ls_rsp(lsop); 1697 goto restart; 1698 } 1699 spin_unlock_irqrestore(&rport->lock, flags); 1700 } 1701 1702 /** 1703 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1704 * upon the reception of a NVME LS request. 1705 * 1706 * The nvme-fc layer will copy payload to an internal structure for 1707 * processing. As such, upon completion of the routine, the LLDD may 1708 * immediately free/reuse the LS request buffer passed in the call. 1709 * 1710 * If this routine returns error, the LLDD should abort the exchange. 1711 * 1712 * @portptr: pointer to the (registered) remote port that the LS 1713 * was received from. The remoteport is associated with 1714 * a specific localport. 1715 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1716 * used to reference the exchange corresponding to the LS 1717 * when issuing an ls response. 1718 * @lsreqbuf: pointer to the buffer containing the LS Request 1719 * @lsreqbuf_len: length, in bytes, of the received LS request 1720 */ 1721 int 1722 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1723 struct nvmefc_ls_rsp *lsrsp, 1724 void *lsreqbuf, u32 lsreqbuf_len) 1725 { 1726 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1727 struct nvme_fc_lport *lport = rport->lport; 1728 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1729 struct nvmefc_ls_rcv_op *lsop; 1730 unsigned long flags; 1731 int ret; 1732 1733 nvme_fc_rport_get(rport); 1734 1735 /* validate there's a routine to transmit a response */ 1736 if (!lport->ops->xmt_ls_rsp) { 1737 dev_info(lport->dev, 1738 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1739 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1740 nvmefc_ls_names[w0->ls_cmd] : ""); 1741 ret = -EINVAL; 1742 goto out_put; 1743 } 1744 1745 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1746 dev_info(lport->dev, 1747 "RCV %s LS failed: payload too large\n", 1748 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1749 nvmefc_ls_names[w0->ls_cmd] : ""); 1750 ret = -E2BIG; 1751 goto out_put; 1752 } 1753 1754 lsop = kzalloc(sizeof(*lsop) + 1755 sizeof(union nvmefc_ls_requests) + 1756 sizeof(union nvmefc_ls_responses), 1757 GFP_KERNEL); 1758 if (!lsop) { 1759 dev_info(lport->dev, 1760 "RCV %s LS failed: No memory\n", 1761 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1762 nvmefc_ls_names[w0->ls_cmd] : ""); 1763 ret = -ENOMEM; 1764 goto out_put; 1765 } 1766 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1]; 1767 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1]; 1768 1769 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1770 sizeof(*lsop->rspbuf), 1771 DMA_TO_DEVICE); 1772 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1773 dev_info(lport->dev, 1774 "RCV %s LS failed: DMA mapping failure\n", 1775 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1776 nvmefc_ls_names[w0->ls_cmd] : ""); 1777 ret = -EFAULT; 1778 goto out_free; 1779 } 1780 1781 lsop->rport = rport; 1782 lsop->lsrsp = lsrsp; 1783 1784 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1785 lsop->rqstdatalen = lsreqbuf_len; 1786 1787 spin_lock_irqsave(&rport->lock, flags); 1788 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1789 spin_unlock_irqrestore(&rport->lock, flags); 1790 ret = -ENOTCONN; 1791 goto out_unmap; 1792 } 1793 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1794 spin_unlock_irqrestore(&rport->lock, flags); 1795 1796 schedule_work(&rport->lsrcv_work); 1797 1798 return 0; 1799 1800 out_unmap: 1801 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1802 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1803 out_free: 1804 kfree(lsop); 1805 out_put: 1806 nvme_fc_rport_put(rport); 1807 return ret; 1808 } 1809 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1810 1811 1812 /* *********************** NVME Ctrl Routines **************************** */ 1813 1814 static void 1815 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1816 struct nvme_fc_fcp_op *op) 1817 { 1818 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1819 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1820 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1821 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1822 1823 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1824 } 1825 1826 static void 1827 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1828 unsigned int hctx_idx) 1829 { 1830 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1831 1832 return __nvme_fc_exit_request(set->driver_data, op); 1833 } 1834 1835 static int 1836 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1837 { 1838 unsigned long flags; 1839 int opstate; 1840 1841 spin_lock_irqsave(&ctrl->lock, flags); 1842 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1843 if (opstate != FCPOP_STATE_ACTIVE) 1844 atomic_set(&op->state, opstate); 1845 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1846 op->flags |= FCOP_FLAGS_TERMIO; 1847 ctrl->iocnt++; 1848 } 1849 spin_unlock_irqrestore(&ctrl->lock, flags); 1850 1851 if (opstate != FCPOP_STATE_ACTIVE) 1852 return -ECANCELED; 1853 1854 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1855 &ctrl->rport->remoteport, 1856 op->queue->lldd_handle, 1857 &op->fcp_req); 1858 1859 return 0; 1860 } 1861 1862 static void 1863 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1864 { 1865 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1866 int i; 1867 1868 /* ensure we've initialized the ops once */ 1869 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1870 return; 1871 1872 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1873 __nvme_fc_abort_op(ctrl, aen_op); 1874 } 1875 1876 static inline void 1877 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1878 struct nvme_fc_fcp_op *op, int opstate) 1879 { 1880 unsigned long flags; 1881 1882 if (opstate == FCPOP_STATE_ABORTED) { 1883 spin_lock_irqsave(&ctrl->lock, flags); 1884 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1885 op->flags & FCOP_FLAGS_TERMIO) { 1886 if (!--ctrl->iocnt) 1887 wake_up(&ctrl->ioabort_wait); 1888 } 1889 spin_unlock_irqrestore(&ctrl->lock, flags); 1890 } 1891 } 1892 1893 static void 1894 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1895 { 1896 struct nvme_fc_ctrl *ctrl = 1897 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1898 1899 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1900 } 1901 1902 /* 1903 * nvme_fc_io_getuuid - Routine called to get the appid field 1904 * associated with request by the lldd 1905 * @req:IO request from nvme fc to driver 1906 * Returns: UUID if there is an appid associated with VM or 1907 * NULL if the user/libvirt has not set the appid to VM 1908 */ 1909 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1910 { 1911 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1912 struct request *rq = op->rq; 1913 1914 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq->bio) 1915 return NULL; 1916 return blkcg_get_fc_appid(rq->bio); 1917 } 1918 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1919 1920 static void 1921 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1922 { 1923 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1924 struct request *rq = op->rq; 1925 struct nvmefc_fcp_req *freq = &op->fcp_req; 1926 struct nvme_fc_ctrl *ctrl = op->ctrl; 1927 struct nvme_fc_queue *queue = op->queue; 1928 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1929 struct nvme_command *sqe = &op->cmd_iu.sqe; 1930 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1931 union nvme_result result; 1932 bool terminate_assoc = true; 1933 int opstate; 1934 1935 /* 1936 * WARNING: 1937 * The current linux implementation of a nvme controller 1938 * allocates a single tag set for all io queues and sizes 1939 * the io queues to fully hold all possible tags. Thus, the 1940 * implementation does not reference or care about the sqhd 1941 * value as it never needs to use the sqhd/sqtail pointers 1942 * for submission pacing. 1943 * 1944 * This affects the FC-NVME implementation in two ways: 1945 * 1) As the value doesn't matter, we don't need to waste 1946 * cycles extracting it from ERSPs and stamping it in the 1947 * cases where the transport fabricates CQEs on successful 1948 * completions. 1949 * 2) The FC-NVME implementation requires that delivery of 1950 * ERSP completions are to go back to the nvme layer in order 1951 * relative to the rsn, such that the sqhd value will always 1952 * be "in order" for the nvme layer. As the nvme layer in 1953 * linux doesn't care about sqhd, there's no need to return 1954 * them in order. 1955 * 1956 * Additionally: 1957 * As the core nvme layer in linux currently does not look at 1958 * every field in the cqe - in cases where the FC transport must 1959 * fabricate a CQE, the following fields will not be set as they 1960 * are not referenced: 1961 * cqe.sqid, cqe.sqhd, cqe.command_id 1962 * 1963 * Failure or error of an individual i/o, in a transport 1964 * detected fashion unrelated to the nvme completion status, 1965 * potentially cause the initiator and target sides to get out 1966 * of sync on SQ head/tail (aka outstanding io count allowed). 1967 * Per FC-NVME spec, failure of an individual command requires 1968 * the connection to be terminated, which in turn requires the 1969 * association to be terminated. 1970 */ 1971 1972 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1973 1974 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1975 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1976 1977 if (opstate == FCPOP_STATE_ABORTED) 1978 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1979 else if (freq->status) { 1980 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1981 dev_info(ctrl->ctrl.device, 1982 "NVME-FC{%d}: io failed due to lldd error %d\n", 1983 ctrl->cnum, freq->status); 1984 } 1985 1986 /* 1987 * For the linux implementation, if we have an unsuccesful 1988 * status, they blk-mq layer can typically be called with the 1989 * non-zero status and the content of the cqe isn't important. 1990 */ 1991 if (status) 1992 goto done; 1993 1994 /* 1995 * command completed successfully relative to the wire 1996 * protocol. However, validate anything received and 1997 * extract the status and result from the cqe (create it 1998 * where necessary). 1999 */ 2000 2001 switch (freq->rcv_rsplen) { 2002 2003 case 0: 2004 case NVME_FC_SIZEOF_ZEROS_RSP: 2005 /* 2006 * No response payload or 12 bytes of payload (which 2007 * should all be zeros) are considered successful and 2008 * no payload in the CQE by the transport. 2009 */ 2010 if (freq->transferred_length != 2011 be32_to_cpu(op->cmd_iu.data_len)) { 2012 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2013 dev_info(ctrl->ctrl.device, 2014 "NVME-FC{%d}: io failed due to bad transfer " 2015 "length: %d vs expected %d\n", 2016 ctrl->cnum, freq->transferred_length, 2017 be32_to_cpu(op->cmd_iu.data_len)); 2018 goto done; 2019 } 2020 result.u64 = 0; 2021 break; 2022 2023 case sizeof(struct nvme_fc_ersp_iu): 2024 /* 2025 * The ERSP IU contains a full completion with CQE. 2026 * Validate ERSP IU and look at cqe. 2027 */ 2028 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2029 (freq->rcv_rsplen / 4) || 2030 be32_to_cpu(op->rsp_iu.xfrd_len) != 2031 freq->transferred_length || 2032 op->rsp_iu.ersp_result || 2033 sqe->common.command_id != cqe->command_id)) { 2034 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2035 dev_info(ctrl->ctrl.device, 2036 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2037 "iu len %d, xfr len %d vs %d, status code " 2038 "%d, cmdid %d vs %d\n", 2039 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2040 be32_to_cpu(op->rsp_iu.xfrd_len), 2041 freq->transferred_length, 2042 op->rsp_iu.ersp_result, 2043 sqe->common.command_id, 2044 cqe->command_id); 2045 goto done; 2046 } 2047 result = cqe->result; 2048 status = cqe->status; 2049 break; 2050 2051 default: 2052 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2053 dev_info(ctrl->ctrl.device, 2054 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2055 "len %d\n", 2056 ctrl->cnum, freq->rcv_rsplen); 2057 goto done; 2058 } 2059 2060 terminate_assoc = false; 2061 2062 done: 2063 if (op->flags & FCOP_FLAGS_AEN) { 2064 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2065 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2066 atomic_set(&op->state, FCPOP_STATE_IDLE); 2067 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2068 nvme_fc_ctrl_put(ctrl); 2069 goto check_error; 2070 } 2071 2072 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2073 if (!nvme_try_complete_req(rq, status, result)) 2074 nvme_fc_complete_rq(rq); 2075 2076 check_error: 2077 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING) 2078 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2079 } 2080 2081 static int 2082 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2083 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2084 struct request *rq, u32 rqno) 2085 { 2086 struct nvme_fcp_op_w_sgl *op_w_sgl = 2087 container_of(op, typeof(*op_w_sgl), op); 2088 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2089 int ret = 0; 2090 2091 memset(op, 0, sizeof(*op)); 2092 op->fcp_req.cmdaddr = &op->cmd_iu; 2093 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2094 op->fcp_req.rspaddr = &op->rsp_iu; 2095 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2096 op->fcp_req.done = nvme_fc_fcpio_done; 2097 op->ctrl = ctrl; 2098 op->queue = queue; 2099 op->rq = rq; 2100 op->rqno = rqno; 2101 2102 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2103 cmdiu->fc_id = NVME_CMD_FC_ID; 2104 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2105 if (queue->qnum) 2106 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2107 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2108 else 2109 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2110 2111 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2112 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2113 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2114 dev_err(ctrl->dev, 2115 "FCP Op failed - cmdiu dma mapping failed.\n"); 2116 ret = -EFAULT; 2117 goto out_on_error; 2118 } 2119 2120 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2121 &op->rsp_iu, sizeof(op->rsp_iu), 2122 DMA_FROM_DEVICE); 2123 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2124 dev_err(ctrl->dev, 2125 "FCP Op failed - rspiu dma mapping failed.\n"); 2126 ret = -EFAULT; 2127 } 2128 2129 atomic_set(&op->state, FCPOP_STATE_IDLE); 2130 out_on_error: 2131 return ret; 2132 } 2133 2134 static int 2135 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2136 unsigned int hctx_idx, unsigned int numa_node) 2137 { 2138 struct nvme_fc_ctrl *ctrl = set->driver_data; 2139 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2140 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2141 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2142 int res; 2143 2144 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2145 if (res) 2146 return res; 2147 op->op.fcp_req.first_sgl = op->sgl; 2148 op->op.fcp_req.private = &op->priv[0]; 2149 nvme_req(rq)->ctrl = &ctrl->ctrl; 2150 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2151 return res; 2152 } 2153 2154 static int 2155 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2156 { 2157 struct nvme_fc_fcp_op *aen_op; 2158 struct nvme_fc_cmd_iu *cmdiu; 2159 struct nvme_command *sqe; 2160 void *private = NULL; 2161 int i, ret; 2162 2163 aen_op = ctrl->aen_ops; 2164 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2165 if (ctrl->lport->ops->fcprqst_priv_sz) { 2166 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2167 GFP_KERNEL); 2168 if (!private) 2169 return -ENOMEM; 2170 } 2171 2172 cmdiu = &aen_op->cmd_iu; 2173 sqe = &cmdiu->sqe; 2174 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2175 aen_op, (struct request *)NULL, 2176 (NVME_AQ_BLK_MQ_DEPTH + i)); 2177 if (ret) { 2178 kfree(private); 2179 return ret; 2180 } 2181 2182 aen_op->flags = FCOP_FLAGS_AEN; 2183 aen_op->fcp_req.private = private; 2184 2185 memset(sqe, 0, sizeof(*sqe)); 2186 sqe->common.opcode = nvme_admin_async_event; 2187 /* Note: core layer may overwrite the sqe.command_id value */ 2188 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2189 } 2190 return 0; 2191 } 2192 2193 static void 2194 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2195 { 2196 struct nvme_fc_fcp_op *aen_op; 2197 int i; 2198 2199 cancel_work_sync(&ctrl->ctrl.async_event_work); 2200 aen_op = ctrl->aen_ops; 2201 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2202 __nvme_fc_exit_request(ctrl, aen_op); 2203 2204 kfree(aen_op->fcp_req.private); 2205 aen_op->fcp_req.private = NULL; 2206 } 2207 } 2208 2209 static inline void 2210 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 2211 unsigned int qidx) 2212 { 2213 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2214 2215 hctx->driver_data = queue; 2216 queue->hctx = hctx; 2217 } 2218 2219 static int 2220 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2221 unsigned int hctx_idx) 2222 { 2223 struct nvme_fc_ctrl *ctrl = data; 2224 2225 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 2226 2227 return 0; 2228 } 2229 2230 static int 2231 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2232 unsigned int hctx_idx) 2233 { 2234 struct nvme_fc_ctrl *ctrl = data; 2235 2236 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 2237 2238 return 0; 2239 } 2240 2241 static void 2242 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2243 { 2244 struct nvme_fc_queue *queue; 2245 2246 queue = &ctrl->queues[idx]; 2247 memset(queue, 0, sizeof(*queue)); 2248 queue->ctrl = ctrl; 2249 queue->qnum = idx; 2250 atomic_set(&queue->csn, 0); 2251 queue->dev = ctrl->dev; 2252 2253 if (idx > 0) 2254 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2255 else 2256 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2257 2258 /* 2259 * Considered whether we should allocate buffers for all SQEs 2260 * and CQEs and dma map them - mapping their respective entries 2261 * into the request structures (kernel vm addr and dma address) 2262 * thus the driver could use the buffers/mappings directly. 2263 * It only makes sense if the LLDD would use them for its 2264 * messaging api. It's very unlikely most adapter api's would use 2265 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2266 * structures were used instead. 2267 */ 2268 } 2269 2270 /* 2271 * This routine terminates a queue at the transport level. 2272 * The transport has already ensured that all outstanding ios on 2273 * the queue have been terminated. 2274 * The transport will send a Disconnect LS request to terminate 2275 * the queue's connection. Termination of the admin queue will also 2276 * terminate the association at the target. 2277 */ 2278 static void 2279 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2280 { 2281 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2282 return; 2283 2284 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2285 /* 2286 * Current implementation never disconnects a single queue. 2287 * It always terminates a whole association. So there is never 2288 * a disconnect(queue) LS sent to the target. 2289 */ 2290 2291 queue->connection_id = 0; 2292 atomic_set(&queue->csn, 0); 2293 } 2294 2295 static void 2296 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2297 struct nvme_fc_queue *queue, unsigned int qidx) 2298 { 2299 if (ctrl->lport->ops->delete_queue) 2300 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2301 queue->lldd_handle); 2302 queue->lldd_handle = NULL; 2303 } 2304 2305 static void 2306 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2307 { 2308 int i; 2309 2310 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2311 nvme_fc_free_queue(&ctrl->queues[i]); 2312 } 2313 2314 static int 2315 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2316 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2317 { 2318 int ret = 0; 2319 2320 queue->lldd_handle = NULL; 2321 if (ctrl->lport->ops->create_queue) 2322 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2323 qidx, qsize, &queue->lldd_handle); 2324 2325 return ret; 2326 } 2327 2328 static void 2329 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2330 { 2331 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2332 int i; 2333 2334 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2335 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2336 } 2337 2338 static int 2339 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2340 { 2341 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2342 int i, ret; 2343 2344 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2345 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2346 if (ret) 2347 goto delete_queues; 2348 } 2349 2350 return 0; 2351 2352 delete_queues: 2353 for (; i > 0; i--) 2354 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2355 return ret; 2356 } 2357 2358 static int 2359 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2360 { 2361 int i, ret = 0; 2362 2363 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2364 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2365 (qsize / 5)); 2366 if (ret) 2367 break; 2368 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2369 if (ret) 2370 break; 2371 2372 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2373 } 2374 2375 return ret; 2376 } 2377 2378 static void 2379 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2380 { 2381 int i; 2382 2383 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2384 nvme_fc_init_queue(ctrl, i); 2385 } 2386 2387 static void 2388 nvme_fc_ctrl_free(struct kref *ref) 2389 { 2390 struct nvme_fc_ctrl *ctrl = 2391 container_of(ref, struct nvme_fc_ctrl, ref); 2392 unsigned long flags; 2393 2394 if (ctrl->ctrl.tagset) { 2395 blk_cleanup_queue(ctrl->ctrl.connect_q); 2396 blk_mq_free_tag_set(&ctrl->tag_set); 2397 } 2398 2399 /* remove from rport list */ 2400 spin_lock_irqsave(&ctrl->rport->lock, flags); 2401 list_del(&ctrl->ctrl_list); 2402 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2403 2404 nvme_start_admin_queue(&ctrl->ctrl); 2405 blk_cleanup_queue(ctrl->ctrl.admin_q); 2406 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 2407 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2408 2409 kfree(ctrl->queues); 2410 2411 put_device(ctrl->dev); 2412 nvme_fc_rport_put(ctrl->rport); 2413 2414 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2415 if (ctrl->ctrl.opts) 2416 nvmf_free_options(ctrl->ctrl.opts); 2417 kfree(ctrl); 2418 } 2419 2420 static void 2421 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2422 { 2423 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2424 } 2425 2426 static int 2427 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2428 { 2429 return kref_get_unless_zero(&ctrl->ref); 2430 } 2431 2432 /* 2433 * All accesses from nvme core layer done - can now free the 2434 * controller. Called after last nvme_put_ctrl() call 2435 */ 2436 static void 2437 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2438 { 2439 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2440 2441 WARN_ON(nctrl != &ctrl->ctrl); 2442 2443 nvme_fc_ctrl_put(ctrl); 2444 } 2445 2446 /* 2447 * This routine is used by the transport when it needs to find active 2448 * io on a queue that is to be terminated. The transport uses 2449 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2450 * this routine to kill them on a 1 by 1 basis. 2451 * 2452 * As FC allocates FC exchange for each io, the transport must contact 2453 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2454 * After terminating the exchange the LLDD will call the transport's 2455 * normal io done path for the request, but it will have an aborted 2456 * status. The done path will return the io request back to the block 2457 * layer with an error status. 2458 */ 2459 static bool 2460 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2461 { 2462 struct nvme_ctrl *nctrl = data; 2463 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2464 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2465 2466 op->nreq.flags |= NVME_REQ_CANCELLED; 2467 __nvme_fc_abort_op(ctrl, op); 2468 return true; 2469 } 2470 2471 /* 2472 * This routine runs through all outstanding commands on the association 2473 * and aborts them. This routine is typically be called by the 2474 * delete_association routine. It is also called due to an error during 2475 * reconnect. In that scenario, it is most likely a command that initializes 2476 * the controller, including fabric Connect commands on io queues, that 2477 * may have timed out or failed thus the io must be killed for the connect 2478 * thread to see the error. 2479 */ 2480 static void 2481 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2482 { 2483 int q; 2484 2485 /* 2486 * if aborting io, the queues are no longer good, mark them 2487 * all as not live. 2488 */ 2489 if (ctrl->ctrl.queue_count > 1) { 2490 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2491 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2492 } 2493 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2494 2495 /* 2496 * If io queues are present, stop them and terminate all outstanding 2497 * ios on them. As FC allocates FC exchange for each io, the 2498 * transport must contact the LLDD to terminate the exchange, 2499 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2500 * to tell us what io's are busy and invoke a transport routine 2501 * to kill them with the LLDD. After terminating the exchange 2502 * the LLDD will call the transport's normal io done path, but it 2503 * will have an aborted status. The done path will return the 2504 * io requests back to the block layer as part of normal completions 2505 * (but with error status). 2506 */ 2507 if (ctrl->ctrl.queue_count > 1) { 2508 nvme_stop_queues(&ctrl->ctrl); 2509 nvme_sync_io_queues(&ctrl->ctrl); 2510 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2511 nvme_fc_terminate_exchange, &ctrl->ctrl); 2512 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2513 if (start_queues) 2514 nvme_start_queues(&ctrl->ctrl); 2515 } 2516 2517 /* 2518 * Other transports, which don't have link-level contexts bound 2519 * to sqe's, would try to gracefully shutdown the controller by 2520 * writing the registers for shutdown and polling (call 2521 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2522 * just aborted and we will wait on those contexts, and given 2523 * there was no indication of how live the controlelr is on the 2524 * link, don't send more io to create more contexts for the 2525 * shutdown. Let the controller fail via keepalive failure if 2526 * its still present. 2527 */ 2528 2529 /* 2530 * clean up the admin queue. Same thing as above. 2531 */ 2532 nvme_stop_admin_queue(&ctrl->ctrl); 2533 blk_sync_queue(ctrl->ctrl.admin_q); 2534 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2535 nvme_fc_terminate_exchange, &ctrl->ctrl); 2536 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2537 } 2538 2539 static void 2540 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2541 { 2542 /* 2543 * if an error (io timeout, etc) while (re)connecting, the remote 2544 * port requested terminating of the association (disconnect_ls) 2545 * or an error (timeout or abort) occurred on an io while creating 2546 * the controller. Abort any ios on the association and let the 2547 * create_association error path resolve things. 2548 */ 2549 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2550 __nvme_fc_abort_outstanding_ios(ctrl, true); 2551 set_bit(ASSOC_FAILED, &ctrl->flags); 2552 return; 2553 } 2554 2555 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2556 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2557 return; 2558 2559 dev_warn(ctrl->ctrl.device, 2560 "NVME-FC{%d}: transport association event: %s\n", 2561 ctrl->cnum, errmsg); 2562 dev_warn(ctrl->ctrl.device, 2563 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2564 2565 nvme_reset_ctrl(&ctrl->ctrl); 2566 } 2567 2568 static enum blk_eh_timer_return 2569 nvme_fc_timeout(struct request *rq, bool reserved) 2570 { 2571 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2572 struct nvme_fc_ctrl *ctrl = op->ctrl; 2573 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2574 struct nvme_command *sqe = &cmdiu->sqe; 2575 2576 /* 2577 * Attempt to abort the offending command. Command completion 2578 * will detect the aborted io and will fail the connection. 2579 */ 2580 dev_info(ctrl->ctrl.device, 2581 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: " 2582 "x%08x/x%08x\n", 2583 ctrl->cnum, op->queue->qnum, sqe->common.opcode, 2584 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11); 2585 if (__nvme_fc_abort_op(ctrl, op)) 2586 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2587 2588 /* 2589 * the io abort has been initiated. Have the reset timer 2590 * restarted and the abort completion will complete the io 2591 * shortly. Avoids a synchronous wait while the abort finishes. 2592 */ 2593 return BLK_EH_RESET_TIMER; 2594 } 2595 2596 static int 2597 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2598 struct nvme_fc_fcp_op *op) 2599 { 2600 struct nvmefc_fcp_req *freq = &op->fcp_req; 2601 int ret; 2602 2603 freq->sg_cnt = 0; 2604 2605 if (!blk_rq_nr_phys_segments(rq)) 2606 return 0; 2607 2608 freq->sg_table.sgl = freq->first_sgl; 2609 ret = sg_alloc_table_chained(&freq->sg_table, 2610 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2611 NVME_INLINE_SG_CNT); 2612 if (ret) 2613 return -ENOMEM; 2614 2615 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2616 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2617 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2618 op->nents, rq_dma_dir(rq)); 2619 if (unlikely(freq->sg_cnt <= 0)) { 2620 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2621 freq->sg_cnt = 0; 2622 return -EFAULT; 2623 } 2624 2625 /* 2626 * TODO: blk_integrity_rq(rq) for DIF 2627 */ 2628 return 0; 2629 } 2630 2631 static void 2632 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2633 struct nvme_fc_fcp_op *op) 2634 { 2635 struct nvmefc_fcp_req *freq = &op->fcp_req; 2636 2637 if (!freq->sg_cnt) 2638 return; 2639 2640 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2641 rq_dma_dir(rq)); 2642 2643 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2644 2645 freq->sg_cnt = 0; 2646 } 2647 2648 /* 2649 * In FC, the queue is a logical thing. At transport connect, the target 2650 * creates its "queue" and returns a handle that is to be given to the 2651 * target whenever it posts something to the corresponding SQ. When an 2652 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2653 * command contained within the SQE, an io, and assigns a FC exchange 2654 * to it. The SQE and the associated SQ handle are sent in the initial 2655 * CMD IU sents on the exchange. All transfers relative to the io occur 2656 * as part of the exchange. The CQE is the last thing for the io, 2657 * which is transferred (explicitly or implicitly) with the RSP IU 2658 * sent on the exchange. After the CQE is received, the FC exchange is 2659 * terminaed and the Exchange may be used on a different io. 2660 * 2661 * The transport to LLDD api has the transport making a request for a 2662 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2663 * resource and transfers the command. The LLDD will then process all 2664 * steps to complete the io. Upon completion, the transport done routine 2665 * is called. 2666 * 2667 * So - while the operation is outstanding to the LLDD, there is a link 2668 * level FC exchange resource that is also outstanding. This must be 2669 * considered in all cleanup operations. 2670 */ 2671 static blk_status_t 2672 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2673 struct nvme_fc_fcp_op *op, u32 data_len, 2674 enum nvmefc_fcp_datadir io_dir) 2675 { 2676 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2677 struct nvme_command *sqe = &cmdiu->sqe; 2678 int ret, opstate; 2679 2680 /* 2681 * before attempting to send the io, check to see if we believe 2682 * the target device is present 2683 */ 2684 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2685 return BLK_STS_RESOURCE; 2686 2687 if (!nvme_fc_ctrl_get(ctrl)) 2688 return BLK_STS_IOERR; 2689 2690 /* format the FC-NVME CMD IU and fcp_req */ 2691 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2692 cmdiu->data_len = cpu_to_be32(data_len); 2693 switch (io_dir) { 2694 case NVMEFC_FCP_WRITE: 2695 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2696 break; 2697 case NVMEFC_FCP_READ: 2698 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2699 break; 2700 case NVMEFC_FCP_NODATA: 2701 cmdiu->flags = 0; 2702 break; 2703 } 2704 op->fcp_req.payload_length = data_len; 2705 op->fcp_req.io_dir = io_dir; 2706 op->fcp_req.transferred_length = 0; 2707 op->fcp_req.rcv_rsplen = 0; 2708 op->fcp_req.status = NVME_SC_SUCCESS; 2709 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2710 2711 /* 2712 * validate per fabric rules, set fields mandated by fabric spec 2713 * as well as those by FC-NVME spec. 2714 */ 2715 WARN_ON_ONCE(sqe->common.metadata); 2716 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2717 2718 /* 2719 * format SQE DPTR field per FC-NVME rules: 2720 * type=0x5 Transport SGL Data Block Descriptor 2721 * subtype=0xA Transport-specific value 2722 * address=0 2723 * length=length of the data series 2724 */ 2725 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2726 NVME_SGL_FMT_TRANSPORT_A; 2727 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2728 sqe->rw.dptr.sgl.addr = 0; 2729 2730 if (!(op->flags & FCOP_FLAGS_AEN)) { 2731 ret = nvme_fc_map_data(ctrl, op->rq, op); 2732 if (ret < 0) { 2733 nvme_cleanup_cmd(op->rq); 2734 nvme_fc_ctrl_put(ctrl); 2735 if (ret == -ENOMEM || ret == -EAGAIN) 2736 return BLK_STS_RESOURCE; 2737 return BLK_STS_IOERR; 2738 } 2739 } 2740 2741 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2742 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2743 2744 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2745 2746 if (!(op->flags & FCOP_FLAGS_AEN)) 2747 blk_mq_start_request(op->rq); 2748 2749 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2750 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2751 &ctrl->rport->remoteport, 2752 queue->lldd_handle, &op->fcp_req); 2753 2754 if (ret) { 2755 /* 2756 * If the lld fails to send the command is there an issue with 2757 * the csn value? If the command that fails is the Connect, 2758 * no - as the connection won't be live. If it is a command 2759 * post-connect, it's possible a gap in csn may be created. 2760 * Does this matter? As Linux initiators don't send fused 2761 * commands, no. The gap would exist, but as there's nothing 2762 * that depends on csn order to be delivered on the target 2763 * side, it shouldn't hurt. It would be difficult for a 2764 * target to even detect the csn gap as it has no idea when the 2765 * cmd with the csn was supposed to arrive. 2766 */ 2767 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2768 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2769 2770 if (!(op->flags & FCOP_FLAGS_AEN)) { 2771 nvme_fc_unmap_data(ctrl, op->rq, op); 2772 nvme_cleanup_cmd(op->rq); 2773 } 2774 2775 nvme_fc_ctrl_put(ctrl); 2776 2777 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2778 ret != -EBUSY) 2779 return BLK_STS_IOERR; 2780 2781 return BLK_STS_RESOURCE; 2782 } 2783 2784 return BLK_STS_OK; 2785 } 2786 2787 static blk_status_t 2788 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2789 const struct blk_mq_queue_data *bd) 2790 { 2791 struct nvme_ns *ns = hctx->queue->queuedata; 2792 struct nvme_fc_queue *queue = hctx->driver_data; 2793 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2794 struct request *rq = bd->rq; 2795 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2796 enum nvmefc_fcp_datadir io_dir; 2797 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2798 u32 data_len; 2799 blk_status_t ret; 2800 2801 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2802 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2803 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2804 2805 ret = nvme_setup_cmd(ns, rq); 2806 if (ret) 2807 return ret; 2808 2809 /* 2810 * nvme core doesn't quite treat the rq opaquely. Commands such 2811 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2812 * there is no actual payload to be transferred. 2813 * To get it right, key data transmission on there being 1 or 2814 * more physical segments in the sg list. If there is no 2815 * physical segments, there is no payload. 2816 */ 2817 if (blk_rq_nr_phys_segments(rq)) { 2818 data_len = blk_rq_payload_bytes(rq); 2819 io_dir = ((rq_data_dir(rq) == WRITE) ? 2820 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2821 } else { 2822 data_len = 0; 2823 io_dir = NVMEFC_FCP_NODATA; 2824 } 2825 2826 2827 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2828 } 2829 2830 static void 2831 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2832 { 2833 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2834 struct nvme_fc_fcp_op *aen_op; 2835 blk_status_t ret; 2836 2837 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2838 return; 2839 2840 aen_op = &ctrl->aen_ops[0]; 2841 2842 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2843 NVMEFC_FCP_NODATA); 2844 if (ret) 2845 dev_err(ctrl->ctrl.device, 2846 "failed async event work\n"); 2847 } 2848 2849 static void 2850 nvme_fc_complete_rq(struct request *rq) 2851 { 2852 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2853 struct nvme_fc_ctrl *ctrl = op->ctrl; 2854 2855 atomic_set(&op->state, FCPOP_STATE_IDLE); 2856 op->flags &= ~FCOP_FLAGS_TERMIO; 2857 2858 nvme_fc_unmap_data(ctrl, rq, op); 2859 nvme_complete_rq(rq); 2860 nvme_fc_ctrl_put(ctrl); 2861 } 2862 2863 static int nvme_fc_map_queues(struct blk_mq_tag_set *set) 2864 { 2865 struct nvme_fc_ctrl *ctrl = set->driver_data; 2866 int i; 2867 2868 for (i = 0; i < set->nr_maps; i++) { 2869 struct blk_mq_queue_map *map = &set->map[i]; 2870 2871 if (!map->nr_queues) { 2872 WARN_ON(i == HCTX_TYPE_DEFAULT); 2873 continue; 2874 } 2875 2876 /* Call LLDD map queue functionality if defined */ 2877 if (ctrl->lport->ops->map_queues) 2878 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2879 map); 2880 else 2881 blk_mq_map_queues(map); 2882 } 2883 return 0; 2884 } 2885 2886 static const struct blk_mq_ops nvme_fc_mq_ops = { 2887 .queue_rq = nvme_fc_queue_rq, 2888 .complete = nvme_fc_complete_rq, 2889 .init_request = nvme_fc_init_request, 2890 .exit_request = nvme_fc_exit_request, 2891 .init_hctx = nvme_fc_init_hctx, 2892 .timeout = nvme_fc_timeout, 2893 .map_queues = nvme_fc_map_queues, 2894 }; 2895 2896 static int 2897 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2898 { 2899 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2900 unsigned int nr_io_queues; 2901 int ret; 2902 2903 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2904 ctrl->lport->ops->max_hw_queues); 2905 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2906 if (ret) { 2907 dev_info(ctrl->ctrl.device, 2908 "set_queue_count failed: %d\n", ret); 2909 return ret; 2910 } 2911 2912 ctrl->ctrl.queue_count = nr_io_queues + 1; 2913 if (!nr_io_queues) 2914 return 0; 2915 2916 nvme_fc_init_io_queues(ctrl); 2917 2918 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2919 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2920 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2921 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS; 2922 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 2923 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2924 ctrl->tag_set.cmd_size = 2925 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 2926 ctrl->lport->ops->fcprqst_priv_sz); 2927 ctrl->tag_set.driver_data = ctrl; 2928 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2929 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2930 2931 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2932 if (ret) 2933 return ret; 2934 2935 ctrl->ctrl.tagset = &ctrl->tag_set; 2936 2937 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl)); 2938 if (ret) 2939 goto out_free_tag_set; 2940 2941 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2942 if (ret) 2943 goto out_cleanup_blk_queue; 2944 2945 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2946 if (ret) 2947 goto out_delete_hw_queues; 2948 2949 ctrl->ioq_live = true; 2950 2951 return 0; 2952 2953 out_delete_hw_queues: 2954 nvme_fc_delete_hw_io_queues(ctrl); 2955 out_cleanup_blk_queue: 2956 blk_cleanup_queue(ctrl->ctrl.connect_q); 2957 out_free_tag_set: 2958 blk_mq_free_tag_set(&ctrl->tag_set); 2959 nvme_fc_free_io_queues(ctrl); 2960 2961 /* force put free routine to ignore io queues */ 2962 ctrl->ctrl.tagset = NULL; 2963 2964 return ret; 2965 } 2966 2967 static int 2968 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2969 { 2970 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2971 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2972 unsigned int nr_io_queues; 2973 int ret; 2974 2975 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2976 ctrl->lport->ops->max_hw_queues); 2977 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2978 if (ret) { 2979 dev_info(ctrl->ctrl.device, 2980 "set_queue_count failed: %d\n", ret); 2981 return ret; 2982 } 2983 2984 if (!nr_io_queues && prior_ioq_cnt) { 2985 dev_info(ctrl->ctrl.device, 2986 "Fail Reconnect: At least 1 io queue " 2987 "required (was %d)\n", prior_ioq_cnt); 2988 return -ENOSPC; 2989 } 2990 2991 ctrl->ctrl.queue_count = nr_io_queues + 1; 2992 /* check for io queues existing */ 2993 if (ctrl->ctrl.queue_count == 1) 2994 return 0; 2995 2996 if (prior_ioq_cnt != nr_io_queues) { 2997 dev_info(ctrl->ctrl.device, 2998 "reconnect: revising io queue count from %d to %d\n", 2999 prior_ioq_cnt, nr_io_queues); 3000 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 3001 } 3002 3003 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 3004 if (ret) 3005 goto out_free_io_queues; 3006 3007 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 3008 if (ret) 3009 goto out_delete_hw_queues; 3010 3011 return 0; 3012 3013 out_delete_hw_queues: 3014 nvme_fc_delete_hw_io_queues(ctrl); 3015 out_free_io_queues: 3016 nvme_fc_free_io_queues(ctrl); 3017 return ret; 3018 } 3019 3020 static void 3021 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 3022 { 3023 struct nvme_fc_lport *lport = rport->lport; 3024 3025 atomic_inc(&lport->act_rport_cnt); 3026 } 3027 3028 static void 3029 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 3030 { 3031 struct nvme_fc_lport *lport = rport->lport; 3032 u32 cnt; 3033 3034 cnt = atomic_dec_return(&lport->act_rport_cnt); 3035 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 3036 lport->ops->localport_delete(&lport->localport); 3037 } 3038 3039 static int 3040 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 3041 { 3042 struct nvme_fc_rport *rport = ctrl->rport; 3043 u32 cnt; 3044 3045 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 3046 return 1; 3047 3048 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 3049 if (cnt == 1) 3050 nvme_fc_rport_active_on_lport(rport); 3051 3052 return 0; 3053 } 3054 3055 static int 3056 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3057 { 3058 struct nvme_fc_rport *rport = ctrl->rport; 3059 struct nvme_fc_lport *lport = rport->lport; 3060 u32 cnt; 3061 3062 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3063 3064 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3065 if (cnt == 0) { 3066 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3067 lport->ops->remoteport_delete(&rport->remoteport); 3068 nvme_fc_rport_inactive_on_lport(rport); 3069 } 3070 3071 return 0; 3072 } 3073 3074 /* 3075 * This routine restarts the controller on the host side, and 3076 * on the link side, recreates the controller association. 3077 */ 3078 static int 3079 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3080 { 3081 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3082 struct nvmefc_ls_rcv_op *disls = NULL; 3083 unsigned long flags; 3084 int ret; 3085 bool changed; 3086 3087 ++ctrl->ctrl.nr_reconnects; 3088 3089 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3090 return -ENODEV; 3091 3092 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3093 return -ENOTUNIQ; 3094 3095 dev_info(ctrl->ctrl.device, 3096 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3097 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3098 ctrl->cnum, ctrl->lport->localport.port_name, 3099 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3100 3101 clear_bit(ASSOC_FAILED, &ctrl->flags); 3102 3103 /* 3104 * Create the admin queue 3105 */ 3106 3107 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3108 NVME_AQ_DEPTH); 3109 if (ret) 3110 goto out_free_queue; 3111 3112 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3113 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3114 if (ret) 3115 goto out_delete_hw_queue; 3116 3117 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3118 if (ret) 3119 goto out_disconnect_admin_queue; 3120 3121 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3122 3123 /* 3124 * Check controller capabilities 3125 * 3126 * todo:- add code to check if ctrl attributes changed from 3127 * prior connection values 3128 */ 3129 3130 ret = nvme_enable_ctrl(&ctrl->ctrl); 3131 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3132 goto out_disconnect_admin_queue; 3133 3134 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3135 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3136 (ilog2(SZ_4K) - 9); 3137 3138 nvme_start_admin_queue(&ctrl->ctrl); 3139 3140 ret = nvme_init_ctrl_finish(&ctrl->ctrl); 3141 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3142 goto out_disconnect_admin_queue; 3143 3144 /* sanity checks */ 3145 3146 /* FC-NVME does not have other data in the capsule */ 3147 if (ctrl->ctrl.icdoff) { 3148 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3149 ctrl->ctrl.icdoff); 3150 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3151 goto out_disconnect_admin_queue; 3152 } 3153 3154 /* FC-NVME supports normal SGL Data Block Descriptors */ 3155 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3156 dev_err(ctrl->ctrl.device, 3157 "Mandatory sgls are not supported!\n"); 3158 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3159 goto out_disconnect_admin_queue; 3160 } 3161 3162 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3163 /* warn if maxcmd is lower than queue_size */ 3164 dev_warn(ctrl->ctrl.device, 3165 "queue_size %zu > ctrl maxcmd %u, reducing " 3166 "to maxcmd\n", 3167 opts->queue_size, ctrl->ctrl.maxcmd); 3168 opts->queue_size = ctrl->ctrl.maxcmd; 3169 } 3170 3171 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 3172 /* warn if sqsize is lower than queue_size */ 3173 dev_warn(ctrl->ctrl.device, 3174 "queue_size %zu > ctrl sqsize %u, reducing " 3175 "to sqsize\n", 3176 opts->queue_size, ctrl->ctrl.sqsize + 1); 3177 opts->queue_size = ctrl->ctrl.sqsize + 1; 3178 } 3179 3180 ret = nvme_fc_init_aen_ops(ctrl); 3181 if (ret) 3182 goto out_term_aen_ops; 3183 3184 /* 3185 * Create the io queues 3186 */ 3187 3188 if (ctrl->ctrl.queue_count > 1) { 3189 if (!ctrl->ioq_live) 3190 ret = nvme_fc_create_io_queues(ctrl); 3191 else 3192 ret = nvme_fc_recreate_io_queues(ctrl); 3193 } 3194 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3195 goto out_term_aen_ops; 3196 3197 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 3198 3199 ctrl->ctrl.nr_reconnects = 0; 3200 3201 if (changed) 3202 nvme_start_ctrl(&ctrl->ctrl); 3203 3204 return 0; /* Success */ 3205 3206 out_term_aen_ops: 3207 nvme_fc_term_aen_ops(ctrl); 3208 out_disconnect_admin_queue: 3209 /* send a Disconnect(association) LS to fc-nvme target */ 3210 nvme_fc_xmt_disconnect_assoc(ctrl); 3211 spin_lock_irqsave(&ctrl->lock, flags); 3212 ctrl->association_id = 0; 3213 disls = ctrl->rcv_disconn; 3214 ctrl->rcv_disconn = NULL; 3215 spin_unlock_irqrestore(&ctrl->lock, flags); 3216 if (disls) 3217 nvme_fc_xmt_ls_rsp(disls); 3218 out_delete_hw_queue: 3219 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3220 out_free_queue: 3221 nvme_fc_free_queue(&ctrl->queues[0]); 3222 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3223 nvme_fc_ctlr_inactive_on_rport(ctrl); 3224 3225 return ret; 3226 } 3227 3228 3229 /* 3230 * This routine stops operation of the controller on the host side. 3231 * On the host os stack side: Admin and IO queues are stopped, 3232 * outstanding ios on them terminated via FC ABTS. 3233 * On the link side: the association is terminated. 3234 */ 3235 static void 3236 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3237 { 3238 struct nvmefc_ls_rcv_op *disls = NULL; 3239 unsigned long flags; 3240 3241 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3242 return; 3243 3244 spin_lock_irqsave(&ctrl->lock, flags); 3245 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3246 ctrl->iocnt = 0; 3247 spin_unlock_irqrestore(&ctrl->lock, flags); 3248 3249 __nvme_fc_abort_outstanding_ios(ctrl, false); 3250 3251 /* kill the aens as they are a separate path */ 3252 nvme_fc_abort_aen_ops(ctrl); 3253 3254 /* wait for all io that had to be aborted */ 3255 spin_lock_irq(&ctrl->lock); 3256 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3257 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3258 spin_unlock_irq(&ctrl->lock); 3259 3260 nvme_fc_term_aen_ops(ctrl); 3261 3262 /* 3263 * send a Disconnect(association) LS to fc-nvme target 3264 * Note: could have been sent at top of process, but 3265 * cleaner on link traffic if after the aborts complete. 3266 * Note: if association doesn't exist, association_id will be 0 3267 */ 3268 if (ctrl->association_id) 3269 nvme_fc_xmt_disconnect_assoc(ctrl); 3270 3271 spin_lock_irqsave(&ctrl->lock, flags); 3272 ctrl->association_id = 0; 3273 disls = ctrl->rcv_disconn; 3274 ctrl->rcv_disconn = NULL; 3275 spin_unlock_irqrestore(&ctrl->lock, flags); 3276 if (disls) 3277 /* 3278 * if a Disconnect Request was waiting for a response, send 3279 * now that all ABTS's have been issued (and are complete). 3280 */ 3281 nvme_fc_xmt_ls_rsp(disls); 3282 3283 if (ctrl->ctrl.tagset) { 3284 nvme_fc_delete_hw_io_queues(ctrl); 3285 nvme_fc_free_io_queues(ctrl); 3286 } 3287 3288 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3289 nvme_fc_free_queue(&ctrl->queues[0]); 3290 3291 /* re-enable the admin_q so anything new can fast fail */ 3292 nvme_start_admin_queue(&ctrl->ctrl); 3293 3294 /* resume the io queues so that things will fast fail */ 3295 nvme_start_queues(&ctrl->ctrl); 3296 3297 nvme_fc_ctlr_inactive_on_rport(ctrl); 3298 } 3299 3300 static void 3301 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3302 { 3303 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3304 3305 cancel_work_sync(&ctrl->ioerr_work); 3306 cancel_delayed_work_sync(&ctrl->connect_work); 3307 /* 3308 * kill the association on the link side. this will block 3309 * waiting for io to terminate 3310 */ 3311 nvme_fc_delete_association(ctrl); 3312 } 3313 3314 static void 3315 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3316 { 3317 struct nvme_fc_rport *rport = ctrl->rport; 3318 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3319 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3320 bool recon = true; 3321 3322 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 3323 return; 3324 3325 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3326 dev_info(ctrl->ctrl.device, 3327 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3328 ctrl->cnum, status); 3329 if (status > 0 && (status & NVME_SC_DNR)) 3330 recon = false; 3331 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3332 recon = false; 3333 3334 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 3335 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3336 dev_info(ctrl->ctrl.device, 3337 "NVME-FC{%d}: Reconnect attempt in %ld " 3338 "seconds\n", 3339 ctrl->cnum, recon_delay / HZ); 3340 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3341 recon_delay = rport->dev_loss_end - jiffies; 3342 3343 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3344 } else { 3345 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3346 if (status > 0 && (status & NVME_SC_DNR)) 3347 dev_warn(ctrl->ctrl.device, 3348 "NVME-FC{%d}: reconnect failure\n", 3349 ctrl->cnum); 3350 else 3351 dev_warn(ctrl->ctrl.device, 3352 "NVME-FC{%d}: Max reconnect attempts " 3353 "(%d) reached.\n", 3354 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3355 } else 3356 dev_warn(ctrl->ctrl.device, 3357 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3358 "while waiting for remoteport connectivity.\n", 3359 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3360 (ctrl->ctrl.opts->max_reconnects * 3361 ctrl->ctrl.opts->reconnect_delay))); 3362 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3363 } 3364 } 3365 3366 static void 3367 nvme_fc_reset_ctrl_work(struct work_struct *work) 3368 { 3369 struct nvme_fc_ctrl *ctrl = 3370 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3371 3372 nvme_stop_ctrl(&ctrl->ctrl); 3373 3374 /* will block will waiting for io to terminate */ 3375 nvme_fc_delete_association(ctrl); 3376 3377 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3378 dev_err(ctrl->ctrl.device, 3379 "NVME-FC{%d}: error_recovery: Couldn't change state " 3380 "to CONNECTING\n", ctrl->cnum); 3381 3382 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3383 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3384 dev_err(ctrl->ctrl.device, 3385 "NVME-FC{%d}: failed to schedule connect " 3386 "after reset\n", ctrl->cnum); 3387 } else { 3388 flush_delayed_work(&ctrl->connect_work); 3389 } 3390 } else { 3391 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3392 } 3393 } 3394 3395 3396 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3397 .name = "fc", 3398 .module = THIS_MODULE, 3399 .flags = NVME_F_FABRICS, 3400 .reg_read32 = nvmf_reg_read32, 3401 .reg_read64 = nvmf_reg_read64, 3402 .reg_write32 = nvmf_reg_write32, 3403 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3404 .submit_async_event = nvme_fc_submit_async_event, 3405 .delete_ctrl = nvme_fc_delete_ctrl, 3406 .get_address = nvmf_get_address, 3407 }; 3408 3409 static void 3410 nvme_fc_connect_ctrl_work(struct work_struct *work) 3411 { 3412 int ret; 3413 3414 struct nvme_fc_ctrl *ctrl = 3415 container_of(to_delayed_work(work), 3416 struct nvme_fc_ctrl, connect_work); 3417 3418 ret = nvme_fc_create_association(ctrl); 3419 if (ret) 3420 nvme_fc_reconnect_or_delete(ctrl, ret); 3421 else 3422 dev_info(ctrl->ctrl.device, 3423 "NVME-FC{%d}: controller connect complete\n", 3424 ctrl->cnum); 3425 } 3426 3427 3428 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3429 .queue_rq = nvme_fc_queue_rq, 3430 .complete = nvme_fc_complete_rq, 3431 .init_request = nvme_fc_init_request, 3432 .exit_request = nvme_fc_exit_request, 3433 .init_hctx = nvme_fc_init_admin_hctx, 3434 .timeout = nvme_fc_timeout, 3435 }; 3436 3437 3438 /* 3439 * Fails a controller request if it matches an existing controller 3440 * (association) with the same tuple: 3441 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3442 * 3443 * The ports don't need to be compared as they are intrinsically 3444 * already matched by the port pointers supplied. 3445 */ 3446 static bool 3447 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3448 struct nvmf_ctrl_options *opts) 3449 { 3450 struct nvme_fc_ctrl *ctrl; 3451 unsigned long flags; 3452 bool found = false; 3453 3454 spin_lock_irqsave(&rport->lock, flags); 3455 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3456 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3457 if (found) 3458 break; 3459 } 3460 spin_unlock_irqrestore(&rport->lock, flags); 3461 3462 return found; 3463 } 3464 3465 static struct nvme_ctrl * 3466 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3467 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3468 { 3469 struct nvme_fc_ctrl *ctrl; 3470 unsigned long flags; 3471 int ret, idx, ctrl_loss_tmo; 3472 3473 if (!(rport->remoteport.port_role & 3474 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3475 ret = -EBADR; 3476 goto out_fail; 3477 } 3478 3479 if (!opts->duplicate_connect && 3480 nvme_fc_existing_controller(rport, opts)) { 3481 ret = -EALREADY; 3482 goto out_fail; 3483 } 3484 3485 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3486 if (!ctrl) { 3487 ret = -ENOMEM; 3488 goto out_fail; 3489 } 3490 3491 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3492 if (idx < 0) { 3493 ret = -ENOSPC; 3494 goto out_free_ctrl; 3495 } 3496 3497 /* 3498 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3499 * is being used, change to a shorter reconnect delay for FC. 3500 */ 3501 if (opts->max_reconnects != -1 && 3502 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3503 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3504 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3505 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3506 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3507 opts->reconnect_delay); 3508 } 3509 3510 ctrl->ctrl.opts = opts; 3511 ctrl->ctrl.nr_reconnects = 0; 3512 if (lport->dev) 3513 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3514 else 3515 ctrl->ctrl.numa_node = NUMA_NO_NODE; 3516 INIT_LIST_HEAD(&ctrl->ctrl_list); 3517 ctrl->lport = lport; 3518 ctrl->rport = rport; 3519 ctrl->dev = lport->dev; 3520 ctrl->cnum = idx; 3521 ctrl->ioq_live = false; 3522 init_waitqueue_head(&ctrl->ioabort_wait); 3523 3524 get_device(ctrl->dev); 3525 kref_init(&ctrl->ref); 3526 3527 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3528 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3529 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3530 spin_lock_init(&ctrl->lock); 3531 3532 /* io queue count */ 3533 ctrl->ctrl.queue_count = min_t(unsigned int, 3534 opts->nr_io_queues, 3535 lport->ops->max_hw_queues); 3536 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3537 3538 ctrl->ctrl.sqsize = opts->queue_size - 1; 3539 ctrl->ctrl.kato = opts->kato; 3540 ctrl->ctrl.cntlid = 0xffff; 3541 3542 ret = -ENOMEM; 3543 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3544 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3545 if (!ctrl->queues) 3546 goto out_free_ida; 3547 3548 nvme_fc_init_queue(ctrl, 0); 3549 3550 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3551 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3552 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3553 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS; 3554 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 3555 ctrl->admin_tag_set.cmd_size = 3556 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 3557 ctrl->lport->ops->fcprqst_priv_sz); 3558 ctrl->admin_tag_set.driver_data = ctrl; 3559 ctrl->admin_tag_set.nr_hw_queues = 1; 3560 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT; 3561 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3562 3563 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3564 if (ret) 3565 goto out_free_queues; 3566 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3567 3568 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3569 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 3570 ret = PTR_ERR(ctrl->ctrl.fabrics_q); 3571 goto out_free_admin_tag_set; 3572 } 3573 3574 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3575 if (IS_ERR(ctrl->ctrl.admin_q)) { 3576 ret = PTR_ERR(ctrl->ctrl.admin_q); 3577 goto out_cleanup_fabrics_q; 3578 } 3579 3580 /* 3581 * Would have been nice to init io queues tag set as well. 3582 * However, we require interaction from the controller 3583 * for max io queue count before we can do so. 3584 * Defer this to the connect path. 3585 */ 3586 3587 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3588 if (ret) 3589 goto out_cleanup_admin_q; 3590 3591 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3592 3593 spin_lock_irqsave(&rport->lock, flags); 3594 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3595 spin_unlock_irqrestore(&rport->lock, flags); 3596 3597 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3598 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3599 dev_err(ctrl->ctrl.device, 3600 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3601 goto fail_ctrl; 3602 } 3603 3604 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3605 dev_err(ctrl->ctrl.device, 3606 "NVME-FC{%d}: failed to schedule initial connect\n", 3607 ctrl->cnum); 3608 goto fail_ctrl; 3609 } 3610 3611 flush_delayed_work(&ctrl->connect_work); 3612 3613 dev_info(ctrl->ctrl.device, 3614 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3615 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl)); 3616 3617 return &ctrl->ctrl; 3618 3619 fail_ctrl: 3620 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3621 cancel_work_sync(&ctrl->ioerr_work); 3622 cancel_work_sync(&ctrl->ctrl.reset_work); 3623 cancel_delayed_work_sync(&ctrl->connect_work); 3624 3625 ctrl->ctrl.opts = NULL; 3626 3627 /* initiate nvme ctrl ref counting teardown */ 3628 nvme_uninit_ctrl(&ctrl->ctrl); 3629 3630 /* Remove core ctrl ref. */ 3631 nvme_put_ctrl(&ctrl->ctrl); 3632 3633 /* as we're past the point where we transition to the ref 3634 * counting teardown path, if we return a bad pointer here, 3635 * the calling routine, thinking it's prior to the 3636 * transition, will do an rport put. Since the teardown 3637 * path also does a rport put, we do an extra get here to 3638 * so proper order/teardown happens. 3639 */ 3640 nvme_fc_rport_get(rport); 3641 3642 return ERR_PTR(-EIO); 3643 3644 out_cleanup_admin_q: 3645 blk_cleanup_queue(ctrl->ctrl.admin_q); 3646 out_cleanup_fabrics_q: 3647 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 3648 out_free_admin_tag_set: 3649 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3650 out_free_queues: 3651 kfree(ctrl->queues); 3652 out_free_ida: 3653 put_device(ctrl->dev); 3654 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3655 out_free_ctrl: 3656 kfree(ctrl); 3657 out_fail: 3658 /* exit via here doesn't follow ctlr ref points */ 3659 return ERR_PTR(ret); 3660 } 3661 3662 3663 struct nvmet_fc_traddr { 3664 u64 nn; 3665 u64 pn; 3666 }; 3667 3668 static int 3669 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3670 { 3671 u64 token64; 3672 3673 if (match_u64(sstr, &token64)) 3674 return -EINVAL; 3675 *val = token64; 3676 3677 return 0; 3678 } 3679 3680 /* 3681 * This routine validates and extracts the WWN's from the TRADDR string. 3682 * As kernel parsers need the 0x to determine number base, universally 3683 * build string to parse with 0x prefix before parsing name strings. 3684 */ 3685 static int 3686 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3687 { 3688 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3689 substring_t wwn = { name, &name[sizeof(name)-1] }; 3690 int nnoffset, pnoffset; 3691 3692 /* validate if string is one of the 2 allowed formats */ 3693 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3694 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3695 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3696 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3697 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3698 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3699 NVME_FC_TRADDR_OXNNLEN; 3700 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3701 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3702 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3703 "pn-", NVME_FC_TRADDR_NNLEN))) { 3704 nnoffset = NVME_FC_TRADDR_NNLEN; 3705 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3706 } else 3707 goto out_einval; 3708 3709 name[0] = '0'; 3710 name[1] = 'x'; 3711 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3712 3713 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3714 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3715 goto out_einval; 3716 3717 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3718 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3719 goto out_einval; 3720 3721 return 0; 3722 3723 out_einval: 3724 pr_warn("%s: bad traddr string\n", __func__); 3725 return -EINVAL; 3726 } 3727 3728 static struct nvme_ctrl * 3729 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3730 { 3731 struct nvme_fc_lport *lport; 3732 struct nvme_fc_rport *rport; 3733 struct nvme_ctrl *ctrl; 3734 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3735 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3736 unsigned long flags; 3737 int ret; 3738 3739 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3740 if (ret || !raddr.nn || !raddr.pn) 3741 return ERR_PTR(-EINVAL); 3742 3743 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3744 if (ret || !laddr.nn || !laddr.pn) 3745 return ERR_PTR(-EINVAL); 3746 3747 /* find the host and remote ports to connect together */ 3748 spin_lock_irqsave(&nvme_fc_lock, flags); 3749 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3750 if (lport->localport.node_name != laddr.nn || 3751 lport->localport.port_name != laddr.pn || 3752 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3753 continue; 3754 3755 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3756 if (rport->remoteport.node_name != raddr.nn || 3757 rport->remoteport.port_name != raddr.pn || 3758 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3759 continue; 3760 3761 /* if fail to get reference fall through. Will error */ 3762 if (!nvme_fc_rport_get(rport)) 3763 break; 3764 3765 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3766 3767 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3768 if (IS_ERR(ctrl)) 3769 nvme_fc_rport_put(rport); 3770 return ctrl; 3771 } 3772 } 3773 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3774 3775 pr_warn("%s: %s - %s combination not found\n", 3776 __func__, opts->traddr, opts->host_traddr); 3777 return ERR_PTR(-ENOENT); 3778 } 3779 3780 3781 static struct nvmf_transport_ops nvme_fc_transport = { 3782 .name = "fc", 3783 .module = THIS_MODULE, 3784 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3785 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3786 .create_ctrl = nvme_fc_create_ctrl, 3787 }; 3788 3789 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3790 #define DISCOVERY_MAX_FAIL 20 3791 3792 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3793 struct device_attribute *attr, const char *buf, size_t count) 3794 { 3795 unsigned long flags; 3796 LIST_HEAD(local_disc_list); 3797 struct nvme_fc_lport *lport; 3798 struct nvme_fc_rport *rport; 3799 int failcnt = 0; 3800 3801 spin_lock_irqsave(&nvme_fc_lock, flags); 3802 restart: 3803 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3804 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3805 if (!nvme_fc_lport_get(lport)) 3806 continue; 3807 if (!nvme_fc_rport_get(rport)) { 3808 /* 3809 * This is a temporary condition. Upon restart 3810 * this rport will be gone from the list. 3811 * 3812 * Revert the lport put and retry. Anything 3813 * added to the list already will be skipped (as 3814 * they are no longer list_empty). Loops should 3815 * resume at rports that were not yet seen. 3816 */ 3817 nvme_fc_lport_put(lport); 3818 3819 if (failcnt++ < DISCOVERY_MAX_FAIL) 3820 goto restart; 3821 3822 pr_err("nvme_discovery: too many reference " 3823 "failures\n"); 3824 goto process_local_list; 3825 } 3826 if (list_empty(&rport->disc_list)) 3827 list_add_tail(&rport->disc_list, 3828 &local_disc_list); 3829 } 3830 } 3831 3832 process_local_list: 3833 while (!list_empty(&local_disc_list)) { 3834 rport = list_first_entry(&local_disc_list, 3835 struct nvme_fc_rport, disc_list); 3836 list_del_init(&rport->disc_list); 3837 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3838 3839 lport = rport->lport; 3840 /* signal discovery. Won't hurt if it repeats */ 3841 nvme_fc_signal_discovery_scan(lport, rport); 3842 nvme_fc_rport_put(rport); 3843 nvme_fc_lport_put(lport); 3844 3845 spin_lock_irqsave(&nvme_fc_lock, flags); 3846 } 3847 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3848 3849 return count; 3850 } 3851 3852 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3853 static int fc_parse_cgrpid(const char *buf, u64 *id) 3854 { 3855 char cgrp_id[16+1]; 3856 int cgrpid_len, j; 3857 3858 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3859 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3860 if (buf[cgrpid_len] != ':') 3861 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3862 else { 3863 j = 1; 3864 break; 3865 } 3866 } 3867 if (!j) 3868 return -EINVAL; 3869 if (kstrtou64(cgrp_id, 16, id) < 0) 3870 return -EINVAL; 3871 return cgrpid_len; 3872 } 3873 3874 /* 3875 * fc_update_appid: Parse and update the appid in the blkcg associated with 3876 * cgroupid. 3877 * @buf: buf contains both cgrpid and appid info 3878 * @count: size of the buffer 3879 */ 3880 static int fc_update_appid(const char *buf, size_t count) 3881 { 3882 u64 cgrp_id; 3883 int appid_len = 0; 3884 int cgrpid_len = 0; 3885 char app_id[FC_APPID_LEN]; 3886 int ret = 0; 3887 3888 if (buf[count-1] == '\n') 3889 count--; 3890 3891 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3892 return -EINVAL; 3893 3894 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3895 if (cgrpid_len < 0) 3896 return -EINVAL; 3897 appid_len = count - cgrpid_len - 1; 3898 if (appid_len > FC_APPID_LEN) 3899 return -EINVAL; 3900 3901 memset(app_id, 0x0, sizeof(app_id)); 3902 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3903 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3904 if (ret < 0) 3905 return ret; 3906 return count; 3907 } 3908 3909 static ssize_t fc_appid_store(struct device *dev, 3910 struct device_attribute *attr, const char *buf, size_t count) 3911 { 3912 int ret = 0; 3913 3914 ret = fc_update_appid(buf, count); 3915 if (ret < 0) 3916 return -EINVAL; 3917 return count; 3918 } 3919 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3920 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3921 3922 static struct attribute *nvme_fc_attrs[] = { 3923 &dev_attr_nvme_discovery.attr, 3924 &dev_attr_appid_store.attr, 3925 NULL 3926 }; 3927 3928 static const struct attribute_group nvme_fc_attr_group = { 3929 .attrs = nvme_fc_attrs, 3930 }; 3931 3932 static const struct attribute_group *nvme_fc_attr_groups[] = { 3933 &nvme_fc_attr_group, 3934 NULL 3935 }; 3936 3937 static struct class fc_class = { 3938 .name = "fc", 3939 .dev_groups = nvme_fc_attr_groups, 3940 .owner = THIS_MODULE, 3941 }; 3942 3943 static int __init nvme_fc_init_module(void) 3944 { 3945 int ret; 3946 3947 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); 3948 if (!nvme_fc_wq) 3949 return -ENOMEM; 3950 3951 /* 3952 * NOTE: 3953 * It is expected that in the future the kernel will combine 3954 * the FC-isms that are currently under scsi and now being 3955 * added to by NVME into a new standalone FC class. The SCSI 3956 * and NVME protocols and their devices would be under this 3957 * new FC class. 3958 * 3959 * As we need something to post FC-specific udev events to, 3960 * specifically for nvme probe events, start by creating the 3961 * new device class. When the new standalone FC class is 3962 * put in place, this code will move to a more generic 3963 * location for the class. 3964 */ 3965 ret = class_register(&fc_class); 3966 if (ret) { 3967 pr_err("couldn't register class fc\n"); 3968 goto out_destroy_wq; 3969 } 3970 3971 /* 3972 * Create a device for the FC-centric udev events 3973 */ 3974 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3975 "fc_udev_device"); 3976 if (IS_ERR(fc_udev_device)) { 3977 pr_err("couldn't create fc_udev device!\n"); 3978 ret = PTR_ERR(fc_udev_device); 3979 goto out_destroy_class; 3980 } 3981 3982 ret = nvmf_register_transport(&nvme_fc_transport); 3983 if (ret) 3984 goto out_destroy_device; 3985 3986 return 0; 3987 3988 out_destroy_device: 3989 device_destroy(&fc_class, MKDEV(0, 0)); 3990 out_destroy_class: 3991 class_unregister(&fc_class); 3992 out_destroy_wq: 3993 destroy_workqueue(nvme_fc_wq); 3994 3995 return ret; 3996 } 3997 3998 static void 3999 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 4000 { 4001 struct nvme_fc_ctrl *ctrl; 4002 4003 spin_lock(&rport->lock); 4004 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 4005 dev_warn(ctrl->ctrl.device, 4006 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 4007 ctrl->cnum); 4008 nvme_delete_ctrl(&ctrl->ctrl); 4009 } 4010 spin_unlock(&rport->lock); 4011 } 4012 4013 static void 4014 nvme_fc_cleanup_for_unload(void) 4015 { 4016 struct nvme_fc_lport *lport; 4017 struct nvme_fc_rport *rport; 4018 4019 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 4020 list_for_each_entry(rport, &lport->endp_list, endp_list) { 4021 nvme_fc_delete_controllers(rport); 4022 } 4023 } 4024 } 4025 4026 static void __exit nvme_fc_exit_module(void) 4027 { 4028 unsigned long flags; 4029 bool need_cleanup = false; 4030 4031 spin_lock_irqsave(&nvme_fc_lock, flags); 4032 nvme_fc_waiting_to_unload = true; 4033 if (!list_empty(&nvme_fc_lport_list)) { 4034 need_cleanup = true; 4035 nvme_fc_cleanup_for_unload(); 4036 } 4037 spin_unlock_irqrestore(&nvme_fc_lock, flags); 4038 if (need_cleanup) { 4039 pr_info("%s: waiting for ctlr deletes\n", __func__); 4040 wait_for_completion(&nvme_fc_unload_proceed); 4041 pr_info("%s: ctrl deletes complete\n", __func__); 4042 } 4043 4044 nvmf_unregister_transport(&nvme_fc_transport); 4045 4046 ida_destroy(&nvme_fc_local_port_cnt); 4047 ida_destroy(&nvme_fc_ctrl_cnt); 4048 4049 device_destroy(&fc_class, MKDEV(0, 0)); 4050 class_unregister(&fc_class); 4051 destroy_workqueue(nvme_fc_wq); 4052 } 4053 4054 module_init(nvme_fc_init_module); 4055 module_exit(nvme_fc_exit_module); 4056 4057 MODULE_LICENSE("GPL v2"); 4058