1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 enum nvme_fc_queue_flags { 34 NVME_FC_Q_CONNECTED = (1 << 0), 35 }; 36 37 #define NVMEFC_QUEUE_DELAY 3 /* ms units */ 38 39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 40 41 struct nvme_fc_queue { 42 struct nvme_fc_ctrl *ctrl; 43 struct device *dev; 44 struct blk_mq_hw_ctx *hctx; 45 void *lldd_handle; 46 size_t cmnd_capsule_len; 47 u32 qnum; 48 u32 rqcnt; 49 u32 seqno; 50 51 u64 connection_id; 52 atomic_t csn; 53 54 unsigned long flags; 55 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 56 57 enum nvme_fcop_flags { 58 FCOP_FLAGS_TERMIO = (1 << 0), 59 FCOP_FLAGS_RELEASED = (1 << 1), 60 FCOP_FLAGS_COMPLETE = (1 << 2), 61 FCOP_FLAGS_AEN = (1 << 3), 62 }; 63 64 struct nvmefc_ls_req_op { 65 struct nvmefc_ls_req ls_req; 66 67 struct nvme_fc_rport *rport; 68 struct nvme_fc_queue *queue; 69 struct request *rq; 70 u32 flags; 71 72 int ls_error; 73 struct completion ls_done; 74 struct list_head lsreq_list; /* rport->ls_req_list */ 75 bool req_queued; 76 }; 77 78 enum nvme_fcpop_state { 79 FCPOP_STATE_UNINIT = 0, 80 FCPOP_STATE_IDLE = 1, 81 FCPOP_STATE_ACTIVE = 2, 82 FCPOP_STATE_ABORTED = 3, 83 FCPOP_STATE_COMPLETE = 4, 84 }; 85 86 struct nvme_fc_fcp_op { 87 struct nvme_request nreq; /* 88 * nvme/host/core.c 89 * requires this to be 90 * the 1st element in the 91 * private structure 92 * associated with the 93 * request. 94 */ 95 struct nvmefc_fcp_req fcp_req; 96 97 struct nvme_fc_ctrl *ctrl; 98 struct nvme_fc_queue *queue; 99 struct request *rq; 100 101 atomic_t state; 102 u32 flags; 103 u32 rqno; 104 u32 nents; 105 106 struct nvme_fc_cmd_iu cmd_iu; 107 struct nvme_fc_ersp_iu rsp_iu; 108 }; 109 110 struct nvme_fc_lport { 111 struct nvme_fc_local_port localport; 112 113 struct ida endp_cnt; 114 struct list_head port_list; /* nvme_fc_port_list */ 115 struct list_head endp_list; 116 struct device *dev; /* physical device for dma */ 117 struct nvme_fc_port_template *ops; 118 struct kref ref; 119 atomic_t act_rport_cnt; 120 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 121 122 struct nvme_fc_rport { 123 struct nvme_fc_remote_port remoteport; 124 125 struct list_head endp_list; /* for lport->endp_list */ 126 struct list_head ctrl_list; 127 struct list_head ls_req_list; 128 struct device *dev; /* physical device for dma */ 129 struct nvme_fc_lport *lport; 130 spinlock_t lock; 131 struct kref ref; 132 atomic_t act_ctrl_cnt; 133 unsigned long dev_loss_end; 134 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 135 136 enum nvme_fcctrl_flags { 137 FCCTRL_TERMIO = (1 << 0), 138 }; 139 140 struct nvme_fc_ctrl { 141 spinlock_t lock; 142 struct nvme_fc_queue *queues; 143 struct device *dev; 144 struct nvme_fc_lport *lport; 145 struct nvme_fc_rport *rport; 146 u32 cnum; 147 148 bool assoc_active; 149 u64 association_id; 150 151 struct list_head ctrl_list; /* rport->ctrl_list */ 152 153 struct blk_mq_tag_set admin_tag_set; 154 struct blk_mq_tag_set tag_set; 155 156 struct delayed_work connect_work; 157 158 struct kref ref; 159 u32 flags; 160 u32 iocnt; 161 wait_queue_head_t ioabort_wait; 162 163 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 164 165 struct nvme_ctrl ctrl; 166 }; 167 168 static inline struct nvme_fc_ctrl * 169 to_fc_ctrl(struct nvme_ctrl *ctrl) 170 { 171 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 172 } 173 174 static inline struct nvme_fc_lport * 175 localport_to_lport(struct nvme_fc_local_port *portptr) 176 { 177 return container_of(portptr, struct nvme_fc_lport, localport); 178 } 179 180 static inline struct nvme_fc_rport * 181 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 182 { 183 return container_of(portptr, struct nvme_fc_rport, remoteport); 184 } 185 186 static inline struct nvmefc_ls_req_op * 187 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 188 { 189 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 190 } 191 192 static inline struct nvme_fc_fcp_op * 193 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 194 { 195 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 196 } 197 198 199 200 /* *************************** Globals **************************** */ 201 202 203 static DEFINE_SPINLOCK(nvme_fc_lock); 204 205 static LIST_HEAD(nvme_fc_lport_list); 206 static DEFINE_IDA(nvme_fc_local_port_cnt); 207 static DEFINE_IDA(nvme_fc_ctrl_cnt); 208 209 210 211 /* 212 * These items are short-term. They will eventually be moved into 213 * a generic FC class. See comments in module init. 214 */ 215 static struct class *fc_class; 216 static struct device *fc_udev_device; 217 218 219 /* *********************** FC-NVME Port Management ************************ */ 220 221 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 222 struct nvme_fc_queue *, unsigned int); 223 224 static void 225 nvme_fc_free_lport(struct kref *ref) 226 { 227 struct nvme_fc_lport *lport = 228 container_of(ref, struct nvme_fc_lport, ref); 229 unsigned long flags; 230 231 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 232 WARN_ON(!list_empty(&lport->endp_list)); 233 234 /* remove from transport list */ 235 spin_lock_irqsave(&nvme_fc_lock, flags); 236 list_del(&lport->port_list); 237 spin_unlock_irqrestore(&nvme_fc_lock, flags); 238 239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 240 ida_destroy(&lport->endp_cnt); 241 242 put_device(lport->dev); 243 244 kfree(lport); 245 } 246 247 static void 248 nvme_fc_lport_put(struct nvme_fc_lport *lport) 249 { 250 kref_put(&lport->ref, nvme_fc_free_lport); 251 } 252 253 static int 254 nvme_fc_lport_get(struct nvme_fc_lport *lport) 255 { 256 return kref_get_unless_zero(&lport->ref); 257 } 258 259 260 static struct nvme_fc_lport * 261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 262 struct nvme_fc_port_template *ops, 263 struct device *dev) 264 { 265 struct nvme_fc_lport *lport; 266 unsigned long flags; 267 268 spin_lock_irqsave(&nvme_fc_lock, flags); 269 270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 271 if (lport->localport.node_name != pinfo->node_name || 272 lport->localport.port_name != pinfo->port_name) 273 continue; 274 275 if (lport->dev != dev) { 276 lport = ERR_PTR(-EXDEV); 277 goto out_done; 278 } 279 280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 281 lport = ERR_PTR(-EEXIST); 282 goto out_done; 283 } 284 285 if (!nvme_fc_lport_get(lport)) { 286 /* 287 * fails if ref cnt already 0. If so, 288 * act as if lport already deleted 289 */ 290 lport = NULL; 291 goto out_done; 292 } 293 294 /* resume the lport */ 295 296 lport->ops = ops; 297 lport->localport.port_role = pinfo->port_role; 298 lport->localport.port_id = pinfo->port_id; 299 lport->localport.port_state = FC_OBJSTATE_ONLINE; 300 301 spin_unlock_irqrestore(&nvme_fc_lock, flags); 302 303 return lport; 304 } 305 306 lport = NULL; 307 308 out_done: 309 spin_unlock_irqrestore(&nvme_fc_lock, flags); 310 311 return lport; 312 } 313 314 /** 315 * nvme_fc_register_localport - transport entry point called by an 316 * LLDD to register the existence of a NVME 317 * host FC port. 318 * @pinfo: pointer to information about the port to be registered 319 * @template: LLDD entrypoints and operational parameters for the port 320 * @dev: physical hardware device node port corresponds to. Will be 321 * used for DMA mappings 322 * @lport_p: pointer to a local port pointer. Upon success, the routine 323 * will allocate a nvme_fc_local_port structure and place its 324 * address in the local port pointer. Upon failure, local port 325 * pointer will be set to 0. 326 * 327 * Returns: 328 * a completion status. Must be 0 upon success; a negative errno 329 * (ex: -ENXIO) upon failure. 330 */ 331 int 332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 333 struct nvme_fc_port_template *template, 334 struct device *dev, 335 struct nvme_fc_local_port **portptr) 336 { 337 struct nvme_fc_lport *newrec; 338 unsigned long flags; 339 int ret, idx; 340 341 if (!template->localport_delete || !template->remoteport_delete || 342 !template->ls_req || !template->fcp_io || 343 !template->ls_abort || !template->fcp_abort || 344 !template->max_hw_queues || !template->max_sgl_segments || 345 !template->max_dif_sgl_segments || !template->dma_boundary) { 346 ret = -EINVAL; 347 goto out_reghost_failed; 348 } 349 350 /* 351 * look to see if there is already a localport that had been 352 * deregistered and in the process of waiting for all the 353 * references to fully be removed. If the references haven't 354 * expired, we can simply re-enable the localport. Remoteports 355 * and controller reconnections should resume naturally. 356 */ 357 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 358 359 /* found an lport, but something about its state is bad */ 360 if (IS_ERR(newrec)) { 361 ret = PTR_ERR(newrec); 362 goto out_reghost_failed; 363 364 /* found existing lport, which was resumed */ 365 } else if (newrec) { 366 *portptr = &newrec->localport; 367 return 0; 368 } 369 370 /* nothing found - allocate a new localport struct */ 371 372 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 373 GFP_KERNEL); 374 if (!newrec) { 375 ret = -ENOMEM; 376 goto out_reghost_failed; 377 } 378 379 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 380 if (idx < 0) { 381 ret = -ENOSPC; 382 goto out_fail_kfree; 383 } 384 385 if (!get_device(dev) && dev) { 386 ret = -ENODEV; 387 goto out_ida_put; 388 } 389 390 INIT_LIST_HEAD(&newrec->port_list); 391 INIT_LIST_HEAD(&newrec->endp_list); 392 kref_init(&newrec->ref); 393 atomic_set(&newrec->act_rport_cnt, 0); 394 newrec->ops = template; 395 newrec->dev = dev; 396 ida_init(&newrec->endp_cnt); 397 newrec->localport.private = &newrec[1]; 398 newrec->localport.node_name = pinfo->node_name; 399 newrec->localport.port_name = pinfo->port_name; 400 newrec->localport.port_role = pinfo->port_role; 401 newrec->localport.port_id = pinfo->port_id; 402 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 403 newrec->localport.port_num = idx; 404 405 spin_lock_irqsave(&nvme_fc_lock, flags); 406 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 407 spin_unlock_irqrestore(&nvme_fc_lock, flags); 408 409 if (dev) 410 dma_set_seg_boundary(dev, template->dma_boundary); 411 412 *portptr = &newrec->localport; 413 return 0; 414 415 out_ida_put: 416 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 417 out_fail_kfree: 418 kfree(newrec); 419 out_reghost_failed: 420 *portptr = NULL; 421 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 425 426 /** 427 * nvme_fc_unregister_localport - transport entry point called by an 428 * LLDD to deregister/remove a previously 429 * registered a NVME host FC port. 430 * @localport: pointer to the (registered) local port that is to be 431 * deregistered. 432 * 433 * Returns: 434 * a completion status. Must be 0 upon success; a negative errno 435 * (ex: -ENXIO) upon failure. 436 */ 437 int 438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 439 { 440 struct nvme_fc_lport *lport = localport_to_lport(portptr); 441 unsigned long flags; 442 443 if (!portptr) 444 return -EINVAL; 445 446 spin_lock_irqsave(&nvme_fc_lock, flags); 447 448 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 449 spin_unlock_irqrestore(&nvme_fc_lock, flags); 450 return -EINVAL; 451 } 452 portptr->port_state = FC_OBJSTATE_DELETED; 453 454 spin_unlock_irqrestore(&nvme_fc_lock, flags); 455 456 if (atomic_read(&lport->act_rport_cnt) == 0) 457 lport->ops->localport_delete(&lport->localport); 458 459 nvme_fc_lport_put(lport); 460 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 464 465 /* 466 * TRADDR strings, per FC-NVME are fixed format: 467 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 468 * udev event will only differ by prefix of what field is 469 * being specified: 470 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 471 * 19 + 43 + null_fudge = 64 characters 472 */ 473 #define FCNVME_TRADDR_LENGTH 64 474 475 static void 476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 477 struct nvme_fc_rport *rport) 478 { 479 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 480 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 481 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 482 483 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 484 return; 485 486 snprintf(hostaddr, sizeof(hostaddr), 487 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 488 lport->localport.node_name, lport->localport.port_name); 489 snprintf(tgtaddr, sizeof(tgtaddr), 490 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 491 rport->remoteport.node_name, rport->remoteport.port_name); 492 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 493 } 494 495 static void 496 nvme_fc_free_rport(struct kref *ref) 497 { 498 struct nvme_fc_rport *rport = 499 container_of(ref, struct nvme_fc_rport, ref); 500 struct nvme_fc_lport *lport = 501 localport_to_lport(rport->remoteport.localport); 502 unsigned long flags; 503 504 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 505 WARN_ON(!list_empty(&rport->ctrl_list)); 506 507 /* remove from lport list */ 508 spin_lock_irqsave(&nvme_fc_lock, flags); 509 list_del(&rport->endp_list); 510 spin_unlock_irqrestore(&nvme_fc_lock, flags); 511 512 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 513 514 kfree(rport); 515 516 nvme_fc_lport_put(lport); 517 } 518 519 static void 520 nvme_fc_rport_put(struct nvme_fc_rport *rport) 521 { 522 kref_put(&rport->ref, nvme_fc_free_rport); 523 } 524 525 static int 526 nvme_fc_rport_get(struct nvme_fc_rport *rport) 527 { 528 return kref_get_unless_zero(&rport->ref); 529 } 530 531 static void 532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 533 { 534 switch (ctrl->ctrl.state) { 535 case NVME_CTRL_NEW: 536 case NVME_CTRL_RECONNECTING: 537 /* 538 * As all reconnects were suppressed, schedule a 539 * connect. 540 */ 541 dev_info(ctrl->ctrl.device, 542 "NVME-FC{%d}: connectivity re-established. " 543 "Attempting reconnect\n", ctrl->cnum); 544 545 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 546 break; 547 548 case NVME_CTRL_RESETTING: 549 /* 550 * Controller is already in the process of terminating the 551 * association. No need to do anything further. The reconnect 552 * step will naturally occur after the reset completes. 553 */ 554 break; 555 556 default: 557 /* no action to take - let it delete */ 558 break; 559 } 560 } 561 562 static struct nvme_fc_rport * 563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 564 struct nvme_fc_port_info *pinfo) 565 { 566 struct nvme_fc_rport *rport; 567 struct nvme_fc_ctrl *ctrl; 568 unsigned long flags; 569 570 spin_lock_irqsave(&nvme_fc_lock, flags); 571 572 list_for_each_entry(rport, &lport->endp_list, endp_list) { 573 if (rport->remoteport.node_name != pinfo->node_name || 574 rport->remoteport.port_name != pinfo->port_name) 575 continue; 576 577 if (!nvme_fc_rport_get(rport)) { 578 rport = ERR_PTR(-ENOLCK); 579 goto out_done; 580 } 581 582 spin_unlock_irqrestore(&nvme_fc_lock, flags); 583 584 spin_lock_irqsave(&rport->lock, flags); 585 586 /* has it been unregistered */ 587 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 588 /* means lldd called us twice */ 589 spin_unlock_irqrestore(&rport->lock, flags); 590 nvme_fc_rport_put(rport); 591 return ERR_PTR(-ESTALE); 592 } 593 594 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 595 rport->dev_loss_end = 0; 596 597 /* 598 * kick off a reconnect attempt on all associations to the 599 * remote port. A successful reconnects will resume i/o. 600 */ 601 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 602 nvme_fc_resume_controller(ctrl); 603 604 spin_unlock_irqrestore(&rport->lock, flags); 605 606 return rport; 607 } 608 609 rport = NULL; 610 611 out_done: 612 spin_unlock_irqrestore(&nvme_fc_lock, flags); 613 614 return rport; 615 } 616 617 static inline void 618 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 619 struct nvme_fc_port_info *pinfo) 620 { 621 if (pinfo->dev_loss_tmo) 622 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 623 else 624 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 625 } 626 627 /** 628 * nvme_fc_register_remoteport - transport entry point called by an 629 * LLDD to register the existence of a NVME 630 * subsystem FC port on its fabric. 631 * @localport: pointer to the (registered) local port that the remote 632 * subsystem port is connected to. 633 * @pinfo: pointer to information about the port to be registered 634 * @rport_p: pointer to a remote port pointer. Upon success, the routine 635 * will allocate a nvme_fc_remote_port structure and place its 636 * address in the remote port pointer. Upon failure, remote port 637 * pointer will be set to 0. 638 * 639 * Returns: 640 * a completion status. Must be 0 upon success; a negative errno 641 * (ex: -ENXIO) upon failure. 642 */ 643 int 644 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 645 struct nvme_fc_port_info *pinfo, 646 struct nvme_fc_remote_port **portptr) 647 { 648 struct nvme_fc_lport *lport = localport_to_lport(localport); 649 struct nvme_fc_rport *newrec; 650 unsigned long flags; 651 int ret, idx; 652 653 if (!nvme_fc_lport_get(lport)) { 654 ret = -ESHUTDOWN; 655 goto out_reghost_failed; 656 } 657 658 /* 659 * look to see if there is already a remoteport that is waiting 660 * for a reconnect (within dev_loss_tmo) with the same WWN's. 661 * If so, transition to it and reconnect. 662 */ 663 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 664 665 /* found an rport, but something about its state is bad */ 666 if (IS_ERR(newrec)) { 667 ret = PTR_ERR(newrec); 668 goto out_lport_put; 669 670 /* found existing rport, which was resumed */ 671 } else if (newrec) { 672 nvme_fc_lport_put(lport); 673 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 674 nvme_fc_signal_discovery_scan(lport, newrec); 675 *portptr = &newrec->remoteport; 676 return 0; 677 } 678 679 /* nothing found - allocate a new remoteport struct */ 680 681 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 682 GFP_KERNEL); 683 if (!newrec) { 684 ret = -ENOMEM; 685 goto out_lport_put; 686 } 687 688 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 689 if (idx < 0) { 690 ret = -ENOSPC; 691 goto out_kfree_rport; 692 } 693 694 INIT_LIST_HEAD(&newrec->endp_list); 695 INIT_LIST_HEAD(&newrec->ctrl_list); 696 INIT_LIST_HEAD(&newrec->ls_req_list); 697 kref_init(&newrec->ref); 698 atomic_set(&newrec->act_ctrl_cnt, 0); 699 spin_lock_init(&newrec->lock); 700 newrec->remoteport.localport = &lport->localport; 701 newrec->dev = lport->dev; 702 newrec->lport = lport; 703 newrec->remoteport.private = &newrec[1]; 704 newrec->remoteport.port_role = pinfo->port_role; 705 newrec->remoteport.node_name = pinfo->node_name; 706 newrec->remoteport.port_name = pinfo->port_name; 707 newrec->remoteport.port_id = pinfo->port_id; 708 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 709 newrec->remoteport.port_num = idx; 710 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 711 712 spin_lock_irqsave(&nvme_fc_lock, flags); 713 list_add_tail(&newrec->endp_list, &lport->endp_list); 714 spin_unlock_irqrestore(&nvme_fc_lock, flags); 715 716 nvme_fc_signal_discovery_scan(lport, newrec); 717 718 *portptr = &newrec->remoteport; 719 return 0; 720 721 out_kfree_rport: 722 kfree(newrec); 723 out_lport_put: 724 nvme_fc_lport_put(lport); 725 out_reghost_failed: 726 *portptr = NULL; 727 return ret; 728 } 729 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 730 731 static int 732 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 733 { 734 struct nvmefc_ls_req_op *lsop; 735 unsigned long flags; 736 737 restart: 738 spin_lock_irqsave(&rport->lock, flags); 739 740 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 741 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 742 lsop->flags |= FCOP_FLAGS_TERMIO; 743 spin_unlock_irqrestore(&rport->lock, flags); 744 rport->lport->ops->ls_abort(&rport->lport->localport, 745 &rport->remoteport, 746 &lsop->ls_req); 747 goto restart; 748 } 749 } 750 spin_unlock_irqrestore(&rport->lock, flags); 751 752 return 0; 753 } 754 755 static void 756 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 757 { 758 dev_info(ctrl->ctrl.device, 759 "NVME-FC{%d}: controller connectivity lost. Awaiting " 760 "Reconnect", ctrl->cnum); 761 762 switch (ctrl->ctrl.state) { 763 case NVME_CTRL_NEW: 764 case NVME_CTRL_LIVE: 765 /* 766 * Schedule a controller reset. The reset will terminate the 767 * association and schedule the reconnect timer. Reconnects 768 * will be attempted until either the ctlr_loss_tmo 769 * (max_retries * connect_delay) expires or the remoteport's 770 * dev_loss_tmo expires. 771 */ 772 if (nvme_reset_ctrl(&ctrl->ctrl)) { 773 dev_warn(ctrl->ctrl.device, 774 "NVME-FC{%d}: Couldn't schedule reset. " 775 "Deleting controller.\n", 776 ctrl->cnum); 777 nvme_delete_ctrl(&ctrl->ctrl); 778 } 779 break; 780 781 case NVME_CTRL_RECONNECTING: 782 /* 783 * The association has already been terminated and the 784 * controller is attempting reconnects. No need to do anything 785 * futher. Reconnects will be attempted until either the 786 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 787 * remoteport's dev_loss_tmo expires. 788 */ 789 break; 790 791 case NVME_CTRL_RESETTING: 792 /* 793 * Controller is already in the process of terminating the 794 * association. No need to do anything further. The reconnect 795 * step will kick in naturally after the association is 796 * terminated. 797 */ 798 break; 799 800 case NVME_CTRL_DELETING: 801 default: 802 /* no action to take - let it delete */ 803 break; 804 } 805 } 806 807 /** 808 * nvme_fc_unregister_remoteport - transport entry point called by an 809 * LLDD to deregister/remove a previously 810 * registered a NVME subsystem FC port. 811 * @remoteport: pointer to the (registered) remote port that is to be 812 * deregistered. 813 * 814 * Returns: 815 * a completion status. Must be 0 upon success; a negative errno 816 * (ex: -ENXIO) upon failure. 817 */ 818 int 819 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 820 { 821 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 822 struct nvme_fc_ctrl *ctrl; 823 unsigned long flags; 824 825 if (!portptr) 826 return -EINVAL; 827 828 spin_lock_irqsave(&rport->lock, flags); 829 830 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 831 spin_unlock_irqrestore(&rport->lock, flags); 832 return -EINVAL; 833 } 834 portptr->port_state = FC_OBJSTATE_DELETED; 835 836 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 837 838 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 839 /* if dev_loss_tmo==0, dev loss is immediate */ 840 if (!portptr->dev_loss_tmo) { 841 dev_warn(ctrl->ctrl.device, 842 "NVME-FC{%d}: controller connectivity lost. " 843 "Deleting controller.\n", 844 ctrl->cnum); 845 nvme_delete_ctrl(&ctrl->ctrl); 846 } else 847 nvme_fc_ctrl_connectivity_loss(ctrl); 848 } 849 850 spin_unlock_irqrestore(&rport->lock, flags); 851 852 nvme_fc_abort_lsops(rport); 853 854 if (atomic_read(&rport->act_ctrl_cnt) == 0) 855 rport->lport->ops->remoteport_delete(portptr); 856 857 /* 858 * release the reference, which will allow, if all controllers 859 * go away, which should only occur after dev_loss_tmo occurs, 860 * for the rport to be torn down. 861 */ 862 nvme_fc_rport_put(rport); 863 864 return 0; 865 } 866 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 867 868 /** 869 * nvme_fc_rescan_remoteport - transport entry point called by an 870 * LLDD to request a nvme device rescan. 871 * @remoteport: pointer to the (registered) remote port that is to be 872 * rescanned. 873 * 874 * Returns: N/A 875 */ 876 void 877 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 878 { 879 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 880 881 nvme_fc_signal_discovery_scan(rport->lport, rport); 882 } 883 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 884 885 int 886 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 887 u32 dev_loss_tmo) 888 { 889 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 890 unsigned long flags; 891 892 spin_lock_irqsave(&rport->lock, flags); 893 894 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 895 spin_unlock_irqrestore(&rport->lock, flags); 896 return -EINVAL; 897 } 898 899 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 900 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 901 902 spin_unlock_irqrestore(&rport->lock, flags); 903 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 907 908 909 /* *********************** FC-NVME DMA Handling **************************** */ 910 911 /* 912 * The fcloop device passes in a NULL device pointer. Real LLD's will 913 * pass in a valid device pointer. If NULL is passed to the dma mapping 914 * routines, depending on the platform, it may or may not succeed, and 915 * may crash. 916 * 917 * As such: 918 * Wrapper all the dma routines and check the dev pointer. 919 * 920 * If simple mappings (return just a dma address, we'll noop them, 921 * returning a dma address of 0. 922 * 923 * On more complex mappings (dma_map_sg), a pseudo routine fills 924 * in the scatter list, setting all dma addresses to 0. 925 */ 926 927 static inline dma_addr_t 928 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 929 enum dma_data_direction dir) 930 { 931 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 932 } 933 934 static inline int 935 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 936 { 937 return dev ? dma_mapping_error(dev, dma_addr) : 0; 938 } 939 940 static inline void 941 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 942 enum dma_data_direction dir) 943 { 944 if (dev) 945 dma_unmap_single(dev, addr, size, dir); 946 } 947 948 static inline void 949 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 950 enum dma_data_direction dir) 951 { 952 if (dev) 953 dma_sync_single_for_cpu(dev, addr, size, dir); 954 } 955 956 static inline void 957 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 958 enum dma_data_direction dir) 959 { 960 if (dev) 961 dma_sync_single_for_device(dev, addr, size, dir); 962 } 963 964 /* pseudo dma_map_sg call */ 965 static int 966 fc_map_sg(struct scatterlist *sg, int nents) 967 { 968 struct scatterlist *s; 969 int i; 970 971 WARN_ON(nents == 0 || sg[0].length == 0); 972 973 for_each_sg(sg, s, nents, i) { 974 s->dma_address = 0L; 975 #ifdef CONFIG_NEED_SG_DMA_LENGTH 976 s->dma_length = s->length; 977 #endif 978 } 979 return nents; 980 } 981 982 static inline int 983 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 984 enum dma_data_direction dir) 985 { 986 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 987 } 988 989 static inline void 990 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 991 enum dma_data_direction dir) 992 { 993 if (dev) 994 dma_unmap_sg(dev, sg, nents, dir); 995 } 996 997 /* *********************** FC-NVME LS Handling **************************** */ 998 999 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1000 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1001 1002 1003 static void 1004 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1005 { 1006 struct nvme_fc_rport *rport = lsop->rport; 1007 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1008 unsigned long flags; 1009 1010 spin_lock_irqsave(&rport->lock, flags); 1011 1012 if (!lsop->req_queued) { 1013 spin_unlock_irqrestore(&rport->lock, flags); 1014 return; 1015 } 1016 1017 list_del(&lsop->lsreq_list); 1018 1019 lsop->req_queued = false; 1020 1021 spin_unlock_irqrestore(&rport->lock, flags); 1022 1023 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1024 (lsreq->rqstlen + lsreq->rsplen), 1025 DMA_BIDIRECTIONAL); 1026 1027 nvme_fc_rport_put(rport); 1028 } 1029 1030 static int 1031 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1032 struct nvmefc_ls_req_op *lsop, 1033 void (*done)(struct nvmefc_ls_req *req, int status)) 1034 { 1035 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1036 unsigned long flags; 1037 int ret = 0; 1038 1039 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1040 return -ECONNREFUSED; 1041 1042 if (!nvme_fc_rport_get(rport)) 1043 return -ESHUTDOWN; 1044 1045 lsreq->done = done; 1046 lsop->rport = rport; 1047 lsop->req_queued = false; 1048 INIT_LIST_HEAD(&lsop->lsreq_list); 1049 init_completion(&lsop->ls_done); 1050 1051 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1052 lsreq->rqstlen + lsreq->rsplen, 1053 DMA_BIDIRECTIONAL); 1054 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1055 ret = -EFAULT; 1056 goto out_putrport; 1057 } 1058 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1059 1060 spin_lock_irqsave(&rport->lock, flags); 1061 1062 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1063 1064 lsop->req_queued = true; 1065 1066 spin_unlock_irqrestore(&rport->lock, flags); 1067 1068 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1069 &rport->remoteport, lsreq); 1070 if (ret) 1071 goto out_unlink; 1072 1073 return 0; 1074 1075 out_unlink: 1076 lsop->ls_error = ret; 1077 spin_lock_irqsave(&rport->lock, flags); 1078 lsop->req_queued = false; 1079 list_del(&lsop->lsreq_list); 1080 spin_unlock_irqrestore(&rport->lock, flags); 1081 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1082 (lsreq->rqstlen + lsreq->rsplen), 1083 DMA_BIDIRECTIONAL); 1084 out_putrport: 1085 nvme_fc_rport_put(rport); 1086 1087 return ret; 1088 } 1089 1090 static void 1091 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1092 { 1093 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1094 1095 lsop->ls_error = status; 1096 complete(&lsop->ls_done); 1097 } 1098 1099 static int 1100 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1101 { 1102 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1103 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1104 int ret; 1105 1106 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1107 1108 if (!ret) { 1109 /* 1110 * No timeout/not interruptible as we need the struct 1111 * to exist until the lldd calls us back. Thus mandate 1112 * wait until driver calls back. lldd responsible for 1113 * the timeout action 1114 */ 1115 wait_for_completion(&lsop->ls_done); 1116 1117 __nvme_fc_finish_ls_req(lsop); 1118 1119 ret = lsop->ls_error; 1120 } 1121 1122 if (ret) 1123 return ret; 1124 1125 /* ACC or RJT payload ? */ 1126 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1127 return -ENXIO; 1128 1129 return 0; 1130 } 1131 1132 static int 1133 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1134 struct nvmefc_ls_req_op *lsop, 1135 void (*done)(struct nvmefc_ls_req *req, int status)) 1136 { 1137 /* don't wait for completion */ 1138 1139 return __nvme_fc_send_ls_req(rport, lsop, done); 1140 } 1141 1142 /* Validation Error indexes into the string table below */ 1143 enum { 1144 VERR_NO_ERROR = 0, 1145 VERR_LSACC = 1, 1146 VERR_LSDESC_RQST = 2, 1147 VERR_LSDESC_RQST_LEN = 3, 1148 VERR_ASSOC_ID = 4, 1149 VERR_ASSOC_ID_LEN = 5, 1150 VERR_CONN_ID = 6, 1151 VERR_CONN_ID_LEN = 7, 1152 VERR_CR_ASSOC = 8, 1153 VERR_CR_ASSOC_ACC_LEN = 9, 1154 VERR_CR_CONN = 10, 1155 VERR_CR_CONN_ACC_LEN = 11, 1156 VERR_DISCONN = 12, 1157 VERR_DISCONN_ACC_LEN = 13, 1158 }; 1159 1160 static char *validation_errors[] = { 1161 "OK", 1162 "Not LS_ACC", 1163 "Not LSDESC_RQST", 1164 "Bad LSDESC_RQST Length", 1165 "Not Association ID", 1166 "Bad Association ID Length", 1167 "Not Connection ID", 1168 "Bad Connection ID Length", 1169 "Not CR_ASSOC Rqst", 1170 "Bad CR_ASSOC ACC Length", 1171 "Not CR_CONN Rqst", 1172 "Bad CR_CONN ACC Length", 1173 "Not Disconnect Rqst", 1174 "Bad Disconnect ACC Length", 1175 }; 1176 1177 static int 1178 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1179 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1180 { 1181 struct nvmefc_ls_req_op *lsop; 1182 struct nvmefc_ls_req *lsreq; 1183 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1184 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1185 int ret, fcret = 0; 1186 1187 lsop = kzalloc((sizeof(*lsop) + 1188 ctrl->lport->ops->lsrqst_priv_sz + 1189 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1190 if (!lsop) { 1191 ret = -ENOMEM; 1192 goto out_no_memory; 1193 } 1194 lsreq = &lsop->ls_req; 1195 1196 lsreq->private = (void *)&lsop[1]; 1197 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1198 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1200 1201 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1202 assoc_rqst->desc_list_len = 1203 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1204 1205 assoc_rqst->assoc_cmd.desc_tag = 1206 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1207 assoc_rqst->assoc_cmd.desc_len = 1208 fcnvme_lsdesc_len( 1209 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1210 1211 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1212 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); 1213 /* Linux supports only Dynamic controllers */ 1214 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1215 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1216 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1217 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1218 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1219 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1220 1221 lsop->queue = queue; 1222 lsreq->rqstaddr = assoc_rqst; 1223 lsreq->rqstlen = sizeof(*assoc_rqst); 1224 lsreq->rspaddr = assoc_acc; 1225 lsreq->rsplen = sizeof(*assoc_acc); 1226 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1227 1228 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1229 if (ret) 1230 goto out_free_buffer; 1231 1232 /* process connect LS completion */ 1233 1234 /* validate the ACC response */ 1235 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1236 fcret = VERR_LSACC; 1237 else if (assoc_acc->hdr.desc_list_len != 1238 fcnvme_lsdesc_len( 1239 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1240 fcret = VERR_CR_ASSOC_ACC_LEN; 1241 else if (assoc_acc->hdr.rqst.desc_tag != 1242 cpu_to_be32(FCNVME_LSDESC_RQST)) 1243 fcret = VERR_LSDESC_RQST; 1244 else if (assoc_acc->hdr.rqst.desc_len != 1245 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1246 fcret = VERR_LSDESC_RQST_LEN; 1247 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1248 fcret = VERR_CR_ASSOC; 1249 else if (assoc_acc->associd.desc_tag != 1250 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1251 fcret = VERR_ASSOC_ID; 1252 else if (assoc_acc->associd.desc_len != 1253 fcnvme_lsdesc_len( 1254 sizeof(struct fcnvme_lsdesc_assoc_id))) 1255 fcret = VERR_ASSOC_ID_LEN; 1256 else if (assoc_acc->connectid.desc_tag != 1257 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1258 fcret = VERR_CONN_ID; 1259 else if (assoc_acc->connectid.desc_len != 1260 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1261 fcret = VERR_CONN_ID_LEN; 1262 1263 if (fcret) { 1264 ret = -EBADF; 1265 dev_err(ctrl->dev, 1266 "q %d connect failed: %s\n", 1267 queue->qnum, validation_errors[fcret]); 1268 } else { 1269 ctrl->association_id = 1270 be64_to_cpu(assoc_acc->associd.association_id); 1271 queue->connection_id = 1272 be64_to_cpu(assoc_acc->connectid.connection_id); 1273 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1274 } 1275 1276 out_free_buffer: 1277 kfree(lsop); 1278 out_no_memory: 1279 if (ret) 1280 dev_err(ctrl->dev, 1281 "queue %d connect admin queue failed (%d).\n", 1282 queue->qnum, ret); 1283 return ret; 1284 } 1285 1286 static int 1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1288 u16 qsize, u16 ersp_ratio) 1289 { 1290 struct nvmefc_ls_req_op *lsop; 1291 struct nvmefc_ls_req *lsreq; 1292 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1293 struct fcnvme_ls_cr_conn_acc *conn_acc; 1294 int ret, fcret = 0; 1295 1296 lsop = kzalloc((sizeof(*lsop) + 1297 ctrl->lport->ops->lsrqst_priv_sz + 1298 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1299 if (!lsop) { 1300 ret = -ENOMEM; 1301 goto out_no_memory; 1302 } 1303 lsreq = &lsop->ls_req; 1304 1305 lsreq->private = (void *)&lsop[1]; 1306 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1307 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1308 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1309 1310 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1311 conn_rqst->desc_list_len = cpu_to_be32( 1312 sizeof(struct fcnvme_lsdesc_assoc_id) + 1313 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1314 1315 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1316 conn_rqst->associd.desc_len = 1317 fcnvme_lsdesc_len( 1318 sizeof(struct fcnvme_lsdesc_assoc_id)); 1319 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1320 conn_rqst->connect_cmd.desc_tag = 1321 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1322 conn_rqst->connect_cmd.desc_len = 1323 fcnvme_lsdesc_len( 1324 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1325 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1326 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1327 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); 1328 1329 lsop->queue = queue; 1330 lsreq->rqstaddr = conn_rqst; 1331 lsreq->rqstlen = sizeof(*conn_rqst); 1332 lsreq->rspaddr = conn_acc; 1333 lsreq->rsplen = sizeof(*conn_acc); 1334 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1335 1336 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1337 if (ret) 1338 goto out_free_buffer; 1339 1340 /* process connect LS completion */ 1341 1342 /* validate the ACC response */ 1343 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1344 fcret = VERR_LSACC; 1345 else if (conn_acc->hdr.desc_list_len != 1346 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1347 fcret = VERR_CR_CONN_ACC_LEN; 1348 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1349 fcret = VERR_LSDESC_RQST; 1350 else if (conn_acc->hdr.rqst.desc_len != 1351 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1352 fcret = VERR_LSDESC_RQST_LEN; 1353 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1354 fcret = VERR_CR_CONN; 1355 else if (conn_acc->connectid.desc_tag != 1356 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1357 fcret = VERR_CONN_ID; 1358 else if (conn_acc->connectid.desc_len != 1359 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1360 fcret = VERR_CONN_ID_LEN; 1361 1362 if (fcret) { 1363 ret = -EBADF; 1364 dev_err(ctrl->dev, 1365 "q %d connect failed: %s\n", 1366 queue->qnum, validation_errors[fcret]); 1367 } else { 1368 queue->connection_id = 1369 be64_to_cpu(conn_acc->connectid.connection_id); 1370 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1371 } 1372 1373 out_free_buffer: 1374 kfree(lsop); 1375 out_no_memory: 1376 if (ret) 1377 dev_err(ctrl->dev, 1378 "queue %d connect command failed (%d).\n", 1379 queue->qnum, ret); 1380 return ret; 1381 } 1382 1383 static void 1384 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1385 { 1386 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1387 1388 __nvme_fc_finish_ls_req(lsop); 1389 1390 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1391 1392 kfree(lsop); 1393 } 1394 1395 /* 1396 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1397 * the FC-NVME Association. Terminating the association also 1398 * terminates the FC-NVME connections (per queue, both admin and io 1399 * queues) that are part of the association. E.g. things are torn 1400 * down, and the related FC-NVME Association ID and Connection IDs 1401 * become invalid. 1402 * 1403 * The behavior of the fc-nvme initiator is such that it's 1404 * understanding of the association and connections will implicitly 1405 * be torn down. The action is implicit as it may be due to a loss of 1406 * connectivity with the fc-nvme target, so you may never get a 1407 * response even if you tried. As such, the action of this routine 1408 * is to asynchronously send the LS, ignore any results of the LS, and 1409 * continue on with terminating the association. If the fc-nvme target 1410 * is present and receives the LS, it too can tear down. 1411 */ 1412 static void 1413 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1414 { 1415 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1416 struct fcnvme_ls_disconnect_acc *discon_acc; 1417 struct nvmefc_ls_req_op *lsop; 1418 struct nvmefc_ls_req *lsreq; 1419 int ret; 1420 1421 lsop = kzalloc((sizeof(*lsop) + 1422 ctrl->lport->ops->lsrqst_priv_sz + 1423 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1424 GFP_KERNEL); 1425 if (!lsop) 1426 /* couldn't sent it... too bad */ 1427 return; 1428 1429 lsreq = &lsop->ls_req; 1430 1431 lsreq->private = (void *)&lsop[1]; 1432 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1433 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1434 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1435 1436 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1437 discon_rqst->desc_list_len = cpu_to_be32( 1438 sizeof(struct fcnvme_lsdesc_assoc_id) + 1439 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1440 1441 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1442 discon_rqst->associd.desc_len = 1443 fcnvme_lsdesc_len( 1444 sizeof(struct fcnvme_lsdesc_assoc_id)); 1445 1446 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1447 1448 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1449 FCNVME_LSDESC_DISCONN_CMD); 1450 discon_rqst->discon_cmd.desc_len = 1451 fcnvme_lsdesc_len( 1452 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1453 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1454 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1455 1456 lsreq->rqstaddr = discon_rqst; 1457 lsreq->rqstlen = sizeof(*discon_rqst); 1458 lsreq->rspaddr = discon_acc; 1459 lsreq->rsplen = sizeof(*discon_acc); 1460 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1461 1462 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1463 nvme_fc_disconnect_assoc_done); 1464 if (ret) 1465 kfree(lsop); 1466 1467 /* only meaningful part to terminating the association */ 1468 ctrl->association_id = 0; 1469 } 1470 1471 1472 /* *********************** NVME Ctrl Routines **************************** */ 1473 1474 static void __nvme_fc_final_op_cleanup(struct request *rq); 1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1476 1477 static int 1478 nvme_fc_reinit_request(void *data, struct request *rq) 1479 { 1480 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1481 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1482 1483 memset(cmdiu, 0, sizeof(*cmdiu)); 1484 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1485 cmdiu->fc_id = NVME_CMD_FC_ID; 1486 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1487 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); 1488 1489 return 0; 1490 } 1491 1492 static void 1493 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1494 struct nvme_fc_fcp_op *op) 1495 { 1496 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1497 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1498 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1499 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1500 1501 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1502 } 1503 1504 static void 1505 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1506 unsigned int hctx_idx) 1507 { 1508 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1509 1510 return __nvme_fc_exit_request(set->driver_data, op); 1511 } 1512 1513 static int 1514 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1515 { 1516 int state; 1517 1518 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1519 if (state != FCPOP_STATE_ACTIVE) { 1520 atomic_set(&op->state, state); 1521 return -ECANCELED; 1522 } 1523 1524 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1525 &ctrl->rport->remoteport, 1526 op->queue->lldd_handle, 1527 &op->fcp_req); 1528 1529 return 0; 1530 } 1531 1532 static void 1533 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1534 { 1535 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1536 unsigned long flags; 1537 int i, ret; 1538 1539 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1540 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) 1541 continue; 1542 1543 spin_lock_irqsave(&ctrl->lock, flags); 1544 if (ctrl->flags & FCCTRL_TERMIO) { 1545 ctrl->iocnt++; 1546 aen_op->flags |= FCOP_FLAGS_TERMIO; 1547 } 1548 spin_unlock_irqrestore(&ctrl->lock, flags); 1549 1550 ret = __nvme_fc_abort_op(ctrl, aen_op); 1551 if (ret) { 1552 /* 1553 * if __nvme_fc_abort_op failed the io wasn't 1554 * active. Thus this call path is running in 1555 * parallel to the io complete. Treat as non-error. 1556 */ 1557 1558 /* back out the flags/counters */ 1559 spin_lock_irqsave(&ctrl->lock, flags); 1560 if (ctrl->flags & FCCTRL_TERMIO) 1561 ctrl->iocnt--; 1562 aen_op->flags &= ~FCOP_FLAGS_TERMIO; 1563 spin_unlock_irqrestore(&ctrl->lock, flags); 1564 return; 1565 } 1566 } 1567 } 1568 1569 static inline int 1570 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1571 struct nvme_fc_fcp_op *op) 1572 { 1573 unsigned long flags; 1574 bool complete_rq = false; 1575 1576 spin_lock_irqsave(&ctrl->lock, flags); 1577 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1578 if (ctrl->flags & FCCTRL_TERMIO) { 1579 if (!--ctrl->iocnt) 1580 wake_up(&ctrl->ioabort_wait); 1581 } 1582 } 1583 if (op->flags & FCOP_FLAGS_RELEASED) 1584 complete_rq = true; 1585 else 1586 op->flags |= FCOP_FLAGS_COMPLETE; 1587 spin_unlock_irqrestore(&ctrl->lock, flags); 1588 1589 return complete_rq; 1590 } 1591 1592 static void 1593 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1594 { 1595 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1596 struct request *rq = op->rq; 1597 struct nvmefc_fcp_req *freq = &op->fcp_req; 1598 struct nvme_fc_ctrl *ctrl = op->ctrl; 1599 struct nvme_fc_queue *queue = op->queue; 1600 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1601 struct nvme_command *sqe = &op->cmd_iu.sqe; 1602 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1603 union nvme_result result; 1604 bool terminate_assoc = true; 1605 1606 /* 1607 * WARNING: 1608 * The current linux implementation of a nvme controller 1609 * allocates a single tag set for all io queues and sizes 1610 * the io queues to fully hold all possible tags. Thus, the 1611 * implementation does not reference or care about the sqhd 1612 * value as it never needs to use the sqhd/sqtail pointers 1613 * for submission pacing. 1614 * 1615 * This affects the FC-NVME implementation in two ways: 1616 * 1) As the value doesn't matter, we don't need to waste 1617 * cycles extracting it from ERSPs and stamping it in the 1618 * cases where the transport fabricates CQEs on successful 1619 * completions. 1620 * 2) The FC-NVME implementation requires that delivery of 1621 * ERSP completions are to go back to the nvme layer in order 1622 * relative to the rsn, such that the sqhd value will always 1623 * be "in order" for the nvme layer. As the nvme layer in 1624 * linux doesn't care about sqhd, there's no need to return 1625 * them in order. 1626 * 1627 * Additionally: 1628 * As the core nvme layer in linux currently does not look at 1629 * every field in the cqe - in cases where the FC transport must 1630 * fabricate a CQE, the following fields will not be set as they 1631 * are not referenced: 1632 * cqe.sqid, cqe.sqhd, cqe.command_id 1633 * 1634 * Failure or error of an individual i/o, in a transport 1635 * detected fashion unrelated to the nvme completion status, 1636 * potentially cause the initiator and target sides to get out 1637 * of sync on SQ head/tail (aka outstanding io count allowed). 1638 * Per FC-NVME spec, failure of an individual command requires 1639 * the connection to be terminated, which in turn requires the 1640 * association to be terminated. 1641 */ 1642 1643 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1644 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1645 1646 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED || 1647 op->flags & FCOP_FLAGS_TERMIO) 1648 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); 1649 else if (freq->status) 1650 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1651 1652 /* 1653 * For the linux implementation, if we have an unsuccesful 1654 * status, they blk-mq layer can typically be called with the 1655 * non-zero status and the content of the cqe isn't important. 1656 */ 1657 if (status) 1658 goto done; 1659 1660 /* 1661 * command completed successfully relative to the wire 1662 * protocol. However, validate anything received and 1663 * extract the status and result from the cqe (create it 1664 * where necessary). 1665 */ 1666 1667 switch (freq->rcv_rsplen) { 1668 1669 case 0: 1670 case NVME_FC_SIZEOF_ZEROS_RSP: 1671 /* 1672 * No response payload or 12 bytes of payload (which 1673 * should all be zeros) are considered successful and 1674 * no payload in the CQE by the transport. 1675 */ 1676 if (freq->transferred_length != 1677 be32_to_cpu(op->cmd_iu.data_len)) { 1678 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1679 goto done; 1680 } 1681 result.u64 = 0; 1682 break; 1683 1684 case sizeof(struct nvme_fc_ersp_iu): 1685 /* 1686 * The ERSP IU contains a full completion with CQE. 1687 * Validate ERSP IU and look at cqe. 1688 */ 1689 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1690 (freq->rcv_rsplen / 4) || 1691 be32_to_cpu(op->rsp_iu.xfrd_len) != 1692 freq->transferred_length || 1693 op->rsp_iu.status_code || 1694 sqe->common.command_id != cqe->command_id)) { 1695 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1696 goto done; 1697 } 1698 result = cqe->result; 1699 status = cqe->status; 1700 break; 1701 1702 default: 1703 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1704 goto done; 1705 } 1706 1707 terminate_assoc = false; 1708 1709 done: 1710 if (op->flags & FCOP_FLAGS_AEN) { 1711 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1712 __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1713 atomic_set(&op->state, FCPOP_STATE_IDLE); 1714 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1715 nvme_fc_ctrl_put(ctrl); 1716 goto check_error; 1717 } 1718 1719 /* 1720 * Force failures of commands if we're killing the controller 1721 * or have an error on a command used to create an new association 1722 */ 1723 if (status && 1724 (blk_queue_dying(rq->q) || 1725 ctrl->ctrl.state == NVME_CTRL_NEW || 1726 ctrl->ctrl.state == NVME_CTRL_RECONNECTING)) 1727 status |= cpu_to_le16(NVME_SC_DNR << 1); 1728 1729 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op)) 1730 __nvme_fc_final_op_cleanup(rq); 1731 else 1732 nvme_end_request(rq, status, result); 1733 1734 check_error: 1735 if (terminate_assoc) 1736 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1737 } 1738 1739 static int 1740 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1741 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1742 struct request *rq, u32 rqno) 1743 { 1744 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1745 int ret = 0; 1746 1747 memset(op, 0, sizeof(*op)); 1748 op->fcp_req.cmdaddr = &op->cmd_iu; 1749 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1750 op->fcp_req.rspaddr = &op->rsp_iu; 1751 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1752 op->fcp_req.done = nvme_fc_fcpio_done; 1753 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1754 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1755 op->ctrl = ctrl; 1756 op->queue = queue; 1757 op->rq = rq; 1758 op->rqno = rqno; 1759 1760 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1761 cmdiu->fc_id = NVME_CMD_FC_ID; 1762 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1763 1764 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1765 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1766 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1767 dev_err(ctrl->dev, 1768 "FCP Op failed - cmdiu dma mapping failed.\n"); 1769 ret = EFAULT; 1770 goto out_on_error; 1771 } 1772 1773 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1774 &op->rsp_iu, sizeof(op->rsp_iu), 1775 DMA_FROM_DEVICE); 1776 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1777 dev_err(ctrl->dev, 1778 "FCP Op failed - rspiu dma mapping failed.\n"); 1779 ret = EFAULT; 1780 } 1781 1782 atomic_set(&op->state, FCPOP_STATE_IDLE); 1783 out_on_error: 1784 return ret; 1785 } 1786 1787 static int 1788 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1789 unsigned int hctx_idx, unsigned int numa_node) 1790 { 1791 struct nvme_fc_ctrl *ctrl = set->driver_data; 1792 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1793 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1794 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1795 1796 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1797 } 1798 1799 static int 1800 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1801 { 1802 struct nvme_fc_fcp_op *aen_op; 1803 struct nvme_fc_cmd_iu *cmdiu; 1804 struct nvme_command *sqe; 1805 void *private; 1806 int i, ret; 1807 1808 aen_op = ctrl->aen_ops; 1809 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1810 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1811 GFP_KERNEL); 1812 if (!private) 1813 return -ENOMEM; 1814 1815 cmdiu = &aen_op->cmd_iu; 1816 sqe = &cmdiu->sqe; 1817 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1818 aen_op, (struct request *)NULL, 1819 (NVME_AQ_BLK_MQ_DEPTH + i)); 1820 if (ret) { 1821 kfree(private); 1822 return ret; 1823 } 1824 1825 aen_op->flags = FCOP_FLAGS_AEN; 1826 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1827 aen_op->fcp_req.private = private; 1828 1829 memset(sqe, 0, sizeof(*sqe)); 1830 sqe->common.opcode = nvme_admin_async_event; 1831 /* Note: core layer may overwrite the sqe.command_id value */ 1832 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1833 } 1834 return 0; 1835 } 1836 1837 static void 1838 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1839 { 1840 struct nvme_fc_fcp_op *aen_op; 1841 int i; 1842 1843 aen_op = ctrl->aen_ops; 1844 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1845 if (!aen_op->fcp_req.private) 1846 continue; 1847 1848 __nvme_fc_exit_request(ctrl, aen_op); 1849 1850 kfree(aen_op->fcp_req.private); 1851 aen_op->fcp_req.private = NULL; 1852 } 1853 } 1854 1855 static inline void 1856 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1857 unsigned int qidx) 1858 { 1859 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1860 1861 hctx->driver_data = queue; 1862 queue->hctx = hctx; 1863 } 1864 1865 static int 1866 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1867 unsigned int hctx_idx) 1868 { 1869 struct nvme_fc_ctrl *ctrl = data; 1870 1871 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1872 1873 return 0; 1874 } 1875 1876 static int 1877 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1878 unsigned int hctx_idx) 1879 { 1880 struct nvme_fc_ctrl *ctrl = data; 1881 1882 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1883 1884 return 0; 1885 } 1886 1887 static void 1888 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1889 { 1890 struct nvme_fc_queue *queue; 1891 1892 queue = &ctrl->queues[idx]; 1893 memset(queue, 0, sizeof(*queue)); 1894 queue->ctrl = ctrl; 1895 queue->qnum = idx; 1896 atomic_set(&queue->csn, 1); 1897 queue->dev = ctrl->dev; 1898 1899 if (idx > 0) 1900 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1901 else 1902 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1903 1904 /* 1905 * Considered whether we should allocate buffers for all SQEs 1906 * and CQEs and dma map them - mapping their respective entries 1907 * into the request structures (kernel vm addr and dma address) 1908 * thus the driver could use the buffers/mappings directly. 1909 * It only makes sense if the LLDD would use them for its 1910 * messaging api. It's very unlikely most adapter api's would use 1911 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1912 * structures were used instead. 1913 */ 1914 } 1915 1916 /* 1917 * This routine terminates a queue at the transport level. 1918 * The transport has already ensured that all outstanding ios on 1919 * the queue have been terminated. 1920 * The transport will send a Disconnect LS request to terminate 1921 * the queue's connection. Termination of the admin queue will also 1922 * terminate the association at the target. 1923 */ 1924 static void 1925 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1926 { 1927 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1928 return; 1929 1930 /* 1931 * Current implementation never disconnects a single queue. 1932 * It always terminates a whole association. So there is never 1933 * a disconnect(queue) LS sent to the target. 1934 */ 1935 1936 queue->connection_id = 0; 1937 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1938 } 1939 1940 static void 1941 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1942 struct nvme_fc_queue *queue, unsigned int qidx) 1943 { 1944 if (ctrl->lport->ops->delete_queue) 1945 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1946 queue->lldd_handle); 1947 queue->lldd_handle = NULL; 1948 } 1949 1950 static void 1951 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1952 { 1953 int i; 1954 1955 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1956 nvme_fc_free_queue(&ctrl->queues[i]); 1957 } 1958 1959 static int 1960 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1961 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1962 { 1963 int ret = 0; 1964 1965 queue->lldd_handle = NULL; 1966 if (ctrl->lport->ops->create_queue) 1967 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1968 qidx, qsize, &queue->lldd_handle); 1969 1970 return ret; 1971 } 1972 1973 static void 1974 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1975 { 1976 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1977 int i; 1978 1979 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1980 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1981 } 1982 1983 static int 1984 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1985 { 1986 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1987 int i, ret; 1988 1989 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1990 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1991 if (ret) 1992 goto delete_queues; 1993 } 1994 1995 return 0; 1996 1997 delete_queues: 1998 for (; i >= 0; i--) 1999 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2000 return ret; 2001 } 2002 2003 static int 2004 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2005 { 2006 int i, ret = 0; 2007 2008 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2009 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2010 (qsize / 5)); 2011 if (ret) 2012 break; 2013 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2014 if (ret) 2015 break; 2016 } 2017 2018 return ret; 2019 } 2020 2021 static void 2022 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2023 { 2024 int i; 2025 2026 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2027 nvme_fc_init_queue(ctrl, i); 2028 } 2029 2030 static void 2031 nvme_fc_ctrl_free(struct kref *ref) 2032 { 2033 struct nvme_fc_ctrl *ctrl = 2034 container_of(ref, struct nvme_fc_ctrl, ref); 2035 unsigned long flags; 2036 2037 if (ctrl->ctrl.tagset) { 2038 blk_cleanup_queue(ctrl->ctrl.connect_q); 2039 blk_mq_free_tag_set(&ctrl->tag_set); 2040 } 2041 2042 /* remove from rport list */ 2043 spin_lock_irqsave(&ctrl->rport->lock, flags); 2044 list_del(&ctrl->ctrl_list); 2045 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2046 2047 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2048 blk_cleanup_queue(ctrl->ctrl.admin_q); 2049 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2050 2051 kfree(ctrl->queues); 2052 2053 put_device(ctrl->dev); 2054 nvme_fc_rport_put(ctrl->rport); 2055 2056 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2057 if (ctrl->ctrl.opts) 2058 nvmf_free_options(ctrl->ctrl.opts); 2059 kfree(ctrl); 2060 } 2061 2062 static void 2063 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2064 { 2065 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2066 } 2067 2068 static int 2069 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2070 { 2071 return kref_get_unless_zero(&ctrl->ref); 2072 } 2073 2074 /* 2075 * All accesses from nvme core layer done - can now free the 2076 * controller. Called after last nvme_put_ctrl() call 2077 */ 2078 static void 2079 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2080 { 2081 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2082 2083 WARN_ON(nctrl != &ctrl->ctrl); 2084 2085 nvme_fc_ctrl_put(ctrl); 2086 } 2087 2088 static void 2089 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2090 { 2091 /* only proceed if in LIVE state - e.g. on first error */ 2092 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2093 return; 2094 2095 dev_warn(ctrl->ctrl.device, 2096 "NVME-FC{%d}: transport association error detected: %s\n", 2097 ctrl->cnum, errmsg); 2098 dev_warn(ctrl->ctrl.device, 2099 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2100 2101 nvme_reset_ctrl(&ctrl->ctrl); 2102 } 2103 2104 static enum blk_eh_timer_return 2105 nvme_fc_timeout(struct request *rq, bool reserved) 2106 { 2107 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2108 struct nvme_fc_ctrl *ctrl = op->ctrl; 2109 int ret; 2110 2111 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2112 atomic_read(&op->state) == FCPOP_STATE_ABORTED) 2113 return BLK_EH_RESET_TIMER; 2114 2115 ret = __nvme_fc_abort_op(ctrl, op); 2116 if (ret) 2117 /* io wasn't active to abort */ 2118 return BLK_EH_NOT_HANDLED; 2119 2120 /* 2121 * we can't individually ABTS an io without affecting the queue, 2122 * thus killing the queue, adn thus the association. 2123 * So resolve by performing a controller reset, which will stop 2124 * the host/io stack, terminate the association on the link, 2125 * and recreate an association on the link. 2126 */ 2127 nvme_fc_error_recovery(ctrl, "io timeout error"); 2128 2129 /* 2130 * the io abort has been initiated. Have the reset timer 2131 * restarted and the abort completion will complete the io 2132 * shortly. Avoids a synchronous wait while the abort finishes. 2133 */ 2134 return BLK_EH_RESET_TIMER; 2135 } 2136 2137 static int 2138 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2139 struct nvme_fc_fcp_op *op) 2140 { 2141 struct nvmefc_fcp_req *freq = &op->fcp_req; 2142 enum dma_data_direction dir; 2143 int ret; 2144 2145 freq->sg_cnt = 0; 2146 2147 if (!blk_rq_payload_bytes(rq)) 2148 return 0; 2149 2150 freq->sg_table.sgl = freq->first_sgl; 2151 ret = sg_alloc_table_chained(&freq->sg_table, 2152 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 2153 if (ret) 2154 return -ENOMEM; 2155 2156 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2157 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2158 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2159 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2160 op->nents, dir); 2161 if (unlikely(freq->sg_cnt <= 0)) { 2162 sg_free_table_chained(&freq->sg_table, true); 2163 freq->sg_cnt = 0; 2164 return -EFAULT; 2165 } 2166 2167 /* 2168 * TODO: blk_integrity_rq(rq) for DIF 2169 */ 2170 return 0; 2171 } 2172 2173 static void 2174 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2175 struct nvme_fc_fcp_op *op) 2176 { 2177 struct nvmefc_fcp_req *freq = &op->fcp_req; 2178 2179 if (!freq->sg_cnt) 2180 return; 2181 2182 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2183 ((rq_data_dir(rq) == WRITE) ? 2184 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 2185 2186 nvme_cleanup_cmd(rq); 2187 2188 sg_free_table_chained(&freq->sg_table, true); 2189 2190 freq->sg_cnt = 0; 2191 } 2192 2193 /* 2194 * In FC, the queue is a logical thing. At transport connect, the target 2195 * creates its "queue" and returns a handle that is to be given to the 2196 * target whenever it posts something to the corresponding SQ. When an 2197 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2198 * command contained within the SQE, an io, and assigns a FC exchange 2199 * to it. The SQE and the associated SQ handle are sent in the initial 2200 * CMD IU sents on the exchange. All transfers relative to the io occur 2201 * as part of the exchange. The CQE is the last thing for the io, 2202 * which is transferred (explicitly or implicitly) with the RSP IU 2203 * sent on the exchange. After the CQE is received, the FC exchange is 2204 * terminaed and the Exchange may be used on a different io. 2205 * 2206 * The transport to LLDD api has the transport making a request for a 2207 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2208 * resource and transfers the command. The LLDD will then process all 2209 * steps to complete the io. Upon completion, the transport done routine 2210 * is called. 2211 * 2212 * So - while the operation is outstanding to the LLDD, there is a link 2213 * level FC exchange resource that is also outstanding. This must be 2214 * considered in all cleanup operations. 2215 */ 2216 static blk_status_t 2217 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2218 struct nvme_fc_fcp_op *op, u32 data_len, 2219 enum nvmefc_fcp_datadir io_dir) 2220 { 2221 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2222 struct nvme_command *sqe = &cmdiu->sqe; 2223 u32 csn; 2224 int ret; 2225 2226 /* 2227 * before attempting to send the io, check to see if we believe 2228 * the target device is present 2229 */ 2230 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2231 goto busy; 2232 2233 if (!nvme_fc_ctrl_get(ctrl)) 2234 return BLK_STS_IOERR; 2235 2236 /* format the FC-NVME CMD IU and fcp_req */ 2237 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2238 csn = atomic_inc_return(&queue->csn); 2239 cmdiu->csn = cpu_to_be32(csn); 2240 cmdiu->data_len = cpu_to_be32(data_len); 2241 switch (io_dir) { 2242 case NVMEFC_FCP_WRITE: 2243 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2244 break; 2245 case NVMEFC_FCP_READ: 2246 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2247 break; 2248 case NVMEFC_FCP_NODATA: 2249 cmdiu->flags = 0; 2250 break; 2251 } 2252 op->fcp_req.payload_length = data_len; 2253 op->fcp_req.io_dir = io_dir; 2254 op->fcp_req.transferred_length = 0; 2255 op->fcp_req.rcv_rsplen = 0; 2256 op->fcp_req.status = NVME_SC_SUCCESS; 2257 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2258 2259 /* 2260 * validate per fabric rules, set fields mandated by fabric spec 2261 * as well as those by FC-NVME spec. 2262 */ 2263 WARN_ON_ONCE(sqe->common.metadata); 2264 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2265 2266 /* 2267 * format SQE DPTR field per FC-NVME rules: 2268 * type=0x5 Transport SGL Data Block Descriptor 2269 * subtype=0xA Transport-specific value 2270 * address=0 2271 * length=length of the data series 2272 */ 2273 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2274 NVME_SGL_FMT_TRANSPORT_A; 2275 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2276 sqe->rw.dptr.sgl.addr = 0; 2277 2278 if (!(op->flags & FCOP_FLAGS_AEN)) { 2279 ret = nvme_fc_map_data(ctrl, op->rq, op); 2280 if (ret < 0) { 2281 nvme_cleanup_cmd(op->rq); 2282 nvme_fc_ctrl_put(ctrl); 2283 if (ret == -ENOMEM || ret == -EAGAIN) 2284 return BLK_STS_RESOURCE; 2285 return BLK_STS_IOERR; 2286 } 2287 } 2288 2289 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2290 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2291 2292 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2293 2294 if (!(op->flags & FCOP_FLAGS_AEN)) 2295 blk_mq_start_request(op->rq); 2296 2297 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2298 &ctrl->rport->remoteport, 2299 queue->lldd_handle, &op->fcp_req); 2300 2301 if (ret) { 2302 if (!(op->flags & FCOP_FLAGS_AEN)) 2303 nvme_fc_unmap_data(ctrl, op->rq, op); 2304 2305 nvme_fc_ctrl_put(ctrl); 2306 2307 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2308 ret != -EBUSY) 2309 return BLK_STS_IOERR; 2310 2311 goto busy; 2312 } 2313 2314 return BLK_STS_OK; 2315 2316 busy: 2317 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx) 2318 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY); 2319 2320 return BLK_STS_RESOURCE; 2321 } 2322 2323 static blk_status_t 2324 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2325 const struct blk_mq_queue_data *bd) 2326 { 2327 struct nvme_ns *ns = hctx->queue->queuedata; 2328 struct nvme_fc_queue *queue = hctx->driver_data; 2329 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2330 struct request *rq = bd->rq; 2331 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2332 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2333 struct nvme_command *sqe = &cmdiu->sqe; 2334 enum nvmefc_fcp_datadir io_dir; 2335 u32 data_len; 2336 blk_status_t ret; 2337 2338 ret = nvme_setup_cmd(ns, rq, sqe); 2339 if (ret) 2340 return ret; 2341 2342 data_len = blk_rq_payload_bytes(rq); 2343 if (data_len) 2344 io_dir = ((rq_data_dir(rq) == WRITE) ? 2345 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2346 else 2347 io_dir = NVMEFC_FCP_NODATA; 2348 2349 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2350 } 2351 2352 static struct blk_mq_tags * 2353 nvme_fc_tagset(struct nvme_fc_queue *queue) 2354 { 2355 if (queue->qnum == 0) 2356 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2357 2358 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2359 } 2360 2361 static int 2362 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2363 2364 { 2365 struct nvme_fc_queue *queue = hctx->driver_data; 2366 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2367 struct request *req; 2368 struct nvme_fc_fcp_op *op; 2369 2370 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2371 if (!req) 2372 return 0; 2373 2374 op = blk_mq_rq_to_pdu(req); 2375 2376 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2377 (ctrl->lport->ops->poll_queue)) 2378 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2379 queue->lldd_handle); 2380 2381 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2382 } 2383 2384 static void 2385 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2386 { 2387 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2388 struct nvme_fc_fcp_op *aen_op; 2389 unsigned long flags; 2390 bool terminating = false; 2391 blk_status_t ret; 2392 2393 spin_lock_irqsave(&ctrl->lock, flags); 2394 if (ctrl->flags & FCCTRL_TERMIO) 2395 terminating = true; 2396 spin_unlock_irqrestore(&ctrl->lock, flags); 2397 2398 if (terminating) 2399 return; 2400 2401 aen_op = &ctrl->aen_ops[0]; 2402 2403 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2404 NVMEFC_FCP_NODATA); 2405 if (ret) 2406 dev_err(ctrl->ctrl.device, 2407 "failed async event work\n"); 2408 } 2409 2410 static void 2411 __nvme_fc_final_op_cleanup(struct request *rq) 2412 { 2413 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2414 struct nvme_fc_ctrl *ctrl = op->ctrl; 2415 2416 atomic_set(&op->state, FCPOP_STATE_IDLE); 2417 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | 2418 FCOP_FLAGS_COMPLETE); 2419 2420 nvme_fc_unmap_data(ctrl, rq, op); 2421 nvme_complete_rq(rq); 2422 nvme_fc_ctrl_put(ctrl); 2423 2424 } 2425 2426 static void 2427 nvme_fc_complete_rq(struct request *rq) 2428 { 2429 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2430 struct nvme_fc_ctrl *ctrl = op->ctrl; 2431 unsigned long flags; 2432 bool completed = false; 2433 2434 /* 2435 * the core layer, on controller resets after calling 2436 * nvme_shutdown_ctrl(), calls complete_rq without our 2437 * calling blk_mq_complete_request(), thus there may still 2438 * be live i/o outstanding with the LLDD. Means transport has 2439 * to track complete calls vs fcpio_done calls to know what 2440 * path to take on completes and dones. 2441 */ 2442 spin_lock_irqsave(&ctrl->lock, flags); 2443 if (op->flags & FCOP_FLAGS_COMPLETE) 2444 completed = true; 2445 else 2446 op->flags |= FCOP_FLAGS_RELEASED; 2447 spin_unlock_irqrestore(&ctrl->lock, flags); 2448 2449 if (completed) 2450 __nvme_fc_final_op_cleanup(rq); 2451 } 2452 2453 /* 2454 * This routine is used by the transport when it needs to find active 2455 * io on a queue that is to be terminated. The transport uses 2456 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2457 * this routine to kill them on a 1 by 1 basis. 2458 * 2459 * As FC allocates FC exchange for each io, the transport must contact 2460 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2461 * After terminating the exchange the LLDD will call the transport's 2462 * normal io done path for the request, but it will have an aborted 2463 * status. The done path will return the io request back to the block 2464 * layer with an error status. 2465 */ 2466 static void 2467 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2468 { 2469 struct nvme_ctrl *nctrl = data; 2470 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2471 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2472 unsigned long flags; 2473 int status; 2474 2475 if (!blk_mq_request_started(req)) 2476 return; 2477 2478 spin_lock_irqsave(&ctrl->lock, flags); 2479 if (ctrl->flags & FCCTRL_TERMIO) { 2480 ctrl->iocnt++; 2481 op->flags |= FCOP_FLAGS_TERMIO; 2482 } 2483 spin_unlock_irqrestore(&ctrl->lock, flags); 2484 2485 status = __nvme_fc_abort_op(ctrl, op); 2486 if (status) { 2487 /* 2488 * if __nvme_fc_abort_op failed the io wasn't 2489 * active. Thus this call path is running in 2490 * parallel to the io complete. Treat as non-error. 2491 */ 2492 2493 /* back out the flags/counters */ 2494 spin_lock_irqsave(&ctrl->lock, flags); 2495 if (ctrl->flags & FCCTRL_TERMIO) 2496 ctrl->iocnt--; 2497 op->flags &= ~FCOP_FLAGS_TERMIO; 2498 spin_unlock_irqrestore(&ctrl->lock, flags); 2499 return; 2500 } 2501 } 2502 2503 2504 static const struct blk_mq_ops nvme_fc_mq_ops = { 2505 .queue_rq = nvme_fc_queue_rq, 2506 .complete = nvme_fc_complete_rq, 2507 .init_request = nvme_fc_init_request, 2508 .exit_request = nvme_fc_exit_request, 2509 .init_hctx = nvme_fc_init_hctx, 2510 .poll = nvme_fc_poll, 2511 .timeout = nvme_fc_timeout, 2512 }; 2513 2514 static int 2515 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2516 { 2517 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2518 unsigned int nr_io_queues; 2519 int ret; 2520 2521 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2522 ctrl->lport->ops->max_hw_queues); 2523 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2524 if (ret) { 2525 dev_info(ctrl->ctrl.device, 2526 "set_queue_count failed: %d\n", ret); 2527 return ret; 2528 } 2529 2530 ctrl->ctrl.queue_count = nr_io_queues + 1; 2531 if (!nr_io_queues) 2532 return 0; 2533 2534 nvme_fc_init_io_queues(ctrl); 2535 2536 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2537 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2538 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2539 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2540 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2541 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2542 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2543 (SG_CHUNK_SIZE * 2544 sizeof(struct scatterlist)) + 2545 ctrl->lport->ops->fcprqst_priv_sz; 2546 ctrl->tag_set.driver_data = ctrl; 2547 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2548 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2549 2550 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2551 if (ret) 2552 return ret; 2553 2554 ctrl->ctrl.tagset = &ctrl->tag_set; 2555 2556 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2557 if (IS_ERR(ctrl->ctrl.connect_q)) { 2558 ret = PTR_ERR(ctrl->ctrl.connect_q); 2559 goto out_free_tag_set; 2560 } 2561 2562 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2563 if (ret) 2564 goto out_cleanup_blk_queue; 2565 2566 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2567 if (ret) 2568 goto out_delete_hw_queues; 2569 2570 return 0; 2571 2572 out_delete_hw_queues: 2573 nvme_fc_delete_hw_io_queues(ctrl); 2574 out_cleanup_blk_queue: 2575 blk_cleanup_queue(ctrl->ctrl.connect_q); 2576 out_free_tag_set: 2577 blk_mq_free_tag_set(&ctrl->tag_set); 2578 nvme_fc_free_io_queues(ctrl); 2579 2580 /* force put free routine to ignore io queues */ 2581 ctrl->ctrl.tagset = NULL; 2582 2583 return ret; 2584 } 2585 2586 static int 2587 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) 2588 { 2589 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2590 unsigned int nr_io_queues; 2591 int ret; 2592 2593 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2594 ctrl->lport->ops->max_hw_queues); 2595 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2596 if (ret) { 2597 dev_info(ctrl->ctrl.device, 2598 "set_queue_count failed: %d\n", ret); 2599 return ret; 2600 } 2601 2602 ctrl->ctrl.queue_count = nr_io_queues + 1; 2603 /* check for io queues existing */ 2604 if (ctrl->ctrl.queue_count == 1) 2605 return 0; 2606 2607 nvme_fc_init_io_queues(ctrl); 2608 2609 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 2610 if (ret) 2611 goto out_free_io_queues; 2612 2613 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2614 if (ret) 2615 goto out_free_io_queues; 2616 2617 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2618 if (ret) 2619 goto out_delete_hw_queues; 2620 2621 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2622 2623 return 0; 2624 2625 out_delete_hw_queues: 2626 nvme_fc_delete_hw_io_queues(ctrl); 2627 out_free_io_queues: 2628 nvme_fc_free_io_queues(ctrl); 2629 return ret; 2630 } 2631 2632 static void 2633 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2634 { 2635 struct nvme_fc_lport *lport = rport->lport; 2636 2637 atomic_inc(&lport->act_rport_cnt); 2638 } 2639 2640 static void 2641 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2642 { 2643 struct nvme_fc_lport *lport = rport->lport; 2644 u32 cnt; 2645 2646 cnt = atomic_dec_return(&lport->act_rport_cnt); 2647 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2648 lport->ops->localport_delete(&lport->localport); 2649 } 2650 2651 static int 2652 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2653 { 2654 struct nvme_fc_rport *rport = ctrl->rport; 2655 u32 cnt; 2656 2657 if (ctrl->assoc_active) 2658 return 1; 2659 2660 ctrl->assoc_active = true; 2661 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2662 if (cnt == 1) 2663 nvme_fc_rport_active_on_lport(rport); 2664 2665 return 0; 2666 } 2667 2668 static int 2669 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2670 { 2671 struct nvme_fc_rport *rport = ctrl->rport; 2672 struct nvme_fc_lport *lport = rport->lport; 2673 u32 cnt; 2674 2675 /* ctrl->assoc_active=false will be set independently */ 2676 2677 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2678 if (cnt == 0) { 2679 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2680 lport->ops->remoteport_delete(&rport->remoteport); 2681 nvme_fc_rport_inactive_on_lport(rport); 2682 } 2683 2684 return 0; 2685 } 2686 2687 /* 2688 * This routine restarts the controller on the host side, and 2689 * on the link side, recreates the controller association. 2690 */ 2691 static int 2692 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2693 { 2694 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2695 int ret; 2696 bool changed; 2697 2698 ++ctrl->ctrl.nr_reconnects; 2699 2700 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2701 return -ENODEV; 2702 2703 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2704 return -ENOTUNIQ; 2705 2706 /* 2707 * Create the admin queue 2708 */ 2709 2710 nvme_fc_init_queue(ctrl, 0); 2711 2712 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2713 NVME_AQ_BLK_MQ_DEPTH); 2714 if (ret) 2715 goto out_free_queue; 2716 2717 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2718 NVME_AQ_BLK_MQ_DEPTH, 2719 (NVME_AQ_BLK_MQ_DEPTH / 4)); 2720 if (ret) 2721 goto out_delete_hw_queue; 2722 2723 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2724 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2725 2726 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2727 if (ret) 2728 goto out_disconnect_admin_queue; 2729 2730 /* 2731 * Check controller capabilities 2732 * 2733 * todo:- add code to check if ctrl attributes changed from 2734 * prior connection values 2735 */ 2736 2737 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 2738 if (ret) { 2739 dev_err(ctrl->ctrl.device, 2740 "prop_get NVME_REG_CAP failed\n"); 2741 goto out_disconnect_admin_queue; 2742 } 2743 2744 ctrl->ctrl.sqsize = 2745 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); 2746 2747 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 2748 if (ret) 2749 goto out_disconnect_admin_queue; 2750 2751 ctrl->ctrl.max_hw_sectors = 2752 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2753 2754 ret = nvme_init_identify(&ctrl->ctrl); 2755 if (ret) 2756 goto out_disconnect_admin_queue; 2757 2758 /* sanity checks */ 2759 2760 /* FC-NVME does not have other data in the capsule */ 2761 if (ctrl->ctrl.icdoff) { 2762 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2763 ctrl->ctrl.icdoff); 2764 goto out_disconnect_admin_queue; 2765 } 2766 2767 /* FC-NVME supports normal SGL Data Block Descriptors */ 2768 2769 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2770 /* warn if maxcmd is lower than queue_size */ 2771 dev_warn(ctrl->ctrl.device, 2772 "queue_size %zu > ctrl maxcmd %u, reducing " 2773 "to queue_size\n", 2774 opts->queue_size, ctrl->ctrl.maxcmd); 2775 opts->queue_size = ctrl->ctrl.maxcmd; 2776 } 2777 2778 ret = nvme_fc_init_aen_ops(ctrl); 2779 if (ret) 2780 goto out_term_aen_ops; 2781 2782 /* 2783 * Create the io queues 2784 */ 2785 2786 if (ctrl->ctrl.queue_count > 1) { 2787 if (ctrl->ctrl.state == NVME_CTRL_NEW) 2788 ret = nvme_fc_create_io_queues(ctrl); 2789 else 2790 ret = nvme_fc_reinit_io_queues(ctrl); 2791 if (ret) 2792 goto out_term_aen_ops; 2793 } 2794 2795 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2796 2797 ctrl->ctrl.nr_reconnects = 0; 2798 2799 if (changed) 2800 nvme_start_ctrl(&ctrl->ctrl); 2801 2802 return 0; /* Success */ 2803 2804 out_term_aen_ops: 2805 nvme_fc_term_aen_ops(ctrl); 2806 out_disconnect_admin_queue: 2807 /* send a Disconnect(association) LS to fc-nvme target */ 2808 nvme_fc_xmt_disconnect_assoc(ctrl); 2809 out_delete_hw_queue: 2810 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2811 out_free_queue: 2812 nvme_fc_free_queue(&ctrl->queues[0]); 2813 ctrl->assoc_active = false; 2814 nvme_fc_ctlr_inactive_on_rport(ctrl); 2815 2816 return ret; 2817 } 2818 2819 /* 2820 * This routine stops operation of the controller on the host side. 2821 * On the host os stack side: Admin and IO queues are stopped, 2822 * outstanding ios on them terminated via FC ABTS. 2823 * On the link side: the association is terminated. 2824 */ 2825 static void 2826 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2827 { 2828 unsigned long flags; 2829 2830 if (!ctrl->assoc_active) 2831 return; 2832 ctrl->assoc_active = false; 2833 2834 spin_lock_irqsave(&ctrl->lock, flags); 2835 ctrl->flags |= FCCTRL_TERMIO; 2836 ctrl->iocnt = 0; 2837 spin_unlock_irqrestore(&ctrl->lock, flags); 2838 2839 /* 2840 * If io queues are present, stop them and terminate all outstanding 2841 * ios on them. As FC allocates FC exchange for each io, the 2842 * transport must contact the LLDD to terminate the exchange, 2843 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2844 * to tell us what io's are busy and invoke a transport routine 2845 * to kill them with the LLDD. After terminating the exchange 2846 * the LLDD will call the transport's normal io done path, but it 2847 * will have an aborted status. The done path will return the 2848 * io requests back to the block layer as part of normal completions 2849 * (but with error status). 2850 */ 2851 if (ctrl->ctrl.queue_count > 1) { 2852 nvme_stop_queues(&ctrl->ctrl); 2853 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2854 nvme_fc_terminate_exchange, &ctrl->ctrl); 2855 } 2856 2857 /* 2858 * Other transports, which don't have link-level contexts bound 2859 * to sqe's, would try to gracefully shutdown the controller by 2860 * writing the registers for shutdown and polling (call 2861 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2862 * just aborted and we will wait on those contexts, and given 2863 * there was no indication of how live the controlelr is on the 2864 * link, don't send more io to create more contexts for the 2865 * shutdown. Let the controller fail via keepalive failure if 2866 * its still present. 2867 */ 2868 2869 /* 2870 * clean up the admin queue. Same thing as above. 2871 * use blk_mq_tagset_busy_itr() and the transport routine to 2872 * terminate the exchanges. 2873 */ 2874 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2875 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2876 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2877 nvme_fc_terminate_exchange, &ctrl->ctrl); 2878 2879 /* kill the aens as they are a separate path */ 2880 nvme_fc_abort_aen_ops(ctrl); 2881 2882 /* wait for all io that had to be aborted */ 2883 spin_lock_irq(&ctrl->lock); 2884 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2885 ctrl->flags &= ~FCCTRL_TERMIO; 2886 spin_unlock_irq(&ctrl->lock); 2887 2888 nvme_fc_term_aen_ops(ctrl); 2889 2890 /* 2891 * send a Disconnect(association) LS to fc-nvme target 2892 * Note: could have been sent at top of process, but 2893 * cleaner on link traffic if after the aborts complete. 2894 * Note: if association doesn't exist, association_id will be 0 2895 */ 2896 if (ctrl->association_id) 2897 nvme_fc_xmt_disconnect_assoc(ctrl); 2898 2899 if (ctrl->ctrl.tagset) { 2900 nvme_fc_delete_hw_io_queues(ctrl); 2901 nvme_fc_free_io_queues(ctrl); 2902 } 2903 2904 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2905 nvme_fc_free_queue(&ctrl->queues[0]); 2906 2907 nvme_fc_ctlr_inactive_on_rport(ctrl); 2908 } 2909 2910 static void 2911 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2912 { 2913 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2914 2915 cancel_delayed_work_sync(&ctrl->connect_work); 2916 /* 2917 * kill the association on the link side. this will block 2918 * waiting for io to terminate 2919 */ 2920 nvme_fc_delete_association(ctrl); 2921 } 2922 2923 static void 2924 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2925 { 2926 struct nvme_fc_rport *rport = ctrl->rport; 2927 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2928 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2929 bool recon = true; 2930 2931 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) 2932 return; 2933 2934 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2935 dev_info(ctrl->ctrl.device, 2936 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2937 ctrl->cnum, status); 2938 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2939 recon = false; 2940 2941 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2942 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2943 dev_info(ctrl->ctrl.device, 2944 "NVME-FC{%d}: Reconnect attempt in %ld " 2945 "seconds\n", 2946 ctrl->cnum, recon_delay / HZ); 2947 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2948 recon_delay = rport->dev_loss_end - jiffies; 2949 2950 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2951 } else { 2952 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2953 dev_warn(ctrl->ctrl.device, 2954 "NVME-FC{%d}: Max reconnect attempts (%d) " 2955 "reached. Removing controller\n", 2956 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2957 else 2958 dev_warn(ctrl->ctrl.device, 2959 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2960 "while waiting for remoteport connectivity. " 2961 "Removing controller\n", ctrl->cnum, 2962 portptr->dev_loss_tmo); 2963 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2964 } 2965 } 2966 2967 static void 2968 nvme_fc_reset_ctrl_work(struct work_struct *work) 2969 { 2970 struct nvme_fc_ctrl *ctrl = 2971 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2972 int ret; 2973 2974 nvme_stop_ctrl(&ctrl->ctrl); 2975 2976 /* will block will waiting for io to terminate */ 2977 nvme_fc_delete_association(ctrl); 2978 2979 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 2980 dev_err(ctrl->ctrl.device, 2981 "NVME-FC{%d}: error_recovery: Couldn't change state " 2982 "to RECONNECTING\n", ctrl->cnum); 2983 return; 2984 } 2985 2986 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 2987 ret = nvme_fc_create_association(ctrl); 2988 else 2989 ret = -ENOTCONN; 2990 2991 if (ret) 2992 nvme_fc_reconnect_or_delete(ctrl, ret); 2993 else 2994 dev_info(ctrl->ctrl.device, 2995 "NVME-FC{%d}: controller reset complete\n", 2996 ctrl->cnum); 2997 } 2998 2999 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3000 .name = "fc", 3001 .module = THIS_MODULE, 3002 .flags = NVME_F_FABRICS, 3003 .reg_read32 = nvmf_reg_read32, 3004 .reg_read64 = nvmf_reg_read64, 3005 .reg_write32 = nvmf_reg_write32, 3006 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3007 .submit_async_event = nvme_fc_submit_async_event, 3008 .delete_ctrl = nvme_fc_delete_ctrl, 3009 .get_address = nvmf_get_address, 3010 .reinit_request = nvme_fc_reinit_request, 3011 }; 3012 3013 static void 3014 nvme_fc_connect_ctrl_work(struct work_struct *work) 3015 { 3016 int ret; 3017 3018 struct nvme_fc_ctrl *ctrl = 3019 container_of(to_delayed_work(work), 3020 struct nvme_fc_ctrl, connect_work); 3021 3022 ret = nvme_fc_create_association(ctrl); 3023 if (ret) 3024 nvme_fc_reconnect_or_delete(ctrl, ret); 3025 else 3026 dev_info(ctrl->ctrl.device, 3027 "NVME-FC{%d}: controller reconnect complete\n", 3028 ctrl->cnum); 3029 } 3030 3031 3032 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3033 .queue_rq = nvme_fc_queue_rq, 3034 .complete = nvme_fc_complete_rq, 3035 .init_request = nvme_fc_init_request, 3036 .exit_request = nvme_fc_exit_request, 3037 .init_hctx = nvme_fc_init_admin_hctx, 3038 .timeout = nvme_fc_timeout, 3039 }; 3040 3041 3042 /* 3043 * Fails a controller request if it matches an existing controller 3044 * (association) with the same tuple: 3045 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3046 * 3047 * The ports don't need to be compared as they are intrinsically 3048 * already matched by the port pointers supplied. 3049 */ 3050 static bool 3051 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3052 struct nvmf_ctrl_options *opts) 3053 { 3054 struct nvme_fc_ctrl *ctrl; 3055 unsigned long flags; 3056 bool found = false; 3057 3058 spin_lock_irqsave(&rport->lock, flags); 3059 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3060 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3061 if (found) 3062 break; 3063 } 3064 spin_unlock_irqrestore(&rport->lock, flags); 3065 3066 return found; 3067 } 3068 3069 static struct nvme_ctrl * 3070 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3071 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3072 { 3073 struct nvme_fc_ctrl *ctrl; 3074 unsigned long flags; 3075 int ret, idx, retry; 3076 3077 if (!(rport->remoteport.port_role & 3078 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3079 ret = -EBADR; 3080 goto out_fail; 3081 } 3082 3083 if (!opts->duplicate_connect && 3084 nvme_fc_existing_controller(rport, opts)) { 3085 ret = -EALREADY; 3086 goto out_fail; 3087 } 3088 3089 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3090 if (!ctrl) { 3091 ret = -ENOMEM; 3092 goto out_fail; 3093 } 3094 3095 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3096 if (idx < 0) { 3097 ret = -ENOSPC; 3098 goto out_free_ctrl; 3099 } 3100 3101 ctrl->ctrl.opts = opts; 3102 INIT_LIST_HEAD(&ctrl->ctrl_list); 3103 ctrl->lport = lport; 3104 ctrl->rport = rport; 3105 ctrl->dev = lport->dev; 3106 ctrl->cnum = idx; 3107 ctrl->assoc_active = false; 3108 init_waitqueue_head(&ctrl->ioabort_wait); 3109 3110 get_device(ctrl->dev); 3111 kref_init(&ctrl->ref); 3112 3113 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3114 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3115 spin_lock_init(&ctrl->lock); 3116 3117 /* io queue count */ 3118 ctrl->ctrl.queue_count = min_t(unsigned int, 3119 opts->nr_io_queues, 3120 lport->ops->max_hw_queues); 3121 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3122 3123 ctrl->ctrl.sqsize = opts->queue_size - 1; 3124 ctrl->ctrl.kato = opts->kato; 3125 3126 ret = -ENOMEM; 3127 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3128 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3129 if (!ctrl->queues) 3130 goto out_free_ida; 3131 3132 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3133 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3134 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3135 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3136 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 3137 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 3138 (SG_CHUNK_SIZE * 3139 sizeof(struct scatterlist)) + 3140 ctrl->lport->ops->fcprqst_priv_sz; 3141 ctrl->admin_tag_set.driver_data = ctrl; 3142 ctrl->admin_tag_set.nr_hw_queues = 1; 3143 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3144 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3145 3146 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3147 if (ret) 3148 goto out_free_queues; 3149 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3150 3151 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3152 if (IS_ERR(ctrl->ctrl.admin_q)) { 3153 ret = PTR_ERR(ctrl->ctrl.admin_q); 3154 goto out_free_admin_tag_set; 3155 } 3156 3157 /* 3158 * Would have been nice to init io queues tag set as well. 3159 * However, we require interaction from the controller 3160 * for max io queue count before we can do so. 3161 * Defer this to the connect path. 3162 */ 3163 3164 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3165 if (ret) 3166 goto out_cleanup_admin_q; 3167 3168 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3169 3170 spin_lock_irqsave(&rport->lock, flags); 3171 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3172 spin_unlock_irqrestore(&rport->lock, flags); 3173 3174 /* 3175 * It's possible that transactions used to create the association 3176 * may fail. Examples: CreateAssociation LS or CreateIOConnection 3177 * LS gets dropped/corrupted/fails; or a frame gets dropped or a 3178 * command times out for one of the actions to init the controller 3179 * (Connect, Get/Set_Property, Set_Features, etc). Many of these 3180 * transport errors (frame drop, LS failure) inherently must kill 3181 * the association. The transport is coded so that any command used 3182 * to create the association (prior to a LIVE state transition 3183 * while NEW or RECONNECTING) will fail if it completes in error or 3184 * times out. 3185 * 3186 * As such: as the connect request was mostly likely due to a 3187 * udev event that discovered the remote port, meaning there is 3188 * not an admin or script there to restart if the connect 3189 * request fails, retry the initial connection creation up to 3190 * three times before giving up and declaring failure. 3191 */ 3192 for (retry = 0; retry < 3; retry++) { 3193 ret = nvme_fc_create_association(ctrl); 3194 if (!ret) 3195 break; 3196 } 3197 3198 if (ret) { 3199 /* couldn't schedule retry - fail out */ 3200 dev_err(ctrl->ctrl.device, 3201 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum); 3202 3203 ctrl->ctrl.opts = NULL; 3204 3205 /* initiate nvme ctrl ref counting teardown */ 3206 nvme_uninit_ctrl(&ctrl->ctrl); 3207 nvme_put_ctrl(&ctrl->ctrl); 3208 3209 /* Remove core ctrl ref. */ 3210 nvme_put_ctrl(&ctrl->ctrl); 3211 3212 /* as we're past the point where we transition to the ref 3213 * counting teardown path, if we return a bad pointer here, 3214 * the calling routine, thinking it's prior to the 3215 * transition, will do an rport put. Since the teardown 3216 * path also does a rport put, we do an extra get here to 3217 * so proper order/teardown happens. 3218 */ 3219 nvme_fc_rport_get(rport); 3220 3221 if (ret > 0) 3222 ret = -EIO; 3223 return ERR_PTR(ret); 3224 } 3225 3226 nvme_get_ctrl(&ctrl->ctrl); 3227 3228 dev_info(ctrl->ctrl.device, 3229 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3230 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3231 3232 return &ctrl->ctrl; 3233 3234 out_cleanup_admin_q: 3235 blk_cleanup_queue(ctrl->ctrl.admin_q); 3236 out_free_admin_tag_set: 3237 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3238 out_free_queues: 3239 kfree(ctrl->queues); 3240 out_free_ida: 3241 put_device(ctrl->dev); 3242 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3243 out_free_ctrl: 3244 kfree(ctrl); 3245 out_fail: 3246 /* exit via here doesn't follow ctlr ref points */ 3247 return ERR_PTR(ret); 3248 } 3249 3250 3251 struct nvmet_fc_traddr { 3252 u64 nn; 3253 u64 pn; 3254 }; 3255 3256 static int 3257 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3258 { 3259 u64 token64; 3260 3261 if (match_u64(sstr, &token64)) 3262 return -EINVAL; 3263 *val = token64; 3264 3265 return 0; 3266 } 3267 3268 /* 3269 * This routine validates and extracts the WWN's from the TRADDR string. 3270 * As kernel parsers need the 0x to determine number base, universally 3271 * build string to parse with 0x prefix before parsing name strings. 3272 */ 3273 static int 3274 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3275 { 3276 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3277 substring_t wwn = { name, &name[sizeof(name)-1] }; 3278 int nnoffset, pnoffset; 3279 3280 /* validate it string one of the 2 allowed formats */ 3281 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3282 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3283 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3284 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3285 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3286 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3287 NVME_FC_TRADDR_OXNNLEN; 3288 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3289 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3290 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3291 "pn-", NVME_FC_TRADDR_NNLEN))) { 3292 nnoffset = NVME_FC_TRADDR_NNLEN; 3293 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3294 } else 3295 goto out_einval; 3296 3297 name[0] = '0'; 3298 name[1] = 'x'; 3299 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3300 3301 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3302 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3303 goto out_einval; 3304 3305 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3306 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3307 goto out_einval; 3308 3309 return 0; 3310 3311 out_einval: 3312 pr_warn("%s: bad traddr string\n", __func__); 3313 return -EINVAL; 3314 } 3315 3316 static struct nvme_ctrl * 3317 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3318 { 3319 struct nvme_fc_lport *lport; 3320 struct nvme_fc_rport *rport; 3321 struct nvme_ctrl *ctrl; 3322 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3323 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3324 unsigned long flags; 3325 int ret; 3326 3327 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3328 if (ret || !raddr.nn || !raddr.pn) 3329 return ERR_PTR(-EINVAL); 3330 3331 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3332 if (ret || !laddr.nn || !laddr.pn) 3333 return ERR_PTR(-EINVAL); 3334 3335 /* find the host and remote ports to connect together */ 3336 spin_lock_irqsave(&nvme_fc_lock, flags); 3337 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3338 if (lport->localport.node_name != laddr.nn || 3339 lport->localport.port_name != laddr.pn) 3340 continue; 3341 3342 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3343 if (rport->remoteport.node_name != raddr.nn || 3344 rport->remoteport.port_name != raddr.pn) 3345 continue; 3346 3347 /* if fail to get reference fall through. Will error */ 3348 if (!nvme_fc_rport_get(rport)) 3349 break; 3350 3351 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3352 3353 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3354 if (IS_ERR(ctrl)) 3355 nvme_fc_rport_put(rport); 3356 return ctrl; 3357 } 3358 } 3359 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3360 3361 return ERR_PTR(-ENOENT); 3362 } 3363 3364 3365 static struct nvmf_transport_ops nvme_fc_transport = { 3366 .name = "fc", 3367 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3368 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3369 .create_ctrl = nvme_fc_create_ctrl, 3370 }; 3371 3372 static int __init nvme_fc_init_module(void) 3373 { 3374 int ret; 3375 3376 /* 3377 * NOTE: 3378 * It is expected that in the future the kernel will combine 3379 * the FC-isms that are currently under scsi and now being 3380 * added to by NVME into a new standalone FC class. The SCSI 3381 * and NVME protocols and their devices would be under this 3382 * new FC class. 3383 * 3384 * As we need something to post FC-specific udev events to, 3385 * specifically for nvme probe events, start by creating the 3386 * new device class. When the new standalone FC class is 3387 * put in place, this code will move to a more generic 3388 * location for the class. 3389 */ 3390 fc_class = class_create(THIS_MODULE, "fc"); 3391 if (IS_ERR(fc_class)) { 3392 pr_err("couldn't register class fc\n"); 3393 return PTR_ERR(fc_class); 3394 } 3395 3396 /* 3397 * Create a device for the FC-centric udev events 3398 */ 3399 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL, 3400 "fc_udev_device"); 3401 if (IS_ERR(fc_udev_device)) { 3402 pr_err("couldn't create fc_udev device!\n"); 3403 ret = PTR_ERR(fc_udev_device); 3404 goto out_destroy_class; 3405 } 3406 3407 ret = nvmf_register_transport(&nvme_fc_transport); 3408 if (ret) 3409 goto out_destroy_device; 3410 3411 return 0; 3412 3413 out_destroy_device: 3414 device_destroy(fc_class, MKDEV(0, 0)); 3415 out_destroy_class: 3416 class_destroy(fc_class); 3417 return ret; 3418 } 3419 3420 static void __exit nvme_fc_exit_module(void) 3421 { 3422 /* sanity check - all lports should be removed */ 3423 if (!list_empty(&nvme_fc_lport_list)) 3424 pr_warn("%s: localport list not empty\n", __func__); 3425 3426 nvmf_unregister_transport(&nvme_fc_transport); 3427 3428 ida_destroy(&nvme_fc_local_port_cnt); 3429 ida_destroy(&nvme_fc_ctrl_cnt); 3430 3431 device_destroy(fc_class, MKDEV(0, 0)); 3432 class_destroy(fc_class); 3433 } 3434 3435 module_init(nvme_fc_init_module); 3436 module_exit(nvme_fc_exit_module); 3437 3438 MODULE_LICENSE("GPL v2"); 3439