1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 /* 34 * We handle AEN commands ourselves and don't even let the 35 * block layer know about them. 36 */ 37 #define NVME_FC_NR_AEN_COMMANDS 1 38 #define NVME_FC_AQ_BLKMQ_DEPTH \ 39 (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS) 40 #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1) 41 42 enum nvme_fc_queue_flags { 43 NVME_FC_Q_CONNECTED = (1 << 0), 44 }; 45 46 #define NVMEFC_QUEUE_DELAY 3 /* ms units */ 47 48 #define NVME_FC_MAX_CONNECT_ATTEMPTS 1 49 50 struct nvme_fc_queue { 51 struct nvme_fc_ctrl *ctrl; 52 struct device *dev; 53 struct blk_mq_hw_ctx *hctx; 54 void *lldd_handle; 55 int queue_size; 56 size_t cmnd_capsule_len; 57 u32 qnum; 58 u32 rqcnt; 59 u32 seqno; 60 61 u64 connection_id; 62 atomic_t csn; 63 64 unsigned long flags; 65 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 66 67 enum nvme_fcop_flags { 68 FCOP_FLAGS_TERMIO = (1 << 0), 69 FCOP_FLAGS_RELEASED = (1 << 1), 70 FCOP_FLAGS_COMPLETE = (1 << 2), 71 FCOP_FLAGS_AEN = (1 << 3), 72 }; 73 74 struct nvmefc_ls_req_op { 75 struct nvmefc_ls_req ls_req; 76 77 struct nvme_fc_rport *rport; 78 struct nvme_fc_queue *queue; 79 struct request *rq; 80 u32 flags; 81 82 int ls_error; 83 struct completion ls_done; 84 struct list_head lsreq_list; /* rport->ls_req_list */ 85 bool req_queued; 86 }; 87 88 enum nvme_fcpop_state { 89 FCPOP_STATE_UNINIT = 0, 90 FCPOP_STATE_IDLE = 1, 91 FCPOP_STATE_ACTIVE = 2, 92 FCPOP_STATE_ABORTED = 3, 93 FCPOP_STATE_COMPLETE = 4, 94 }; 95 96 struct nvme_fc_fcp_op { 97 struct nvme_request nreq; /* 98 * nvme/host/core.c 99 * requires this to be 100 * the 1st element in the 101 * private structure 102 * associated with the 103 * request. 104 */ 105 struct nvmefc_fcp_req fcp_req; 106 107 struct nvme_fc_ctrl *ctrl; 108 struct nvme_fc_queue *queue; 109 struct request *rq; 110 111 atomic_t state; 112 u32 flags; 113 u32 rqno; 114 u32 nents; 115 116 struct nvme_fc_cmd_iu cmd_iu; 117 struct nvme_fc_ersp_iu rsp_iu; 118 }; 119 120 struct nvme_fc_lport { 121 struct nvme_fc_local_port localport; 122 123 struct ida endp_cnt; 124 struct list_head port_list; /* nvme_fc_port_list */ 125 struct list_head endp_list; 126 struct device *dev; /* physical device for dma */ 127 struct nvme_fc_port_template *ops; 128 struct kref ref; 129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 130 131 struct nvme_fc_rport { 132 struct nvme_fc_remote_port remoteport; 133 134 struct list_head endp_list; /* for lport->endp_list */ 135 struct list_head ctrl_list; 136 struct list_head ls_req_list; 137 struct device *dev; /* physical device for dma */ 138 struct nvme_fc_lport *lport; 139 spinlock_t lock; 140 struct kref ref; 141 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 142 143 enum nvme_fcctrl_flags { 144 FCCTRL_TERMIO = (1 << 0), 145 }; 146 147 struct nvme_fc_ctrl { 148 spinlock_t lock; 149 struct nvme_fc_queue *queues; 150 struct device *dev; 151 struct nvme_fc_lport *lport; 152 struct nvme_fc_rport *rport; 153 u32 queue_count; 154 u32 cnum; 155 156 u64 association_id; 157 158 u64 cap; 159 160 struct list_head ctrl_list; /* rport->ctrl_list */ 161 162 struct blk_mq_tag_set admin_tag_set; 163 struct blk_mq_tag_set tag_set; 164 165 struct work_struct delete_work; 166 struct work_struct reset_work; 167 struct delayed_work connect_work; 168 int reconnect_delay; 169 int connect_attempts; 170 171 struct kref ref; 172 u32 flags; 173 u32 iocnt; 174 175 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS]; 176 177 struct nvme_ctrl ctrl; 178 }; 179 180 static inline struct nvme_fc_ctrl * 181 to_fc_ctrl(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 184 } 185 186 static inline struct nvme_fc_lport * 187 localport_to_lport(struct nvme_fc_local_port *portptr) 188 { 189 return container_of(portptr, struct nvme_fc_lport, localport); 190 } 191 192 static inline struct nvme_fc_rport * 193 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 194 { 195 return container_of(portptr, struct nvme_fc_rport, remoteport); 196 } 197 198 static inline struct nvmefc_ls_req_op * 199 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 200 { 201 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 202 } 203 204 static inline struct nvme_fc_fcp_op * 205 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 206 { 207 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 208 } 209 210 211 212 /* *************************** Globals **************************** */ 213 214 215 static DEFINE_SPINLOCK(nvme_fc_lock); 216 217 static LIST_HEAD(nvme_fc_lport_list); 218 static DEFINE_IDA(nvme_fc_local_port_cnt); 219 static DEFINE_IDA(nvme_fc_ctrl_cnt); 220 221 static struct workqueue_struct *nvme_fc_wq; 222 223 224 225 /* *********************** FC-NVME Port Management ************************ */ 226 227 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *); 228 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 229 struct nvme_fc_queue *, unsigned int); 230 231 232 /** 233 * nvme_fc_register_localport - transport entry point called by an 234 * LLDD to register the existence of a NVME 235 * host FC port. 236 * @pinfo: pointer to information about the port to be registered 237 * @template: LLDD entrypoints and operational parameters for the port 238 * @dev: physical hardware device node port corresponds to. Will be 239 * used for DMA mappings 240 * @lport_p: pointer to a local port pointer. Upon success, the routine 241 * will allocate a nvme_fc_local_port structure and place its 242 * address in the local port pointer. Upon failure, local port 243 * pointer will be set to 0. 244 * 245 * Returns: 246 * a completion status. Must be 0 upon success; a negative errno 247 * (ex: -ENXIO) upon failure. 248 */ 249 int 250 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 251 struct nvme_fc_port_template *template, 252 struct device *dev, 253 struct nvme_fc_local_port **portptr) 254 { 255 struct nvme_fc_lport *newrec; 256 unsigned long flags; 257 int ret, idx; 258 259 if (!template->localport_delete || !template->remoteport_delete || 260 !template->ls_req || !template->fcp_io || 261 !template->ls_abort || !template->fcp_abort || 262 !template->max_hw_queues || !template->max_sgl_segments || 263 !template->max_dif_sgl_segments || !template->dma_boundary) { 264 ret = -EINVAL; 265 goto out_reghost_failed; 266 } 267 268 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 269 GFP_KERNEL); 270 if (!newrec) { 271 ret = -ENOMEM; 272 goto out_reghost_failed; 273 } 274 275 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 276 if (idx < 0) { 277 ret = -ENOSPC; 278 goto out_fail_kfree; 279 } 280 281 if (!get_device(dev) && dev) { 282 ret = -ENODEV; 283 goto out_ida_put; 284 } 285 286 INIT_LIST_HEAD(&newrec->port_list); 287 INIT_LIST_HEAD(&newrec->endp_list); 288 kref_init(&newrec->ref); 289 newrec->ops = template; 290 newrec->dev = dev; 291 ida_init(&newrec->endp_cnt); 292 newrec->localport.private = &newrec[1]; 293 newrec->localport.node_name = pinfo->node_name; 294 newrec->localport.port_name = pinfo->port_name; 295 newrec->localport.port_role = pinfo->port_role; 296 newrec->localport.port_id = pinfo->port_id; 297 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 298 newrec->localport.port_num = idx; 299 300 spin_lock_irqsave(&nvme_fc_lock, flags); 301 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 302 spin_unlock_irqrestore(&nvme_fc_lock, flags); 303 304 if (dev) 305 dma_set_seg_boundary(dev, template->dma_boundary); 306 307 *portptr = &newrec->localport; 308 return 0; 309 310 out_ida_put: 311 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 312 out_fail_kfree: 313 kfree(newrec); 314 out_reghost_failed: 315 *portptr = NULL; 316 317 return ret; 318 } 319 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 320 321 static void 322 nvme_fc_free_lport(struct kref *ref) 323 { 324 struct nvme_fc_lport *lport = 325 container_of(ref, struct nvme_fc_lport, ref); 326 unsigned long flags; 327 328 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 329 WARN_ON(!list_empty(&lport->endp_list)); 330 331 /* remove from transport list */ 332 spin_lock_irqsave(&nvme_fc_lock, flags); 333 list_del(&lport->port_list); 334 spin_unlock_irqrestore(&nvme_fc_lock, flags); 335 336 /* let the LLDD know we've finished tearing it down */ 337 lport->ops->localport_delete(&lport->localport); 338 339 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 340 ida_destroy(&lport->endp_cnt); 341 342 put_device(lport->dev); 343 344 kfree(lport); 345 } 346 347 static void 348 nvme_fc_lport_put(struct nvme_fc_lport *lport) 349 { 350 kref_put(&lport->ref, nvme_fc_free_lport); 351 } 352 353 static int 354 nvme_fc_lport_get(struct nvme_fc_lport *lport) 355 { 356 return kref_get_unless_zero(&lport->ref); 357 } 358 359 /** 360 * nvme_fc_unregister_localport - transport entry point called by an 361 * LLDD to deregister/remove a previously 362 * registered a NVME host FC port. 363 * @localport: pointer to the (registered) local port that is to be 364 * deregistered. 365 * 366 * Returns: 367 * a completion status. Must be 0 upon success; a negative errno 368 * (ex: -ENXIO) upon failure. 369 */ 370 int 371 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 372 { 373 struct nvme_fc_lport *lport = localport_to_lport(portptr); 374 unsigned long flags; 375 376 if (!portptr) 377 return -EINVAL; 378 379 spin_lock_irqsave(&nvme_fc_lock, flags); 380 381 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 382 spin_unlock_irqrestore(&nvme_fc_lock, flags); 383 return -EINVAL; 384 } 385 portptr->port_state = FC_OBJSTATE_DELETED; 386 387 spin_unlock_irqrestore(&nvme_fc_lock, flags); 388 389 nvme_fc_lport_put(lport); 390 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 394 395 /** 396 * nvme_fc_register_remoteport - transport entry point called by an 397 * LLDD to register the existence of a NVME 398 * subsystem FC port on its fabric. 399 * @localport: pointer to the (registered) local port that the remote 400 * subsystem port is connected to. 401 * @pinfo: pointer to information about the port to be registered 402 * @rport_p: pointer to a remote port pointer. Upon success, the routine 403 * will allocate a nvme_fc_remote_port structure and place its 404 * address in the remote port pointer. Upon failure, remote port 405 * pointer will be set to 0. 406 * 407 * Returns: 408 * a completion status. Must be 0 upon success; a negative errno 409 * (ex: -ENXIO) upon failure. 410 */ 411 int 412 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 413 struct nvme_fc_port_info *pinfo, 414 struct nvme_fc_remote_port **portptr) 415 { 416 struct nvme_fc_lport *lport = localport_to_lport(localport); 417 struct nvme_fc_rport *newrec; 418 unsigned long flags; 419 int ret, idx; 420 421 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 422 GFP_KERNEL); 423 if (!newrec) { 424 ret = -ENOMEM; 425 goto out_reghost_failed; 426 } 427 428 if (!nvme_fc_lport_get(lport)) { 429 ret = -ESHUTDOWN; 430 goto out_kfree_rport; 431 } 432 433 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 434 if (idx < 0) { 435 ret = -ENOSPC; 436 goto out_lport_put; 437 } 438 439 INIT_LIST_HEAD(&newrec->endp_list); 440 INIT_LIST_HEAD(&newrec->ctrl_list); 441 INIT_LIST_HEAD(&newrec->ls_req_list); 442 kref_init(&newrec->ref); 443 spin_lock_init(&newrec->lock); 444 newrec->remoteport.localport = &lport->localport; 445 newrec->dev = lport->dev; 446 newrec->lport = lport; 447 newrec->remoteport.private = &newrec[1]; 448 newrec->remoteport.port_role = pinfo->port_role; 449 newrec->remoteport.node_name = pinfo->node_name; 450 newrec->remoteport.port_name = pinfo->port_name; 451 newrec->remoteport.port_id = pinfo->port_id; 452 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 453 newrec->remoteport.port_num = idx; 454 455 spin_lock_irqsave(&nvme_fc_lock, flags); 456 list_add_tail(&newrec->endp_list, &lport->endp_list); 457 spin_unlock_irqrestore(&nvme_fc_lock, flags); 458 459 *portptr = &newrec->remoteport; 460 return 0; 461 462 out_lport_put: 463 nvme_fc_lport_put(lport); 464 out_kfree_rport: 465 kfree(newrec); 466 out_reghost_failed: 467 *portptr = NULL; 468 return ret; 469 } 470 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 471 472 static void 473 nvme_fc_free_rport(struct kref *ref) 474 { 475 struct nvme_fc_rport *rport = 476 container_of(ref, struct nvme_fc_rport, ref); 477 struct nvme_fc_lport *lport = 478 localport_to_lport(rport->remoteport.localport); 479 unsigned long flags; 480 481 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 482 WARN_ON(!list_empty(&rport->ctrl_list)); 483 484 /* remove from lport list */ 485 spin_lock_irqsave(&nvme_fc_lock, flags); 486 list_del(&rport->endp_list); 487 spin_unlock_irqrestore(&nvme_fc_lock, flags); 488 489 /* let the LLDD know we've finished tearing it down */ 490 lport->ops->remoteport_delete(&rport->remoteport); 491 492 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 493 494 kfree(rport); 495 496 nvme_fc_lport_put(lport); 497 } 498 499 static void 500 nvme_fc_rport_put(struct nvme_fc_rport *rport) 501 { 502 kref_put(&rport->ref, nvme_fc_free_rport); 503 } 504 505 static int 506 nvme_fc_rport_get(struct nvme_fc_rport *rport) 507 { 508 return kref_get_unless_zero(&rport->ref); 509 } 510 511 static int 512 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 513 { 514 struct nvmefc_ls_req_op *lsop; 515 unsigned long flags; 516 517 restart: 518 spin_lock_irqsave(&rport->lock, flags); 519 520 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 521 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 522 lsop->flags |= FCOP_FLAGS_TERMIO; 523 spin_unlock_irqrestore(&rport->lock, flags); 524 rport->lport->ops->ls_abort(&rport->lport->localport, 525 &rport->remoteport, 526 &lsop->ls_req); 527 goto restart; 528 } 529 } 530 spin_unlock_irqrestore(&rport->lock, flags); 531 532 return 0; 533 } 534 535 /** 536 * nvme_fc_unregister_remoteport - transport entry point called by an 537 * LLDD to deregister/remove a previously 538 * registered a NVME subsystem FC port. 539 * @remoteport: pointer to the (registered) remote port that is to be 540 * deregistered. 541 * 542 * Returns: 543 * a completion status. Must be 0 upon success; a negative errno 544 * (ex: -ENXIO) upon failure. 545 */ 546 int 547 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 548 { 549 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 550 struct nvme_fc_ctrl *ctrl; 551 unsigned long flags; 552 553 if (!portptr) 554 return -EINVAL; 555 556 spin_lock_irqsave(&rport->lock, flags); 557 558 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 559 spin_unlock_irqrestore(&rport->lock, flags); 560 return -EINVAL; 561 } 562 portptr->port_state = FC_OBJSTATE_DELETED; 563 564 /* tear down all associations to the remote port */ 565 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 566 __nvme_fc_del_ctrl(ctrl); 567 568 spin_unlock_irqrestore(&rport->lock, flags); 569 570 nvme_fc_abort_lsops(rport); 571 572 nvme_fc_rport_put(rport); 573 return 0; 574 } 575 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 576 577 578 /* *********************** FC-NVME DMA Handling **************************** */ 579 580 /* 581 * The fcloop device passes in a NULL device pointer. Real LLD's will 582 * pass in a valid device pointer. If NULL is passed to the dma mapping 583 * routines, depending on the platform, it may or may not succeed, and 584 * may crash. 585 * 586 * As such: 587 * Wrapper all the dma routines and check the dev pointer. 588 * 589 * If simple mappings (return just a dma address, we'll noop them, 590 * returning a dma address of 0. 591 * 592 * On more complex mappings (dma_map_sg), a pseudo routine fills 593 * in the scatter list, setting all dma addresses to 0. 594 */ 595 596 static inline dma_addr_t 597 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 598 enum dma_data_direction dir) 599 { 600 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 601 } 602 603 static inline int 604 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 605 { 606 return dev ? dma_mapping_error(dev, dma_addr) : 0; 607 } 608 609 static inline void 610 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 611 enum dma_data_direction dir) 612 { 613 if (dev) 614 dma_unmap_single(dev, addr, size, dir); 615 } 616 617 static inline void 618 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 619 enum dma_data_direction dir) 620 { 621 if (dev) 622 dma_sync_single_for_cpu(dev, addr, size, dir); 623 } 624 625 static inline void 626 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 627 enum dma_data_direction dir) 628 { 629 if (dev) 630 dma_sync_single_for_device(dev, addr, size, dir); 631 } 632 633 /* pseudo dma_map_sg call */ 634 static int 635 fc_map_sg(struct scatterlist *sg, int nents) 636 { 637 struct scatterlist *s; 638 int i; 639 640 WARN_ON(nents == 0 || sg[0].length == 0); 641 642 for_each_sg(sg, s, nents, i) { 643 s->dma_address = 0L; 644 #ifdef CONFIG_NEED_SG_DMA_LENGTH 645 s->dma_length = s->length; 646 #endif 647 } 648 return nents; 649 } 650 651 static inline int 652 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 653 enum dma_data_direction dir) 654 { 655 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 656 } 657 658 static inline void 659 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 660 enum dma_data_direction dir) 661 { 662 if (dev) 663 dma_unmap_sg(dev, sg, nents, dir); 664 } 665 666 667 /* *********************** FC-NVME LS Handling **************************** */ 668 669 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 670 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 671 672 673 static void 674 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 675 { 676 struct nvme_fc_rport *rport = lsop->rport; 677 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 678 unsigned long flags; 679 680 spin_lock_irqsave(&rport->lock, flags); 681 682 if (!lsop->req_queued) { 683 spin_unlock_irqrestore(&rport->lock, flags); 684 return; 685 } 686 687 list_del(&lsop->lsreq_list); 688 689 lsop->req_queued = false; 690 691 spin_unlock_irqrestore(&rport->lock, flags); 692 693 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 694 (lsreq->rqstlen + lsreq->rsplen), 695 DMA_BIDIRECTIONAL); 696 697 nvme_fc_rport_put(rport); 698 } 699 700 static int 701 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 702 struct nvmefc_ls_req_op *lsop, 703 void (*done)(struct nvmefc_ls_req *req, int status)) 704 { 705 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 706 unsigned long flags; 707 int ret = 0; 708 709 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 710 return -ECONNREFUSED; 711 712 if (!nvme_fc_rport_get(rport)) 713 return -ESHUTDOWN; 714 715 lsreq->done = done; 716 lsop->rport = rport; 717 lsop->req_queued = false; 718 INIT_LIST_HEAD(&lsop->lsreq_list); 719 init_completion(&lsop->ls_done); 720 721 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 722 lsreq->rqstlen + lsreq->rsplen, 723 DMA_BIDIRECTIONAL); 724 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 725 ret = -EFAULT; 726 goto out_putrport; 727 } 728 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 729 730 spin_lock_irqsave(&rport->lock, flags); 731 732 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 733 734 lsop->req_queued = true; 735 736 spin_unlock_irqrestore(&rport->lock, flags); 737 738 ret = rport->lport->ops->ls_req(&rport->lport->localport, 739 &rport->remoteport, lsreq); 740 if (ret) 741 goto out_unlink; 742 743 return 0; 744 745 out_unlink: 746 lsop->ls_error = ret; 747 spin_lock_irqsave(&rport->lock, flags); 748 lsop->req_queued = false; 749 list_del(&lsop->lsreq_list); 750 spin_unlock_irqrestore(&rport->lock, flags); 751 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 752 (lsreq->rqstlen + lsreq->rsplen), 753 DMA_BIDIRECTIONAL); 754 out_putrport: 755 nvme_fc_rport_put(rport); 756 757 return ret; 758 } 759 760 static void 761 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 762 { 763 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 764 765 lsop->ls_error = status; 766 complete(&lsop->ls_done); 767 } 768 769 static int 770 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 771 { 772 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 773 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 774 int ret; 775 776 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 777 778 if (!ret) { 779 /* 780 * No timeout/not interruptible as we need the struct 781 * to exist until the lldd calls us back. Thus mandate 782 * wait until driver calls back. lldd responsible for 783 * the timeout action 784 */ 785 wait_for_completion(&lsop->ls_done); 786 787 __nvme_fc_finish_ls_req(lsop); 788 789 ret = lsop->ls_error; 790 } 791 792 if (ret) 793 return ret; 794 795 /* ACC or RJT payload ? */ 796 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 797 return -ENXIO; 798 799 return 0; 800 } 801 802 static int 803 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 804 struct nvmefc_ls_req_op *lsop, 805 void (*done)(struct nvmefc_ls_req *req, int status)) 806 { 807 /* don't wait for completion */ 808 809 return __nvme_fc_send_ls_req(rport, lsop, done); 810 } 811 812 /* Validation Error indexes into the string table below */ 813 enum { 814 VERR_NO_ERROR = 0, 815 VERR_LSACC = 1, 816 VERR_LSDESC_RQST = 2, 817 VERR_LSDESC_RQST_LEN = 3, 818 VERR_ASSOC_ID = 4, 819 VERR_ASSOC_ID_LEN = 5, 820 VERR_CONN_ID = 6, 821 VERR_CONN_ID_LEN = 7, 822 VERR_CR_ASSOC = 8, 823 VERR_CR_ASSOC_ACC_LEN = 9, 824 VERR_CR_CONN = 10, 825 VERR_CR_CONN_ACC_LEN = 11, 826 VERR_DISCONN = 12, 827 VERR_DISCONN_ACC_LEN = 13, 828 }; 829 830 static char *validation_errors[] = { 831 "OK", 832 "Not LS_ACC", 833 "Not LSDESC_RQST", 834 "Bad LSDESC_RQST Length", 835 "Not Association ID", 836 "Bad Association ID Length", 837 "Not Connection ID", 838 "Bad Connection ID Length", 839 "Not CR_ASSOC Rqst", 840 "Bad CR_ASSOC ACC Length", 841 "Not CR_CONN Rqst", 842 "Bad CR_CONN ACC Length", 843 "Not Disconnect Rqst", 844 "Bad Disconnect ACC Length", 845 }; 846 847 static int 848 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 849 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 850 { 851 struct nvmefc_ls_req_op *lsop; 852 struct nvmefc_ls_req *lsreq; 853 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 854 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 855 int ret, fcret = 0; 856 857 lsop = kzalloc((sizeof(*lsop) + 858 ctrl->lport->ops->lsrqst_priv_sz + 859 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 860 if (!lsop) { 861 ret = -ENOMEM; 862 goto out_no_memory; 863 } 864 lsreq = &lsop->ls_req; 865 866 lsreq->private = (void *)&lsop[1]; 867 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 868 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 869 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 870 871 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 872 assoc_rqst->desc_list_len = 873 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 874 875 assoc_rqst->assoc_cmd.desc_tag = 876 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 877 assoc_rqst->assoc_cmd.desc_len = 878 fcnvme_lsdesc_len( 879 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 880 881 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 882 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); 883 /* Linux supports only Dynamic controllers */ 884 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 885 memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id, 886 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be))); 887 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 888 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 889 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 890 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 891 892 lsop->queue = queue; 893 lsreq->rqstaddr = assoc_rqst; 894 lsreq->rqstlen = sizeof(*assoc_rqst); 895 lsreq->rspaddr = assoc_acc; 896 lsreq->rsplen = sizeof(*assoc_acc); 897 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 898 899 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 900 if (ret) 901 goto out_free_buffer; 902 903 /* process connect LS completion */ 904 905 /* validate the ACC response */ 906 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 907 fcret = VERR_LSACC; 908 else if (assoc_acc->hdr.desc_list_len != 909 fcnvme_lsdesc_len( 910 sizeof(struct fcnvme_ls_cr_assoc_acc))) 911 fcret = VERR_CR_ASSOC_ACC_LEN; 912 else if (assoc_acc->hdr.rqst.desc_tag != 913 cpu_to_be32(FCNVME_LSDESC_RQST)) 914 fcret = VERR_LSDESC_RQST; 915 else if (assoc_acc->hdr.rqst.desc_len != 916 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 917 fcret = VERR_LSDESC_RQST_LEN; 918 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 919 fcret = VERR_CR_ASSOC; 920 else if (assoc_acc->associd.desc_tag != 921 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 922 fcret = VERR_ASSOC_ID; 923 else if (assoc_acc->associd.desc_len != 924 fcnvme_lsdesc_len( 925 sizeof(struct fcnvme_lsdesc_assoc_id))) 926 fcret = VERR_ASSOC_ID_LEN; 927 else if (assoc_acc->connectid.desc_tag != 928 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 929 fcret = VERR_CONN_ID; 930 else if (assoc_acc->connectid.desc_len != 931 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 932 fcret = VERR_CONN_ID_LEN; 933 934 if (fcret) { 935 ret = -EBADF; 936 dev_err(ctrl->dev, 937 "q %d connect failed: %s\n", 938 queue->qnum, validation_errors[fcret]); 939 } else { 940 ctrl->association_id = 941 be64_to_cpu(assoc_acc->associd.association_id); 942 queue->connection_id = 943 be64_to_cpu(assoc_acc->connectid.connection_id); 944 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 945 } 946 947 out_free_buffer: 948 kfree(lsop); 949 out_no_memory: 950 if (ret) 951 dev_err(ctrl->dev, 952 "queue %d connect admin queue failed (%d).\n", 953 queue->qnum, ret); 954 return ret; 955 } 956 957 static int 958 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 959 u16 qsize, u16 ersp_ratio) 960 { 961 struct nvmefc_ls_req_op *lsop; 962 struct nvmefc_ls_req *lsreq; 963 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 964 struct fcnvme_ls_cr_conn_acc *conn_acc; 965 int ret, fcret = 0; 966 967 lsop = kzalloc((sizeof(*lsop) + 968 ctrl->lport->ops->lsrqst_priv_sz + 969 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 970 if (!lsop) { 971 ret = -ENOMEM; 972 goto out_no_memory; 973 } 974 lsreq = &lsop->ls_req; 975 976 lsreq->private = (void *)&lsop[1]; 977 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 978 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 979 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 980 981 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 982 conn_rqst->desc_list_len = cpu_to_be32( 983 sizeof(struct fcnvme_lsdesc_assoc_id) + 984 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 985 986 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 987 conn_rqst->associd.desc_len = 988 fcnvme_lsdesc_len( 989 sizeof(struct fcnvme_lsdesc_assoc_id)); 990 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 991 conn_rqst->connect_cmd.desc_tag = 992 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 993 conn_rqst->connect_cmd.desc_len = 994 fcnvme_lsdesc_len( 995 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 996 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 997 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 998 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); 999 1000 lsop->queue = queue; 1001 lsreq->rqstaddr = conn_rqst; 1002 lsreq->rqstlen = sizeof(*conn_rqst); 1003 lsreq->rspaddr = conn_acc; 1004 lsreq->rsplen = sizeof(*conn_acc); 1005 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1006 1007 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1008 if (ret) 1009 goto out_free_buffer; 1010 1011 /* process connect LS completion */ 1012 1013 /* validate the ACC response */ 1014 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1015 fcret = VERR_LSACC; 1016 else if (conn_acc->hdr.desc_list_len != 1017 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1018 fcret = VERR_CR_CONN_ACC_LEN; 1019 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1020 fcret = VERR_LSDESC_RQST; 1021 else if (conn_acc->hdr.rqst.desc_len != 1022 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1023 fcret = VERR_LSDESC_RQST_LEN; 1024 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1025 fcret = VERR_CR_CONN; 1026 else if (conn_acc->connectid.desc_tag != 1027 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1028 fcret = VERR_CONN_ID; 1029 else if (conn_acc->connectid.desc_len != 1030 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1031 fcret = VERR_CONN_ID_LEN; 1032 1033 if (fcret) { 1034 ret = -EBADF; 1035 dev_err(ctrl->dev, 1036 "q %d connect failed: %s\n", 1037 queue->qnum, validation_errors[fcret]); 1038 } else { 1039 queue->connection_id = 1040 be64_to_cpu(conn_acc->connectid.connection_id); 1041 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1042 } 1043 1044 out_free_buffer: 1045 kfree(lsop); 1046 out_no_memory: 1047 if (ret) 1048 dev_err(ctrl->dev, 1049 "queue %d connect command failed (%d).\n", 1050 queue->qnum, ret); 1051 return ret; 1052 } 1053 1054 static void 1055 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1056 { 1057 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1058 1059 __nvme_fc_finish_ls_req(lsop); 1060 1061 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1062 1063 kfree(lsop); 1064 } 1065 1066 /* 1067 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1068 * the FC-NVME Association. Terminating the association also 1069 * terminates the FC-NVME connections (per queue, both admin and io 1070 * queues) that are part of the association. E.g. things are torn 1071 * down, and the related FC-NVME Association ID and Connection IDs 1072 * become invalid. 1073 * 1074 * The behavior of the fc-nvme initiator is such that it's 1075 * understanding of the association and connections will implicitly 1076 * be torn down. The action is implicit as it may be due to a loss of 1077 * connectivity with the fc-nvme target, so you may never get a 1078 * response even if you tried. As such, the action of this routine 1079 * is to asynchronously send the LS, ignore any results of the LS, and 1080 * continue on with terminating the association. If the fc-nvme target 1081 * is present and receives the LS, it too can tear down. 1082 */ 1083 static void 1084 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1085 { 1086 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1087 struct fcnvme_ls_disconnect_acc *discon_acc; 1088 struct nvmefc_ls_req_op *lsop; 1089 struct nvmefc_ls_req *lsreq; 1090 int ret; 1091 1092 lsop = kzalloc((sizeof(*lsop) + 1093 ctrl->lport->ops->lsrqst_priv_sz + 1094 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1095 GFP_KERNEL); 1096 if (!lsop) 1097 /* couldn't sent it... too bad */ 1098 return; 1099 1100 lsreq = &lsop->ls_req; 1101 1102 lsreq->private = (void *)&lsop[1]; 1103 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1104 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1105 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1106 1107 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1108 discon_rqst->desc_list_len = cpu_to_be32( 1109 sizeof(struct fcnvme_lsdesc_assoc_id) + 1110 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1111 1112 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1113 discon_rqst->associd.desc_len = 1114 fcnvme_lsdesc_len( 1115 sizeof(struct fcnvme_lsdesc_assoc_id)); 1116 1117 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1118 1119 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1120 FCNVME_LSDESC_DISCONN_CMD); 1121 discon_rqst->discon_cmd.desc_len = 1122 fcnvme_lsdesc_len( 1123 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1124 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1125 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1126 1127 lsreq->rqstaddr = discon_rqst; 1128 lsreq->rqstlen = sizeof(*discon_rqst); 1129 lsreq->rspaddr = discon_acc; 1130 lsreq->rsplen = sizeof(*discon_acc); 1131 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1132 1133 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1134 nvme_fc_disconnect_assoc_done); 1135 if (ret) 1136 kfree(lsop); 1137 1138 /* only meaningful part to terminating the association */ 1139 ctrl->association_id = 0; 1140 } 1141 1142 1143 /* *********************** NVME Ctrl Routines **************************** */ 1144 1145 static void __nvme_fc_final_op_cleanup(struct request *rq); 1146 1147 static int 1148 nvme_fc_reinit_request(void *data, struct request *rq) 1149 { 1150 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1151 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1152 1153 memset(cmdiu, 0, sizeof(*cmdiu)); 1154 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1155 cmdiu->fc_id = NVME_CMD_FC_ID; 1156 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1157 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); 1158 1159 return 0; 1160 } 1161 1162 static void 1163 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1164 struct nvme_fc_fcp_op *op) 1165 { 1166 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1167 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1168 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1169 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1170 1171 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1172 } 1173 1174 static void 1175 nvme_fc_exit_request(void *data, struct request *rq, 1176 unsigned int hctx_idx, unsigned int rq_idx) 1177 { 1178 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1179 1180 return __nvme_fc_exit_request(data, op); 1181 } 1182 1183 static int 1184 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1185 { 1186 int state; 1187 1188 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1189 if (state != FCPOP_STATE_ACTIVE) { 1190 atomic_set(&op->state, state); 1191 return -ECANCELED; 1192 } 1193 1194 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1195 &ctrl->rport->remoteport, 1196 op->queue->lldd_handle, 1197 &op->fcp_req); 1198 1199 return 0; 1200 } 1201 1202 static void 1203 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1204 { 1205 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1206 unsigned long flags; 1207 int i, ret; 1208 1209 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1210 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) 1211 continue; 1212 1213 spin_lock_irqsave(&ctrl->lock, flags); 1214 if (ctrl->flags & FCCTRL_TERMIO) { 1215 ctrl->iocnt++; 1216 aen_op->flags |= FCOP_FLAGS_TERMIO; 1217 } 1218 spin_unlock_irqrestore(&ctrl->lock, flags); 1219 1220 ret = __nvme_fc_abort_op(ctrl, aen_op); 1221 if (ret) { 1222 /* 1223 * if __nvme_fc_abort_op failed the io wasn't 1224 * active. Thus this call path is running in 1225 * parallel to the io complete. Treat as non-error. 1226 */ 1227 1228 /* back out the flags/counters */ 1229 spin_lock_irqsave(&ctrl->lock, flags); 1230 if (ctrl->flags & FCCTRL_TERMIO) 1231 ctrl->iocnt--; 1232 aen_op->flags &= ~FCOP_FLAGS_TERMIO; 1233 spin_unlock_irqrestore(&ctrl->lock, flags); 1234 return; 1235 } 1236 } 1237 } 1238 1239 static inline int 1240 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1241 struct nvme_fc_fcp_op *op) 1242 { 1243 unsigned long flags; 1244 bool complete_rq = false; 1245 1246 spin_lock_irqsave(&ctrl->lock, flags); 1247 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1248 if (ctrl->flags & FCCTRL_TERMIO) 1249 ctrl->iocnt--; 1250 } 1251 if (op->flags & FCOP_FLAGS_RELEASED) 1252 complete_rq = true; 1253 else 1254 op->flags |= FCOP_FLAGS_COMPLETE; 1255 spin_unlock_irqrestore(&ctrl->lock, flags); 1256 1257 return complete_rq; 1258 } 1259 1260 static void 1261 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1262 { 1263 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1264 struct request *rq = op->rq; 1265 struct nvmefc_fcp_req *freq = &op->fcp_req; 1266 struct nvme_fc_ctrl *ctrl = op->ctrl; 1267 struct nvme_fc_queue *queue = op->queue; 1268 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1269 struct nvme_command *sqe = &op->cmd_iu.sqe; 1270 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1271 union nvme_result result; 1272 bool complete_rq; 1273 1274 /* 1275 * WARNING: 1276 * The current linux implementation of a nvme controller 1277 * allocates a single tag set for all io queues and sizes 1278 * the io queues to fully hold all possible tags. Thus, the 1279 * implementation does not reference or care about the sqhd 1280 * value as it never needs to use the sqhd/sqtail pointers 1281 * for submission pacing. 1282 * 1283 * This affects the FC-NVME implementation in two ways: 1284 * 1) As the value doesn't matter, we don't need to waste 1285 * cycles extracting it from ERSPs and stamping it in the 1286 * cases where the transport fabricates CQEs on successful 1287 * completions. 1288 * 2) The FC-NVME implementation requires that delivery of 1289 * ERSP completions are to go back to the nvme layer in order 1290 * relative to the rsn, such that the sqhd value will always 1291 * be "in order" for the nvme layer. As the nvme layer in 1292 * linux doesn't care about sqhd, there's no need to return 1293 * them in order. 1294 * 1295 * Additionally: 1296 * As the core nvme layer in linux currently does not look at 1297 * every field in the cqe - in cases where the FC transport must 1298 * fabricate a CQE, the following fields will not be set as they 1299 * are not referenced: 1300 * cqe.sqid, cqe.sqhd, cqe.command_id 1301 */ 1302 1303 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1304 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1305 1306 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED) 1307 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); 1308 else if (freq->status) 1309 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); 1310 1311 /* 1312 * For the linux implementation, if we have an unsuccesful 1313 * status, they blk-mq layer can typically be called with the 1314 * non-zero status and the content of the cqe isn't important. 1315 */ 1316 if (status) 1317 goto done; 1318 1319 /* 1320 * command completed successfully relative to the wire 1321 * protocol. However, validate anything received and 1322 * extract the status and result from the cqe (create it 1323 * where necessary). 1324 */ 1325 1326 switch (freq->rcv_rsplen) { 1327 1328 case 0: 1329 case NVME_FC_SIZEOF_ZEROS_RSP: 1330 /* 1331 * No response payload or 12 bytes of payload (which 1332 * should all be zeros) are considered successful and 1333 * no payload in the CQE by the transport. 1334 */ 1335 if (freq->transferred_length != 1336 be32_to_cpu(op->cmd_iu.data_len)) { 1337 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); 1338 goto done; 1339 } 1340 result.u64 = 0; 1341 break; 1342 1343 case sizeof(struct nvme_fc_ersp_iu): 1344 /* 1345 * The ERSP IU contains a full completion with CQE. 1346 * Validate ERSP IU and look at cqe. 1347 */ 1348 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1349 (freq->rcv_rsplen / 4) || 1350 be32_to_cpu(op->rsp_iu.xfrd_len) != 1351 freq->transferred_length || 1352 op->rsp_iu.status_code || 1353 sqe->common.command_id != cqe->command_id)) { 1354 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); 1355 goto done; 1356 } 1357 result = cqe->result; 1358 status = cqe->status; 1359 break; 1360 1361 default: 1362 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); 1363 goto done; 1364 } 1365 1366 done: 1367 if (op->flags & FCOP_FLAGS_AEN) { 1368 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1369 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1370 atomic_set(&op->state, FCPOP_STATE_IDLE); 1371 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1372 nvme_fc_ctrl_put(ctrl); 1373 return; 1374 } 1375 1376 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1377 if (!complete_rq) { 1378 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1379 status = cpu_to_le16(NVME_SC_ABORT_REQ); 1380 if (blk_queue_dying(rq->q)) 1381 status |= cpu_to_le16(NVME_SC_DNR); 1382 } 1383 nvme_end_request(rq, status, result); 1384 } else 1385 __nvme_fc_final_op_cleanup(rq); 1386 } 1387 1388 static int 1389 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1390 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1391 struct request *rq, u32 rqno) 1392 { 1393 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1394 int ret = 0; 1395 1396 memset(op, 0, sizeof(*op)); 1397 op->fcp_req.cmdaddr = &op->cmd_iu; 1398 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1399 op->fcp_req.rspaddr = &op->rsp_iu; 1400 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1401 op->fcp_req.done = nvme_fc_fcpio_done; 1402 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1403 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1404 op->ctrl = ctrl; 1405 op->queue = queue; 1406 op->rq = rq; 1407 op->rqno = rqno; 1408 1409 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1410 cmdiu->fc_id = NVME_CMD_FC_ID; 1411 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1412 1413 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1414 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1415 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1416 dev_err(ctrl->dev, 1417 "FCP Op failed - cmdiu dma mapping failed.\n"); 1418 ret = EFAULT; 1419 goto out_on_error; 1420 } 1421 1422 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1423 &op->rsp_iu, sizeof(op->rsp_iu), 1424 DMA_FROM_DEVICE); 1425 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1426 dev_err(ctrl->dev, 1427 "FCP Op failed - rspiu dma mapping failed.\n"); 1428 ret = EFAULT; 1429 } 1430 1431 atomic_set(&op->state, FCPOP_STATE_IDLE); 1432 out_on_error: 1433 return ret; 1434 } 1435 1436 static int 1437 nvme_fc_init_request(void *data, struct request *rq, 1438 unsigned int hctx_idx, unsigned int rq_idx, 1439 unsigned int numa_node) 1440 { 1441 struct nvme_fc_ctrl *ctrl = data; 1442 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1443 struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1]; 1444 1445 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1446 } 1447 1448 static int 1449 nvme_fc_init_admin_request(void *data, struct request *rq, 1450 unsigned int hctx_idx, unsigned int rq_idx, 1451 unsigned int numa_node) 1452 { 1453 struct nvme_fc_ctrl *ctrl = data; 1454 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1455 struct nvme_fc_queue *queue = &ctrl->queues[0]; 1456 1457 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1458 } 1459 1460 static int 1461 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1462 { 1463 struct nvme_fc_fcp_op *aen_op; 1464 struct nvme_fc_cmd_iu *cmdiu; 1465 struct nvme_command *sqe; 1466 void *private; 1467 int i, ret; 1468 1469 aen_op = ctrl->aen_ops; 1470 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1471 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1472 GFP_KERNEL); 1473 if (!private) 1474 return -ENOMEM; 1475 1476 cmdiu = &aen_op->cmd_iu; 1477 sqe = &cmdiu->sqe; 1478 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1479 aen_op, (struct request *)NULL, 1480 (AEN_CMDID_BASE + i)); 1481 if (ret) { 1482 kfree(private); 1483 return ret; 1484 } 1485 1486 aen_op->flags = FCOP_FLAGS_AEN; 1487 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1488 aen_op->fcp_req.private = private; 1489 1490 memset(sqe, 0, sizeof(*sqe)); 1491 sqe->common.opcode = nvme_admin_async_event; 1492 /* Note: core layer may overwrite the sqe.command_id value */ 1493 sqe->common.command_id = AEN_CMDID_BASE + i; 1494 } 1495 return 0; 1496 } 1497 1498 static void 1499 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1500 { 1501 struct nvme_fc_fcp_op *aen_op; 1502 int i; 1503 1504 aen_op = ctrl->aen_ops; 1505 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { 1506 if (!aen_op->fcp_req.private) 1507 continue; 1508 1509 __nvme_fc_exit_request(ctrl, aen_op); 1510 1511 kfree(aen_op->fcp_req.private); 1512 aen_op->fcp_req.private = NULL; 1513 } 1514 } 1515 1516 static inline void 1517 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1518 unsigned int qidx) 1519 { 1520 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1521 1522 hctx->driver_data = queue; 1523 queue->hctx = hctx; 1524 } 1525 1526 static int 1527 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1528 unsigned int hctx_idx) 1529 { 1530 struct nvme_fc_ctrl *ctrl = data; 1531 1532 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1533 1534 return 0; 1535 } 1536 1537 static int 1538 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1539 unsigned int hctx_idx) 1540 { 1541 struct nvme_fc_ctrl *ctrl = data; 1542 1543 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1544 1545 return 0; 1546 } 1547 1548 static void 1549 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size) 1550 { 1551 struct nvme_fc_queue *queue; 1552 1553 queue = &ctrl->queues[idx]; 1554 memset(queue, 0, sizeof(*queue)); 1555 queue->ctrl = ctrl; 1556 queue->qnum = idx; 1557 atomic_set(&queue->csn, 1); 1558 queue->dev = ctrl->dev; 1559 1560 if (idx > 0) 1561 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1562 else 1563 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1564 1565 queue->queue_size = queue_size; 1566 1567 /* 1568 * Considered whether we should allocate buffers for all SQEs 1569 * and CQEs and dma map them - mapping their respective entries 1570 * into the request structures (kernel vm addr and dma address) 1571 * thus the driver could use the buffers/mappings directly. 1572 * It only makes sense if the LLDD would use them for its 1573 * messaging api. It's very unlikely most adapter api's would use 1574 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1575 * structures were used instead. 1576 */ 1577 } 1578 1579 /* 1580 * This routine terminates a queue at the transport level. 1581 * The transport has already ensured that all outstanding ios on 1582 * the queue have been terminated. 1583 * The transport will send a Disconnect LS request to terminate 1584 * the queue's connection. Termination of the admin queue will also 1585 * terminate the association at the target. 1586 */ 1587 static void 1588 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1589 { 1590 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1591 return; 1592 1593 /* 1594 * Current implementation never disconnects a single queue. 1595 * It always terminates a whole association. So there is never 1596 * a disconnect(queue) LS sent to the target. 1597 */ 1598 1599 queue->connection_id = 0; 1600 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1601 } 1602 1603 static void 1604 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1605 struct nvme_fc_queue *queue, unsigned int qidx) 1606 { 1607 if (ctrl->lport->ops->delete_queue) 1608 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1609 queue->lldd_handle); 1610 queue->lldd_handle = NULL; 1611 } 1612 1613 static void 1614 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1615 { 1616 int i; 1617 1618 for (i = 1; i < ctrl->queue_count; i++) 1619 nvme_fc_free_queue(&ctrl->queues[i]); 1620 } 1621 1622 static int 1623 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1624 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1625 { 1626 int ret = 0; 1627 1628 queue->lldd_handle = NULL; 1629 if (ctrl->lport->ops->create_queue) 1630 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1631 qidx, qsize, &queue->lldd_handle); 1632 1633 return ret; 1634 } 1635 1636 static void 1637 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1638 { 1639 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1]; 1640 int i; 1641 1642 for (i = ctrl->queue_count - 1; i >= 1; i--, queue--) 1643 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1644 } 1645 1646 static int 1647 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1648 { 1649 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1650 int i, ret; 1651 1652 for (i = 1; i < ctrl->queue_count; i++, queue++) { 1653 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1654 if (ret) 1655 goto delete_queues; 1656 } 1657 1658 return 0; 1659 1660 delete_queues: 1661 for (; i >= 0; i--) 1662 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1663 return ret; 1664 } 1665 1666 static int 1667 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1668 { 1669 int i, ret = 0; 1670 1671 for (i = 1; i < ctrl->queue_count; i++) { 1672 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 1673 (qsize / 5)); 1674 if (ret) 1675 break; 1676 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 1677 if (ret) 1678 break; 1679 } 1680 1681 return ret; 1682 } 1683 1684 static void 1685 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 1686 { 1687 int i; 1688 1689 for (i = 1; i < ctrl->queue_count; i++) 1690 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize); 1691 } 1692 1693 static void 1694 nvme_fc_ctrl_free(struct kref *ref) 1695 { 1696 struct nvme_fc_ctrl *ctrl = 1697 container_of(ref, struct nvme_fc_ctrl, ref); 1698 unsigned long flags; 1699 1700 if (ctrl->ctrl.tagset) { 1701 blk_cleanup_queue(ctrl->ctrl.connect_q); 1702 blk_mq_free_tag_set(&ctrl->tag_set); 1703 } 1704 1705 /* remove from rport list */ 1706 spin_lock_irqsave(&ctrl->rport->lock, flags); 1707 list_del(&ctrl->ctrl_list); 1708 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 1709 1710 blk_cleanup_queue(ctrl->ctrl.admin_q); 1711 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1712 1713 kfree(ctrl->queues); 1714 1715 put_device(ctrl->dev); 1716 nvme_fc_rport_put(ctrl->rport); 1717 1718 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 1719 if (ctrl->ctrl.opts) 1720 nvmf_free_options(ctrl->ctrl.opts); 1721 kfree(ctrl); 1722 } 1723 1724 static void 1725 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 1726 { 1727 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 1728 } 1729 1730 static int 1731 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 1732 { 1733 return kref_get_unless_zero(&ctrl->ref); 1734 } 1735 1736 /* 1737 * All accesses from nvme core layer done - can now free the 1738 * controller. Called after last nvme_put_ctrl() call 1739 */ 1740 static void 1741 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 1742 { 1743 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 1744 1745 WARN_ON(nctrl != &ctrl->ctrl); 1746 1747 nvme_fc_ctrl_put(ctrl); 1748 } 1749 1750 static void 1751 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 1752 { 1753 dev_warn(ctrl->ctrl.device, 1754 "NVME-FC{%d}: transport association error detected: %s\n", 1755 ctrl->cnum, errmsg); 1756 dev_info(ctrl->ctrl.device, 1757 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 1758 1759 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 1760 dev_err(ctrl->ctrl.device, 1761 "NVME-FC{%d}: error_recovery: Couldn't change state " 1762 "to RECONNECTING\n", ctrl->cnum); 1763 return; 1764 } 1765 1766 if (!queue_work(nvme_fc_wq, &ctrl->reset_work)) 1767 dev_err(ctrl->ctrl.device, 1768 "NVME-FC{%d}: error_recovery: Failed to schedule " 1769 "reset work\n", ctrl->cnum); 1770 } 1771 1772 static enum blk_eh_timer_return 1773 nvme_fc_timeout(struct request *rq, bool reserved) 1774 { 1775 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1776 struct nvme_fc_ctrl *ctrl = op->ctrl; 1777 int ret; 1778 1779 if (reserved) 1780 return BLK_EH_RESET_TIMER; 1781 1782 ret = __nvme_fc_abort_op(ctrl, op); 1783 if (ret) 1784 /* io wasn't active to abort consider it done */ 1785 return BLK_EH_HANDLED; 1786 1787 /* 1788 * we can't individually ABTS an io without affecting the queue, 1789 * thus killing the queue, adn thus the association. 1790 * So resolve by performing a controller reset, which will stop 1791 * the host/io stack, terminate the association on the link, 1792 * and recreate an association on the link. 1793 */ 1794 nvme_fc_error_recovery(ctrl, "io timeout error"); 1795 1796 return BLK_EH_HANDLED; 1797 } 1798 1799 static int 1800 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 1801 struct nvme_fc_fcp_op *op) 1802 { 1803 struct nvmefc_fcp_req *freq = &op->fcp_req; 1804 enum dma_data_direction dir; 1805 int ret; 1806 1807 freq->sg_cnt = 0; 1808 1809 if (!blk_rq_payload_bytes(rq)) 1810 return 0; 1811 1812 freq->sg_table.sgl = freq->first_sgl; 1813 ret = sg_alloc_table_chained(&freq->sg_table, 1814 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 1815 if (ret) 1816 return -ENOMEM; 1817 1818 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 1819 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 1820 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 1821 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 1822 op->nents, dir); 1823 if (unlikely(freq->sg_cnt <= 0)) { 1824 sg_free_table_chained(&freq->sg_table, true); 1825 freq->sg_cnt = 0; 1826 return -EFAULT; 1827 } 1828 1829 /* 1830 * TODO: blk_integrity_rq(rq) for DIF 1831 */ 1832 return 0; 1833 } 1834 1835 static void 1836 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 1837 struct nvme_fc_fcp_op *op) 1838 { 1839 struct nvmefc_fcp_req *freq = &op->fcp_req; 1840 1841 if (!freq->sg_cnt) 1842 return; 1843 1844 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 1845 ((rq_data_dir(rq) == WRITE) ? 1846 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1847 1848 nvme_cleanup_cmd(rq); 1849 1850 sg_free_table_chained(&freq->sg_table, true); 1851 1852 freq->sg_cnt = 0; 1853 } 1854 1855 /* 1856 * In FC, the queue is a logical thing. At transport connect, the target 1857 * creates its "queue" and returns a handle that is to be given to the 1858 * target whenever it posts something to the corresponding SQ. When an 1859 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 1860 * command contained within the SQE, an io, and assigns a FC exchange 1861 * to it. The SQE and the associated SQ handle are sent in the initial 1862 * CMD IU sents on the exchange. All transfers relative to the io occur 1863 * as part of the exchange. The CQE is the last thing for the io, 1864 * which is transferred (explicitly or implicitly) with the RSP IU 1865 * sent on the exchange. After the CQE is received, the FC exchange is 1866 * terminaed and the Exchange may be used on a different io. 1867 * 1868 * The transport to LLDD api has the transport making a request for a 1869 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 1870 * resource and transfers the command. The LLDD will then process all 1871 * steps to complete the io. Upon completion, the transport done routine 1872 * is called. 1873 * 1874 * So - while the operation is outstanding to the LLDD, there is a link 1875 * level FC exchange resource that is also outstanding. This must be 1876 * considered in all cleanup operations. 1877 */ 1878 static int 1879 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1880 struct nvme_fc_fcp_op *op, u32 data_len, 1881 enum nvmefc_fcp_datadir io_dir) 1882 { 1883 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1884 struct nvme_command *sqe = &cmdiu->sqe; 1885 u32 csn; 1886 int ret; 1887 1888 /* 1889 * before attempting to send the io, check to see if we believe 1890 * the target device is present 1891 */ 1892 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1893 return BLK_MQ_RQ_QUEUE_ERROR; 1894 1895 if (!nvme_fc_ctrl_get(ctrl)) 1896 return BLK_MQ_RQ_QUEUE_ERROR; 1897 1898 /* format the FC-NVME CMD IU and fcp_req */ 1899 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 1900 csn = atomic_inc_return(&queue->csn); 1901 cmdiu->csn = cpu_to_be32(csn); 1902 cmdiu->data_len = cpu_to_be32(data_len); 1903 switch (io_dir) { 1904 case NVMEFC_FCP_WRITE: 1905 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 1906 break; 1907 case NVMEFC_FCP_READ: 1908 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 1909 break; 1910 case NVMEFC_FCP_NODATA: 1911 cmdiu->flags = 0; 1912 break; 1913 } 1914 op->fcp_req.payload_length = data_len; 1915 op->fcp_req.io_dir = io_dir; 1916 op->fcp_req.transferred_length = 0; 1917 op->fcp_req.rcv_rsplen = 0; 1918 op->fcp_req.status = NVME_SC_SUCCESS; 1919 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 1920 1921 /* 1922 * validate per fabric rules, set fields mandated by fabric spec 1923 * as well as those by FC-NVME spec. 1924 */ 1925 WARN_ON_ONCE(sqe->common.metadata); 1926 WARN_ON_ONCE(sqe->common.dptr.prp1); 1927 WARN_ON_ONCE(sqe->common.dptr.prp2); 1928 sqe->common.flags |= NVME_CMD_SGL_METABUF; 1929 1930 /* 1931 * format SQE DPTR field per FC-NVME rules 1932 * type=data block descr; subtype=offset; 1933 * offset is currently 0. 1934 */ 1935 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET; 1936 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 1937 sqe->rw.dptr.sgl.addr = 0; 1938 1939 if (!(op->flags & FCOP_FLAGS_AEN)) { 1940 ret = nvme_fc_map_data(ctrl, op->rq, op); 1941 if (ret < 0) { 1942 nvme_cleanup_cmd(op->rq); 1943 nvme_fc_ctrl_put(ctrl); 1944 return (ret == -ENOMEM || ret == -EAGAIN) ? 1945 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1946 } 1947 } 1948 1949 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 1950 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1951 1952 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 1953 1954 if (!(op->flags & FCOP_FLAGS_AEN)) 1955 blk_mq_start_request(op->rq); 1956 1957 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 1958 &ctrl->rport->remoteport, 1959 queue->lldd_handle, &op->fcp_req); 1960 1961 if (ret) { 1962 if (op->rq) { /* normal request */ 1963 nvme_fc_unmap_data(ctrl, op->rq, op); 1964 nvme_cleanup_cmd(op->rq); 1965 } 1966 /* else - aen. no cleanup needed */ 1967 1968 nvme_fc_ctrl_put(ctrl); 1969 1970 if (ret != -EBUSY) 1971 return BLK_MQ_RQ_QUEUE_ERROR; 1972 1973 if (op->rq) { 1974 blk_mq_stop_hw_queues(op->rq->q); 1975 blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY); 1976 } 1977 return BLK_MQ_RQ_QUEUE_BUSY; 1978 } 1979 1980 return BLK_MQ_RQ_QUEUE_OK; 1981 } 1982 1983 static int 1984 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 1985 const struct blk_mq_queue_data *bd) 1986 { 1987 struct nvme_ns *ns = hctx->queue->queuedata; 1988 struct nvme_fc_queue *queue = hctx->driver_data; 1989 struct nvme_fc_ctrl *ctrl = queue->ctrl; 1990 struct request *rq = bd->rq; 1991 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1992 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1993 struct nvme_command *sqe = &cmdiu->sqe; 1994 enum nvmefc_fcp_datadir io_dir; 1995 u32 data_len; 1996 int ret; 1997 1998 ret = nvme_setup_cmd(ns, rq, sqe); 1999 if (ret) 2000 return ret; 2001 2002 data_len = blk_rq_payload_bytes(rq); 2003 if (data_len) 2004 io_dir = ((rq_data_dir(rq) == WRITE) ? 2005 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2006 else 2007 io_dir = NVMEFC_FCP_NODATA; 2008 2009 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2010 } 2011 2012 static struct blk_mq_tags * 2013 nvme_fc_tagset(struct nvme_fc_queue *queue) 2014 { 2015 if (queue->qnum == 0) 2016 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2017 2018 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2019 } 2020 2021 static int 2022 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2023 2024 { 2025 struct nvme_fc_queue *queue = hctx->driver_data; 2026 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2027 struct request *req; 2028 struct nvme_fc_fcp_op *op; 2029 2030 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2031 if (!req) 2032 return 0; 2033 2034 op = blk_mq_rq_to_pdu(req); 2035 2036 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2037 (ctrl->lport->ops->poll_queue)) 2038 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2039 queue->lldd_handle); 2040 2041 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2042 } 2043 2044 static void 2045 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 2046 { 2047 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2048 struct nvme_fc_fcp_op *aen_op; 2049 unsigned long flags; 2050 bool terminating = false; 2051 int ret; 2052 2053 if (aer_idx > NVME_FC_NR_AEN_COMMANDS) 2054 return; 2055 2056 spin_lock_irqsave(&ctrl->lock, flags); 2057 if (ctrl->flags & FCCTRL_TERMIO) 2058 terminating = true; 2059 spin_unlock_irqrestore(&ctrl->lock, flags); 2060 2061 if (terminating) 2062 return; 2063 2064 aen_op = &ctrl->aen_ops[aer_idx]; 2065 2066 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2067 NVMEFC_FCP_NODATA); 2068 if (ret) 2069 dev_err(ctrl->ctrl.device, 2070 "failed async event work [%d]\n", aer_idx); 2071 } 2072 2073 static void 2074 __nvme_fc_final_op_cleanup(struct request *rq) 2075 { 2076 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2077 struct nvme_fc_ctrl *ctrl = op->ctrl; 2078 2079 atomic_set(&op->state, FCPOP_STATE_IDLE); 2080 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | 2081 FCOP_FLAGS_COMPLETE); 2082 2083 nvme_cleanup_cmd(rq); 2084 nvme_fc_unmap_data(ctrl, rq, op); 2085 nvme_complete_rq(rq); 2086 nvme_fc_ctrl_put(ctrl); 2087 2088 } 2089 2090 static void 2091 nvme_fc_complete_rq(struct request *rq) 2092 { 2093 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2094 struct nvme_fc_ctrl *ctrl = op->ctrl; 2095 unsigned long flags; 2096 bool completed = false; 2097 2098 /* 2099 * the core layer, on controller resets after calling 2100 * nvme_shutdown_ctrl(), calls complete_rq without our 2101 * calling blk_mq_complete_request(), thus there may still 2102 * be live i/o outstanding with the LLDD. Means transport has 2103 * to track complete calls vs fcpio_done calls to know what 2104 * path to take on completes and dones. 2105 */ 2106 spin_lock_irqsave(&ctrl->lock, flags); 2107 if (op->flags & FCOP_FLAGS_COMPLETE) 2108 completed = true; 2109 else 2110 op->flags |= FCOP_FLAGS_RELEASED; 2111 spin_unlock_irqrestore(&ctrl->lock, flags); 2112 2113 if (completed) 2114 __nvme_fc_final_op_cleanup(rq); 2115 } 2116 2117 /* 2118 * This routine is used by the transport when it needs to find active 2119 * io on a queue that is to be terminated. The transport uses 2120 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2121 * this routine to kill them on a 1 by 1 basis. 2122 * 2123 * As FC allocates FC exchange for each io, the transport must contact 2124 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2125 * After terminating the exchange the LLDD will call the transport's 2126 * normal io done path for the request, but it will have an aborted 2127 * status. The done path will return the io request back to the block 2128 * layer with an error status. 2129 */ 2130 static void 2131 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2132 { 2133 struct nvme_ctrl *nctrl = data; 2134 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2135 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2136 unsigned long flags; 2137 int status; 2138 2139 if (!blk_mq_request_started(req)) 2140 return; 2141 2142 spin_lock_irqsave(&ctrl->lock, flags); 2143 if (ctrl->flags & FCCTRL_TERMIO) { 2144 ctrl->iocnt++; 2145 op->flags |= FCOP_FLAGS_TERMIO; 2146 } 2147 spin_unlock_irqrestore(&ctrl->lock, flags); 2148 2149 status = __nvme_fc_abort_op(ctrl, op); 2150 if (status) { 2151 /* 2152 * if __nvme_fc_abort_op failed the io wasn't 2153 * active. Thus this call path is running in 2154 * parallel to the io complete. Treat as non-error. 2155 */ 2156 2157 /* back out the flags/counters */ 2158 spin_lock_irqsave(&ctrl->lock, flags); 2159 if (ctrl->flags & FCCTRL_TERMIO) 2160 ctrl->iocnt--; 2161 op->flags &= ~FCOP_FLAGS_TERMIO; 2162 spin_unlock_irqrestore(&ctrl->lock, flags); 2163 return; 2164 } 2165 } 2166 2167 2168 static const struct blk_mq_ops nvme_fc_mq_ops = { 2169 .queue_rq = nvme_fc_queue_rq, 2170 .complete = nvme_fc_complete_rq, 2171 .init_request = nvme_fc_init_request, 2172 .exit_request = nvme_fc_exit_request, 2173 .reinit_request = nvme_fc_reinit_request, 2174 .init_hctx = nvme_fc_init_hctx, 2175 .poll = nvme_fc_poll, 2176 .timeout = nvme_fc_timeout, 2177 }; 2178 2179 static int 2180 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2181 { 2182 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2183 int ret; 2184 2185 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 2186 if (ret) { 2187 dev_info(ctrl->ctrl.device, 2188 "set_queue_count failed: %d\n", ret); 2189 return ret; 2190 } 2191 2192 ctrl->queue_count = opts->nr_io_queues + 1; 2193 if (!opts->nr_io_queues) 2194 return 0; 2195 2196 dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", 2197 opts->nr_io_queues); 2198 2199 nvme_fc_init_io_queues(ctrl); 2200 2201 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2202 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2203 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2204 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2205 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2206 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2207 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2208 (SG_CHUNK_SIZE * 2209 sizeof(struct scatterlist)) + 2210 ctrl->lport->ops->fcprqst_priv_sz; 2211 ctrl->tag_set.driver_data = ctrl; 2212 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 2213 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2214 2215 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2216 if (ret) 2217 return ret; 2218 2219 ctrl->ctrl.tagset = &ctrl->tag_set; 2220 2221 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2222 if (IS_ERR(ctrl->ctrl.connect_q)) { 2223 ret = PTR_ERR(ctrl->ctrl.connect_q); 2224 goto out_free_tag_set; 2225 } 2226 2227 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2228 if (ret) 2229 goto out_cleanup_blk_queue; 2230 2231 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2232 if (ret) 2233 goto out_delete_hw_queues; 2234 2235 return 0; 2236 2237 out_delete_hw_queues: 2238 nvme_fc_delete_hw_io_queues(ctrl); 2239 out_cleanup_blk_queue: 2240 nvme_stop_keep_alive(&ctrl->ctrl); 2241 blk_cleanup_queue(ctrl->ctrl.connect_q); 2242 out_free_tag_set: 2243 blk_mq_free_tag_set(&ctrl->tag_set); 2244 nvme_fc_free_io_queues(ctrl); 2245 2246 /* force put free routine to ignore io queues */ 2247 ctrl->ctrl.tagset = NULL; 2248 2249 return ret; 2250 } 2251 2252 static int 2253 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) 2254 { 2255 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2256 int ret; 2257 2258 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 2259 if (ret) { 2260 dev_info(ctrl->ctrl.device, 2261 "set_queue_count failed: %d\n", ret); 2262 return ret; 2263 } 2264 2265 /* check for io queues existing */ 2266 if (ctrl->queue_count == 1) 2267 return 0; 2268 2269 dev_info(ctrl->ctrl.device, "Recreating %d I/O queues.\n", 2270 opts->nr_io_queues); 2271 2272 nvme_fc_init_io_queues(ctrl); 2273 2274 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 2275 if (ret) 2276 goto out_free_io_queues; 2277 2278 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2279 if (ret) 2280 goto out_free_io_queues; 2281 2282 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2283 if (ret) 2284 goto out_delete_hw_queues; 2285 2286 return 0; 2287 2288 out_delete_hw_queues: 2289 nvme_fc_delete_hw_io_queues(ctrl); 2290 out_free_io_queues: 2291 nvme_fc_free_io_queues(ctrl); 2292 return ret; 2293 } 2294 2295 /* 2296 * This routine restarts the controller on the host side, and 2297 * on the link side, recreates the controller association. 2298 */ 2299 static int 2300 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2301 { 2302 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2303 u32 segs; 2304 int ret; 2305 bool changed; 2306 2307 ctrl->connect_attempts++; 2308 2309 /* 2310 * Create the admin queue 2311 */ 2312 2313 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH); 2314 2315 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2316 NVME_FC_AQ_BLKMQ_DEPTH); 2317 if (ret) 2318 goto out_free_queue; 2319 2320 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2321 NVME_FC_AQ_BLKMQ_DEPTH, 2322 (NVME_FC_AQ_BLKMQ_DEPTH / 4)); 2323 if (ret) 2324 goto out_delete_hw_queue; 2325 2326 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2327 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 2328 2329 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2330 if (ret) 2331 goto out_disconnect_admin_queue; 2332 2333 /* 2334 * Check controller capabilities 2335 * 2336 * todo:- add code to check if ctrl attributes changed from 2337 * prior connection values 2338 */ 2339 2340 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 2341 if (ret) { 2342 dev_err(ctrl->ctrl.device, 2343 "prop_get NVME_REG_CAP failed\n"); 2344 goto out_disconnect_admin_queue; 2345 } 2346 2347 ctrl->ctrl.sqsize = 2348 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 2349 2350 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 2351 if (ret) 2352 goto out_disconnect_admin_queue; 2353 2354 segs = min_t(u32, NVME_FC_MAX_SEGMENTS, 2355 ctrl->lport->ops->max_sgl_segments); 2356 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9); 2357 2358 ret = nvme_init_identify(&ctrl->ctrl); 2359 if (ret) 2360 goto out_disconnect_admin_queue; 2361 2362 /* sanity checks */ 2363 2364 /* FC-NVME does not have other data in the capsule */ 2365 if (ctrl->ctrl.icdoff) { 2366 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2367 ctrl->ctrl.icdoff); 2368 goto out_disconnect_admin_queue; 2369 } 2370 2371 nvme_start_keep_alive(&ctrl->ctrl); 2372 2373 /* FC-NVME supports normal SGL Data Block Descriptors */ 2374 2375 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2376 /* warn if maxcmd is lower than queue_size */ 2377 dev_warn(ctrl->ctrl.device, 2378 "queue_size %zu > ctrl maxcmd %u, reducing " 2379 "to queue_size\n", 2380 opts->queue_size, ctrl->ctrl.maxcmd); 2381 opts->queue_size = ctrl->ctrl.maxcmd; 2382 } 2383 2384 ret = nvme_fc_init_aen_ops(ctrl); 2385 if (ret) 2386 goto out_term_aen_ops; 2387 2388 /* 2389 * Create the io queues 2390 */ 2391 2392 if (ctrl->queue_count > 1) { 2393 if (ctrl->ctrl.state == NVME_CTRL_NEW) 2394 ret = nvme_fc_create_io_queues(ctrl); 2395 else 2396 ret = nvme_fc_reinit_io_queues(ctrl); 2397 if (ret) 2398 goto out_term_aen_ops; 2399 } 2400 2401 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2402 WARN_ON_ONCE(!changed); 2403 2404 ctrl->connect_attempts = 0; 2405 2406 kref_get(&ctrl->ctrl.kref); 2407 2408 if (ctrl->queue_count > 1) { 2409 nvme_start_queues(&ctrl->ctrl); 2410 nvme_queue_scan(&ctrl->ctrl); 2411 nvme_queue_async_events(&ctrl->ctrl); 2412 } 2413 2414 return 0; /* Success */ 2415 2416 out_term_aen_ops: 2417 nvme_fc_term_aen_ops(ctrl); 2418 nvme_stop_keep_alive(&ctrl->ctrl); 2419 out_disconnect_admin_queue: 2420 /* send a Disconnect(association) LS to fc-nvme target */ 2421 nvme_fc_xmt_disconnect_assoc(ctrl); 2422 out_delete_hw_queue: 2423 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2424 out_free_queue: 2425 nvme_fc_free_queue(&ctrl->queues[0]); 2426 2427 return ret; 2428 } 2429 2430 /* 2431 * This routine stops operation of the controller on the host side. 2432 * On the host os stack side: Admin and IO queues are stopped, 2433 * outstanding ios on them terminated via FC ABTS. 2434 * On the link side: the association is terminated. 2435 */ 2436 static void 2437 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2438 { 2439 unsigned long flags; 2440 2441 nvme_stop_keep_alive(&ctrl->ctrl); 2442 2443 spin_lock_irqsave(&ctrl->lock, flags); 2444 ctrl->flags |= FCCTRL_TERMIO; 2445 ctrl->iocnt = 0; 2446 spin_unlock_irqrestore(&ctrl->lock, flags); 2447 2448 /* 2449 * If io queues are present, stop them and terminate all outstanding 2450 * ios on them. As FC allocates FC exchange for each io, the 2451 * transport must contact the LLDD to terminate the exchange, 2452 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2453 * to tell us what io's are busy and invoke a transport routine 2454 * to kill them with the LLDD. After terminating the exchange 2455 * the LLDD will call the transport's normal io done path, but it 2456 * will have an aborted status. The done path will return the 2457 * io requests back to the block layer as part of normal completions 2458 * (but with error status). 2459 */ 2460 if (ctrl->queue_count > 1) { 2461 nvme_stop_queues(&ctrl->ctrl); 2462 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2463 nvme_fc_terminate_exchange, &ctrl->ctrl); 2464 } 2465 2466 /* 2467 * Other transports, which don't have link-level contexts bound 2468 * to sqe's, would try to gracefully shutdown the controller by 2469 * writing the registers for shutdown and polling (call 2470 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2471 * just aborted and we will wait on those contexts, and given 2472 * there was no indication of how live the controlelr is on the 2473 * link, don't send more io to create more contexts for the 2474 * shutdown. Let the controller fail via keepalive failure if 2475 * its still present. 2476 */ 2477 2478 /* 2479 * clean up the admin queue. Same thing as above. 2480 * use blk_mq_tagset_busy_itr() and the transport routine to 2481 * terminate the exchanges. 2482 */ 2483 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 2484 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2485 nvme_fc_terminate_exchange, &ctrl->ctrl); 2486 2487 /* kill the aens as they are a separate path */ 2488 nvme_fc_abort_aen_ops(ctrl); 2489 2490 /* wait for all io that had to be aborted */ 2491 spin_lock_irqsave(&ctrl->lock, flags); 2492 while (ctrl->iocnt) { 2493 spin_unlock_irqrestore(&ctrl->lock, flags); 2494 msleep(1000); 2495 spin_lock_irqsave(&ctrl->lock, flags); 2496 } 2497 ctrl->flags &= ~FCCTRL_TERMIO; 2498 spin_unlock_irqrestore(&ctrl->lock, flags); 2499 2500 nvme_fc_term_aen_ops(ctrl); 2501 2502 /* 2503 * send a Disconnect(association) LS to fc-nvme target 2504 * Note: could have been sent at top of process, but 2505 * cleaner on link traffic if after the aborts complete. 2506 * Note: if association doesn't exist, association_id will be 0 2507 */ 2508 if (ctrl->association_id) 2509 nvme_fc_xmt_disconnect_assoc(ctrl); 2510 2511 if (ctrl->ctrl.tagset) { 2512 nvme_fc_delete_hw_io_queues(ctrl); 2513 nvme_fc_free_io_queues(ctrl); 2514 } 2515 2516 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2517 nvme_fc_free_queue(&ctrl->queues[0]); 2518 } 2519 2520 static void 2521 nvme_fc_delete_ctrl_work(struct work_struct *work) 2522 { 2523 struct nvme_fc_ctrl *ctrl = 2524 container_of(work, struct nvme_fc_ctrl, delete_work); 2525 2526 cancel_work_sync(&ctrl->reset_work); 2527 cancel_delayed_work_sync(&ctrl->connect_work); 2528 2529 /* 2530 * kill the association on the link side. this will block 2531 * waiting for io to terminate 2532 */ 2533 nvme_fc_delete_association(ctrl); 2534 2535 /* 2536 * tear down the controller 2537 * This will result in the last reference on the nvme ctrl to 2538 * expire, calling the transport nvme_fc_nvme_ctrl_freed() callback. 2539 * From there, the transport will tear down it's logical queues and 2540 * association. 2541 */ 2542 nvme_uninit_ctrl(&ctrl->ctrl); 2543 2544 nvme_put_ctrl(&ctrl->ctrl); 2545 } 2546 2547 static int 2548 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl) 2549 { 2550 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 2551 return -EBUSY; 2552 2553 if (!queue_work(nvme_fc_wq, &ctrl->delete_work)) 2554 return -EBUSY; 2555 2556 return 0; 2557 } 2558 2559 /* 2560 * Request from nvme core layer to delete the controller 2561 */ 2562 static int 2563 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl) 2564 { 2565 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2566 int ret; 2567 2568 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 2569 return -EBUSY; 2570 2571 ret = __nvme_fc_del_ctrl(ctrl); 2572 2573 if (!ret) 2574 flush_workqueue(nvme_fc_wq); 2575 2576 nvme_put_ctrl(&ctrl->ctrl); 2577 2578 return ret; 2579 } 2580 2581 static void 2582 nvme_fc_reset_ctrl_work(struct work_struct *work) 2583 { 2584 struct nvme_fc_ctrl *ctrl = 2585 container_of(work, struct nvme_fc_ctrl, reset_work); 2586 int ret; 2587 2588 /* will block will waiting for io to terminate */ 2589 nvme_fc_delete_association(ctrl); 2590 2591 ret = nvme_fc_create_association(ctrl); 2592 if (ret) { 2593 dev_warn(ctrl->ctrl.device, 2594 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2595 ctrl->cnum, ret); 2596 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) { 2597 dev_warn(ctrl->ctrl.device, 2598 "NVME-FC{%d}: Max reconnect attempts (%d) " 2599 "reached. Removing controller\n", 2600 ctrl->cnum, ctrl->connect_attempts); 2601 2602 if (!nvme_change_ctrl_state(&ctrl->ctrl, 2603 NVME_CTRL_DELETING)) { 2604 dev_err(ctrl->ctrl.device, 2605 "NVME-FC{%d}: failed to change state " 2606 "to DELETING\n", ctrl->cnum); 2607 return; 2608 } 2609 2610 WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work)); 2611 return; 2612 } 2613 2614 dev_warn(ctrl->ctrl.device, 2615 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n", 2616 ctrl->cnum, ctrl->reconnect_delay); 2617 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work, 2618 ctrl->reconnect_delay * HZ); 2619 } else 2620 dev_info(ctrl->ctrl.device, 2621 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum); 2622 } 2623 2624 /* 2625 * called by the nvme core layer, for sysfs interface that requests 2626 * a reset of the nvme controller 2627 */ 2628 static int 2629 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl) 2630 { 2631 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2632 2633 dev_warn(ctrl->ctrl.device, 2634 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum); 2635 2636 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 2637 return -EBUSY; 2638 2639 if (!queue_work(nvme_fc_wq, &ctrl->reset_work)) 2640 return -EBUSY; 2641 2642 flush_work(&ctrl->reset_work); 2643 2644 return 0; 2645 } 2646 2647 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 2648 .name = "fc", 2649 .module = THIS_MODULE, 2650 .is_fabrics = true, 2651 .reg_read32 = nvmf_reg_read32, 2652 .reg_read64 = nvmf_reg_read64, 2653 .reg_write32 = nvmf_reg_write32, 2654 .reset_ctrl = nvme_fc_reset_nvme_ctrl, 2655 .free_ctrl = nvme_fc_nvme_ctrl_freed, 2656 .submit_async_event = nvme_fc_submit_async_event, 2657 .delete_ctrl = nvme_fc_del_nvme_ctrl, 2658 .get_subsysnqn = nvmf_get_subsysnqn, 2659 .get_address = nvmf_get_address, 2660 }; 2661 2662 static void 2663 nvme_fc_connect_ctrl_work(struct work_struct *work) 2664 { 2665 int ret; 2666 2667 struct nvme_fc_ctrl *ctrl = 2668 container_of(to_delayed_work(work), 2669 struct nvme_fc_ctrl, connect_work); 2670 2671 ret = nvme_fc_create_association(ctrl); 2672 if (ret) { 2673 dev_warn(ctrl->ctrl.device, 2674 "NVME-FC{%d}: Reconnect attempt failed (%d)\n", 2675 ctrl->cnum, ret); 2676 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) { 2677 dev_warn(ctrl->ctrl.device, 2678 "NVME-FC{%d}: Max reconnect attempts (%d) " 2679 "reached. Removing controller\n", 2680 ctrl->cnum, ctrl->connect_attempts); 2681 2682 if (!nvme_change_ctrl_state(&ctrl->ctrl, 2683 NVME_CTRL_DELETING)) { 2684 dev_err(ctrl->ctrl.device, 2685 "NVME-FC{%d}: failed to change state " 2686 "to DELETING\n", ctrl->cnum); 2687 return; 2688 } 2689 2690 WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work)); 2691 return; 2692 } 2693 2694 dev_warn(ctrl->ctrl.device, 2695 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n", 2696 ctrl->cnum, ctrl->reconnect_delay); 2697 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work, 2698 ctrl->reconnect_delay * HZ); 2699 } else 2700 dev_info(ctrl->ctrl.device, 2701 "NVME-FC{%d}: controller reconnect complete\n", 2702 ctrl->cnum); 2703 } 2704 2705 2706 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 2707 .queue_rq = nvme_fc_queue_rq, 2708 .complete = nvme_fc_complete_rq, 2709 .init_request = nvme_fc_init_admin_request, 2710 .exit_request = nvme_fc_exit_request, 2711 .reinit_request = nvme_fc_reinit_request, 2712 .init_hctx = nvme_fc_init_admin_hctx, 2713 .timeout = nvme_fc_timeout, 2714 }; 2715 2716 2717 static struct nvme_ctrl * 2718 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 2719 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 2720 { 2721 struct nvme_fc_ctrl *ctrl; 2722 unsigned long flags; 2723 int ret, idx; 2724 2725 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2726 if (!ctrl) { 2727 ret = -ENOMEM; 2728 goto out_fail; 2729 } 2730 2731 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 2732 if (idx < 0) { 2733 ret = -ENOSPC; 2734 goto out_free_ctrl; 2735 } 2736 2737 ctrl->ctrl.opts = opts; 2738 INIT_LIST_HEAD(&ctrl->ctrl_list); 2739 ctrl->lport = lport; 2740 ctrl->rport = rport; 2741 ctrl->dev = lport->dev; 2742 ctrl->cnum = idx; 2743 2744 get_device(ctrl->dev); 2745 kref_init(&ctrl->ref); 2746 2747 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work); 2748 INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work); 2749 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 2750 ctrl->reconnect_delay = opts->reconnect_delay; 2751 spin_lock_init(&ctrl->lock); 2752 2753 /* io queue count */ 2754 ctrl->queue_count = min_t(unsigned int, 2755 opts->nr_io_queues, 2756 lport->ops->max_hw_queues); 2757 opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */ 2758 ctrl->queue_count++; /* +1 for admin queue */ 2759 2760 ctrl->ctrl.sqsize = opts->queue_size - 1; 2761 ctrl->ctrl.kato = opts->kato; 2762 2763 ret = -ENOMEM; 2764 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue), 2765 GFP_KERNEL); 2766 if (!ctrl->queues) 2767 goto out_free_ida; 2768 2769 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 2770 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 2771 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH; 2772 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 2773 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 2774 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2775 (SG_CHUNK_SIZE * 2776 sizeof(struct scatterlist)) + 2777 ctrl->lport->ops->fcprqst_priv_sz; 2778 ctrl->admin_tag_set.driver_data = ctrl; 2779 ctrl->admin_tag_set.nr_hw_queues = 1; 2780 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 2781 2782 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 2783 if (ret) 2784 goto out_free_queues; 2785 2786 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 2787 if (IS_ERR(ctrl->ctrl.admin_q)) { 2788 ret = PTR_ERR(ctrl->ctrl.admin_q); 2789 goto out_free_admin_tag_set; 2790 } 2791 2792 /* 2793 * Would have been nice to init io queues tag set as well. 2794 * However, we require interaction from the controller 2795 * for max io queue count before we can do so. 2796 * Defer this to the connect path. 2797 */ 2798 2799 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 2800 if (ret) 2801 goto out_cleanup_admin_q; 2802 2803 /* at this point, teardown path changes to ref counting on nvme ctrl */ 2804 2805 spin_lock_irqsave(&rport->lock, flags); 2806 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 2807 spin_unlock_irqrestore(&rport->lock, flags); 2808 2809 ret = nvme_fc_create_association(ctrl); 2810 if (ret) { 2811 ctrl->ctrl.opts = NULL; 2812 /* initiate nvme ctrl ref counting teardown */ 2813 nvme_uninit_ctrl(&ctrl->ctrl); 2814 nvme_put_ctrl(&ctrl->ctrl); 2815 2816 /* as we're past the point where we transition to the ref 2817 * counting teardown path, if we return a bad pointer here, 2818 * the calling routine, thinking it's prior to the 2819 * transition, will do an rport put. Since the teardown 2820 * path also does a rport put, we do an extra get here to 2821 * so proper order/teardown happens. 2822 */ 2823 nvme_fc_rport_get(rport); 2824 2825 if (ret > 0) 2826 ret = -EIO; 2827 return ERR_PTR(ret); 2828 } 2829 2830 dev_info(ctrl->ctrl.device, 2831 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 2832 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 2833 2834 return &ctrl->ctrl; 2835 2836 out_cleanup_admin_q: 2837 blk_cleanup_queue(ctrl->ctrl.admin_q); 2838 out_free_admin_tag_set: 2839 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2840 out_free_queues: 2841 kfree(ctrl->queues); 2842 out_free_ida: 2843 put_device(ctrl->dev); 2844 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2845 out_free_ctrl: 2846 kfree(ctrl); 2847 out_fail: 2848 /* exit via here doesn't follow ctlr ref points */ 2849 return ERR_PTR(ret); 2850 } 2851 2852 enum { 2853 FCT_TRADDR_ERR = 0, 2854 FCT_TRADDR_WWNN = 1 << 0, 2855 FCT_TRADDR_WWPN = 1 << 1, 2856 }; 2857 2858 struct nvmet_fc_traddr { 2859 u64 nn; 2860 u64 pn; 2861 }; 2862 2863 static const match_table_t traddr_opt_tokens = { 2864 { FCT_TRADDR_WWNN, "nn-%s" }, 2865 { FCT_TRADDR_WWPN, "pn-%s" }, 2866 { FCT_TRADDR_ERR, NULL } 2867 }; 2868 2869 static int 2870 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf) 2871 { 2872 substring_t args[MAX_OPT_ARGS]; 2873 char *options, *o, *p; 2874 int token, ret = 0; 2875 u64 token64; 2876 2877 options = o = kstrdup(buf, GFP_KERNEL); 2878 if (!options) 2879 return -ENOMEM; 2880 2881 while ((p = strsep(&o, ":\n")) != NULL) { 2882 if (!*p) 2883 continue; 2884 2885 token = match_token(p, traddr_opt_tokens, args); 2886 switch (token) { 2887 case FCT_TRADDR_WWNN: 2888 if (match_u64(args, &token64)) { 2889 ret = -EINVAL; 2890 goto out; 2891 } 2892 traddr->nn = token64; 2893 break; 2894 case FCT_TRADDR_WWPN: 2895 if (match_u64(args, &token64)) { 2896 ret = -EINVAL; 2897 goto out; 2898 } 2899 traddr->pn = token64; 2900 break; 2901 default: 2902 pr_warn("unknown traddr token or missing value '%s'\n", 2903 p); 2904 ret = -EINVAL; 2905 goto out; 2906 } 2907 } 2908 2909 out: 2910 kfree(options); 2911 return ret; 2912 } 2913 2914 static struct nvme_ctrl * 2915 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 2916 { 2917 struct nvme_fc_lport *lport; 2918 struct nvme_fc_rport *rport; 2919 struct nvme_ctrl *ctrl; 2920 struct nvmet_fc_traddr laddr = { 0L, 0L }; 2921 struct nvmet_fc_traddr raddr = { 0L, 0L }; 2922 unsigned long flags; 2923 int ret; 2924 2925 ret = nvme_fc_parse_address(&raddr, opts->traddr); 2926 if (ret || !raddr.nn || !raddr.pn) 2927 return ERR_PTR(-EINVAL); 2928 2929 ret = nvme_fc_parse_address(&laddr, opts->host_traddr); 2930 if (ret || !laddr.nn || !laddr.pn) 2931 return ERR_PTR(-EINVAL); 2932 2933 /* find the host and remote ports to connect together */ 2934 spin_lock_irqsave(&nvme_fc_lock, flags); 2935 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 2936 if (lport->localport.node_name != laddr.nn || 2937 lport->localport.port_name != laddr.pn) 2938 continue; 2939 2940 list_for_each_entry(rport, &lport->endp_list, endp_list) { 2941 if (rport->remoteport.node_name != raddr.nn || 2942 rport->remoteport.port_name != raddr.pn) 2943 continue; 2944 2945 /* if fail to get reference fall through. Will error */ 2946 if (!nvme_fc_rport_get(rport)) 2947 break; 2948 2949 spin_unlock_irqrestore(&nvme_fc_lock, flags); 2950 2951 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 2952 if (IS_ERR(ctrl)) 2953 nvme_fc_rport_put(rport); 2954 return ctrl; 2955 } 2956 } 2957 spin_unlock_irqrestore(&nvme_fc_lock, flags); 2958 2959 return ERR_PTR(-ENOENT); 2960 } 2961 2962 2963 static struct nvmf_transport_ops nvme_fc_transport = { 2964 .name = "fc", 2965 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 2966 .allowed_opts = NVMF_OPT_RECONNECT_DELAY, 2967 .create_ctrl = nvme_fc_create_ctrl, 2968 }; 2969 2970 static int __init nvme_fc_init_module(void) 2971 { 2972 int ret; 2973 2974 nvme_fc_wq = create_workqueue("nvme_fc_wq"); 2975 if (!nvme_fc_wq) 2976 return -ENOMEM; 2977 2978 ret = nvmf_register_transport(&nvme_fc_transport); 2979 if (ret) 2980 goto err; 2981 2982 return 0; 2983 err: 2984 destroy_workqueue(nvme_fc_wq); 2985 return ret; 2986 } 2987 2988 static void __exit nvme_fc_exit_module(void) 2989 { 2990 /* sanity check - all lports should be removed */ 2991 if (!list_empty(&nvme_fc_lport_list)) 2992 pr_warn("%s: localport list not empty\n", __func__); 2993 2994 nvmf_unregister_transport(&nvme_fc_transport); 2995 2996 destroy_workqueue(nvme_fc_wq); 2997 2998 ida_destroy(&nvme_fc_local_port_cnt); 2999 ida_destroy(&nvme_fc_ctrl_cnt); 3000 } 3001 3002 module_init(nvme_fc_init_module); 3003 module_exit(nvme_fc_exit_module); 3004 3005 MODULE_LICENSE("GPL v2"); 3006