1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 30 * when connected and a 31 * connection failure. 32 */ 33 34 struct nvme_fc_queue { 35 struct nvme_fc_ctrl *ctrl; 36 struct device *dev; 37 struct blk_mq_hw_ctx *hctx; 38 void *lldd_handle; 39 size_t cmnd_capsule_len; 40 u32 qnum; 41 u32 rqcnt; 42 u32 seqno; 43 44 u64 connection_id; 45 atomic_t csn; 46 47 unsigned long flags; 48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 49 50 enum nvme_fcop_flags { 51 FCOP_FLAGS_TERMIO = (1 << 0), 52 FCOP_FLAGS_AEN = (1 << 1), 53 }; 54 55 struct nvmefc_ls_req_op { 56 struct nvmefc_ls_req ls_req; 57 58 struct nvme_fc_rport *rport; 59 struct nvme_fc_queue *queue; 60 struct request *rq; 61 u32 flags; 62 63 int ls_error; 64 struct completion ls_done; 65 struct list_head lsreq_list; /* rport->ls_req_list */ 66 bool req_queued; 67 }; 68 69 struct nvmefc_ls_rcv_op { 70 struct nvme_fc_rport *rport; 71 struct nvmefc_ls_rsp *lsrsp; 72 union nvmefc_ls_requests *rqstbuf; 73 union nvmefc_ls_responses *rspbuf; 74 u16 rqstdatalen; 75 bool handled; 76 dma_addr_t rspdma; 77 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 79 80 enum nvme_fcpop_state { 81 FCPOP_STATE_UNINIT = 0, 82 FCPOP_STATE_IDLE = 1, 83 FCPOP_STATE_ACTIVE = 2, 84 FCPOP_STATE_ABORTED = 3, 85 FCPOP_STATE_COMPLETE = 4, 86 }; 87 88 struct nvme_fc_fcp_op { 89 struct nvme_request nreq; /* 90 * nvme/host/core.c 91 * requires this to be 92 * the 1st element in the 93 * private structure 94 * associated with the 95 * request. 96 */ 97 struct nvmefc_fcp_req fcp_req; 98 99 struct nvme_fc_ctrl *ctrl; 100 struct nvme_fc_queue *queue; 101 struct request *rq; 102 103 atomic_t state; 104 u32 flags; 105 u32 rqno; 106 u32 nents; 107 108 struct nvme_fc_cmd_iu cmd_iu; 109 struct nvme_fc_ersp_iu rsp_iu; 110 }; 111 112 struct nvme_fcp_op_w_sgl { 113 struct nvme_fc_fcp_op op; 114 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 115 uint8_t priv[]; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 atomic_t act_rport_cnt; 128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 129 130 struct nvme_fc_rport { 131 struct nvme_fc_remote_port remoteport; 132 133 struct list_head endp_list; /* for lport->endp_list */ 134 struct list_head ctrl_list; 135 struct list_head ls_req_list; 136 struct list_head ls_rcv_list; 137 struct list_head disc_list; 138 struct device *dev; /* physical device for dma */ 139 struct nvme_fc_lport *lport; 140 spinlock_t lock; 141 struct kref ref; 142 atomic_t act_ctrl_cnt; 143 unsigned long dev_loss_end; 144 struct work_struct lsrcv_work; 145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 146 147 /* fc_ctrl flags values - specified as bit positions */ 148 #define ASSOC_ACTIVE 0 149 #define ASSOC_FAILED 1 150 #define FCCTRL_TERMIO 2 151 152 struct nvme_fc_ctrl { 153 spinlock_t lock; 154 struct nvme_fc_queue *queues; 155 struct device *dev; 156 struct nvme_fc_lport *lport; 157 struct nvme_fc_rport *rport; 158 u32 cnum; 159 160 bool ioq_live; 161 u64 association_id; 162 struct nvmefc_ls_rcv_op *rcv_disconn; 163 164 struct list_head ctrl_list; /* rport->ctrl_list */ 165 166 struct blk_mq_tag_set admin_tag_set; 167 struct blk_mq_tag_set tag_set; 168 169 struct work_struct ioerr_work; 170 struct delayed_work connect_work; 171 172 struct kref ref; 173 unsigned long flags; 174 u32 iocnt; 175 wait_queue_head_t ioabort_wait; 176 177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 178 179 struct nvme_ctrl ctrl; 180 }; 181 182 static inline struct nvme_fc_ctrl * 183 to_fc_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 186 } 187 188 static inline struct nvme_fc_lport * 189 localport_to_lport(struct nvme_fc_local_port *portptr) 190 { 191 return container_of(portptr, struct nvme_fc_lport, localport); 192 } 193 194 static inline struct nvme_fc_rport * 195 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 196 { 197 return container_of(portptr, struct nvme_fc_rport, remoteport); 198 } 199 200 static inline struct nvmefc_ls_req_op * 201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 202 { 203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 204 } 205 206 static inline struct nvme_fc_fcp_op * 207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 208 { 209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 210 } 211 212 213 214 /* *************************** Globals **************************** */ 215 216 217 static DEFINE_SPINLOCK(nvme_fc_lock); 218 219 static LIST_HEAD(nvme_fc_lport_list); 220 static DEFINE_IDA(nvme_fc_local_port_cnt); 221 static DEFINE_IDA(nvme_fc_ctrl_cnt); 222 223 static struct workqueue_struct *nvme_fc_wq; 224 225 static bool nvme_fc_waiting_to_unload; 226 static DECLARE_COMPLETION(nvme_fc_unload_proceed); 227 228 /* 229 * These items are short-term. They will eventually be moved into 230 * a generic FC class. See comments in module init. 231 */ 232 static struct device *fc_udev_device; 233 234 static void nvme_fc_complete_rq(struct request *rq); 235 236 /* *********************** FC-NVME Port Management ************************ */ 237 238 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 239 struct nvme_fc_queue *, unsigned int); 240 241 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 242 243 244 static void 245 nvme_fc_free_lport(struct kref *ref) 246 { 247 struct nvme_fc_lport *lport = 248 container_of(ref, struct nvme_fc_lport, ref); 249 unsigned long flags; 250 251 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 252 WARN_ON(!list_empty(&lport->endp_list)); 253 254 /* remove from transport list */ 255 spin_lock_irqsave(&nvme_fc_lock, flags); 256 list_del(&lport->port_list); 257 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) 258 complete(&nvme_fc_unload_proceed); 259 spin_unlock_irqrestore(&nvme_fc_lock, flags); 260 261 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 262 ida_destroy(&lport->endp_cnt); 263 264 put_device(lport->dev); 265 266 kfree(lport); 267 } 268 269 static void 270 nvme_fc_lport_put(struct nvme_fc_lport *lport) 271 { 272 kref_put(&lport->ref, nvme_fc_free_lport); 273 } 274 275 static int 276 nvme_fc_lport_get(struct nvme_fc_lport *lport) 277 { 278 return kref_get_unless_zero(&lport->ref); 279 } 280 281 282 static struct nvme_fc_lport * 283 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 284 struct nvme_fc_port_template *ops, 285 struct device *dev) 286 { 287 struct nvme_fc_lport *lport; 288 unsigned long flags; 289 290 spin_lock_irqsave(&nvme_fc_lock, flags); 291 292 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 293 if (lport->localport.node_name != pinfo->node_name || 294 lport->localport.port_name != pinfo->port_name) 295 continue; 296 297 if (lport->dev != dev) { 298 lport = ERR_PTR(-EXDEV); 299 goto out_done; 300 } 301 302 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 303 lport = ERR_PTR(-EEXIST); 304 goto out_done; 305 } 306 307 if (!nvme_fc_lport_get(lport)) { 308 /* 309 * fails if ref cnt already 0. If so, 310 * act as if lport already deleted 311 */ 312 lport = NULL; 313 goto out_done; 314 } 315 316 /* resume the lport */ 317 318 lport->ops = ops; 319 lport->localport.port_role = pinfo->port_role; 320 lport->localport.port_id = pinfo->port_id; 321 lport->localport.port_state = FC_OBJSTATE_ONLINE; 322 323 spin_unlock_irqrestore(&nvme_fc_lock, flags); 324 325 return lport; 326 } 327 328 lport = NULL; 329 330 out_done: 331 spin_unlock_irqrestore(&nvme_fc_lock, flags); 332 333 return lport; 334 } 335 336 /** 337 * nvme_fc_register_localport - transport entry point called by an 338 * LLDD to register the existence of a NVME 339 * host FC port. 340 * @pinfo: pointer to information about the port to be registered 341 * @template: LLDD entrypoints and operational parameters for the port 342 * @dev: physical hardware device node port corresponds to. Will be 343 * used for DMA mappings 344 * @portptr: pointer to a local port pointer. Upon success, the routine 345 * will allocate a nvme_fc_local_port structure and place its 346 * address in the local port pointer. Upon failure, local port 347 * pointer will be set to 0. 348 * 349 * Returns: 350 * a completion status. Must be 0 upon success; a negative errno 351 * (ex: -ENXIO) upon failure. 352 */ 353 int 354 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 355 struct nvme_fc_port_template *template, 356 struct device *dev, 357 struct nvme_fc_local_port **portptr) 358 { 359 struct nvme_fc_lport *newrec; 360 unsigned long flags; 361 int ret, idx; 362 363 if (!template->localport_delete || !template->remoteport_delete || 364 !template->ls_req || !template->fcp_io || 365 !template->ls_abort || !template->fcp_abort || 366 !template->max_hw_queues || !template->max_sgl_segments || 367 !template->max_dif_sgl_segments || !template->dma_boundary) { 368 ret = -EINVAL; 369 goto out_reghost_failed; 370 } 371 372 /* 373 * look to see if there is already a localport that had been 374 * deregistered and in the process of waiting for all the 375 * references to fully be removed. If the references haven't 376 * expired, we can simply re-enable the localport. Remoteports 377 * and controller reconnections should resume naturally. 378 */ 379 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 380 381 /* found an lport, but something about its state is bad */ 382 if (IS_ERR(newrec)) { 383 ret = PTR_ERR(newrec); 384 goto out_reghost_failed; 385 386 /* found existing lport, which was resumed */ 387 } else if (newrec) { 388 *portptr = &newrec->localport; 389 return 0; 390 } 391 392 /* nothing found - allocate a new localport struct */ 393 394 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 395 GFP_KERNEL); 396 if (!newrec) { 397 ret = -ENOMEM; 398 goto out_reghost_failed; 399 } 400 401 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 402 if (idx < 0) { 403 ret = -ENOSPC; 404 goto out_fail_kfree; 405 } 406 407 if (!get_device(dev) && dev) { 408 ret = -ENODEV; 409 goto out_ida_put; 410 } 411 412 INIT_LIST_HEAD(&newrec->port_list); 413 INIT_LIST_HEAD(&newrec->endp_list); 414 kref_init(&newrec->ref); 415 atomic_set(&newrec->act_rport_cnt, 0); 416 newrec->ops = template; 417 newrec->dev = dev; 418 ida_init(&newrec->endp_cnt); 419 if (template->local_priv_sz) 420 newrec->localport.private = &newrec[1]; 421 else 422 newrec->localport.private = NULL; 423 newrec->localport.node_name = pinfo->node_name; 424 newrec->localport.port_name = pinfo->port_name; 425 newrec->localport.port_role = pinfo->port_role; 426 newrec->localport.port_id = pinfo->port_id; 427 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 428 newrec->localport.port_num = idx; 429 430 spin_lock_irqsave(&nvme_fc_lock, flags); 431 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 432 spin_unlock_irqrestore(&nvme_fc_lock, flags); 433 434 if (dev) 435 dma_set_seg_boundary(dev, template->dma_boundary); 436 437 *portptr = &newrec->localport; 438 return 0; 439 440 out_ida_put: 441 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 442 out_fail_kfree: 443 kfree(newrec); 444 out_reghost_failed: 445 *portptr = NULL; 446 447 return ret; 448 } 449 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 450 451 /** 452 * nvme_fc_unregister_localport - transport entry point called by an 453 * LLDD to deregister/remove a previously 454 * registered a NVME host FC port. 455 * @portptr: pointer to the (registered) local port that is to be deregistered. 456 * 457 * Returns: 458 * a completion status. Must be 0 upon success; a negative errno 459 * (ex: -ENXIO) upon failure. 460 */ 461 int 462 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 463 { 464 struct nvme_fc_lport *lport = localport_to_lport(portptr); 465 unsigned long flags; 466 467 if (!portptr) 468 return -EINVAL; 469 470 spin_lock_irqsave(&nvme_fc_lock, flags); 471 472 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 473 spin_unlock_irqrestore(&nvme_fc_lock, flags); 474 return -EINVAL; 475 } 476 portptr->port_state = FC_OBJSTATE_DELETED; 477 478 spin_unlock_irqrestore(&nvme_fc_lock, flags); 479 480 if (atomic_read(&lport->act_rport_cnt) == 0) 481 lport->ops->localport_delete(&lport->localport); 482 483 nvme_fc_lport_put(lport); 484 485 return 0; 486 } 487 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 488 489 /* 490 * TRADDR strings, per FC-NVME are fixed format: 491 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 492 * udev event will only differ by prefix of what field is 493 * being specified: 494 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 495 * 19 + 43 + null_fudge = 64 characters 496 */ 497 #define FCNVME_TRADDR_LENGTH 64 498 499 static void 500 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 501 struct nvme_fc_rport *rport) 502 { 503 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 504 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 505 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 506 507 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 508 return; 509 510 snprintf(hostaddr, sizeof(hostaddr), 511 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 512 lport->localport.node_name, lport->localport.port_name); 513 snprintf(tgtaddr, sizeof(tgtaddr), 514 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 515 rport->remoteport.node_name, rport->remoteport.port_name); 516 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 517 } 518 519 static void 520 nvme_fc_free_rport(struct kref *ref) 521 { 522 struct nvme_fc_rport *rport = 523 container_of(ref, struct nvme_fc_rport, ref); 524 struct nvme_fc_lport *lport = 525 localport_to_lport(rport->remoteport.localport); 526 unsigned long flags; 527 528 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 529 WARN_ON(!list_empty(&rport->ctrl_list)); 530 531 /* remove from lport list */ 532 spin_lock_irqsave(&nvme_fc_lock, flags); 533 list_del(&rport->endp_list); 534 spin_unlock_irqrestore(&nvme_fc_lock, flags); 535 536 WARN_ON(!list_empty(&rport->disc_list)); 537 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 538 539 kfree(rport); 540 541 nvme_fc_lport_put(lport); 542 } 543 544 static void 545 nvme_fc_rport_put(struct nvme_fc_rport *rport) 546 { 547 kref_put(&rport->ref, nvme_fc_free_rport); 548 } 549 550 static int 551 nvme_fc_rport_get(struct nvme_fc_rport *rport) 552 { 553 return kref_get_unless_zero(&rport->ref); 554 } 555 556 static void 557 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 558 { 559 switch (ctrl->ctrl.state) { 560 case NVME_CTRL_NEW: 561 case NVME_CTRL_CONNECTING: 562 /* 563 * As all reconnects were suppressed, schedule a 564 * connect. 565 */ 566 dev_info(ctrl->ctrl.device, 567 "NVME-FC{%d}: connectivity re-established. " 568 "Attempting reconnect\n", ctrl->cnum); 569 570 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 571 break; 572 573 case NVME_CTRL_RESETTING: 574 /* 575 * Controller is already in the process of terminating the 576 * association. No need to do anything further. The reconnect 577 * step will naturally occur after the reset completes. 578 */ 579 break; 580 581 default: 582 /* no action to take - let it delete */ 583 break; 584 } 585 } 586 587 static struct nvme_fc_rport * 588 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 589 struct nvme_fc_port_info *pinfo) 590 { 591 struct nvme_fc_rport *rport; 592 struct nvme_fc_ctrl *ctrl; 593 unsigned long flags; 594 595 spin_lock_irqsave(&nvme_fc_lock, flags); 596 597 list_for_each_entry(rport, &lport->endp_list, endp_list) { 598 if (rport->remoteport.node_name != pinfo->node_name || 599 rport->remoteport.port_name != pinfo->port_name) 600 continue; 601 602 if (!nvme_fc_rport_get(rport)) { 603 rport = ERR_PTR(-ENOLCK); 604 goto out_done; 605 } 606 607 spin_unlock_irqrestore(&nvme_fc_lock, flags); 608 609 spin_lock_irqsave(&rport->lock, flags); 610 611 /* has it been unregistered */ 612 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 613 /* means lldd called us twice */ 614 spin_unlock_irqrestore(&rport->lock, flags); 615 nvme_fc_rport_put(rport); 616 return ERR_PTR(-ESTALE); 617 } 618 619 rport->remoteport.port_role = pinfo->port_role; 620 rport->remoteport.port_id = pinfo->port_id; 621 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 622 rport->dev_loss_end = 0; 623 624 /* 625 * kick off a reconnect attempt on all associations to the 626 * remote port. A successful reconnects will resume i/o. 627 */ 628 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 629 nvme_fc_resume_controller(ctrl); 630 631 spin_unlock_irqrestore(&rport->lock, flags); 632 633 return rport; 634 } 635 636 rport = NULL; 637 638 out_done: 639 spin_unlock_irqrestore(&nvme_fc_lock, flags); 640 641 return rport; 642 } 643 644 static inline void 645 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 646 struct nvme_fc_port_info *pinfo) 647 { 648 if (pinfo->dev_loss_tmo) 649 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 650 else 651 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 652 } 653 654 /** 655 * nvme_fc_register_remoteport - transport entry point called by an 656 * LLDD to register the existence of a NVME 657 * subsystem FC port on its fabric. 658 * @localport: pointer to the (registered) local port that the remote 659 * subsystem port is connected to. 660 * @pinfo: pointer to information about the port to be registered 661 * @portptr: pointer to a remote port pointer. Upon success, the routine 662 * will allocate a nvme_fc_remote_port structure and place its 663 * address in the remote port pointer. Upon failure, remote port 664 * pointer will be set to 0. 665 * 666 * Returns: 667 * a completion status. Must be 0 upon success; a negative errno 668 * (ex: -ENXIO) upon failure. 669 */ 670 int 671 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 672 struct nvme_fc_port_info *pinfo, 673 struct nvme_fc_remote_port **portptr) 674 { 675 struct nvme_fc_lport *lport = localport_to_lport(localport); 676 struct nvme_fc_rport *newrec; 677 unsigned long flags; 678 int ret, idx; 679 680 if (!nvme_fc_lport_get(lport)) { 681 ret = -ESHUTDOWN; 682 goto out_reghost_failed; 683 } 684 685 /* 686 * look to see if there is already a remoteport that is waiting 687 * for a reconnect (within dev_loss_tmo) with the same WWN's. 688 * If so, transition to it and reconnect. 689 */ 690 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 691 692 /* found an rport, but something about its state is bad */ 693 if (IS_ERR(newrec)) { 694 ret = PTR_ERR(newrec); 695 goto out_lport_put; 696 697 /* found existing rport, which was resumed */ 698 } else if (newrec) { 699 nvme_fc_lport_put(lport); 700 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 701 nvme_fc_signal_discovery_scan(lport, newrec); 702 *portptr = &newrec->remoteport; 703 return 0; 704 } 705 706 /* nothing found - allocate a new remoteport struct */ 707 708 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 709 GFP_KERNEL); 710 if (!newrec) { 711 ret = -ENOMEM; 712 goto out_lport_put; 713 } 714 715 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 716 if (idx < 0) { 717 ret = -ENOSPC; 718 goto out_kfree_rport; 719 } 720 721 INIT_LIST_HEAD(&newrec->endp_list); 722 INIT_LIST_HEAD(&newrec->ctrl_list); 723 INIT_LIST_HEAD(&newrec->ls_req_list); 724 INIT_LIST_HEAD(&newrec->disc_list); 725 kref_init(&newrec->ref); 726 atomic_set(&newrec->act_ctrl_cnt, 0); 727 spin_lock_init(&newrec->lock); 728 newrec->remoteport.localport = &lport->localport; 729 INIT_LIST_HEAD(&newrec->ls_rcv_list); 730 newrec->dev = lport->dev; 731 newrec->lport = lport; 732 if (lport->ops->remote_priv_sz) 733 newrec->remoteport.private = &newrec[1]; 734 else 735 newrec->remoteport.private = NULL; 736 newrec->remoteport.port_role = pinfo->port_role; 737 newrec->remoteport.node_name = pinfo->node_name; 738 newrec->remoteport.port_name = pinfo->port_name; 739 newrec->remoteport.port_id = pinfo->port_id; 740 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 741 newrec->remoteport.port_num = idx; 742 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 743 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 744 745 spin_lock_irqsave(&nvme_fc_lock, flags); 746 list_add_tail(&newrec->endp_list, &lport->endp_list); 747 spin_unlock_irqrestore(&nvme_fc_lock, flags); 748 749 nvme_fc_signal_discovery_scan(lport, newrec); 750 751 *portptr = &newrec->remoteport; 752 return 0; 753 754 out_kfree_rport: 755 kfree(newrec); 756 out_lport_put: 757 nvme_fc_lport_put(lport); 758 out_reghost_failed: 759 *portptr = NULL; 760 return ret; 761 } 762 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 763 764 static int 765 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 766 { 767 struct nvmefc_ls_req_op *lsop; 768 unsigned long flags; 769 770 restart: 771 spin_lock_irqsave(&rport->lock, flags); 772 773 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 774 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 775 lsop->flags |= FCOP_FLAGS_TERMIO; 776 spin_unlock_irqrestore(&rport->lock, flags); 777 rport->lport->ops->ls_abort(&rport->lport->localport, 778 &rport->remoteport, 779 &lsop->ls_req); 780 goto restart; 781 } 782 } 783 spin_unlock_irqrestore(&rport->lock, flags); 784 785 return 0; 786 } 787 788 static void 789 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 790 { 791 dev_info(ctrl->ctrl.device, 792 "NVME-FC{%d}: controller connectivity lost. Awaiting " 793 "Reconnect", ctrl->cnum); 794 795 switch (ctrl->ctrl.state) { 796 case NVME_CTRL_NEW: 797 case NVME_CTRL_LIVE: 798 /* 799 * Schedule a controller reset. The reset will terminate the 800 * association and schedule the reconnect timer. Reconnects 801 * will be attempted until either the ctlr_loss_tmo 802 * (max_retries * connect_delay) expires or the remoteport's 803 * dev_loss_tmo expires. 804 */ 805 if (nvme_reset_ctrl(&ctrl->ctrl)) { 806 dev_warn(ctrl->ctrl.device, 807 "NVME-FC{%d}: Couldn't schedule reset.\n", 808 ctrl->cnum); 809 nvme_delete_ctrl(&ctrl->ctrl); 810 } 811 break; 812 813 case NVME_CTRL_CONNECTING: 814 /* 815 * The association has already been terminated and the 816 * controller is attempting reconnects. No need to do anything 817 * futher. Reconnects will be attempted until either the 818 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 819 * remoteport's dev_loss_tmo expires. 820 */ 821 break; 822 823 case NVME_CTRL_RESETTING: 824 /* 825 * Controller is already in the process of terminating the 826 * association. No need to do anything further. The reconnect 827 * step will kick in naturally after the association is 828 * terminated. 829 */ 830 break; 831 832 case NVME_CTRL_DELETING: 833 case NVME_CTRL_DELETING_NOIO: 834 default: 835 /* no action to take - let it delete */ 836 break; 837 } 838 } 839 840 /** 841 * nvme_fc_unregister_remoteport - transport entry point called by an 842 * LLDD to deregister/remove a previously 843 * registered a NVME subsystem FC port. 844 * @portptr: pointer to the (registered) remote port that is to be 845 * deregistered. 846 * 847 * Returns: 848 * a completion status. Must be 0 upon success; a negative errno 849 * (ex: -ENXIO) upon failure. 850 */ 851 int 852 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 853 { 854 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 855 struct nvme_fc_ctrl *ctrl; 856 unsigned long flags; 857 858 if (!portptr) 859 return -EINVAL; 860 861 spin_lock_irqsave(&rport->lock, flags); 862 863 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 864 spin_unlock_irqrestore(&rport->lock, flags); 865 return -EINVAL; 866 } 867 portptr->port_state = FC_OBJSTATE_DELETED; 868 869 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 870 871 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 872 /* if dev_loss_tmo==0, dev loss is immediate */ 873 if (!portptr->dev_loss_tmo) { 874 dev_warn(ctrl->ctrl.device, 875 "NVME-FC{%d}: controller connectivity lost.\n", 876 ctrl->cnum); 877 nvme_delete_ctrl(&ctrl->ctrl); 878 } else 879 nvme_fc_ctrl_connectivity_loss(ctrl); 880 } 881 882 spin_unlock_irqrestore(&rport->lock, flags); 883 884 nvme_fc_abort_lsops(rport); 885 886 if (atomic_read(&rport->act_ctrl_cnt) == 0) 887 rport->lport->ops->remoteport_delete(portptr); 888 889 /* 890 * release the reference, which will allow, if all controllers 891 * go away, which should only occur after dev_loss_tmo occurs, 892 * for the rport to be torn down. 893 */ 894 nvme_fc_rport_put(rport); 895 896 return 0; 897 } 898 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 899 900 /** 901 * nvme_fc_rescan_remoteport - transport entry point called by an 902 * LLDD to request a nvme device rescan. 903 * @remoteport: pointer to the (registered) remote port that is to be 904 * rescanned. 905 * 906 * Returns: N/A 907 */ 908 void 909 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 910 { 911 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 912 913 nvme_fc_signal_discovery_scan(rport->lport, rport); 914 } 915 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 916 917 int 918 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 919 u32 dev_loss_tmo) 920 { 921 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 922 unsigned long flags; 923 924 spin_lock_irqsave(&rport->lock, flags); 925 926 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 927 spin_unlock_irqrestore(&rport->lock, flags); 928 return -EINVAL; 929 } 930 931 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 932 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 933 934 spin_unlock_irqrestore(&rport->lock, flags); 935 936 return 0; 937 } 938 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 939 940 941 /* *********************** FC-NVME DMA Handling **************************** */ 942 943 /* 944 * The fcloop device passes in a NULL device pointer. Real LLD's will 945 * pass in a valid device pointer. If NULL is passed to the dma mapping 946 * routines, depending on the platform, it may or may not succeed, and 947 * may crash. 948 * 949 * As such: 950 * Wrapper all the dma routines and check the dev pointer. 951 * 952 * If simple mappings (return just a dma address, we'll noop them, 953 * returning a dma address of 0. 954 * 955 * On more complex mappings (dma_map_sg), a pseudo routine fills 956 * in the scatter list, setting all dma addresses to 0. 957 */ 958 959 static inline dma_addr_t 960 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 961 enum dma_data_direction dir) 962 { 963 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 964 } 965 966 static inline int 967 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 968 { 969 return dev ? dma_mapping_error(dev, dma_addr) : 0; 970 } 971 972 static inline void 973 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 974 enum dma_data_direction dir) 975 { 976 if (dev) 977 dma_unmap_single(dev, addr, size, dir); 978 } 979 980 static inline void 981 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 982 enum dma_data_direction dir) 983 { 984 if (dev) 985 dma_sync_single_for_cpu(dev, addr, size, dir); 986 } 987 988 static inline void 989 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 990 enum dma_data_direction dir) 991 { 992 if (dev) 993 dma_sync_single_for_device(dev, addr, size, dir); 994 } 995 996 /* pseudo dma_map_sg call */ 997 static int 998 fc_map_sg(struct scatterlist *sg, int nents) 999 { 1000 struct scatterlist *s; 1001 int i; 1002 1003 WARN_ON(nents == 0 || sg[0].length == 0); 1004 1005 for_each_sg(sg, s, nents, i) { 1006 s->dma_address = 0L; 1007 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1008 s->dma_length = s->length; 1009 #endif 1010 } 1011 return nents; 1012 } 1013 1014 static inline int 1015 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1016 enum dma_data_direction dir) 1017 { 1018 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 1019 } 1020 1021 static inline void 1022 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1023 enum dma_data_direction dir) 1024 { 1025 if (dev) 1026 dma_unmap_sg(dev, sg, nents, dir); 1027 } 1028 1029 /* *********************** FC-NVME LS Handling **************************** */ 1030 1031 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1032 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1033 1034 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1035 1036 static void 1037 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1038 { 1039 struct nvme_fc_rport *rport = lsop->rport; 1040 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1041 unsigned long flags; 1042 1043 spin_lock_irqsave(&rport->lock, flags); 1044 1045 if (!lsop->req_queued) { 1046 spin_unlock_irqrestore(&rport->lock, flags); 1047 return; 1048 } 1049 1050 list_del(&lsop->lsreq_list); 1051 1052 lsop->req_queued = false; 1053 1054 spin_unlock_irqrestore(&rport->lock, flags); 1055 1056 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1057 (lsreq->rqstlen + lsreq->rsplen), 1058 DMA_BIDIRECTIONAL); 1059 1060 nvme_fc_rport_put(rport); 1061 } 1062 1063 static int 1064 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1065 struct nvmefc_ls_req_op *lsop, 1066 void (*done)(struct nvmefc_ls_req *req, int status)) 1067 { 1068 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1069 unsigned long flags; 1070 int ret = 0; 1071 1072 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1073 return -ECONNREFUSED; 1074 1075 if (!nvme_fc_rport_get(rport)) 1076 return -ESHUTDOWN; 1077 1078 lsreq->done = done; 1079 lsop->rport = rport; 1080 lsop->req_queued = false; 1081 INIT_LIST_HEAD(&lsop->lsreq_list); 1082 init_completion(&lsop->ls_done); 1083 1084 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1085 lsreq->rqstlen + lsreq->rsplen, 1086 DMA_BIDIRECTIONAL); 1087 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1088 ret = -EFAULT; 1089 goto out_putrport; 1090 } 1091 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1092 1093 spin_lock_irqsave(&rport->lock, flags); 1094 1095 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1096 1097 lsop->req_queued = true; 1098 1099 spin_unlock_irqrestore(&rport->lock, flags); 1100 1101 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1102 &rport->remoteport, lsreq); 1103 if (ret) 1104 goto out_unlink; 1105 1106 return 0; 1107 1108 out_unlink: 1109 lsop->ls_error = ret; 1110 spin_lock_irqsave(&rport->lock, flags); 1111 lsop->req_queued = false; 1112 list_del(&lsop->lsreq_list); 1113 spin_unlock_irqrestore(&rport->lock, flags); 1114 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1115 (lsreq->rqstlen + lsreq->rsplen), 1116 DMA_BIDIRECTIONAL); 1117 out_putrport: 1118 nvme_fc_rport_put(rport); 1119 1120 return ret; 1121 } 1122 1123 static void 1124 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1125 { 1126 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1127 1128 lsop->ls_error = status; 1129 complete(&lsop->ls_done); 1130 } 1131 1132 static int 1133 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1134 { 1135 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1136 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1137 int ret; 1138 1139 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1140 1141 if (!ret) { 1142 /* 1143 * No timeout/not interruptible as we need the struct 1144 * to exist until the lldd calls us back. Thus mandate 1145 * wait until driver calls back. lldd responsible for 1146 * the timeout action 1147 */ 1148 wait_for_completion(&lsop->ls_done); 1149 1150 __nvme_fc_finish_ls_req(lsop); 1151 1152 ret = lsop->ls_error; 1153 } 1154 1155 if (ret) 1156 return ret; 1157 1158 /* ACC or RJT payload ? */ 1159 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1160 return -ENXIO; 1161 1162 return 0; 1163 } 1164 1165 static int 1166 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1167 struct nvmefc_ls_req_op *lsop, 1168 void (*done)(struct nvmefc_ls_req *req, int status)) 1169 { 1170 /* don't wait for completion */ 1171 1172 return __nvme_fc_send_ls_req(rport, lsop, done); 1173 } 1174 1175 static int 1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1177 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1178 { 1179 struct nvmefc_ls_req_op *lsop; 1180 struct nvmefc_ls_req *lsreq; 1181 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1182 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1183 unsigned long flags; 1184 int ret, fcret = 0; 1185 1186 lsop = kzalloc((sizeof(*lsop) + 1187 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1188 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1189 if (!lsop) { 1190 dev_info(ctrl->ctrl.device, 1191 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1192 ctrl->cnum); 1193 ret = -ENOMEM; 1194 goto out_no_memory; 1195 } 1196 1197 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1198 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1199 lsreq = &lsop->ls_req; 1200 if (ctrl->lport->ops->lsrqst_priv_sz) 1201 lsreq->private = &assoc_acc[1]; 1202 else 1203 lsreq->private = NULL; 1204 1205 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1206 assoc_rqst->desc_list_len = 1207 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1208 1209 assoc_rqst->assoc_cmd.desc_tag = 1210 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1211 assoc_rqst->assoc_cmd.desc_len = 1212 fcnvme_lsdesc_len( 1213 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1214 1215 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1216 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1217 /* Linux supports only Dynamic controllers */ 1218 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1219 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1220 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1221 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1222 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1223 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1224 1225 lsop->queue = queue; 1226 lsreq->rqstaddr = assoc_rqst; 1227 lsreq->rqstlen = sizeof(*assoc_rqst); 1228 lsreq->rspaddr = assoc_acc; 1229 lsreq->rsplen = sizeof(*assoc_acc); 1230 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1231 1232 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1233 if (ret) 1234 goto out_free_buffer; 1235 1236 /* process connect LS completion */ 1237 1238 /* validate the ACC response */ 1239 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1240 fcret = VERR_LSACC; 1241 else if (assoc_acc->hdr.desc_list_len != 1242 fcnvme_lsdesc_len( 1243 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1244 fcret = VERR_CR_ASSOC_ACC_LEN; 1245 else if (assoc_acc->hdr.rqst.desc_tag != 1246 cpu_to_be32(FCNVME_LSDESC_RQST)) 1247 fcret = VERR_LSDESC_RQST; 1248 else if (assoc_acc->hdr.rqst.desc_len != 1249 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1250 fcret = VERR_LSDESC_RQST_LEN; 1251 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1252 fcret = VERR_CR_ASSOC; 1253 else if (assoc_acc->associd.desc_tag != 1254 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1255 fcret = VERR_ASSOC_ID; 1256 else if (assoc_acc->associd.desc_len != 1257 fcnvme_lsdesc_len( 1258 sizeof(struct fcnvme_lsdesc_assoc_id))) 1259 fcret = VERR_ASSOC_ID_LEN; 1260 else if (assoc_acc->connectid.desc_tag != 1261 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1262 fcret = VERR_CONN_ID; 1263 else if (assoc_acc->connectid.desc_len != 1264 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1265 fcret = VERR_CONN_ID_LEN; 1266 1267 if (fcret) { 1268 ret = -EBADF; 1269 dev_err(ctrl->dev, 1270 "q %d Create Association LS failed: %s\n", 1271 queue->qnum, validation_errors[fcret]); 1272 } else { 1273 spin_lock_irqsave(&ctrl->lock, flags); 1274 ctrl->association_id = 1275 be64_to_cpu(assoc_acc->associd.association_id); 1276 queue->connection_id = 1277 be64_to_cpu(assoc_acc->connectid.connection_id); 1278 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1279 spin_unlock_irqrestore(&ctrl->lock, flags); 1280 } 1281 1282 out_free_buffer: 1283 kfree(lsop); 1284 out_no_memory: 1285 if (ret) 1286 dev_err(ctrl->dev, 1287 "queue %d connect admin queue failed (%d).\n", 1288 queue->qnum, ret); 1289 return ret; 1290 } 1291 1292 static int 1293 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1294 u16 qsize, u16 ersp_ratio) 1295 { 1296 struct nvmefc_ls_req_op *lsop; 1297 struct nvmefc_ls_req *lsreq; 1298 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1299 struct fcnvme_ls_cr_conn_acc *conn_acc; 1300 int ret, fcret = 0; 1301 1302 lsop = kzalloc((sizeof(*lsop) + 1303 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1304 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1305 if (!lsop) { 1306 dev_info(ctrl->ctrl.device, 1307 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1308 ctrl->cnum); 1309 ret = -ENOMEM; 1310 goto out_no_memory; 1311 } 1312 1313 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1314 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1315 lsreq = &lsop->ls_req; 1316 if (ctrl->lport->ops->lsrqst_priv_sz) 1317 lsreq->private = (void *)&conn_acc[1]; 1318 else 1319 lsreq->private = NULL; 1320 1321 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1322 conn_rqst->desc_list_len = cpu_to_be32( 1323 sizeof(struct fcnvme_lsdesc_assoc_id) + 1324 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1325 1326 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1327 conn_rqst->associd.desc_len = 1328 fcnvme_lsdesc_len( 1329 sizeof(struct fcnvme_lsdesc_assoc_id)); 1330 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1331 conn_rqst->connect_cmd.desc_tag = 1332 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1333 conn_rqst->connect_cmd.desc_len = 1334 fcnvme_lsdesc_len( 1335 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1336 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1337 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1338 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1339 1340 lsop->queue = queue; 1341 lsreq->rqstaddr = conn_rqst; 1342 lsreq->rqstlen = sizeof(*conn_rqst); 1343 lsreq->rspaddr = conn_acc; 1344 lsreq->rsplen = sizeof(*conn_acc); 1345 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1346 1347 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1348 if (ret) 1349 goto out_free_buffer; 1350 1351 /* process connect LS completion */ 1352 1353 /* validate the ACC response */ 1354 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1355 fcret = VERR_LSACC; 1356 else if (conn_acc->hdr.desc_list_len != 1357 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1358 fcret = VERR_CR_CONN_ACC_LEN; 1359 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1360 fcret = VERR_LSDESC_RQST; 1361 else if (conn_acc->hdr.rqst.desc_len != 1362 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1363 fcret = VERR_LSDESC_RQST_LEN; 1364 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1365 fcret = VERR_CR_CONN; 1366 else if (conn_acc->connectid.desc_tag != 1367 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1368 fcret = VERR_CONN_ID; 1369 else if (conn_acc->connectid.desc_len != 1370 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1371 fcret = VERR_CONN_ID_LEN; 1372 1373 if (fcret) { 1374 ret = -EBADF; 1375 dev_err(ctrl->dev, 1376 "q %d Create I/O Connection LS failed: %s\n", 1377 queue->qnum, validation_errors[fcret]); 1378 } else { 1379 queue->connection_id = 1380 be64_to_cpu(conn_acc->connectid.connection_id); 1381 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1382 } 1383 1384 out_free_buffer: 1385 kfree(lsop); 1386 out_no_memory: 1387 if (ret) 1388 dev_err(ctrl->dev, 1389 "queue %d connect I/O queue failed (%d).\n", 1390 queue->qnum, ret); 1391 return ret; 1392 } 1393 1394 static void 1395 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1396 { 1397 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1398 1399 __nvme_fc_finish_ls_req(lsop); 1400 1401 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1402 1403 kfree(lsop); 1404 } 1405 1406 /* 1407 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1408 * the FC-NVME Association. Terminating the association also 1409 * terminates the FC-NVME connections (per queue, both admin and io 1410 * queues) that are part of the association. E.g. things are torn 1411 * down, and the related FC-NVME Association ID and Connection IDs 1412 * become invalid. 1413 * 1414 * The behavior of the fc-nvme initiator is such that it's 1415 * understanding of the association and connections will implicitly 1416 * be torn down. The action is implicit as it may be due to a loss of 1417 * connectivity with the fc-nvme target, so you may never get a 1418 * response even if you tried. As such, the action of this routine 1419 * is to asynchronously send the LS, ignore any results of the LS, and 1420 * continue on with terminating the association. If the fc-nvme target 1421 * is present and receives the LS, it too can tear down. 1422 */ 1423 static void 1424 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1425 { 1426 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1427 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1428 struct nvmefc_ls_req_op *lsop; 1429 struct nvmefc_ls_req *lsreq; 1430 int ret; 1431 1432 lsop = kzalloc((sizeof(*lsop) + 1433 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1434 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1435 if (!lsop) { 1436 dev_info(ctrl->ctrl.device, 1437 "NVME-FC{%d}: send Disconnect Association " 1438 "failed: ENOMEM\n", 1439 ctrl->cnum); 1440 return; 1441 } 1442 1443 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1444 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1445 lsreq = &lsop->ls_req; 1446 if (ctrl->lport->ops->lsrqst_priv_sz) 1447 lsreq->private = (void *)&discon_acc[1]; 1448 else 1449 lsreq->private = NULL; 1450 1451 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1452 ctrl->association_id); 1453 1454 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1455 nvme_fc_disconnect_assoc_done); 1456 if (ret) 1457 kfree(lsop); 1458 } 1459 1460 static void 1461 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1462 { 1463 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1464 struct nvme_fc_rport *rport = lsop->rport; 1465 struct nvme_fc_lport *lport = rport->lport; 1466 unsigned long flags; 1467 1468 spin_lock_irqsave(&rport->lock, flags); 1469 list_del(&lsop->lsrcv_list); 1470 spin_unlock_irqrestore(&rport->lock, flags); 1471 1472 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1473 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1474 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1475 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1476 1477 kfree(lsop); 1478 1479 nvme_fc_rport_put(rport); 1480 } 1481 1482 static void 1483 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1484 { 1485 struct nvme_fc_rport *rport = lsop->rport; 1486 struct nvme_fc_lport *lport = rport->lport; 1487 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1488 int ret; 1489 1490 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1491 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1492 1493 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1494 lsop->lsrsp); 1495 if (ret) { 1496 dev_warn(lport->dev, 1497 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1498 w0->ls_cmd, ret); 1499 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1500 return; 1501 } 1502 } 1503 1504 static struct nvme_fc_ctrl * 1505 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1506 struct nvmefc_ls_rcv_op *lsop) 1507 { 1508 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1509 &lsop->rqstbuf->rq_dis_assoc; 1510 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1511 struct nvmefc_ls_rcv_op *oldls = NULL; 1512 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1513 unsigned long flags; 1514 1515 spin_lock_irqsave(&rport->lock, flags); 1516 1517 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1518 if (!nvme_fc_ctrl_get(ctrl)) 1519 continue; 1520 spin_lock(&ctrl->lock); 1521 if (association_id == ctrl->association_id) { 1522 oldls = ctrl->rcv_disconn; 1523 ctrl->rcv_disconn = lsop; 1524 ret = ctrl; 1525 } 1526 spin_unlock(&ctrl->lock); 1527 if (ret) 1528 /* leave the ctrl get reference */ 1529 break; 1530 nvme_fc_ctrl_put(ctrl); 1531 } 1532 1533 spin_unlock_irqrestore(&rport->lock, flags); 1534 1535 /* transmit a response for anything that was pending */ 1536 if (oldls) { 1537 dev_info(rport->lport->dev, 1538 "NVME-FC{%d}: Multiple Disconnect Association " 1539 "LS's received\n", ctrl->cnum); 1540 /* overwrite good response with bogus failure */ 1541 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1542 sizeof(*oldls->rspbuf), 1543 rqst->w0.ls_cmd, 1544 FCNVME_RJT_RC_UNAB, 1545 FCNVME_RJT_EXP_NONE, 0); 1546 nvme_fc_xmt_ls_rsp(oldls); 1547 } 1548 1549 return ret; 1550 } 1551 1552 /* 1553 * returns true to mean LS handled and ls_rsp can be sent 1554 * returns false to defer ls_rsp xmt (will be done as part of 1555 * association termination) 1556 */ 1557 static bool 1558 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1559 { 1560 struct nvme_fc_rport *rport = lsop->rport; 1561 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1562 &lsop->rqstbuf->rq_dis_assoc; 1563 struct fcnvme_ls_disconnect_assoc_acc *acc = 1564 &lsop->rspbuf->rsp_dis_assoc; 1565 struct nvme_fc_ctrl *ctrl = NULL; 1566 int ret = 0; 1567 1568 memset(acc, 0, sizeof(*acc)); 1569 1570 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1571 if (!ret) { 1572 /* match an active association */ 1573 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1574 if (!ctrl) 1575 ret = VERR_NO_ASSOC; 1576 } 1577 1578 if (ret) { 1579 dev_info(rport->lport->dev, 1580 "Disconnect LS failed: %s\n", 1581 validation_errors[ret]); 1582 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1583 sizeof(*acc), rqst->w0.ls_cmd, 1584 (ret == VERR_NO_ASSOC) ? 1585 FCNVME_RJT_RC_INV_ASSOC : 1586 FCNVME_RJT_RC_LOGIC, 1587 FCNVME_RJT_EXP_NONE, 0); 1588 return true; 1589 } 1590 1591 /* format an ACCept response */ 1592 1593 lsop->lsrsp->rsplen = sizeof(*acc); 1594 1595 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1596 fcnvme_lsdesc_len( 1597 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1598 FCNVME_LS_DISCONNECT_ASSOC); 1599 1600 /* 1601 * the transmit of the response will occur after the exchanges 1602 * for the association have been ABTS'd by 1603 * nvme_fc_delete_association(). 1604 */ 1605 1606 /* fail the association */ 1607 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1608 1609 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1610 nvme_fc_ctrl_put(ctrl); 1611 1612 return false; 1613 } 1614 1615 /* 1616 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1617 * returns true if a response should be sent afterward, false if rsp will 1618 * be sent asynchronously. 1619 */ 1620 static bool 1621 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1622 { 1623 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1624 bool ret = true; 1625 1626 lsop->lsrsp->nvme_fc_private = lsop; 1627 lsop->lsrsp->rspbuf = lsop->rspbuf; 1628 lsop->lsrsp->rspdma = lsop->rspdma; 1629 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1630 /* Be preventative. handlers will later set to valid length */ 1631 lsop->lsrsp->rsplen = 0; 1632 1633 /* 1634 * handlers: 1635 * parse request input, execute the request, and format the 1636 * LS response 1637 */ 1638 switch (w0->ls_cmd) { 1639 case FCNVME_LS_DISCONNECT_ASSOC: 1640 ret = nvme_fc_ls_disconnect_assoc(lsop); 1641 break; 1642 case FCNVME_LS_DISCONNECT_CONN: 1643 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1644 sizeof(*lsop->rspbuf), w0->ls_cmd, 1645 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1646 break; 1647 case FCNVME_LS_CREATE_ASSOCIATION: 1648 case FCNVME_LS_CREATE_CONNECTION: 1649 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1650 sizeof(*lsop->rspbuf), w0->ls_cmd, 1651 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1652 break; 1653 default: 1654 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1655 sizeof(*lsop->rspbuf), w0->ls_cmd, 1656 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1657 break; 1658 } 1659 1660 return(ret); 1661 } 1662 1663 static void 1664 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1665 { 1666 struct nvme_fc_rport *rport = 1667 container_of(work, struct nvme_fc_rport, lsrcv_work); 1668 struct fcnvme_ls_rqst_w0 *w0; 1669 struct nvmefc_ls_rcv_op *lsop; 1670 unsigned long flags; 1671 bool sendrsp; 1672 1673 restart: 1674 sendrsp = true; 1675 spin_lock_irqsave(&rport->lock, flags); 1676 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1677 if (lsop->handled) 1678 continue; 1679 1680 lsop->handled = true; 1681 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1682 spin_unlock_irqrestore(&rport->lock, flags); 1683 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1684 } else { 1685 spin_unlock_irqrestore(&rport->lock, flags); 1686 w0 = &lsop->rqstbuf->w0; 1687 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1688 lsop->rspbuf, 1689 sizeof(*lsop->rspbuf), 1690 w0->ls_cmd, 1691 FCNVME_RJT_RC_UNAB, 1692 FCNVME_RJT_EXP_NONE, 0); 1693 } 1694 if (sendrsp) 1695 nvme_fc_xmt_ls_rsp(lsop); 1696 goto restart; 1697 } 1698 spin_unlock_irqrestore(&rport->lock, flags); 1699 } 1700 1701 /** 1702 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1703 * upon the reception of a NVME LS request. 1704 * 1705 * The nvme-fc layer will copy payload to an internal structure for 1706 * processing. As such, upon completion of the routine, the LLDD may 1707 * immediately free/reuse the LS request buffer passed in the call. 1708 * 1709 * If this routine returns error, the LLDD should abort the exchange. 1710 * 1711 * @portptr: pointer to the (registered) remote port that the LS 1712 * was received from. The remoteport is associated with 1713 * a specific localport. 1714 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1715 * used to reference the exchange corresponding to the LS 1716 * when issuing an ls response. 1717 * @lsreqbuf: pointer to the buffer containing the LS Request 1718 * @lsreqbuf_len: length, in bytes, of the received LS request 1719 */ 1720 int 1721 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1722 struct nvmefc_ls_rsp *lsrsp, 1723 void *lsreqbuf, u32 lsreqbuf_len) 1724 { 1725 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1726 struct nvme_fc_lport *lport = rport->lport; 1727 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1728 struct nvmefc_ls_rcv_op *lsop; 1729 unsigned long flags; 1730 int ret; 1731 1732 nvme_fc_rport_get(rport); 1733 1734 /* validate there's a routine to transmit a response */ 1735 if (!lport->ops->xmt_ls_rsp) { 1736 dev_info(lport->dev, 1737 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1738 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1739 nvmefc_ls_names[w0->ls_cmd] : ""); 1740 ret = -EINVAL; 1741 goto out_put; 1742 } 1743 1744 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1745 dev_info(lport->dev, 1746 "RCV %s LS failed: payload too large\n", 1747 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1748 nvmefc_ls_names[w0->ls_cmd] : ""); 1749 ret = -E2BIG; 1750 goto out_put; 1751 } 1752 1753 lsop = kzalloc(sizeof(*lsop) + 1754 sizeof(union nvmefc_ls_requests) + 1755 sizeof(union nvmefc_ls_responses), 1756 GFP_KERNEL); 1757 if (!lsop) { 1758 dev_info(lport->dev, 1759 "RCV %s LS failed: No memory\n", 1760 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1761 nvmefc_ls_names[w0->ls_cmd] : ""); 1762 ret = -ENOMEM; 1763 goto out_put; 1764 } 1765 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1]; 1766 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1]; 1767 1768 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1769 sizeof(*lsop->rspbuf), 1770 DMA_TO_DEVICE); 1771 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1772 dev_info(lport->dev, 1773 "RCV %s LS failed: DMA mapping failure\n", 1774 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1775 nvmefc_ls_names[w0->ls_cmd] : ""); 1776 ret = -EFAULT; 1777 goto out_free; 1778 } 1779 1780 lsop->rport = rport; 1781 lsop->lsrsp = lsrsp; 1782 1783 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1784 lsop->rqstdatalen = lsreqbuf_len; 1785 1786 spin_lock_irqsave(&rport->lock, flags); 1787 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1788 spin_unlock_irqrestore(&rport->lock, flags); 1789 ret = -ENOTCONN; 1790 goto out_unmap; 1791 } 1792 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1793 spin_unlock_irqrestore(&rport->lock, flags); 1794 1795 schedule_work(&rport->lsrcv_work); 1796 1797 return 0; 1798 1799 out_unmap: 1800 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1801 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1802 out_free: 1803 kfree(lsop); 1804 out_put: 1805 nvme_fc_rport_put(rport); 1806 return ret; 1807 } 1808 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1809 1810 1811 /* *********************** NVME Ctrl Routines **************************** */ 1812 1813 static void 1814 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1815 struct nvme_fc_fcp_op *op) 1816 { 1817 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1818 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1819 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1820 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1821 1822 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1823 } 1824 1825 static void 1826 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1827 unsigned int hctx_idx) 1828 { 1829 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1830 1831 return __nvme_fc_exit_request(set->driver_data, op); 1832 } 1833 1834 static int 1835 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1836 { 1837 unsigned long flags; 1838 int opstate; 1839 1840 spin_lock_irqsave(&ctrl->lock, flags); 1841 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1842 if (opstate != FCPOP_STATE_ACTIVE) 1843 atomic_set(&op->state, opstate); 1844 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1845 op->flags |= FCOP_FLAGS_TERMIO; 1846 ctrl->iocnt++; 1847 } 1848 spin_unlock_irqrestore(&ctrl->lock, flags); 1849 1850 if (opstate != FCPOP_STATE_ACTIVE) 1851 return -ECANCELED; 1852 1853 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1854 &ctrl->rport->remoteport, 1855 op->queue->lldd_handle, 1856 &op->fcp_req); 1857 1858 return 0; 1859 } 1860 1861 static void 1862 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1863 { 1864 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1865 int i; 1866 1867 /* ensure we've initialized the ops once */ 1868 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1869 return; 1870 1871 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1872 __nvme_fc_abort_op(ctrl, aen_op); 1873 } 1874 1875 static inline void 1876 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1877 struct nvme_fc_fcp_op *op, int opstate) 1878 { 1879 unsigned long flags; 1880 1881 if (opstate == FCPOP_STATE_ABORTED) { 1882 spin_lock_irqsave(&ctrl->lock, flags); 1883 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1884 op->flags & FCOP_FLAGS_TERMIO) { 1885 if (!--ctrl->iocnt) 1886 wake_up(&ctrl->ioabort_wait); 1887 } 1888 spin_unlock_irqrestore(&ctrl->lock, flags); 1889 } 1890 } 1891 1892 static void 1893 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1894 { 1895 struct nvme_fc_ctrl *ctrl = 1896 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1897 1898 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1899 } 1900 1901 static void 1902 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1903 { 1904 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1905 struct request *rq = op->rq; 1906 struct nvmefc_fcp_req *freq = &op->fcp_req; 1907 struct nvme_fc_ctrl *ctrl = op->ctrl; 1908 struct nvme_fc_queue *queue = op->queue; 1909 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1910 struct nvme_command *sqe = &op->cmd_iu.sqe; 1911 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1912 union nvme_result result; 1913 bool terminate_assoc = true; 1914 int opstate; 1915 1916 /* 1917 * WARNING: 1918 * The current linux implementation of a nvme controller 1919 * allocates a single tag set for all io queues and sizes 1920 * the io queues to fully hold all possible tags. Thus, the 1921 * implementation does not reference or care about the sqhd 1922 * value as it never needs to use the sqhd/sqtail pointers 1923 * for submission pacing. 1924 * 1925 * This affects the FC-NVME implementation in two ways: 1926 * 1) As the value doesn't matter, we don't need to waste 1927 * cycles extracting it from ERSPs and stamping it in the 1928 * cases where the transport fabricates CQEs on successful 1929 * completions. 1930 * 2) The FC-NVME implementation requires that delivery of 1931 * ERSP completions are to go back to the nvme layer in order 1932 * relative to the rsn, such that the sqhd value will always 1933 * be "in order" for the nvme layer. As the nvme layer in 1934 * linux doesn't care about sqhd, there's no need to return 1935 * them in order. 1936 * 1937 * Additionally: 1938 * As the core nvme layer in linux currently does not look at 1939 * every field in the cqe - in cases where the FC transport must 1940 * fabricate a CQE, the following fields will not be set as they 1941 * are not referenced: 1942 * cqe.sqid, cqe.sqhd, cqe.command_id 1943 * 1944 * Failure or error of an individual i/o, in a transport 1945 * detected fashion unrelated to the nvme completion status, 1946 * potentially cause the initiator and target sides to get out 1947 * of sync on SQ head/tail (aka outstanding io count allowed). 1948 * Per FC-NVME spec, failure of an individual command requires 1949 * the connection to be terminated, which in turn requires the 1950 * association to be terminated. 1951 */ 1952 1953 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1954 1955 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1956 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1957 1958 if (opstate == FCPOP_STATE_ABORTED) 1959 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1960 else if (freq->status) { 1961 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1962 dev_info(ctrl->ctrl.device, 1963 "NVME-FC{%d}: io failed due to lldd error %d\n", 1964 ctrl->cnum, freq->status); 1965 } 1966 1967 /* 1968 * For the linux implementation, if we have an unsuccesful 1969 * status, they blk-mq layer can typically be called with the 1970 * non-zero status and the content of the cqe isn't important. 1971 */ 1972 if (status) 1973 goto done; 1974 1975 /* 1976 * command completed successfully relative to the wire 1977 * protocol. However, validate anything received and 1978 * extract the status and result from the cqe (create it 1979 * where necessary). 1980 */ 1981 1982 switch (freq->rcv_rsplen) { 1983 1984 case 0: 1985 case NVME_FC_SIZEOF_ZEROS_RSP: 1986 /* 1987 * No response payload or 12 bytes of payload (which 1988 * should all be zeros) are considered successful and 1989 * no payload in the CQE by the transport. 1990 */ 1991 if (freq->transferred_length != 1992 be32_to_cpu(op->cmd_iu.data_len)) { 1993 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1994 dev_info(ctrl->ctrl.device, 1995 "NVME-FC{%d}: io failed due to bad transfer " 1996 "length: %d vs expected %d\n", 1997 ctrl->cnum, freq->transferred_length, 1998 be32_to_cpu(op->cmd_iu.data_len)); 1999 goto done; 2000 } 2001 result.u64 = 0; 2002 break; 2003 2004 case sizeof(struct nvme_fc_ersp_iu): 2005 /* 2006 * The ERSP IU contains a full completion with CQE. 2007 * Validate ERSP IU and look at cqe. 2008 */ 2009 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2010 (freq->rcv_rsplen / 4) || 2011 be32_to_cpu(op->rsp_iu.xfrd_len) != 2012 freq->transferred_length || 2013 op->rsp_iu.ersp_result || 2014 sqe->common.command_id != cqe->command_id)) { 2015 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2016 dev_info(ctrl->ctrl.device, 2017 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2018 "iu len %d, xfr len %d vs %d, status code " 2019 "%d, cmdid %d vs %d\n", 2020 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2021 be32_to_cpu(op->rsp_iu.xfrd_len), 2022 freq->transferred_length, 2023 op->rsp_iu.ersp_result, 2024 sqe->common.command_id, 2025 cqe->command_id); 2026 goto done; 2027 } 2028 result = cqe->result; 2029 status = cqe->status; 2030 break; 2031 2032 default: 2033 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2034 dev_info(ctrl->ctrl.device, 2035 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2036 "len %d\n", 2037 ctrl->cnum, freq->rcv_rsplen); 2038 goto done; 2039 } 2040 2041 terminate_assoc = false; 2042 2043 done: 2044 if (op->flags & FCOP_FLAGS_AEN) { 2045 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2046 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2047 atomic_set(&op->state, FCPOP_STATE_IDLE); 2048 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2049 nvme_fc_ctrl_put(ctrl); 2050 goto check_error; 2051 } 2052 2053 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2054 if (!nvme_try_complete_req(rq, status, result)) 2055 nvme_fc_complete_rq(rq); 2056 2057 check_error: 2058 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING) 2059 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2060 } 2061 2062 static int 2063 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2064 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2065 struct request *rq, u32 rqno) 2066 { 2067 struct nvme_fcp_op_w_sgl *op_w_sgl = 2068 container_of(op, typeof(*op_w_sgl), op); 2069 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2070 int ret = 0; 2071 2072 memset(op, 0, sizeof(*op)); 2073 op->fcp_req.cmdaddr = &op->cmd_iu; 2074 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2075 op->fcp_req.rspaddr = &op->rsp_iu; 2076 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2077 op->fcp_req.done = nvme_fc_fcpio_done; 2078 op->ctrl = ctrl; 2079 op->queue = queue; 2080 op->rq = rq; 2081 op->rqno = rqno; 2082 2083 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2084 cmdiu->fc_id = NVME_CMD_FC_ID; 2085 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2086 if (queue->qnum) 2087 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2088 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2089 else 2090 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2091 2092 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2093 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2094 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2095 dev_err(ctrl->dev, 2096 "FCP Op failed - cmdiu dma mapping failed.\n"); 2097 ret = -EFAULT; 2098 goto out_on_error; 2099 } 2100 2101 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2102 &op->rsp_iu, sizeof(op->rsp_iu), 2103 DMA_FROM_DEVICE); 2104 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2105 dev_err(ctrl->dev, 2106 "FCP Op failed - rspiu dma mapping failed.\n"); 2107 ret = -EFAULT; 2108 } 2109 2110 atomic_set(&op->state, FCPOP_STATE_IDLE); 2111 out_on_error: 2112 return ret; 2113 } 2114 2115 static int 2116 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2117 unsigned int hctx_idx, unsigned int numa_node) 2118 { 2119 struct nvme_fc_ctrl *ctrl = set->driver_data; 2120 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2121 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2122 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2123 int res; 2124 2125 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2126 if (res) 2127 return res; 2128 op->op.fcp_req.first_sgl = op->sgl; 2129 op->op.fcp_req.private = &op->priv[0]; 2130 nvme_req(rq)->ctrl = &ctrl->ctrl; 2131 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2132 return res; 2133 } 2134 2135 static int 2136 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2137 { 2138 struct nvme_fc_fcp_op *aen_op; 2139 struct nvme_fc_cmd_iu *cmdiu; 2140 struct nvme_command *sqe; 2141 void *private = NULL; 2142 int i, ret; 2143 2144 aen_op = ctrl->aen_ops; 2145 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2146 if (ctrl->lport->ops->fcprqst_priv_sz) { 2147 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2148 GFP_KERNEL); 2149 if (!private) 2150 return -ENOMEM; 2151 } 2152 2153 cmdiu = &aen_op->cmd_iu; 2154 sqe = &cmdiu->sqe; 2155 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2156 aen_op, (struct request *)NULL, 2157 (NVME_AQ_BLK_MQ_DEPTH + i)); 2158 if (ret) { 2159 kfree(private); 2160 return ret; 2161 } 2162 2163 aen_op->flags = FCOP_FLAGS_AEN; 2164 aen_op->fcp_req.private = private; 2165 2166 memset(sqe, 0, sizeof(*sqe)); 2167 sqe->common.opcode = nvme_admin_async_event; 2168 /* Note: core layer may overwrite the sqe.command_id value */ 2169 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2170 } 2171 return 0; 2172 } 2173 2174 static void 2175 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2176 { 2177 struct nvme_fc_fcp_op *aen_op; 2178 int i; 2179 2180 cancel_work_sync(&ctrl->ctrl.async_event_work); 2181 aen_op = ctrl->aen_ops; 2182 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2183 __nvme_fc_exit_request(ctrl, aen_op); 2184 2185 kfree(aen_op->fcp_req.private); 2186 aen_op->fcp_req.private = NULL; 2187 } 2188 } 2189 2190 static inline void 2191 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 2192 unsigned int qidx) 2193 { 2194 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2195 2196 hctx->driver_data = queue; 2197 queue->hctx = hctx; 2198 } 2199 2200 static int 2201 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2202 unsigned int hctx_idx) 2203 { 2204 struct nvme_fc_ctrl *ctrl = data; 2205 2206 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 2207 2208 return 0; 2209 } 2210 2211 static int 2212 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2213 unsigned int hctx_idx) 2214 { 2215 struct nvme_fc_ctrl *ctrl = data; 2216 2217 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 2218 2219 return 0; 2220 } 2221 2222 static void 2223 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2224 { 2225 struct nvme_fc_queue *queue; 2226 2227 queue = &ctrl->queues[idx]; 2228 memset(queue, 0, sizeof(*queue)); 2229 queue->ctrl = ctrl; 2230 queue->qnum = idx; 2231 atomic_set(&queue->csn, 0); 2232 queue->dev = ctrl->dev; 2233 2234 if (idx > 0) 2235 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2236 else 2237 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2238 2239 /* 2240 * Considered whether we should allocate buffers for all SQEs 2241 * and CQEs and dma map them - mapping their respective entries 2242 * into the request structures (kernel vm addr and dma address) 2243 * thus the driver could use the buffers/mappings directly. 2244 * It only makes sense if the LLDD would use them for its 2245 * messaging api. It's very unlikely most adapter api's would use 2246 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2247 * structures were used instead. 2248 */ 2249 } 2250 2251 /* 2252 * This routine terminates a queue at the transport level. 2253 * The transport has already ensured that all outstanding ios on 2254 * the queue have been terminated. 2255 * The transport will send a Disconnect LS request to terminate 2256 * the queue's connection. Termination of the admin queue will also 2257 * terminate the association at the target. 2258 */ 2259 static void 2260 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2261 { 2262 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2263 return; 2264 2265 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2266 /* 2267 * Current implementation never disconnects a single queue. 2268 * It always terminates a whole association. So there is never 2269 * a disconnect(queue) LS sent to the target. 2270 */ 2271 2272 queue->connection_id = 0; 2273 atomic_set(&queue->csn, 0); 2274 } 2275 2276 static void 2277 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2278 struct nvme_fc_queue *queue, unsigned int qidx) 2279 { 2280 if (ctrl->lport->ops->delete_queue) 2281 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2282 queue->lldd_handle); 2283 queue->lldd_handle = NULL; 2284 } 2285 2286 static void 2287 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2288 { 2289 int i; 2290 2291 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2292 nvme_fc_free_queue(&ctrl->queues[i]); 2293 } 2294 2295 static int 2296 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2297 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2298 { 2299 int ret = 0; 2300 2301 queue->lldd_handle = NULL; 2302 if (ctrl->lport->ops->create_queue) 2303 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2304 qidx, qsize, &queue->lldd_handle); 2305 2306 return ret; 2307 } 2308 2309 static void 2310 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2311 { 2312 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2313 int i; 2314 2315 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2316 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2317 } 2318 2319 static int 2320 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2321 { 2322 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2323 int i, ret; 2324 2325 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2326 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2327 if (ret) 2328 goto delete_queues; 2329 } 2330 2331 return 0; 2332 2333 delete_queues: 2334 for (; i > 0; i--) 2335 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2336 return ret; 2337 } 2338 2339 static int 2340 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2341 { 2342 int i, ret = 0; 2343 2344 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2345 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2346 (qsize / 5)); 2347 if (ret) 2348 break; 2349 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2350 if (ret) 2351 break; 2352 2353 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2354 } 2355 2356 return ret; 2357 } 2358 2359 static void 2360 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2361 { 2362 int i; 2363 2364 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2365 nvme_fc_init_queue(ctrl, i); 2366 } 2367 2368 static void 2369 nvme_fc_ctrl_free(struct kref *ref) 2370 { 2371 struct nvme_fc_ctrl *ctrl = 2372 container_of(ref, struct nvme_fc_ctrl, ref); 2373 unsigned long flags; 2374 2375 if (ctrl->ctrl.tagset) { 2376 blk_cleanup_queue(ctrl->ctrl.connect_q); 2377 blk_mq_free_tag_set(&ctrl->tag_set); 2378 } 2379 2380 /* remove from rport list */ 2381 spin_lock_irqsave(&ctrl->rport->lock, flags); 2382 list_del(&ctrl->ctrl_list); 2383 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2384 2385 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2386 blk_cleanup_queue(ctrl->ctrl.admin_q); 2387 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 2388 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2389 2390 kfree(ctrl->queues); 2391 2392 put_device(ctrl->dev); 2393 nvme_fc_rport_put(ctrl->rport); 2394 2395 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2396 if (ctrl->ctrl.opts) 2397 nvmf_free_options(ctrl->ctrl.opts); 2398 kfree(ctrl); 2399 } 2400 2401 static void 2402 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2403 { 2404 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2405 } 2406 2407 static int 2408 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2409 { 2410 return kref_get_unless_zero(&ctrl->ref); 2411 } 2412 2413 /* 2414 * All accesses from nvme core layer done - can now free the 2415 * controller. Called after last nvme_put_ctrl() call 2416 */ 2417 static void 2418 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2419 { 2420 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2421 2422 WARN_ON(nctrl != &ctrl->ctrl); 2423 2424 nvme_fc_ctrl_put(ctrl); 2425 } 2426 2427 /* 2428 * This routine is used by the transport when it needs to find active 2429 * io on a queue that is to be terminated. The transport uses 2430 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2431 * this routine to kill them on a 1 by 1 basis. 2432 * 2433 * As FC allocates FC exchange for each io, the transport must contact 2434 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2435 * After terminating the exchange the LLDD will call the transport's 2436 * normal io done path for the request, but it will have an aborted 2437 * status. The done path will return the io request back to the block 2438 * layer with an error status. 2439 */ 2440 static bool 2441 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2442 { 2443 struct nvme_ctrl *nctrl = data; 2444 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2445 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2446 2447 op->nreq.flags |= NVME_REQ_CANCELLED; 2448 __nvme_fc_abort_op(ctrl, op); 2449 return true; 2450 } 2451 2452 /* 2453 * This routine runs through all outstanding commands on the association 2454 * and aborts them. This routine is typically be called by the 2455 * delete_association routine. It is also called due to an error during 2456 * reconnect. In that scenario, it is most likely a command that initializes 2457 * the controller, including fabric Connect commands on io queues, that 2458 * may have timed out or failed thus the io must be killed for the connect 2459 * thread to see the error. 2460 */ 2461 static void 2462 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2463 { 2464 int q; 2465 2466 /* 2467 * if aborting io, the queues are no longer good, mark them 2468 * all as not live. 2469 */ 2470 if (ctrl->ctrl.queue_count > 1) { 2471 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2472 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2473 } 2474 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2475 2476 /* 2477 * If io queues are present, stop them and terminate all outstanding 2478 * ios on them. As FC allocates FC exchange for each io, the 2479 * transport must contact the LLDD to terminate the exchange, 2480 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2481 * to tell us what io's are busy and invoke a transport routine 2482 * to kill them with the LLDD. After terminating the exchange 2483 * the LLDD will call the transport's normal io done path, but it 2484 * will have an aborted status. The done path will return the 2485 * io requests back to the block layer as part of normal completions 2486 * (but with error status). 2487 */ 2488 if (ctrl->ctrl.queue_count > 1) { 2489 nvme_stop_queues(&ctrl->ctrl); 2490 nvme_sync_io_queues(&ctrl->ctrl); 2491 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2492 nvme_fc_terminate_exchange, &ctrl->ctrl); 2493 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2494 if (start_queues) 2495 nvme_start_queues(&ctrl->ctrl); 2496 } 2497 2498 /* 2499 * Other transports, which don't have link-level contexts bound 2500 * to sqe's, would try to gracefully shutdown the controller by 2501 * writing the registers for shutdown and polling (call 2502 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2503 * just aborted and we will wait on those contexts, and given 2504 * there was no indication of how live the controlelr is on the 2505 * link, don't send more io to create more contexts for the 2506 * shutdown. Let the controller fail via keepalive failure if 2507 * its still present. 2508 */ 2509 2510 /* 2511 * clean up the admin queue. Same thing as above. 2512 */ 2513 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2514 blk_sync_queue(ctrl->ctrl.admin_q); 2515 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2516 nvme_fc_terminate_exchange, &ctrl->ctrl); 2517 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2518 } 2519 2520 static void 2521 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2522 { 2523 /* 2524 * if an error (io timeout, etc) while (re)connecting, the remote 2525 * port requested terminating of the association (disconnect_ls) 2526 * or an error (timeout or abort) occurred on an io while creating 2527 * the controller. Abort any ios on the association and let the 2528 * create_association error path resolve things. 2529 */ 2530 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2531 __nvme_fc_abort_outstanding_ios(ctrl, true); 2532 set_bit(ASSOC_FAILED, &ctrl->flags); 2533 return; 2534 } 2535 2536 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2537 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2538 return; 2539 2540 dev_warn(ctrl->ctrl.device, 2541 "NVME-FC{%d}: transport association event: %s\n", 2542 ctrl->cnum, errmsg); 2543 dev_warn(ctrl->ctrl.device, 2544 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2545 2546 nvme_reset_ctrl(&ctrl->ctrl); 2547 } 2548 2549 static enum blk_eh_timer_return 2550 nvme_fc_timeout(struct request *rq, bool reserved) 2551 { 2552 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2553 struct nvme_fc_ctrl *ctrl = op->ctrl; 2554 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2555 struct nvme_command *sqe = &cmdiu->sqe; 2556 2557 /* 2558 * Attempt to abort the offending command. Command completion 2559 * will detect the aborted io and will fail the connection. 2560 */ 2561 dev_info(ctrl->ctrl.device, 2562 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: " 2563 "x%08x/x%08x\n", 2564 ctrl->cnum, op->queue->qnum, sqe->common.opcode, 2565 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11); 2566 if (__nvme_fc_abort_op(ctrl, op)) 2567 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2568 2569 /* 2570 * the io abort has been initiated. Have the reset timer 2571 * restarted and the abort completion will complete the io 2572 * shortly. Avoids a synchronous wait while the abort finishes. 2573 */ 2574 return BLK_EH_RESET_TIMER; 2575 } 2576 2577 static int 2578 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2579 struct nvme_fc_fcp_op *op) 2580 { 2581 struct nvmefc_fcp_req *freq = &op->fcp_req; 2582 int ret; 2583 2584 freq->sg_cnt = 0; 2585 2586 if (!blk_rq_nr_phys_segments(rq)) 2587 return 0; 2588 2589 freq->sg_table.sgl = freq->first_sgl; 2590 ret = sg_alloc_table_chained(&freq->sg_table, 2591 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2592 NVME_INLINE_SG_CNT); 2593 if (ret) 2594 return -ENOMEM; 2595 2596 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2597 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2598 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2599 op->nents, rq_dma_dir(rq)); 2600 if (unlikely(freq->sg_cnt <= 0)) { 2601 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2602 freq->sg_cnt = 0; 2603 return -EFAULT; 2604 } 2605 2606 /* 2607 * TODO: blk_integrity_rq(rq) for DIF 2608 */ 2609 return 0; 2610 } 2611 2612 static void 2613 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2614 struct nvme_fc_fcp_op *op) 2615 { 2616 struct nvmefc_fcp_req *freq = &op->fcp_req; 2617 2618 if (!freq->sg_cnt) 2619 return; 2620 2621 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2622 rq_dma_dir(rq)); 2623 2624 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2625 2626 freq->sg_cnt = 0; 2627 } 2628 2629 /* 2630 * In FC, the queue is a logical thing. At transport connect, the target 2631 * creates its "queue" and returns a handle that is to be given to the 2632 * target whenever it posts something to the corresponding SQ. When an 2633 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2634 * command contained within the SQE, an io, and assigns a FC exchange 2635 * to it. The SQE and the associated SQ handle are sent in the initial 2636 * CMD IU sents on the exchange. All transfers relative to the io occur 2637 * as part of the exchange. The CQE is the last thing for the io, 2638 * which is transferred (explicitly or implicitly) with the RSP IU 2639 * sent on the exchange. After the CQE is received, the FC exchange is 2640 * terminaed and the Exchange may be used on a different io. 2641 * 2642 * The transport to LLDD api has the transport making a request for a 2643 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2644 * resource and transfers the command. The LLDD will then process all 2645 * steps to complete the io. Upon completion, the transport done routine 2646 * is called. 2647 * 2648 * So - while the operation is outstanding to the LLDD, there is a link 2649 * level FC exchange resource that is also outstanding. This must be 2650 * considered in all cleanup operations. 2651 */ 2652 static blk_status_t 2653 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2654 struct nvme_fc_fcp_op *op, u32 data_len, 2655 enum nvmefc_fcp_datadir io_dir) 2656 { 2657 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2658 struct nvme_command *sqe = &cmdiu->sqe; 2659 int ret, opstate; 2660 2661 /* 2662 * before attempting to send the io, check to see if we believe 2663 * the target device is present 2664 */ 2665 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2666 return BLK_STS_RESOURCE; 2667 2668 if (!nvme_fc_ctrl_get(ctrl)) 2669 return BLK_STS_IOERR; 2670 2671 /* format the FC-NVME CMD IU and fcp_req */ 2672 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2673 cmdiu->data_len = cpu_to_be32(data_len); 2674 switch (io_dir) { 2675 case NVMEFC_FCP_WRITE: 2676 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2677 break; 2678 case NVMEFC_FCP_READ: 2679 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2680 break; 2681 case NVMEFC_FCP_NODATA: 2682 cmdiu->flags = 0; 2683 break; 2684 } 2685 op->fcp_req.payload_length = data_len; 2686 op->fcp_req.io_dir = io_dir; 2687 op->fcp_req.transferred_length = 0; 2688 op->fcp_req.rcv_rsplen = 0; 2689 op->fcp_req.status = NVME_SC_SUCCESS; 2690 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2691 2692 /* 2693 * validate per fabric rules, set fields mandated by fabric spec 2694 * as well as those by FC-NVME spec. 2695 */ 2696 WARN_ON_ONCE(sqe->common.metadata); 2697 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2698 2699 /* 2700 * format SQE DPTR field per FC-NVME rules: 2701 * type=0x5 Transport SGL Data Block Descriptor 2702 * subtype=0xA Transport-specific value 2703 * address=0 2704 * length=length of the data series 2705 */ 2706 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2707 NVME_SGL_FMT_TRANSPORT_A; 2708 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2709 sqe->rw.dptr.sgl.addr = 0; 2710 2711 if (!(op->flags & FCOP_FLAGS_AEN)) { 2712 ret = nvme_fc_map_data(ctrl, op->rq, op); 2713 if (ret < 0) { 2714 nvme_cleanup_cmd(op->rq); 2715 nvme_fc_ctrl_put(ctrl); 2716 if (ret == -ENOMEM || ret == -EAGAIN) 2717 return BLK_STS_RESOURCE; 2718 return BLK_STS_IOERR; 2719 } 2720 } 2721 2722 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2723 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2724 2725 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2726 2727 if (!(op->flags & FCOP_FLAGS_AEN)) 2728 blk_mq_start_request(op->rq); 2729 2730 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2731 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2732 &ctrl->rport->remoteport, 2733 queue->lldd_handle, &op->fcp_req); 2734 2735 if (ret) { 2736 /* 2737 * If the lld fails to send the command is there an issue with 2738 * the csn value? If the command that fails is the Connect, 2739 * no - as the connection won't be live. If it is a command 2740 * post-connect, it's possible a gap in csn may be created. 2741 * Does this matter? As Linux initiators don't send fused 2742 * commands, no. The gap would exist, but as there's nothing 2743 * that depends on csn order to be delivered on the target 2744 * side, it shouldn't hurt. It would be difficult for a 2745 * target to even detect the csn gap as it has no idea when the 2746 * cmd with the csn was supposed to arrive. 2747 */ 2748 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2749 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2750 2751 if (!(op->flags & FCOP_FLAGS_AEN)) { 2752 nvme_fc_unmap_data(ctrl, op->rq, op); 2753 nvme_cleanup_cmd(op->rq); 2754 } 2755 2756 nvme_fc_ctrl_put(ctrl); 2757 2758 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2759 ret != -EBUSY) 2760 return BLK_STS_IOERR; 2761 2762 return BLK_STS_RESOURCE; 2763 } 2764 2765 return BLK_STS_OK; 2766 } 2767 2768 static blk_status_t 2769 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2770 const struct blk_mq_queue_data *bd) 2771 { 2772 struct nvme_ns *ns = hctx->queue->queuedata; 2773 struct nvme_fc_queue *queue = hctx->driver_data; 2774 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2775 struct request *rq = bd->rq; 2776 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2777 enum nvmefc_fcp_datadir io_dir; 2778 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2779 u32 data_len; 2780 blk_status_t ret; 2781 2782 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2783 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2784 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2785 2786 ret = nvme_setup_cmd(ns, rq); 2787 if (ret) 2788 return ret; 2789 2790 /* 2791 * nvme core doesn't quite treat the rq opaquely. Commands such 2792 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2793 * there is no actual payload to be transferred. 2794 * To get it right, key data transmission on there being 1 or 2795 * more physical segments in the sg list. If there is no 2796 * physical segments, there is no payload. 2797 */ 2798 if (blk_rq_nr_phys_segments(rq)) { 2799 data_len = blk_rq_payload_bytes(rq); 2800 io_dir = ((rq_data_dir(rq) == WRITE) ? 2801 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2802 } else { 2803 data_len = 0; 2804 io_dir = NVMEFC_FCP_NODATA; 2805 } 2806 2807 2808 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2809 } 2810 2811 static void 2812 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2813 { 2814 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2815 struct nvme_fc_fcp_op *aen_op; 2816 blk_status_t ret; 2817 2818 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2819 return; 2820 2821 aen_op = &ctrl->aen_ops[0]; 2822 2823 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2824 NVMEFC_FCP_NODATA); 2825 if (ret) 2826 dev_err(ctrl->ctrl.device, 2827 "failed async event work\n"); 2828 } 2829 2830 static void 2831 nvme_fc_complete_rq(struct request *rq) 2832 { 2833 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2834 struct nvme_fc_ctrl *ctrl = op->ctrl; 2835 2836 atomic_set(&op->state, FCPOP_STATE_IDLE); 2837 op->flags &= ~FCOP_FLAGS_TERMIO; 2838 2839 nvme_fc_unmap_data(ctrl, rq, op); 2840 nvme_complete_rq(rq); 2841 nvme_fc_ctrl_put(ctrl); 2842 } 2843 2844 2845 static const struct blk_mq_ops nvme_fc_mq_ops = { 2846 .queue_rq = nvme_fc_queue_rq, 2847 .complete = nvme_fc_complete_rq, 2848 .init_request = nvme_fc_init_request, 2849 .exit_request = nvme_fc_exit_request, 2850 .init_hctx = nvme_fc_init_hctx, 2851 .timeout = nvme_fc_timeout, 2852 }; 2853 2854 static int 2855 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2856 { 2857 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2858 unsigned int nr_io_queues; 2859 int ret; 2860 2861 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2862 ctrl->lport->ops->max_hw_queues); 2863 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2864 if (ret) { 2865 dev_info(ctrl->ctrl.device, 2866 "set_queue_count failed: %d\n", ret); 2867 return ret; 2868 } 2869 2870 ctrl->ctrl.queue_count = nr_io_queues + 1; 2871 if (!nr_io_queues) 2872 return 0; 2873 2874 nvme_fc_init_io_queues(ctrl); 2875 2876 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2877 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2878 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2879 ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS; 2880 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 2881 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2882 ctrl->tag_set.cmd_size = 2883 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 2884 ctrl->lport->ops->fcprqst_priv_sz); 2885 ctrl->tag_set.driver_data = ctrl; 2886 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2887 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2888 2889 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2890 if (ret) 2891 return ret; 2892 2893 ctrl->ctrl.tagset = &ctrl->tag_set; 2894 2895 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2896 if (IS_ERR(ctrl->ctrl.connect_q)) { 2897 ret = PTR_ERR(ctrl->ctrl.connect_q); 2898 goto out_free_tag_set; 2899 } 2900 2901 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2902 if (ret) 2903 goto out_cleanup_blk_queue; 2904 2905 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2906 if (ret) 2907 goto out_delete_hw_queues; 2908 2909 ctrl->ioq_live = true; 2910 2911 return 0; 2912 2913 out_delete_hw_queues: 2914 nvme_fc_delete_hw_io_queues(ctrl); 2915 out_cleanup_blk_queue: 2916 blk_cleanup_queue(ctrl->ctrl.connect_q); 2917 out_free_tag_set: 2918 blk_mq_free_tag_set(&ctrl->tag_set); 2919 nvme_fc_free_io_queues(ctrl); 2920 2921 /* force put free routine to ignore io queues */ 2922 ctrl->ctrl.tagset = NULL; 2923 2924 return ret; 2925 } 2926 2927 static int 2928 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2929 { 2930 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2931 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2932 unsigned int nr_io_queues; 2933 int ret; 2934 2935 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2936 ctrl->lport->ops->max_hw_queues); 2937 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2938 if (ret) { 2939 dev_info(ctrl->ctrl.device, 2940 "set_queue_count failed: %d\n", ret); 2941 return ret; 2942 } 2943 2944 if (!nr_io_queues && prior_ioq_cnt) { 2945 dev_info(ctrl->ctrl.device, 2946 "Fail Reconnect: At least 1 io queue " 2947 "required (was %d)\n", prior_ioq_cnt); 2948 return -ENOSPC; 2949 } 2950 2951 ctrl->ctrl.queue_count = nr_io_queues + 1; 2952 /* check for io queues existing */ 2953 if (ctrl->ctrl.queue_count == 1) 2954 return 0; 2955 2956 if (prior_ioq_cnt != nr_io_queues) { 2957 dev_info(ctrl->ctrl.device, 2958 "reconnect: revising io queue count from %d to %d\n", 2959 prior_ioq_cnt, nr_io_queues); 2960 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2961 } 2962 2963 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2964 if (ret) 2965 goto out_free_io_queues; 2966 2967 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2968 if (ret) 2969 goto out_delete_hw_queues; 2970 2971 return 0; 2972 2973 out_delete_hw_queues: 2974 nvme_fc_delete_hw_io_queues(ctrl); 2975 out_free_io_queues: 2976 nvme_fc_free_io_queues(ctrl); 2977 return ret; 2978 } 2979 2980 static void 2981 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2982 { 2983 struct nvme_fc_lport *lport = rport->lport; 2984 2985 atomic_inc(&lport->act_rport_cnt); 2986 } 2987 2988 static void 2989 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2990 { 2991 struct nvme_fc_lport *lport = rport->lport; 2992 u32 cnt; 2993 2994 cnt = atomic_dec_return(&lport->act_rport_cnt); 2995 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2996 lport->ops->localport_delete(&lport->localport); 2997 } 2998 2999 static int 3000 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 3001 { 3002 struct nvme_fc_rport *rport = ctrl->rport; 3003 u32 cnt; 3004 3005 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 3006 return 1; 3007 3008 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 3009 if (cnt == 1) 3010 nvme_fc_rport_active_on_lport(rport); 3011 3012 return 0; 3013 } 3014 3015 static int 3016 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3017 { 3018 struct nvme_fc_rport *rport = ctrl->rport; 3019 struct nvme_fc_lport *lport = rport->lport; 3020 u32 cnt; 3021 3022 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3023 3024 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3025 if (cnt == 0) { 3026 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3027 lport->ops->remoteport_delete(&rport->remoteport); 3028 nvme_fc_rport_inactive_on_lport(rport); 3029 } 3030 3031 return 0; 3032 } 3033 3034 /* 3035 * This routine restarts the controller on the host side, and 3036 * on the link side, recreates the controller association. 3037 */ 3038 static int 3039 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3040 { 3041 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3042 struct nvmefc_ls_rcv_op *disls = NULL; 3043 unsigned long flags; 3044 int ret; 3045 bool changed; 3046 3047 ++ctrl->ctrl.nr_reconnects; 3048 3049 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3050 return -ENODEV; 3051 3052 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3053 return -ENOTUNIQ; 3054 3055 dev_info(ctrl->ctrl.device, 3056 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3057 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3058 ctrl->cnum, ctrl->lport->localport.port_name, 3059 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3060 3061 clear_bit(ASSOC_FAILED, &ctrl->flags); 3062 3063 /* 3064 * Create the admin queue 3065 */ 3066 3067 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3068 NVME_AQ_DEPTH); 3069 if (ret) 3070 goto out_free_queue; 3071 3072 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3073 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3074 if (ret) 3075 goto out_delete_hw_queue; 3076 3077 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3078 if (ret) 3079 goto out_disconnect_admin_queue; 3080 3081 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3082 3083 /* 3084 * Check controller capabilities 3085 * 3086 * todo:- add code to check if ctrl attributes changed from 3087 * prior connection values 3088 */ 3089 3090 ret = nvme_enable_ctrl(&ctrl->ctrl); 3091 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3092 goto out_disconnect_admin_queue; 3093 3094 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3095 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3096 (ilog2(SZ_4K) - 9); 3097 3098 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 3099 3100 ret = nvme_init_ctrl_finish(&ctrl->ctrl); 3101 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3102 goto out_disconnect_admin_queue; 3103 3104 /* sanity checks */ 3105 3106 /* FC-NVME does not have other data in the capsule */ 3107 if (ctrl->ctrl.icdoff) { 3108 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3109 ctrl->ctrl.icdoff); 3110 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3111 goto out_disconnect_admin_queue; 3112 } 3113 3114 /* FC-NVME supports normal SGL Data Block Descriptors */ 3115 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3116 dev_err(ctrl->ctrl.device, 3117 "Mandatory sgls are not supported!\n"); 3118 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3119 goto out_disconnect_admin_queue; 3120 } 3121 3122 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3123 /* warn if maxcmd is lower than queue_size */ 3124 dev_warn(ctrl->ctrl.device, 3125 "queue_size %zu > ctrl maxcmd %u, reducing " 3126 "to maxcmd\n", 3127 opts->queue_size, ctrl->ctrl.maxcmd); 3128 opts->queue_size = ctrl->ctrl.maxcmd; 3129 } 3130 3131 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 3132 /* warn if sqsize is lower than queue_size */ 3133 dev_warn(ctrl->ctrl.device, 3134 "queue_size %zu > ctrl sqsize %u, reducing " 3135 "to sqsize\n", 3136 opts->queue_size, ctrl->ctrl.sqsize + 1); 3137 opts->queue_size = ctrl->ctrl.sqsize + 1; 3138 } 3139 3140 ret = nvme_fc_init_aen_ops(ctrl); 3141 if (ret) 3142 goto out_term_aen_ops; 3143 3144 /* 3145 * Create the io queues 3146 */ 3147 3148 if (ctrl->ctrl.queue_count > 1) { 3149 if (!ctrl->ioq_live) 3150 ret = nvme_fc_create_io_queues(ctrl); 3151 else 3152 ret = nvme_fc_recreate_io_queues(ctrl); 3153 } 3154 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags)) 3155 goto out_term_aen_ops; 3156 3157 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 3158 3159 ctrl->ctrl.nr_reconnects = 0; 3160 3161 if (changed) 3162 nvme_start_ctrl(&ctrl->ctrl); 3163 3164 return 0; /* Success */ 3165 3166 out_term_aen_ops: 3167 nvme_fc_term_aen_ops(ctrl); 3168 out_disconnect_admin_queue: 3169 /* send a Disconnect(association) LS to fc-nvme target */ 3170 nvme_fc_xmt_disconnect_assoc(ctrl); 3171 spin_lock_irqsave(&ctrl->lock, flags); 3172 ctrl->association_id = 0; 3173 disls = ctrl->rcv_disconn; 3174 ctrl->rcv_disconn = NULL; 3175 spin_unlock_irqrestore(&ctrl->lock, flags); 3176 if (disls) 3177 nvme_fc_xmt_ls_rsp(disls); 3178 out_delete_hw_queue: 3179 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3180 out_free_queue: 3181 nvme_fc_free_queue(&ctrl->queues[0]); 3182 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3183 nvme_fc_ctlr_inactive_on_rport(ctrl); 3184 3185 return ret; 3186 } 3187 3188 3189 /* 3190 * This routine stops operation of the controller on the host side. 3191 * On the host os stack side: Admin and IO queues are stopped, 3192 * outstanding ios on them terminated via FC ABTS. 3193 * On the link side: the association is terminated. 3194 */ 3195 static void 3196 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3197 { 3198 struct nvmefc_ls_rcv_op *disls = NULL; 3199 unsigned long flags; 3200 3201 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3202 return; 3203 3204 spin_lock_irqsave(&ctrl->lock, flags); 3205 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3206 ctrl->iocnt = 0; 3207 spin_unlock_irqrestore(&ctrl->lock, flags); 3208 3209 __nvme_fc_abort_outstanding_ios(ctrl, false); 3210 3211 /* kill the aens as they are a separate path */ 3212 nvme_fc_abort_aen_ops(ctrl); 3213 3214 /* wait for all io that had to be aborted */ 3215 spin_lock_irq(&ctrl->lock); 3216 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3217 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3218 spin_unlock_irq(&ctrl->lock); 3219 3220 nvme_fc_term_aen_ops(ctrl); 3221 3222 /* 3223 * send a Disconnect(association) LS to fc-nvme target 3224 * Note: could have been sent at top of process, but 3225 * cleaner on link traffic if after the aborts complete. 3226 * Note: if association doesn't exist, association_id will be 0 3227 */ 3228 if (ctrl->association_id) 3229 nvme_fc_xmt_disconnect_assoc(ctrl); 3230 3231 spin_lock_irqsave(&ctrl->lock, flags); 3232 ctrl->association_id = 0; 3233 disls = ctrl->rcv_disconn; 3234 ctrl->rcv_disconn = NULL; 3235 spin_unlock_irqrestore(&ctrl->lock, flags); 3236 if (disls) 3237 /* 3238 * if a Disconnect Request was waiting for a response, send 3239 * now that all ABTS's have been issued (and are complete). 3240 */ 3241 nvme_fc_xmt_ls_rsp(disls); 3242 3243 if (ctrl->ctrl.tagset) { 3244 nvme_fc_delete_hw_io_queues(ctrl); 3245 nvme_fc_free_io_queues(ctrl); 3246 } 3247 3248 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3249 nvme_fc_free_queue(&ctrl->queues[0]); 3250 3251 /* re-enable the admin_q so anything new can fast fail */ 3252 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 3253 3254 /* resume the io queues so that things will fast fail */ 3255 nvme_start_queues(&ctrl->ctrl); 3256 3257 nvme_fc_ctlr_inactive_on_rport(ctrl); 3258 } 3259 3260 static void 3261 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3262 { 3263 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3264 3265 cancel_work_sync(&ctrl->ioerr_work); 3266 cancel_delayed_work_sync(&ctrl->connect_work); 3267 /* 3268 * kill the association on the link side. this will block 3269 * waiting for io to terminate 3270 */ 3271 nvme_fc_delete_association(ctrl); 3272 } 3273 3274 static void 3275 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3276 { 3277 struct nvme_fc_rport *rport = ctrl->rport; 3278 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3279 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3280 bool recon = true; 3281 3282 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 3283 return; 3284 3285 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3286 dev_info(ctrl->ctrl.device, 3287 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3288 ctrl->cnum, status); 3289 if (status > 0 && (status & NVME_SC_DNR)) 3290 recon = false; 3291 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3292 recon = false; 3293 3294 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 3295 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3296 dev_info(ctrl->ctrl.device, 3297 "NVME-FC{%d}: Reconnect attempt in %ld " 3298 "seconds\n", 3299 ctrl->cnum, recon_delay / HZ); 3300 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3301 recon_delay = rport->dev_loss_end - jiffies; 3302 3303 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3304 } else { 3305 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3306 if (status > 0 && (status & NVME_SC_DNR)) 3307 dev_warn(ctrl->ctrl.device, 3308 "NVME-FC{%d}: reconnect failure\n", 3309 ctrl->cnum); 3310 else 3311 dev_warn(ctrl->ctrl.device, 3312 "NVME-FC{%d}: Max reconnect attempts " 3313 "(%d) reached.\n", 3314 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3315 } else 3316 dev_warn(ctrl->ctrl.device, 3317 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3318 "while waiting for remoteport connectivity.\n", 3319 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3320 (ctrl->ctrl.opts->max_reconnects * 3321 ctrl->ctrl.opts->reconnect_delay))); 3322 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3323 } 3324 } 3325 3326 static void 3327 nvme_fc_reset_ctrl_work(struct work_struct *work) 3328 { 3329 struct nvme_fc_ctrl *ctrl = 3330 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3331 3332 nvme_stop_ctrl(&ctrl->ctrl); 3333 3334 /* will block will waiting for io to terminate */ 3335 nvme_fc_delete_association(ctrl); 3336 3337 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3338 dev_err(ctrl->ctrl.device, 3339 "NVME-FC{%d}: error_recovery: Couldn't change state " 3340 "to CONNECTING\n", ctrl->cnum); 3341 3342 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3343 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3344 dev_err(ctrl->ctrl.device, 3345 "NVME-FC{%d}: failed to schedule connect " 3346 "after reset\n", ctrl->cnum); 3347 } else { 3348 flush_delayed_work(&ctrl->connect_work); 3349 } 3350 } else { 3351 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3352 } 3353 } 3354 3355 3356 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3357 .name = "fc", 3358 .module = THIS_MODULE, 3359 .flags = NVME_F_FABRICS, 3360 .reg_read32 = nvmf_reg_read32, 3361 .reg_read64 = nvmf_reg_read64, 3362 .reg_write32 = nvmf_reg_write32, 3363 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3364 .submit_async_event = nvme_fc_submit_async_event, 3365 .delete_ctrl = nvme_fc_delete_ctrl, 3366 .get_address = nvmf_get_address, 3367 }; 3368 3369 static void 3370 nvme_fc_connect_ctrl_work(struct work_struct *work) 3371 { 3372 int ret; 3373 3374 struct nvme_fc_ctrl *ctrl = 3375 container_of(to_delayed_work(work), 3376 struct nvme_fc_ctrl, connect_work); 3377 3378 ret = nvme_fc_create_association(ctrl); 3379 if (ret) 3380 nvme_fc_reconnect_or_delete(ctrl, ret); 3381 else 3382 dev_info(ctrl->ctrl.device, 3383 "NVME-FC{%d}: controller connect complete\n", 3384 ctrl->cnum); 3385 } 3386 3387 3388 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3389 .queue_rq = nvme_fc_queue_rq, 3390 .complete = nvme_fc_complete_rq, 3391 .init_request = nvme_fc_init_request, 3392 .exit_request = nvme_fc_exit_request, 3393 .init_hctx = nvme_fc_init_admin_hctx, 3394 .timeout = nvme_fc_timeout, 3395 }; 3396 3397 3398 /* 3399 * Fails a controller request if it matches an existing controller 3400 * (association) with the same tuple: 3401 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3402 * 3403 * The ports don't need to be compared as they are intrinsically 3404 * already matched by the port pointers supplied. 3405 */ 3406 static bool 3407 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3408 struct nvmf_ctrl_options *opts) 3409 { 3410 struct nvme_fc_ctrl *ctrl; 3411 unsigned long flags; 3412 bool found = false; 3413 3414 spin_lock_irqsave(&rport->lock, flags); 3415 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3416 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3417 if (found) 3418 break; 3419 } 3420 spin_unlock_irqrestore(&rport->lock, flags); 3421 3422 return found; 3423 } 3424 3425 static struct nvme_ctrl * 3426 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3427 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3428 { 3429 struct nvme_fc_ctrl *ctrl; 3430 unsigned long flags; 3431 int ret, idx, ctrl_loss_tmo; 3432 3433 if (!(rport->remoteport.port_role & 3434 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3435 ret = -EBADR; 3436 goto out_fail; 3437 } 3438 3439 if (!opts->duplicate_connect && 3440 nvme_fc_existing_controller(rport, opts)) { 3441 ret = -EALREADY; 3442 goto out_fail; 3443 } 3444 3445 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3446 if (!ctrl) { 3447 ret = -ENOMEM; 3448 goto out_fail; 3449 } 3450 3451 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3452 if (idx < 0) { 3453 ret = -ENOSPC; 3454 goto out_free_ctrl; 3455 } 3456 3457 /* 3458 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3459 * is being used, change to a shorter reconnect delay for FC. 3460 */ 3461 if (opts->max_reconnects != -1 && 3462 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3463 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3464 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3465 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3466 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3467 opts->reconnect_delay); 3468 } 3469 3470 ctrl->ctrl.opts = opts; 3471 ctrl->ctrl.nr_reconnects = 0; 3472 if (lport->dev) 3473 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3474 else 3475 ctrl->ctrl.numa_node = NUMA_NO_NODE; 3476 INIT_LIST_HEAD(&ctrl->ctrl_list); 3477 ctrl->lport = lport; 3478 ctrl->rport = rport; 3479 ctrl->dev = lport->dev; 3480 ctrl->cnum = idx; 3481 ctrl->ioq_live = false; 3482 init_waitqueue_head(&ctrl->ioabort_wait); 3483 3484 get_device(ctrl->dev); 3485 kref_init(&ctrl->ref); 3486 3487 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3488 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3489 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3490 spin_lock_init(&ctrl->lock); 3491 3492 /* io queue count */ 3493 ctrl->ctrl.queue_count = min_t(unsigned int, 3494 opts->nr_io_queues, 3495 lport->ops->max_hw_queues); 3496 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3497 3498 ctrl->ctrl.sqsize = opts->queue_size - 1; 3499 ctrl->ctrl.kato = opts->kato; 3500 ctrl->ctrl.cntlid = 0xffff; 3501 3502 ret = -ENOMEM; 3503 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3504 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3505 if (!ctrl->queues) 3506 goto out_free_ida; 3507 3508 nvme_fc_init_queue(ctrl, 0); 3509 3510 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3511 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3512 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3513 ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS; 3514 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 3515 ctrl->admin_tag_set.cmd_size = 3516 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 3517 ctrl->lport->ops->fcprqst_priv_sz); 3518 ctrl->admin_tag_set.driver_data = ctrl; 3519 ctrl->admin_tag_set.nr_hw_queues = 1; 3520 ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT; 3521 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3522 3523 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3524 if (ret) 3525 goto out_free_queues; 3526 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3527 3528 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3529 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 3530 ret = PTR_ERR(ctrl->ctrl.fabrics_q); 3531 goto out_free_admin_tag_set; 3532 } 3533 3534 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3535 if (IS_ERR(ctrl->ctrl.admin_q)) { 3536 ret = PTR_ERR(ctrl->ctrl.admin_q); 3537 goto out_cleanup_fabrics_q; 3538 } 3539 3540 /* 3541 * Would have been nice to init io queues tag set as well. 3542 * However, we require interaction from the controller 3543 * for max io queue count before we can do so. 3544 * Defer this to the connect path. 3545 */ 3546 3547 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3548 if (ret) 3549 goto out_cleanup_admin_q; 3550 3551 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3552 3553 spin_lock_irqsave(&rport->lock, flags); 3554 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3555 spin_unlock_irqrestore(&rport->lock, flags); 3556 3557 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3558 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3559 dev_err(ctrl->ctrl.device, 3560 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3561 goto fail_ctrl; 3562 } 3563 3564 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3565 dev_err(ctrl->ctrl.device, 3566 "NVME-FC{%d}: failed to schedule initial connect\n", 3567 ctrl->cnum); 3568 goto fail_ctrl; 3569 } 3570 3571 flush_delayed_work(&ctrl->connect_work); 3572 3573 dev_info(ctrl->ctrl.device, 3574 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3575 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3576 3577 return &ctrl->ctrl; 3578 3579 fail_ctrl: 3580 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3581 cancel_work_sync(&ctrl->ioerr_work); 3582 cancel_work_sync(&ctrl->ctrl.reset_work); 3583 cancel_delayed_work_sync(&ctrl->connect_work); 3584 3585 ctrl->ctrl.opts = NULL; 3586 3587 /* initiate nvme ctrl ref counting teardown */ 3588 nvme_uninit_ctrl(&ctrl->ctrl); 3589 3590 /* Remove core ctrl ref. */ 3591 nvme_put_ctrl(&ctrl->ctrl); 3592 3593 /* as we're past the point where we transition to the ref 3594 * counting teardown path, if we return a bad pointer here, 3595 * the calling routine, thinking it's prior to the 3596 * transition, will do an rport put. Since the teardown 3597 * path also does a rport put, we do an extra get here to 3598 * so proper order/teardown happens. 3599 */ 3600 nvme_fc_rport_get(rport); 3601 3602 return ERR_PTR(-EIO); 3603 3604 out_cleanup_admin_q: 3605 blk_cleanup_queue(ctrl->ctrl.admin_q); 3606 out_cleanup_fabrics_q: 3607 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 3608 out_free_admin_tag_set: 3609 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3610 out_free_queues: 3611 kfree(ctrl->queues); 3612 out_free_ida: 3613 put_device(ctrl->dev); 3614 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3615 out_free_ctrl: 3616 kfree(ctrl); 3617 out_fail: 3618 /* exit via here doesn't follow ctlr ref points */ 3619 return ERR_PTR(ret); 3620 } 3621 3622 3623 struct nvmet_fc_traddr { 3624 u64 nn; 3625 u64 pn; 3626 }; 3627 3628 static int 3629 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3630 { 3631 u64 token64; 3632 3633 if (match_u64(sstr, &token64)) 3634 return -EINVAL; 3635 *val = token64; 3636 3637 return 0; 3638 } 3639 3640 /* 3641 * This routine validates and extracts the WWN's from the TRADDR string. 3642 * As kernel parsers need the 0x to determine number base, universally 3643 * build string to parse with 0x prefix before parsing name strings. 3644 */ 3645 static int 3646 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3647 { 3648 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3649 substring_t wwn = { name, &name[sizeof(name)-1] }; 3650 int nnoffset, pnoffset; 3651 3652 /* validate if string is one of the 2 allowed formats */ 3653 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3654 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3655 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3656 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3657 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3658 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3659 NVME_FC_TRADDR_OXNNLEN; 3660 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3661 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3662 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3663 "pn-", NVME_FC_TRADDR_NNLEN))) { 3664 nnoffset = NVME_FC_TRADDR_NNLEN; 3665 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3666 } else 3667 goto out_einval; 3668 3669 name[0] = '0'; 3670 name[1] = 'x'; 3671 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3672 3673 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3674 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3675 goto out_einval; 3676 3677 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3678 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3679 goto out_einval; 3680 3681 return 0; 3682 3683 out_einval: 3684 pr_warn("%s: bad traddr string\n", __func__); 3685 return -EINVAL; 3686 } 3687 3688 static struct nvme_ctrl * 3689 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3690 { 3691 struct nvme_fc_lport *lport; 3692 struct nvme_fc_rport *rport; 3693 struct nvme_ctrl *ctrl; 3694 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3695 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3696 unsigned long flags; 3697 int ret; 3698 3699 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3700 if (ret || !raddr.nn || !raddr.pn) 3701 return ERR_PTR(-EINVAL); 3702 3703 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3704 if (ret || !laddr.nn || !laddr.pn) 3705 return ERR_PTR(-EINVAL); 3706 3707 /* find the host and remote ports to connect together */ 3708 spin_lock_irqsave(&nvme_fc_lock, flags); 3709 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3710 if (lport->localport.node_name != laddr.nn || 3711 lport->localport.port_name != laddr.pn || 3712 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3713 continue; 3714 3715 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3716 if (rport->remoteport.node_name != raddr.nn || 3717 rport->remoteport.port_name != raddr.pn || 3718 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3719 continue; 3720 3721 /* if fail to get reference fall through. Will error */ 3722 if (!nvme_fc_rport_get(rport)) 3723 break; 3724 3725 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3726 3727 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3728 if (IS_ERR(ctrl)) 3729 nvme_fc_rport_put(rport); 3730 return ctrl; 3731 } 3732 } 3733 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3734 3735 pr_warn("%s: %s - %s combination not found\n", 3736 __func__, opts->traddr, opts->host_traddr); 3737 return ERR_PTR(-ENOENT); 3738 } 3739 3740 3741 static struct nvmf_transport_ops nvme_fc_transport = { 3742 .name = "fc", 3743 .module = THIS_MODULE, 3744 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3745 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3746 .create_ctrl = nvme_fc_create_ctrl, 3747 }; 3748 3749 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3750 #define DISCOVERY_MAX_FAIL 20 3751 3752 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3753 struct device_attribute *attr, const char *buf, size_t count) 3754 { 3755 unsigned long flags; 3756 LIST_HEAD(local_disc_list); 3757 struct nvme_fc_lport *lport; 3758 struct nvme_fc_rport *rport; 3759 int failcnt = 0; 3760 3761 spin_lock_irqsave(&nvme_fc_lock, flags); 3762 restart: 3763 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3764 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3765 if (!nvme_fc_lport_get(lport)) 3766 continue; 3767 if (!nvme_fc_rport_get(rport)) { 3768 /* 3769 * This is a temporary condition. Upon restart 3770 * this rport will be gone from the list. 3771 * 3772 * Revert the lport put and retry. Anything 3773 * added to the list already will be skipped (as 3774 * they are no longer list_empty). Loops should 3775 * resume at rports that were not yet seen. 3776 */ 3777 nvme_fc_lport_put(lport); 3778 3779 if (failcnt++ < DISCOVERY_MAX_FAIL) 3780 goto restart; 3781 3782 pr_err("nvme_discovery: too many reference " 3783 "failures\n"); 3784 goto process_local_list; 3785 } 3786 if (list_empty(&rport->disc_list)) 3787 list_add_tail(&rport->disc_list, 3788 &local_disc_list); 3789 } 3790 } 3791 3792 process_local_list: 3793 while (!list_empty(&local_disc_list)) { 3794 rport = list_first_entry(&local_disc_list, 3795 struct nvme_fc_rport, disc_list); 3796 list_del_init(&rport->disc_list); 3797 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3798 3799 lport = rport->lport; 3800 /* signal discovery. Won't hurt if it repeats */ 3801 nvme_fc_signal_discovery_scan(lport, rport); 3802 nvme_fc_rport_put(rport); 3803 nvme_fc_lport_put(lport); 3804 3805 spin_lock_irqsave(&nvme_fc_lock, flags); 3806 } 3807 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3808 3809 return count; 3810 } 3811 3812 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3813 static int fc_parse_cgrpid(const char *buf, u64 *id) 3814 { 3815 char cgrp_id[16+1]; 3816 int cgrpid_len, j; 3817 3818 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3819 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3820 if (buf[cgrpid_len] != ':') 3821 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3822 else { 3823 j = 1; 3824 break; 3825 } 3826 } 3827 if (!j) 3828 return -EINVAL; 3829 if (kstrtou64(cgrp_id, 16, id) < 0) 3830 return -EINVAL; 3831 return cgrpid_len; 3832 } 3833 3834 /* 3835 * fc_update_appid: Parse and update the appid in the blkcg associated with 3836 * cgroupid. 3837 * @buf: buf contains both cgrpid and appid info 3838 * @count: size of the buffer 3839 */ 3840 static int fc_update_appid(const char *buf, size_t count) 3841 { 3842 u64 cgrp_id; 3843 int appid_len = 0; 3844 int cgrpid_len = 0; 3845 char app_id[FC_APPID_LEN]; 3846 int ret = 0; 3847 3848 if (buf[count-1] == '\n') 3849 count--; 3850 3851 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3852 return -EINVAL; 3853 3854 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3855 if (cgrpid_len < 0) 3856 return -EINVAL; 3857 appid_len = count - cgrpid_len - 1; 3858 if (appid_len > FC_APPID_LEN) 3859 return -EINVAL; 3860 3861 memset(app_id, 0x0, sizeof(app_id)); 3862 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3863 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3864 if (ret < 0) 3865 return ret; 3866 return count; 3867 } 3868 3869 static ssize_t fc_appid_store(struct device *dev, 3870 struct device_attribute *attr, const char *buf, size_t count) 3871 { 3872 int ret = 0; 3873 3874 ret = fc_update_appid(buf, count); 3875 if (ret < 0) 3876 return -EINVAL; 3877 return count; 3878 } 3879 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3880 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3881 3882 static struct attribute *nvme_fc_attrs[] = { 3883 &dev_attr_nvme_discovery.attr, 3884 &dev_attr_appid_store.attr, 3885 NULL 3886 }; 3887 3888 static const struct attribute_group nvme_fc_attr_group = { 3889 .attrs = nvme_fc_attrs, 3890 }; 3891 3892 static const struct attribute_group *nvme_fc_attr_groups[] = { 3893 &nvme_fc_attr_group, 3894 NULL 3895 }; 3896 3897 static struct class fc_class = { 3898 .name = "fc", 3899 .dev_groups = nvme_fc_attr_groups, 3900 .owner = THIS_MODULE, 3901 }; 3902 3903 static int __init nvme_fc_init_module(void) 3904 { 3905 int ret; 3906 3907 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); 3908 if (!nvme_fc_wq) 3909 return -ENOMEM; 3910 3911 /* 3912 * NOTE: 3913 * It is expected that in the future the kernel will combine 3914 * the FC-isms that are currently under scsi and now being 3915 * added to by NVME into a new standalone FC class. The SCSI 3916 * and NVME protocols and their devices would be under this 3917 * new FC class. 3918 * 3919 * As we need something to post FC-specific udev events to, 3920 * specifically for nvme probe events, start by creating the 3921 * new device class. When the new standalone FC class is 3922 * put in place, this code will move to a more generic 3923 * location for the class. 3924 */ 3925 ret = class_register(&fc_class); 3926 if (ret) { 3927 pr_err("couldn't register class fc\n"); 3928 goto out_destroy_wq; 3929 } 3930 3931 /* 3932 * Create a device for the FC-centric udev events 3933 */ 3934 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3935 "fc_udev_device"); 3936 if (IS_ERR(fc_udev_device)) { 3937 pr_err("couldn't create fc_udev device!\n"); 3938 ret = PTR_ERR(fc_udev_device); 3939 goto out_destroy_class; 3940 } 3941 3942 ret = nvmf_register_transport(&nvme_fc_transport); 3943 if (ret) 3944 goto out_destroy_device; 3945 3946 return 0; 3947 3948 out_destroy_device: 3949 device_destroy(&fc_class, MKDEV(0, 0)); 3950 out_destroy_class: 3951 class_unregister(&fc_class); 3952 out_destroy_wq: 3953 destroy_workqueue(nvme_fc_wq); 3954 3955 return ret; 3956 } 3957 3958 static void 3959 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3960 { 3961 struct nvme_fc_ctrl *ctrl; 3962 3963 spin_lock(&rport->lock); 3964 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3965 dev_warn(ctrl->ctrl.device, 3966 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3967 ctrl->cnum); 3968 nvme_delete_ctrl(&ctrl->ctrl); 3969 } 3970 spin_unlock(&rport->lock); 3971 } 3972 3973 static void 3974 nvme_fc_cleanup_for_unload(void) 3975 { 3976 struct nvme_fc_lport *lport; 3977 struct nvme_fc_rport *rport; 3978 3979 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3980 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3981 nvme_fc_delete_controllers(rport); 3982 } 3983 } 3984 } 3985 3986 static void __exit nvme_fc_exit_module(void) 3987 { 3988 unsigned long flags; 3989 bool need_cleanup = false; 3990 3991 spin_lock_irqsave(&nvme_fc_lock, flags); 3992 nvme_fc_waiting_to_unload = true; 3993 if (!list_empty(&nvme_fc_lport_list)) { 3994 need_cleanup = true; 3995 nvme_fc_cleanup_for_unload(); 3996 } 3997 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3998 if (need_cleanup) { 3999 pr_info("%s: waiting for ctlr deletes\n", __func__); 4000 wait_for_completion(&nvme_fc_unload_proceed); 4001 pr_info("%s: ctrl deletes complete\n", __func__); 4002 } 4003 4004 nvmf_unregister_transport(&nvme_fc_transport); 4005 4006 ida_destroy(&nvme_fc_local_port_cnt); 4007 ida_destroy(&nvme_fc_ctrl_cnt); 4008 4009 device_destroy(&fc_class, MKDEV(0, 0)); 4010 class_unregister(&fc_class); 4011 destroy_workqueue(nvme_fc_wq); 4012 } 4013 4014 module_init(nvme_fc_init_module); 4015 module_exit(nvme_fc_exit_module); 4016 4017 MODULE_LICENSE("GPL v2"); 4018