xref: /openbmc/linux/drivers/nvme/host/fc.c (revision 18ecd975)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20 
21 /* *************************** Data Structures/Defines ****************** */
22 
23 
24 enum nvme_fc_queue_flags {
25 	NVME_FC_Q_CONNECTED = 0,
26 	NVME_FC_Q_LIVE,
27 };
28 
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO	2	/* delay between reconnects
31 						 * when connected and a
32 						 * connection failure.
33 						 */
34 
35 struct nvme_fc_queue {
36 	struct nvme_fc_ctrl	*ctrl;
37 	struct device		*dev;
38 	struct blk_mq_hw_ctx	*hctx;
39 	void			*lldd_handle;
40 	size_t			cmnd_capsule_len;
41 	u32			qnum;
42 	u32			rqcnt;
43 	u32			seqno;
44 
45 	u64			connection_id;
46 	atomic_t		csn;
47 
48 	unsigned long		flags;
49 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
50 
51 enum nvme_fcop_flags {
52 	FCOP_FLAGS_TERMIO	= (1 << 0),
53 	FCOP_FLAGS_AEN		= (1 << 1),
54 };
55 
56 struct nvmefc_ls_req_op {
57 	struct nvmefc_ls_req	ls_req;
58 
59 	struct nvme_fc_rport	*rport;
60 	struct nvme_fc_queue	*queue;
61 	struct request		*rq;
62 	u32			flags;
63 
64 	int			ls_error;
65 	struct completion	ls_done;
66 	struct list_head	lsreq_list;	/* rport->ls_req_list */
67 	bool			req_queued;
68 };
69 
70 struct nvmefc_ls_rcv_op {
71 	struct nvme_fc_rport		*rport;
72 	struct nvmefc_ls_rsp		*lsrsp;
73 	union nvmefc_ls_requests	*rqstbuf;
74 	union nvmefc_ls_responses	*rspbuf;
75 	u16				rqstdatalen;
76 	bool				handled;
77 	dma_addr_t			rspdma;
78 	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
79 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
80 
81 enum nvme_fcpop_state {
82 	FCPOP_STATE_UNINIT	= 0,
83 	FCPOP_STATE_IDLE	= 1,
84 	FCPOP_STATE_ACTIVE	= 2,
85 	FCPOP_STATE_ABORTED	= 3,
86 	FCPOP_STATE_COMPLETE	= 4,
87 };
88 
89 struct nvme_fc_fcp_op {
90 	struct nvme_request	nreq;		/*
91 						 * nvme/host/core.c
92 						 * requires this to be
93 						 * the 1st element in the
94 						 * private structure
95 						 * associated with the
96 						 * request.
97 						 */
98 	struct nvmefc_fcp_req	fcp_req;
99 
100 	struct nvme_fc_ctrl	*ctrl;
101 	struct nvme_fc_queue	*queue;
102 	struct request		*rq;
103 
104 	atomic_t		state;
105 	u32			flags;
106 	u32			rqno;
107 	u32			nents;
108 
109 	struct nvme_fc_cmd_iu	cmd_iu;
110 	struct nvme_fc_ersp_iu	rsp_iu;
111 };
112 
113 struct nvme_fcp_op_w_sgl {
114 	struct nvme_fc_fcp_op	op;
115 	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
116 	uint8_t			priv[];
117 };
118 
119 struct nvme_fc_lport {
120 	struct nvme_fc_local_port	localport;
121 
122 	struct ida			endp_cnt;
123 	struct list_head		port_list;	/* nvme_fc_port_list */
124 	struct list_head		endp_list;
125 	struct device			*dev;	/* physical device for dma */
126 	struct nvme_fc_port_template	*ops;
127 	struct kref			ref;
128 	atomic_t                        act_rport_cnt;
129 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
130 
131 struct nvme_fc_rport {
132 	struct nvme_fc_remote_port	remoteport;
133 
134 	struct list_head		endp_list; /* for lport->endp_list */
135 	struct list_head		ctrl_list;
136 	struct list_head		ls_req_list;
137 	struct list_head		ls_rcv_list;
138 	struct list_head		disc_list;
139 	struct device			*dev;	/* physical device for dma */
140 	struct nvme_fc_lport		*lport;
141 	spinlock_t			lock;
142 	struct kref			ref;
143 	atomic_t                        act_ctrl_cnt;
144 	unsigned long			dev_loss_end;
145 	struct work_struct		lsrcv_work;
146 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
147 
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE		0
150 #define ASSOC_FAILED		1
151 #define FCCTRL_TERMIO		2
152 
153 struct nvme_fc_ctrl {
154 	spinlock_t		lock;
155 	struct nvme_fc_queue	*queues;
156 	struct device		*dev;
157 	struct nvme_fc_lport	*lport;
158 	struct nvme_fc_rport	*rport;
159 	u32			cnum;
160 
161 	bool			ioq_live;
162 	u64			association_id;
163 	struct nvmefc_ls_rcv_op	*rcv_disconn;
164 
165 	struct list_head	ctrl_list;	/* rport->ctrl_list */
166 
167 	struct blk_mq_tag_set	admin_tag_set;
168 	struct blk_mq_tag_set	tag_set;
169 
170 	struct work_struct	ioerr_work;
171 	struct delayed_work	connect_work;
172 
173 	struct kref		ref;
174 	unsigned long		flags;
175 	u32			iocnt;
176 	wait_queue_head_t	ioabort_wait;
177 
178 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
179 
180 	struct nvme_ctrl	ctrl;
181 };
182 
183 static inline struct nvme_fc_ctrl *
184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188 
189 static inline struct nvme_fc_lport *
190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 	return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194 
195 static inline struct nvme_fc_rport *
196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 	return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200 
201 static inline struct nvmefc_ls_req_op *
202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206 
207 static inline struct nvme_fc_fcp_op *
208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212 
213 
214 
215 /* *************************** Globals **************************** */
216 
217 
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219 
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223 
224 static struct workqueue_struct *nvme_fc_wq;
225 
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228 
229 /*
230  * These items are short-term. They will eventually be moved into
231  * a generic FC class. See comments in module init.
232  */
233 static struct device *fc_udev_device;
234 
235 static void nvme_fc_complete_rq(struct request *rq);
236 
237 /* *********************** FC-NVME Port Management ************************ */
238 
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 			struct nvme_fc_queue *, unsigned int);
241 
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243 
244 
245 static void
246 nvme_fc_free_lport(struct kref *ref)
247 {
248 	struct nvme_fc_lport *lport =
249 		container_of(ref, struct nvme_fc_lport, ref);
250 	unsigned long flags;
251 
252 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 	WARN_ON(!list_empty(&lport->endp_list));
254 
255 	/* remove from transport list */
256 	spin_lock_irqsave(&nvme_fc_lock, flags);
257 	list_del(&lport->port_list);
258 	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 		complete(&nvme_fc_unload_proceed);
260 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
261 
262 	ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 	ida_destroy(&lport->endp_cnt);
264 
265 	put_device(lport->dev);
266 
267 	kfree(lport);
268 }
269 
270 static void
271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
272 {
273 	kref_put(&lport->ref, nvme_fc_free_lport);
274 }
275 
276 static int
277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
278 {
279 	return kref_get_unless_zero(&lport->ref);
280 }
281 
282 
283 static struct nvme_fc_lport *
284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 			struct nvme_fc_port_template *ops,
286 			struct device *dev)
287 {
288 	struct nvme_fc_lport *lport;
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&nvme_fc_lock, flags);
292 
293 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 		if (lport->localport.node_name != pinfo->node_name ||
295 		    lport->localport.port_name != pinfo->port_name)
296 			continue;
297 
298 		if (lport->dev != dev) {
299 			lport = ERR_PTR(-EXDEV);
300 			goto out_done;
301 		}
302 
303 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 			lport = ERR_PTR(-EEXIST);
305 			goto out_done;
306 		}
307 
308 		if (!nvme_fc_lport_get(lport)) {
309 			/*
310 			 * fails if ref cnt already 0. If so,
311 			 * act as if lport already deleted
312 			 */
313 			lport = NULL;
314 			goto out_done;
315 		}
316 
317 		/* resume the lport */
318 
319 		lport->ops = ops;
320 		lport->localport.port_role = pinfo->port_role;
321 		lport->localport.port_id = pinfo->port_id;
322 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
323 
324 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
325 
326 		return lport;
327 	}
328 
329 	lport = NULL;
330 
331 out_done:
332 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
333 
334 	return lport;
335 }
336 
337 /**
338  * nvme_fc_register_localport - transport entry point called by an
339  *                              LLDD to register the existence of a NVME
340  *                              host FC port.
341  * @pinfo:     pointer to information about the port to be registered
342  * @template:  LLDD entrypoints and operational parameters for the port
343  * @dev:       physical hardware device node port corresponds to. Will be
344  *             used for DMA mappings
345  * @portptr:   pointer to a local port pointer. Upon success, the routine
346  *             will allocate a nvme_fc_local_port structure and place its
347  *             address in the local port pointer. Upon failure, local port
348  *             pointer will be set to 0.
349  *
350  * Returns:
351  * a completion status. Must be 0 upon success; a negative errno
352  * (ex: -ENXIO) upon failure.
353  */
354 int
355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 			struct nvme_fc_port_template *template,
357 			struct device *dev,
358 			struct nvme_fc_local_port **portptr)
359 {
360 	struct nvme_fc_lport *newrec;
361 	unsigned long flags;
362 	int ret, idx;
363 
364 	if (!template->localport_delete || !template->remoteport_delete ||
365 	    !template->ls_req || !template->fcp_io ||
366 	    !template->ls_abort || !template->fcp_abort ||
367 	    !template->max_hw_queues || !template->max_sgl_segments ||
368 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
369 		ret = -EINVAL;
370 		goto out_reghost_failed;
371 	}
372 
373 	/*
374 	 * look to see if there is already a localport that had been
375 	 * deregistered and in the process of waiting for all the
376 	 * references to fully be removed.  If the references haven't
377 	 * expired, we can simply re-enable the localport. Remoteports
378 	 * and controller reconnections should resume naturally.
379 	 */
380 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381 
382 	/* found an lport, but something about its state is bad */
383 	if (IS_ERR(newrec)) {
384 		ret = PTR_ERR(newrec);
385 		goto out_reghost_failed;
386 
387 	/* found existing lport, which was resumed */
388 	} else if (newrec) {
389 		*portptr = &newrec->localport;
390 		return 0;
391 	}
392 
393 	/* nothing found - allocate a new localport struct */
394 
395 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396 			 GFP_KERNEL);
397 	if (!newrec) {
398 		ret = -ENOMEM;
399 		goto out_reghost_failed;
400 	}
401 
402 	idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
403 	if (idx < 0) {
404 		ret = -ENOSPC;
405 		goto out_fail_kfree;
406 	}
407 
408 	if (!get_device(dev) && dev) {
409 		ret = -ENODEV;
410 		goto out_ida_put;
411 	}
412 
413 	INIT_LIST_HEAD(&newrec->port_list);
414 	INIT_LIST_HEAD(&newrec->endp_list);
415 	kref_init(&newrec->ref);
416 	atomic_set(&newrec->act_rport_cnt, 0);
417 	newrec->ops = template;
418 	newrec->dev = dev;
419 	ida_init(&newrec->endp_cnt);
420 	if (template->local_priv_sz)
421 		newrec->localport.private = &newrec[1];
422 	else
423 		newrec->localport.private = NULL;
424 	newrec->localport.node_name = pinfo->node_name;
425 	newrec->localport.port_name = pinfo->port_name;
426 	newrec->localport.port_role = pinfo->port_role;
427 	newrec->localport.port_id = pinfo->port_id;
428 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 	newrec->localport.port_num = idx;
430 
431 	spin_lock_irqsave(&nvme_fc_lock, flags);
432 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
434 
435 	if (dev)
436 		dma_set_seg_boundary(dev, template->dma_boundary);
437 
438 	*portptr = &newrec->localport;
439 	return 0;
440 
441 out_ida_put:
442 	ida_free(&nvme_fc_local_port_cnt, idx);
443 out_fail_kfree:
444 	kfree(newrec);
445 out_reghost_failed:
446 	*portptr = NULL;
447 
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451 
452 /**
453  * nvme_fc_unregister_localport - transport entry point called by an
454  *                              LLDD to deregister/remove a previously
455  *                              registered a NVME host FC port.
456  * @portptr: pointer to the (registered) local port that is to be deregistered.
457  *
458  * Returns:
459  * a completion status. Must be 0 upon success; a negative errno
460  * (ex: -ENXIO) upon failure.
461  */
462 int
463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464 {
465 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
466 	unsigned long flags;
467 
468 	if (!portptr)
469 		return -EINVAL;
470 
471 	spin_lock_irqsave(&nvme_fc_lock, flags);
472 
473 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 		return -EINVAL;
476 	}
477 	portptr->port_state = FC_OBJSTATE_DELETED;
478 
479 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
480 
481 	if (atomic_read(&lport->act_rport_cnt) == 0)
482 		lport->ops->localport_delete(&lport->localport);
483 
484 	nvme_fc_lport_put(lport);
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489 
490 /*
491  * TRADDR strings, per FC-NVME are fixed format:
492  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493  * udev event will only differ by prefix of what field is
494  * being specified:
495  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496  *  19 + 43 + null_fudge = 64 characters
497  */
498 #define FCNVME_TRADDR_LENGTH		64
499 
500 static void
501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 		struct nvme_fc_rport *rport)
503 {
504 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
505 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
506 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507 
508 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509 		return;
510 
511 	snprintf(hostaddr, sizeof(hostaddr),
512 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 		lport->localport.node_name, lport->localport.port_name);
514 	snprintf(tgtaddr, sizeof(tgtaddr),
515 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 		rport->remoteport.node_name, rport->remoteport.port_name);
517 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518 }
519 
520 static void
521 nvme_fc_free_rport(struct kref *ref)
522 {
523 	struct nvme_fc_rport *rport =
524 		container_of(ref, struct nvme_fc_rport, ref);
525 	struct nvme_fc_lport *lport =
526 			localport_to_lport(rport->remoteport.localport);
527 	unsigned long flags;
528 
529 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 	WARN_ON(!list_empty(&rport->ctrl_list));
531 
532 	/* remove from lport list */
533 	spin_lock_irqsave(&nvme_fc_lock, flags);
534 	list_del(&rport->endp_list);
535 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
536 
537 	WARN_ON(!list_empty(&rport->disc_list));
538 	ida_free(&lport->endp_cnt, rport->remoteport.port_num);
539 
540 	kfree(rport);
541 
542 	nvme_fc_lport_put(lport);
543 }
544 
545 static void
546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
547 {
548 	kref_put(&rport->ref, nvme_fc_free_rport);
549 }
550 
551 static int
552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
553 {
554 	return kref_get_unless_zero(&rport->ref);
555 }
556 
557 static void
558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559 {
560 	switch (ctrl->ctrl.state) {
561 	case NVME_CTRL_NEW:
562 	case NVME_CTRL_CONNECTING:
563 		/*
564 		 * As all reconnects were suppressed, schedule a
565 		 * connect.
566 		 */
567 		dev_info(ctrl->ctrl.device,
568 			"NVME-FC{%d}: connectivity re-established. "
569 			"Attempting reconnect\n", ctrl->cnum);
570 
571 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572 		break;
573 
574 	case NVME_CTRL_RESETTING:
575 		/*
576 		 * Controller is already in the process of terminating the
577 		 * association. No need to do anything further. The reconnect
578 		 * step will naturally occur after the reset completes.
579 		 */
580 		break;
581 
582 	default:
583 		/* no action to take - let it delete */
584 		break;
585 	}
586 }
587 
588 static struct nvme_fc_rport *
589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 				struct nvme_fc_port_info *pinfo)
591 {
592 	struct nvme_fc_rport *rport;
593 	struct nvme_fc_ctrl *ctrl;
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&nvme_fc_lock, flags);
597 
598 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 		if (rport->remoteport.node_name != pinfo->node_name ||
600 		    rport->remoteport.port_name != pinfo->port_name)
601 			continue;
602 
603 		if (!nvme_fc_rport_get(rport)) {
604 			rport = ERR_PTR(-ENOLCK);
605 			goto out_done;
606 		}
607 
608 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
609 
610 		spin_lock_irqsave(&rport->lock, flags);
611 
612 		/* has it been unregistered */
613 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 			/* means lldd called us twice */
615 			spin_unlock_irqrestore(&rport->lock, flags);
616 			nvme_fc_rport_put(rport);
617 			return ERR_PTR(-ESTALE);
618 		}
619 
620 		rport->remoteport.port_role = pinfo->port_role;
621 		rport->remoteport.port_id = pinfo->port_id;
622 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 		rport->dev_loss_end = 0;
624 
625 		/*
626 		 * kick off a reconnect attempt on all associations to the
627 		 * remote port. A successful reconnects will resume i/o.
628 		 */
629 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 			nvme_fc_resume_controller(ctrl);
631 
632 		spin_unlock_irqrestore(&rport->lock, flags);
633 
634 		return rport;
635 	}
636 
637 	rport = NULL;
638 
639 out_done:
640 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
641 
642 	return rport;
643 }
644 
645 static inline void
646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 			struct nvme_fc_port_info *pinfo)
648 {
649 	if (pinfo->dev_loss_tmo)
650 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651 	else
652 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653 }
654 
655 /**
656  * nvme_fc_register_remoteport - transport entry point called by an
657  *                              LLDD to register the existence of a NVME
658  *                              subsystem FC port on its fabric.
659  * @localport: pointer to the (registered) local port that the remote
660  *             subsystem port is connected to.
661  * @pinfo:     pointer to information about the port to be registered
662  * @portptr:   pointer to a remote port pointer. Upon success, the routine
663  *             will allocate a nvme_fc_remote_port structure and place its
664  *             address in the remote port pointer. Upon failure, remote port
665  *             pointer will be set to 0.
666  *
667  * Returns:
668  * a completion status. Must be 0 upon success; a negative errno
669  * (ex: -ENXIO) upon failure.
670  */
671 int
672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 				struct nvme_fc_port_info *pinfo,
674 				struct nvme_fc_remote_port **portptr)
675 {
676 	struct nvme_fc_lport *lport = localport_to_lport(localport);
677 	struct nvme_fc_rport *newrec;
678 	unsigned long flags;
679 	int ret, idx;
680 
681 	if (!nvme_fc_lport_get(lport)) {
682 		ret = -ESHUTDOWN;
683 		goto out_reghost_failed;
684 	}
685 
686 	/*
687 	 * look to see if there is already a remoteport that is waiting
688 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 	 * If so, transition to it and reconnect.
690 	 */
691 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692 
693 	/* found an rport, but something about its state is bad */
694 	if (IS_ERR(newrec)) {
695 		ret = PTR_ERR(newrec);
696 		goto out_lport_put;
697 
698 	/* found existing rport, which was resumed */
699 	} else if (newrec) {
700 		nvme_fc_lport_put(lport);
701 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 		nvme_fc_signal_discovery_scan(lport, newrec);
703 		*portptr = &newrec->remoteport;
704 		return 0;
705 	}
706 
707 	/* nothing found - allocate a new remoteport struct */
708 
709 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710 			 GFP_KERNEL);
711 	if (!newrec) {
712 		ret = -ENOMEM;
713 		goto out_lport_put;
714 	}
715 
716 	idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
717 	if (idx < 0) {
718 		ret = -ENOSPC;
719 		goto out_kfree_rport;
720 	}
721 
722 	INIT_LIST_HEAD(&newrec->endp_list);
723 	INIT_LIST_HEAD(&newrec->ctrl_list);
724 	INIT_LIST_HEAD(&newrec->ls_req_list);
725 	INIT_LIST_HEAD(&newrec->disc_list);
726 	kref_init(&newrec->ref);
727 	atomic_set(&newrec->act_ctrl_cnt, 0);
728 	spin_lock_init(&newrec->lock);
729 	newrec->remoteport.localport = &lport->localport;
730 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 	newrec->dev = lport->dev;
732 	newrec->lport = lport;
733 	if (lport->ops->remote_priv_sz)
734 		newrec->remoteport.private = &newrec[1];
735 	else
736 		newrec->remoteport.private = NULL;
737 	newrec->remoteport.port_role = pinfo->port_role;
738 	newrec->remoteport.node_name = pinfo->node_name;
739 	newrec->remoteport.port_name = pinfo->port_name;
740 	newrec->remoteport.port_id = pinfo->port_id;
741 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 	newrec->remoteport.port_num = idx;
743 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745 
746 	spin_lock_irqsave(&nvme_fc_lock, flags);
747 	list_add_tail(&newrec->endp_list, &lport->endp_list);
748 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
749 
750 	nvme_fc_signal_discovery_scan(lport, newrec);
751 
752 	*portptr = &newrec->remoteport;
753 	return 0;
754 
755 out_kfree_rport:
756 	kfree(newrec);
757 out_lport_put:
758 	nvme_fc_lport_put(lport);
759 out_reghost_failed:
760 	*portptr = NULL;
761 	return ret;
762 }
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764 
765 static int
766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767 {
768 	struct nvmefc_ls_req_op *lsop;
769 	unsigned long flags;
770 
771 restart:
772 	spin_lock_irqsave(&rport->lock, flags);
773 
774 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 			lsop->flags |= FCOP_FLAGS_TERMIO;
777 			spin_unlock_irqrestore(&rport->lock, flags);
778 			rport->lport->ops->ls_abort(&rport->lport->localport,
779 						&rport->remoteport,
780 						&lsop->ls_req);
781 			goto restart;
782 		}
783 	}
784 	spin_unlock_irqrestore(&rport->lock, flags);
785 
786 	return 0;
787 }
788 
789 static void
790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791 {
792 	dev_info(ctrl->ctrl.device,
793 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
794 		"Reconnect", ctrl->cnum);
795 
796 	switch (ctrl->ctrl.state) {
797 	case NVME_CTRL_NEW:
798 	case NVME_CTRL_LIVE:
799 		/*
800 		 * Schedule a controller reset. The reset will terminate the
801 		 * association and schedule the reconnect timer.  Reconnects
802 		 * will be attempted until either the ctlr_loss_tmo
803 		 * (max_retries * connect_delay) expires or the remoteport's
804 		 * dev_loss_tmo expires.
805 		 */
806 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 			dev_warn(ctrl->ctrl.device,
808 				"NVME-FC{%d}: Couldn't schedule reset.\n",
809 				ctrl->cnum);
810 			nvme_delete_ctrl(&ctrl->ctrl);
811 		}
812 		break;
813 
814 	case NVME_CTRL_CONNECTING:
815 		/*
816 		 * The association has already been terminated and the
817 		 * controller is attempting reconnects.  No need to do anything
818 		 * futher.  Reconnects will be attempted until either the
819 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 		 * remoteport's dev_loss_tmo expires.
821 		 */
822 		break;
823 
824 	case NVME_CTRL_RESETTING:
825 		/*
826 		 * Controller is already in the process of terminating the
827 		 * association.  No need to do anything further. The reconnect
828 		 * step will kick in naturally after the association is
829 		 * terminated.
830 		 */
831 		break;
832 
833 	case NVME_CTRL_DELETING:
834 	case NVME_CTRL_DELETING_NOIO:
835 	default:
836 		/* no action to take - let it delete */
837 		break;
838 	}
839 }
840 
841 /**
842  * nvme_fc_unregister_remoteport - transport entry point called by an
843  *                              LLDD to deregister/remove a previously
844  *                              registered a NVME subsystem FC port.
845  * @portptr: pointer to the (registered) remote port that is to be
846  *           deregistered.
847  *
848  * Returns:
849  * a completion status. Must be 0 upon success; a negative errno
850  * (ex: -ENXIO) upon failure.
851  */
852 int
853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854 {
855 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 	struct nvme_fc_ctrl *ctrl;
857 	unsigned long flags;
858 
859 	if (!portptr)
860 		return -EINVAL;
861 
862 	spin_lock_irqsave(&rport->lock, flags);
863 
864 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 		spin_unlock_irqrestore(&rport->lock, flags);
866 		return -EINVAL;
867 	}
868 	portptr->port_state = FC_OBJSTATE_DELETED;
869 
870 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871 
872 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 		/* if dev_loss_tmo==0, dev loss is immediate */
874 		if (!portptr->dev_loss_tmo) {
875 			dev_warn(ctrl->ctrl.device,
876 				"NVME-FC{%d}: controller connectivity lost.\n",
877 				ctrl->cnum);
878 			nvme_delete_ctrl(&ctrl->ctrl);
879 		} else
880 			nvme_fc_ctrl_connectivity_loss(ctrl);
881 	}
882 
883 	spin_unlock_irqrestore(&rport->lock, flags);
884 
885 	nvme_fc_abort_lsops(rport);
886 
887 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 		rport->lport->ops->remoteport_delete(portptr);
889 
890 	/*
891 	 * release the reference, which will allow, if all controllers
892 	 * go away, which should only occur after dev_loss_tmo occurs,
893 	 * for the rport to be torn down.
894 	 */
895 	nvme_fc_rport_put(rport);
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900 
901 /**
902  * nvme_fc_rescan_remoteport - transport entry point called by an
903  *                              LLDD to request a nvme device rescan.
904  * @remoteport: pointer to the (registered) remote port that is to be
905  *              rescanned.
906  *
907  * Returns: N/A
908  */
909 void
910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911 {
912 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913 
914 	nvme_fc_signal_discovery_scan(rport->lport, rport);
915 }
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917 
918 int
919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920 			u32 dev_loss_tmo)
921 {
922 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923 	unsigned long flags;
924 
925 	spin_lock_irqsave(&rport->lock, flags);
926 
927 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 		spin_unlock_irqrestore(&rport->lock, flags);
929 		return -EINVAL;
930 	}
931 
932 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934 
935 	spin_unlock_irqrestore(&rport->lock, flags);
936 
937 	return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940 
941 
942 /* *********************** FC-NVME DMA Handling **************************** */
943 
944 /*
945  * The fcloop device passes in a NULL device pointer. Real LLD's will
946  * pass in a valid device pointer. If NULL is passed to the dma mapping
947  * routines, depending on the platform, it may or may not succeed, and
948  * may crash.
949  *
950  * As such:
951  * Wrapper all the dma routines and check the dev pointer.
952  *
953  * If simple mappings (return just a dma address, we'll noop them,
954  * returning a dma address of 0.
955  *
956  * On more complex mappings (dma_map_sg), a pseudo routine fills
957  * in the scatter list, setting all dma addresses to 0.
958  */
959 
960 static inline dma_addr_t
961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 		enum dma_data_direction dir)
963 {
964 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965 }
966 
967 static inline int
968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969 {
970 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
971 }
972 
973 static inline void
974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 	enum dma_data_direction dir)
976 {
977 	if (dev)
978 		dma_unmap_single(dev, addr, size, dir);
979 }
980 
981 static inline void
982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 		enum dma_data_direction dir)
984 {
985 	if (dev)
986 		dma_sync_single_for_cpu(dev, addr, size, dir);
987 }
988 
989 static inline void
990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 		enum dma_data_direction dir)
992 {
993 	if (dev)
994 		dma_sync_single_for_device(dev, addr, size, dir);
995 }
996 
997 /* pseudo dma_map_sg call */
998 static int
999 fc_map_sg(struct scatterlist *sg, int nents)
1000 {
1001 	struct scatterlist *s;
1002 	int i;
1003 
1004 	WARN_ON(nents == 0 || sg[0].length == 0);
1005 
1006 	for_each_sg(sg, s, nents, i) {
1007 		s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 		s->dma_length = s->length;
1010 #endif
1011 	}
1012 	return nents;
1013 }
1014 
1015 static inline int
1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 		enum dma_data_direction dir)
1018 {
1019 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020 }
1021 
1022 static inline void
1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 		enum dma_data_direction dir)
1025 {
1026 	if (dev)
1027 		dma_unmap_sg(dev, sg, nents, dir);
1028 }
1029 
1030 /* *********************** FC-NVME LS Handling **************************** */
1031 
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034 
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036 
1037 static void
1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039 {
1040 	struct nvme_fc_rport *rport = lsop->rport;
1041 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 	unsigned long flags;
1043 
1044 	spin_lock_irqsave(&rport->lock, flags);
1045 
1046 	if (!lsop->req_queued) {
1047 		spin_unlock_irqrestore(&rport->lock, flags);
1048 		return;
1049 	}
1050 
1051 	list_del(&lsop->lsreq_list);
1052 
1053 	lsop->req_queued = false;
1054 
1055 	spin_unlock_irqrestore(&rport->lock, flags);
1056 
1057 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 				  (lsreq->rqstlen + lsreq->rsplen),
1059 				  DMA_BIDIRECTIONAL);
1060 
1061 	nvme_fc_rport_put(rport);
1062 }
1063 
1064 static int
1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 		struct nvmefc_ls_req_op *lsop,
1067 		void (*done)(struct nvmefc_ls_req *req, int status))
1068 {
1069 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 	unsigned long flags;
1071 	int ret = 0;
1072 
1073 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 		return -ECONNREFUSED;
1075 
1076 	if (!nvme_fc_rport_get(rport))
1077 		return -ESHUTDOWN;
1078 
1079 	lsreq->done = done;
1080 	lsop->rport = rport;
1081 	lsop->req_queued = false;
1082 	INIT_LIST_HEAD(&lsop->lsreq_list);
1083 	init_completion(&lsop->ls_done);
1084 
1085 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 				  lsreq->rqstlen + lsreq->rsplen,
1087 				  DMA_BIDIRECTIONAL);
1088 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089 		ret = -EFAULT;
1090 		goto out_putrport;
1091 	}
1092 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093 
1094 	spin_lock_irqsave(&rport->lock, flags);
1095 
1096 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097 
1098 	lsop->req_queued = true;
1099 
1100 	spin_unlock_irqrestore(&rport->lock, flags);
1101 
1102 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 					&rport->remoteport, lsreq);
1104 	if (ret)
1105 		goto out_unlink;
1106 
1107 	return 0;
1108 
1109 out_unlink:
1110 	lsop->ls_error = ret;
1111 	spin_lock_irqsave(&rport->lock, flags);
1112 	lsop->req_queued = false;
1113 	list_del(&lsop->lsreq_list);
1114 	spin_unlock_irqrestore(&rport->lock, flags);
1115 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 				  (lsreq->rqstlen + lsreq->rsplen),
1117 				  DMA_BIDIRECTIONAL);
1118 out_putrport:
1119 	nvme_fc_rport_put(rport);
1120 
1121 	return ret;
1122 }
1123 
1124 static void
1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126 {
1127 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128 
1129 	lsop->ls_error = status;
1130 	complete(&lsop->ls_done);
1131 }
1132 
1133 static int
1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135 {
1136 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138 	int ret;
1139 
1140 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141 
1142 	if (!ret) {
1143 		/*
1144 		 * No timeout/not interruptible as we need the struct
1145 		 * to exist until the lldd calls us back. Thus mandate
1146 		 * wait until driver calls back. lldd responsible for
1147 		 * the timeout action
1148 		 */
1149 		wait_for_completion(&lsop->ls_done);
1150 
1151 		__nvme_fc_finish_ls_req(lsop);
1152 
1153 		ret = lsop->ls_error;
1154 	}
1155 
1156 	if (ret)
1157 		return ret;
1158 
1159 	/* ACC or RJT payload ? */
1160 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161 		return -ENXIO;
1162 
1163 	return 0;
1164 }
1165 
1166 static int
1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 		struct nvmefc_ls_req_op *lsop,
1169 		void (*done)(struct nvmefc_ls_req *req, int status))
1170 {
1171 	/* don't wait for completion */
1172 
1173 	return __nvme_fc_send_ls_req(rport, lsop, done);
1174 }
1175 
1176 static int
1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 	struct nvmefc_ls_req_op *lsop;
1181 	struct nvmefc_ls_req *lsreq;
1182 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 	unsigned long flags;
1185 	int ret, fcret = 0;
1186 
1187 	lsop = kzalloc((sizeof(*lsop) +
1188 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190 	if (!lsop) {
1191 		dev_info(ctrl->ctrl.device,
1192 			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193 			ctrl->cnum);
1194 		ret = -ENOMEM;
1195 		goto out_no_memory;
1196 	}
1197 
1198 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 	lsreq = &lsop->ls_req;
1201 	if (ctrl->lport->ops->lsrqst_priv_sz)
1202 		lsreq->private = &assoc_acc[1];
1203 	else
1204 		lsreq->private = NULL;
1205 
1206 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 	assoc_rqst->desc_list_len =
1208 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209 
1210 	assoc_rqst->assoc_cmd.desc_tag =
1211 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 	assoc_rqst->assoc_cmd.desc_len =
1213 			fcnvme_lsdesc_len(
1214 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215 
1216 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 	/* Linux supports only Dynamic controllers */
1219 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225 
1226 	lsop->queue = queue;
1227 	lsreq->rqstaddr = assoc_rqst;
1228 	lsreq->rqstlen = sizeof(*assoc_rqst);
1229 	lsreq->rspaddr = assoc_acc;
1230 	lsreq->rsplen = sizeof(*assoc_acc);
1231 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232 
1233 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234 	if (ret)
1235 		goto out_free_buffer;
1236 
1237 	/* process connect LS completion */
1238 
1239 	/* validate the ACC response */
1240 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241 		fcret = VERR_LSACC;
1242 	else if (assoc_acc->hdr.desc_list_len !=
1243 			fcnvme_lsdesc_len(
1244 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 		fcret = VERR_CR_ASSOC_ACC_LEN;
1246 	else if (assoc_acc->hdr.rqst.desc_tag !=
1247 			cpu_to_be32(FCNVME_LSDESC_RQST))
1248 		fcret = VERR_LSDESC_RQST;
1249 	else if (assoc_acc->hdr.rqst.desc_len !=
1250 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 		fcret = VERR_LSDESC_RQST_LEN;
1252 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 		fcret = VERR_CR_ASSOC;
1254 	else if (assoc_acc->associd.desc_tag !=
1255 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 		fcret = VERR_ASSOC_ID;
1257 	else if (assoc_acc->associd.desc_len !=
1258 			fcnvme_lsdesc_len(
1259 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 		fcret = VERR_ASSOC_ID_LEN;
1261 	else if (assoc_acc->connectid.desc_tag !=
1262 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 		fcret = VERR_CONN_ID;
1264 	else if (assoc_acc->connectid.desc_len !=
1265 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 		fcret = VERR_CONN_ID_LEN;
1267 
1268 	if (fcret) {
1269 		ret = -EBADF;
1270 		dev_err(ctrl->dev,
1271 			"q %d Create Association LS failed: %s\n",
1272 			queue->qnum, validation_errors[fcret]);
1273 	} else {
1274 		spin_lock_irqsave(&ctrl->lock, flags);
1275 		ctrl->association_id =
1276 			be64_to_cpu(assoc_acc->associd.association_id);
1277 		queue->connection_id =
1278 			be64_to_cpu(assoc_acc->connectid.connection_id);
1279 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 		spin_unlock_irqrestore(&ctrl->lock, flags);
1281 	}
1282 
1283 out_free_buffer:
1284 	kfree(lsop);
1285 out_no_memory:
1286 	if (ret)
1287 		dev_err(ctrl->dev,
1288 			"queue %d connect admin queue failed (%d).\n",
1289 			queue->qnum, ret);
1290 	return ret;
1291 }
1292 
1293 static int
1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 			u16 qsize, u16 ersp_ratio)
1296 {
1297 	struct nvmefc_ls_req_op *lsop;
1298 	struct nvmefc_ls_req *lsreq;
1299 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1301 	int ret, fcret = 0;
1302 
1303 	lsop = kzalloc((sizeof(*lsop) +
1304 			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306 	if (!lsop) {
1307 		dev_info(ctrl->ctrl.device,
1308 			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309 			ctrl->cnum);
1310 		ret = -ENOMEM;
1311 		goto out_no_memory;
1312 	}
1313 
1314 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 	lsreq = &lsop->ls_req;
1317 	if (ctrl->lport->ops->lsrqst_priv_sz)
1318 		lsreq->private = (void *)&conn_acc[1];
1319 	else
1320 		lsreq->private = NULL;
1321 
1322 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 	conn_rqst->desc_list_len = cpu_to_be32(
1324 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326 
1327 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 	conn_rqst->associd.desc_len =
1329 			fcnvme_lsdesc_len(
1330 				sizeof(struct fcnvme_lsdesc_assoc_id));
1331 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 	conn_rqst->connect_cmd.desc_tag =
1333 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 	conn_rqst->connect_cmd.desc_len =
1335 			fcnvme_lsdesc_len(
1336 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1339 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340 
1341 	lsop->queue = queue;
1342 	lsreq->rqstaddr = conn_rqst;
1343 	lsreq->rqstlen = sizeof(*conn_rqst);
1344 	lsreq->rspaddr = conn_acc;
1345 	lsreq->rsplen = sizeof(*conn_acc);
1346 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347 
1348 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349 	if (ret)
1350 		goto out_free_buffer;
1351 
1352 	/* process connect LS completion */
1353 
1354 	/* validate the ACC response */
1355 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356 		fcret = VERR_LSACC;
1357 	else if (conn_acc->hdr.desc_list_len !=
1358 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 		fcret = VERR_CR_CONN_ACC_LEN;
1360 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 		fcret = VERR_LSDESC_RQST;
1362 	else if (conn_acc->hdr.rqst.desc_len !=
1363 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 		fcret = VERR_LSDESC_RQST_LEN;
1365 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 		fcret = VERR_CR_CONN;
1367 	else if (conn_acc->connectid.desc_tag !=
1368 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 		fcret = VERR_CONN_ID;
1370 	else if (conn_acc->connectid.desc_len !=
1371 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 		fcret = VERR_CONN_ID_LEN;
1373 
1374 	if (fcret) {
1375 		ret = -EBADF;
1376 		dev_err(ctrl->dev,
1377 			"q %d Create I/O Connection LS failed: %s\n",
1378 			queue->qnum, validation_errors[fcret]);
1379 	} else {
1380 		queue->connection_id =
1381 			be64_to_cpu(conn_acc->connectid.connection_id);
1382 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383 	}
1384 
1385 out_free_buffer:
1386 	kfree(lsop);
1387 out_no_memory:
1388 	if (ret)
1389 		dev_err(ctrl->dev,
1390 			"queue %d connect I/O queue failed (%d).\n",
1391 			queue->qnum, ret);
1392 	return ret;
1393 }
1394 
1395 static void
1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397 {
1398 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399 
1400 	__nvme_fc_finish_ls_req(lsop);
1401 
1402 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1403 
1404 	kfree(lsop);
1405 }
1406 
1407 /*
1408  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409  * the FC-NVME Association.  Terminating the association also
1410  * terminates the FC-NVME connections (per queue, both admin and io
1411  * queues) that are part of the association. E.g. things are torn
1412  * down, and the related FC-NVME Association ID and Connection IDs
1413  * become invalid.
1414  *
1415  * The behavior of the fc-nvme initiator is such that it's
1416  * understanding of the association and connections will implicitly
1417  * be torn down. The action is implicit as it may be due to a loss of
1418  * connectivity with the fc-nvme target, so you may never get a
1419  * response even if you tried.  As such, the action of this routine
1420  * is to asynchronously send the LS, ignore any results of the LS, and
1421  * continue on with terminating the association. If the fc-nvme target
1422  * is present and receives the LS, it too can tear down.
1423  */
1424 static void
1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426 {
1427 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 	struct nvmefc_ls_req_op *lsop;
1430 	struct nvmefc_ls_req *lsreq;
1431 	int ret;
1432 
1433 	lsop = kzalloc((sizeof(*lsop) +
1434 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436 	if (!lsop) {
1437 		dev_info(ctrl->ctrl.device,
1438 			"NVME-FC{%d}: send Disconnect Association "
1439 			"failed: ENOMEM\n",
1440 			ctrl->cnum);
1441 		return;
1442 	}
1443 
1444 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 	lsreq = &lsop->ls_req;
1447 	if (ctrl->lport->ops->lsrqst_priv_sz)
1448 		lsreq->private = (void *)&discon_acc[1];
1449 	else
1450 		lsreq->private = NULL;
1451 
1452 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 				ctrl->association_id);
1454 
1455 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 				nvme_fc_disconnect_assoc_done);
1457 	if (ret)
1458 		kfree(lsop);
1459 }
1460 
1461 static void
1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463 {
1464 	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 	struct nvme_fc_rport *rport = lsop->rport;
1466 	struct nvme_fc_lport *lport = rport->lport;
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave(&rport->lock, flags);
1470 	list_del(&lsop->lsrcv_list);
1471 	spin_unlock_irqrestore(&rport->lock, flags);
1472 
1473 	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477 
1478 	kfree(lsop);
1479 
1480 	nvme_fc_rport_put(rport);
1481 }
1482 
1483 static void
1484 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1485 {
1486 	struct nvme_fc_rport *rport = lsop->rport;
1487 	struct nvme_fc_lport *lport = rport->lport;
1488 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1489 	int ret;
1490 
1491 	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1492 				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1493 
1494 	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1495 				     lsop->lsrsp);
1496 	if (ret) {
1497 		dev_warn(lport->dev,
1498 			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1499 			w0->ls_cmd, ret);
1500 		nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1501 		return;
1502 	}
1503 }
1504 
1505 static struct nvme_fc_ctrl *
1506 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1507 		      struct nvmefc_ls_rcv_op *lsop)
1508 {
1509 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1510 					&lsop->rqstbuf->rq_dis_assoc;
1511 	struct nvme_fc_ctrl *ctrl, *ret = NULL;
1512 	struct nvmefc_ls_rcv_op *oldls = NULL;
1513 	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1514 	unsigned long flags;
1515 
1516 	spin_lock_irqsave(&rport->lock, flags);
1517 
1518 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1519 		if (!nvme_fc_ctrl_get(ctrl))
1520 			continue;
1521 		spin_lock(&ctrl->lock);
1522 		if (association_id == ctrl->association_id) {
1523 			oldls = ctrl->rcv_disconn;
1524 			ctrl->rcv_disconn = lsop;
1525 			ret = ctrl;
1526 		}
1527 		spin_unlock(&ctrl->lock);
1528 		if (ret)
1529 			/* leave the ctrl get reference */
1530 			break;
1531 		nvme_fc_ctrl_put(ctrl);
1532 	}
1533 
1534 	spin_unlock_irqrestore(&rport->lock, flags);
1535 
1536 	/* transmit a response for anything that was pending */
1537 	if (oldls) {
1538 		dev_info(rport->lport->dev,
1539 			"NVME-FC{%d}: Multiple Disconnect Association "
1540 			"LS's received\n", ctrl->cnum);
1541 		/* overwrite good response with bogus failure */
1542 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1543 						sizeof(*oldls->rspbuf),
1544 						rqst->w0.ls_cmd,
1545 						FCNVME_RJT_RC_UNAB,
1546 						FCNVME_RJT_EXP_NONE, 0);
1547 		nvme_fc_xmt_ls_rsp(oldls);
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 /*
1554  * returns true to mean LS handled and ls_rsp can be sent
1555  * returns false to defer ls_rsp xmt (will be done as part of
1556  *     association termination)
1557  */
1558 static bool
1559 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1560 {
1561 	struct nvme_fc_rport *rport = lsop->rport;
1562 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1563 					&lsop->rqstbuf->rq_dis_assoc;
1564 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1565 					&lsop->rspbuf->rsp_dis_assoc;
1566 	struct nvme_fc_ctrl *ctrl = NULL;
1567 	int ret = 0;
1568 
1569 	memset(acc, 0, sizeof(*acc));
1570 
1571 	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1572 	if (!ret) {
1573 		/* match an active association */
1574 		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1575 		if (!ctrl)
1576 			ret = VERR_NO_ASSOC;
1577 	}
1578 
1579 	if (ret) {
1580 		dev_info(rport->lport->dev,
1581 			"Disconnect LS failed: %s\n",
1582 			validation_errors[ret]);
1583 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1584 					sizeof(*acc), rqst->w0.ls_cmd,
1585 					(ret == VERR_NO_ASSOC) ?
1586 						FCNVME_RJT_RC_INV_ASSOC :
1587 						FCNVME_RJT_RC_LOGIC,
1588 					FCNVME_RJT_EXP_NONE, 0);
1589 		return true;
1590 	}
1591 
1592 	/* format an ACCept response */
1593 
1594 	lsop->lsrsp->rsplen = sizeof(*acc);
1595 
1596 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1597 			fcnvme_lsdesc_len(
1598 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1599 			FCNVME_LS_DISCONNECT_ASSOC);
1600 
1601 	/*
1602 	 * the transmit of the response will occur after the exchanges
1603 	 * for the association have been ABTS'd by
1604 	 * nvme_fc_delete_association().
1605 	 */
1606 
1607 	/* fail the association */
1608 	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1609 
1610 	/* release the reference taken by nvme_fc_match_disconn_ls() */
1611 	nvme_fc_ctrl_put(ctrl);
1612 
1613 	return false;
1614 }
1615 
1616 /*
1617  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1618  * returns true if a response should be sent afterward, false if rsp will
1619  * be sent asynchronously.
1620  */
1621 static bool
1622 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1623 {
1624 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1625 	bool ret = true;
1626 
1627 	lsop->lsrsp->nvme_fc_private = lsop;
1628 	lsop->lsrsp->rspbuf = lsop->rspbuf;
1629 	lsop->lsrsp->rspdma = lsop->rspdma;
1630 	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1631 	/* Be preventative. handlers will later set to valid length */
1632 	lsop->lsrsp->rsplen = 0;
1633 
1634 	/*
1635 	 * handlers:
1636 	 *   parse request input, execute the request, and format the
1637 	 *   LS response
1638 	 */
1639 	switch (w0->ls_cmd) {
1640 	case FCNVME_LS_DISCONNECT_ASSOC:
1641 		ret = nvme_fc_ls_disconnect_assoc(lsop);
1642 		break;
1643 	case FCNVME_LS_DISCONNECT_CONN:
1644 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1646 				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1647 		break;
1648 	case FCNVME_LS_CREATE_ASSOCIATION:
1649 	case FCNVME_LS_CREATE_CONNECTION:
1650 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1652 				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1653 		break;
1654 	default:
1655 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1656 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1657 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1658 		break;
1659 	}
1660 
1661 	return(ret);
1662 }
1663 
1664 static void
1665 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1666 {
1667 	struct nvme_fc_rport *rport =
1668 		container_of(work, struct nvme_fc_rport, lsrcv_work);
1669 	struct fcnvme_ls_rqst_w0 *w0;
1670 	struct nvmefc_ls_rcv_op *lsop;
1671 	unsigned long flags;
1672 	bool sendrsp;
1673 
1674 restart:
1675 	sendrsp = true;
1676 	spin_lock_irqsave(&rport->lock, flags);
1677 	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1678 		if (lsop->handled)
1679 			continue;
1680 
1681 		lsop->handled = true;
1682 		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1683 			spin_unlock_irqrestore(&rport->lock, flags);
1684 			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1685 		} else {
1686 			spin_unlock_irqrestore(&rport->lock, flags);
1687 			w0 = &lsop->rqstbuf->w0;
1688 			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1689 						lsop->rspbuf,
1690 						sizeof(*lsop->rspbuf),
1691 						w0->ls_cmd,
1692 						FCNVME_RJT_RC_UNAB,
1693 						FCNVME_RJT_EXP_NONE, 0);
1694 		}
1695 		if (sendrsp)
1696 			nvme_fc_xmt_ls_rsp(lsop);
1697 		goto restart;
1698 	}
1699 	spin_unlock_irqrestore(&rport->lock, flags);
1700 }
1701 
1702 /**
1703  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1704  *                       upon the reception of a NVME LS request.
1705  *
1706  * The nvme-fc layer will copy payload to an internal structure for
1707  * processing.  As such, upon completion of the routine, the LLDD may
1708  * immediately free/reuse the LS request buffer passed in the call.
1709  *
1710  * If this routine returns error, the LLDD should abort the exchange.
1711  *
1712  * @portptr:    pointer to the (registered) remote port that the LS
1713  *              was received from. The remoteport is associated with
1714  *              a specific localport.
1715  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1716  *              used to reference the exchange corresponding to the LS
1717  *              when issuing an ls response.
1718  * @lsreqbuf:   pointer to the buffer containing the LS Request
1719  * @lsreqbuf_len: length, in bytes, of the received LS request
1720  */
1721 int
1722 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1723 			struct nvmefc_ls_rsp *lsrsp,
1724 			void *lsreqbuf, u32 lsreqbuf_len)
1725 {
1726 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1727 	struct nvme_fc_lport *lport = rport->lport;
1728 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1729 	struct nvmefc_ls_rcv_op *lsop;
1730 	unsigned long flags;
1731 	int ret;
1732 
1733 	nvme_fc_rport_get(rport);
1734 
1735 	/* validate there's a routine to transmit a response */
1736 	if (!lport->ops->xmt_ls_rsp) {
1737 		dev_info(lport->dev,
1738 			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1739 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1740 				nvmefc_ls_names[w0->ls_cmd] : "");
1741 		ret = -EINVAL;
1742 		goto out_put;
1743 	}
1744 
1745 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1746 		dev_info(lport->dev,
1747 			"RCV %s LS failed: payload too large\n",
1748 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749 				nvmefc_ls_names[w0->ls_cmd] : "");
1750 		ret = -E2BIG;
1751 		goto out_put;
1752 	}
1753 
1754 	lsop = kzalloc(sizeof(*lsop) +
1755 			sizeof(union nvmefc_ls_requests) +
1756 			sizeof(union nvmefc_ls_responses),
1757 			GFP_KERNEL);
1758 	if (!lsop) {
1759 		dev_info(lport->dev,
1760 			"RCV %s LS failed: No memory\n",
1761 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1762 				nvmefc_ls_names[w0->ls_cmd] : "");
1763 		ret = -ENOMEM;
1764 		goto out_put;
1765 	}
1766 	lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1767 	lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1768 
1769 	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1770 					sizeof(*lsop->rspbuf),
1771 					DMA_TO_DEVICE);
1772 	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1773 		dev_info(lport->dev,
1774 			"RCV %s LS failed: DMA mapping failure\n",
1775 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1776 				nvmefc_ls_names[w0->ls_cmd] : "");
1777 		ret = -EFAULT;
1778 		goto out_free;
1779 	}
1780 
1781 	lsop->rport = rport;
1782 	lsop->lsrsp = lsrsp;
1783 
1784 	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1785 	lsop->rqstdatalen = lsreqbuf_len;
1786 
1787 	spin_lock_irqsave(&rport->lock, flags);
1788 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1789 		spin_unlock_irqrestore(&rport->lock, flags);
1790 		ret = -ENOTCONN;
1791 		goto out_unmap;
1792 	}
1793 	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1794 	spin_unlock_irqrestore(&rport->lock, flags);
1795 
1796 	schedule_work(&rport->lsrcv_work);
1797 
1798 	return 0;
1799 
1800 out_unmap:
1801 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1802 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1803 out_free:
1804 	kfree(lsop);
1805 out_put:
1806 	nvme_fc_rport_put(rport);
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1810 
1811 
1812 /* *********************** NVME Ctrl Routines **************************** */
1813 
1814 static void
1815 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1816 		struct nvme_fc_fcp_op *op)
1817 {
1818 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1819 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1820 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1821 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1822 
1823 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1824 }
1825 
1826 static void
1827 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1828 		unsigned int hctx_idx)
1829 {
1830 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1831 
1832 	return __nvme_fc_exit_request(set->driver_data, op);
1833 }
1834 
1835 static int
1836 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1837 {
1838 	unsigned long flags;
1839 	int opstate;
1840 
1841 	spin_lock_irqsave(&ctrl->lock, flags);
1842 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1843 	if (opstate != FCPOP_STATE_ACTIVE)
1844 		atomic_set(&op->state, opstate);
1845 	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1846 		op->flags |= FCOP_FLAGS_TERMIO;
1847 		ctrl->iocnt++;
1848 	}
1849 	spin_unlock_irqrestore(&ctrl->lock, flags);
1850 
1851 	if (opstate != FCPOP_STATE_ACTIVE)
1852 		return -ECANCELED;
1853 
1854 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1855 					&ctrl->rport->remoteport,
1856 					op->queue->lldd_handle,
1857 					&op->fcp_req);
1858 
1859 	return 0;
1860 }
1861 
1862 static void
1863 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1864 {
1865 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1866 	int i;
1867 
1868 	/* ensure we've initialized the ops once */
1869 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1870 		return;
1871 
1872 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1873 		__nvme_fc_abort_op(ctrl, aen_op);
1874 }
1875 
1876 static inline void
1877 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1878 		struct nvme_fc_fcp_op *op, int opstate)
1879 {
1880 	unsigned long flags;
1881 
1882 	if (opstate == FCPOP_STATE_ABORTED) {
1883 		spin_lock_irqsave(&ctrl->lock, flags);
1884 		if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1885 		    op->flags & FCOP_FLAGS_TERMIO) {
1886 			if (!--ctrl->iocnt)
1887 				wake_up(&ctrl->ioabort_wait);
1888 		}
1889 		spin_unlock_irqrestore(&ctrl->lock, flags);
1890 	}
1891 }
1892 
1893 static void
1894 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1895 {
1896 	struct nvme_fc_ctrl *ctrl =
1897 			container_of(work, struct nvme_fc_ctrl, ioerr_work);
1898 
1899 	nvme_fc_error_recovery(ctrl, "transport detected io error");
1900 }
1901 
1902 /*
1903  * nvme_fc_io_getuuid - Routine called to get the appid field
1904  * associated with request by the lldd
1905  * @req:IO request from nvme fc to driver
1906  * Returns: UUID if there is an appid associated with VM or
1907  * NULL if the user/libvirt has not set the appid to VM
1908  */
1909 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1910 {
1911 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1912 	struct request *rq = op->rq;
1913 
1914 	if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq->bio)
1915 		return NULL;
1916 	return blkcg_get_fc_appid(rq->bio);
1917 }
1918 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1919 
1920 static void
1921 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1922 {
1923 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1924 	struct request *rq = op->rq;
1925 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1926 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1927 	struct nvme_fc_queue *queue = op->queue;
1928 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1929 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1930 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1931 	union nvme_result result;
1932 	bool terminate_assoc = true;
1933 	int opstate;
1934 
1935 	/*
1936 	 * WARNING:
1937 	 * The current linux implementation of a nvme controller
1938 	 * allocates a single tag set for all io queues and sizes
1939 	 * the io queues to fully hold all possible tags. Thus, the
1940 	 * implementation does not reference or care about the sqhd
1941 	 * value as it never needs to use the sqhd/sqtail pointers
1942 	 * for submission pacing.
1943 	 *
1944 	 * This affects the FC-NVME implementation in two ways:
1945 	 * 1) As the value doesn't matter, we don't need to waste
1946 	 *    cycles extracting it from ERSPs and stamping it in the
1947 	 *    cases where the transport fabricates CQEs on successful
1948 	 *    completions.
1949 	 * 2) The FC-NVME implementation requires that delivery of
1950 	 *    ERSP completions are to go back to the nvme layer in order
1951 	 *    relative to the rsn, such that the sqhd value will always
1952 	 *    be "in order" for the nvme layer. As the nvme layer in
1953 	 *    linux doesn't care about sqhd, there's no need to return
1954 	 *    them in order.
1955 	 *
1956 	 * Additionally:
1957 	 * As the core nvme layer in linux currently does not look at
1958 	 * every field in the cqe - in cases where the FC transport must
1959 	 * fabricate a CQE, the following fields will not be set as they
1960 	 * are not referenced:
1961 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1962 	 *
1963 	 * Failure or error of an individual i/o, in a transport
1964 	 * detected fashion unrelated to the nvme completion status,
1965 	 * potentially cause the initiator and target sides to get out
1966 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1967 	 * Per FC-NVME spec, failure of an individual command requires
1968 	 * the connection to be terminated, which in turn requires the
1969 	 * association to be terminated.
1970 	 */
1971 
1972 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1973 
1974 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1975 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1976 
1977 	if (opstate == FCPOP_STATE_ABORTED)
1978 		status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1979 	else if (freq->status) {
1980 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1981 		dev_info(ctrl->ctrl.device,
1982 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1983 			ctrl->cnum, freq->status);
1984 	}
1985 
1986 	/*
1987 	 * For the linux implementation, if we have an unsuccesful
1988 	 * status, they blk-mq layer can typically be called with the
1989 	 * non-zero status and the content of the cqe isn't important.
1990 	 */
1991 	if (status)
1992 		goto done;
1993 
1994 	/*
1995 	 * command completed successfully relative to the wire
1996 	 * protocol. However, validate anything received and
1997 	 * extract the status and result from the cqe (create it
1998 	 * where necessary).
1999 	 */
2000 
2001 	switch (freq->rcv_rsplen) {
2002 
2003 	case 0:
2004 	case NVME_FC_SIZEOF_ZEROS_RSP:
2005 		/*
2006 		 * No response payload or 12 bytes of payload (which
2007 		 * should all be zeros) are considered successful and
2008 		 * no payload in the CQE by the transport.
2009 		 */
2010 		if (freq->transferred_length !=
2011 		    be32_to_cpu(op->cmd_iu.data_len)) {
2012 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2013 			dev_info(ctrl->ctrl.device,
2014 				"NVME-FC{%d}: io failed due to bad transfer "
2015 				"length: %d vs expected %d\n",
2016 				ctrl->cnum, freq->transferred_length,
2017 				be32_to_cpu(op->cmd_iu.data_len));
2018 			goto done;
2019 		}
2020 		result.u64 = 0;
2021 		break;
2022 
2023 	case sizeof(struct nvme_fc_ersp_iu):
2024 		/*
2025 		 * The ERSP IU contains a full completion with CQE.
2026 		 * Validate ERSP IU and look at cqe.
2027 		 */
2028 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2029 					(freq->rcv_rsplen / 4) ||
2030 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
2031 					freq->transferred_length ||
2032 			     op->rsp_iu.ersp_result ||
2033 			     sqe->common.command_id != cqe->command_id)) {
2034 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2035 			dev_info(ctrl->ctrl.device,
2036 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2037 				"iu len %d, xfr len %d vs %d, status code "
2038 				"%d, cmdid %d vs %d\n",
2039 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2040 				be32_to_cpu(op->rsp_iu.xfrd_len),
2041 				freq->transferred_length,
2042 				op->rsp_iu.ersp_result,
2043 				sqe->common.command_id,
2044 				cqe->command_id);
2045 			goto done;
2046 		}
2047 		result = cqe->result;
2048 		status = cqe->status;
2049 		break;
2050 
2051 	default:
2052 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2053 		dev_info(ctrl->ctrl.device,
2054 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2055 			"len %d\n",
2056 			ctrl->cnum, freq->rcv_rsplen);
2057 		goto done;
2058 	}
2059 
2060 	terminate_assoc = false;
2061 
2062 done:
2063 	if (op->flags & FCOP_FLAGS_AEN) {
2064 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2065 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2066 		atomic_set(&op->state, FCPOP_STATE_IDLE);
2067 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2068 		nvme_fc_ctrl_put(ctrl);
2069 		goto check_error;
2070 	}
2071 
2072 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2073 	if (!nvme_try_complete_req(rq, status, result))
2074 		nvme_fc_complete_rq(rq);
2075 
2076 check_error:
2077 	if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2078 		queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2079 }
2080 
2081 static int
2082 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2083 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2084 		struct request *rq, u32 rqno)
2085 {
2086 	struct nvme_fcp_op_w_sgl *op_w_sgl =
2087 		container_of(op, typeof(*op_w_sgl), op);
2088 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2089 	int ret = 0;
2090 
2091 	memset(op, 0, sizeof(*op));
2092 	op->fcp_req.cmdaddr = &op->cmd_iu;
2093 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2094 	op->fcp_req.rspaddr = &op->rsp_iu;
2095 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2096 	op->fcp_req.done = nvme_fc_fcpio_done;
2097 	op->ctrl = ctrl;
2098 	op->queue = queue;
2099 	op->rq = rq;
2100 	op->rqno = rqno;
2101 
2102 	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2103 	cmdiu->fc_id = NVME_CMD_FC_ID;
2104 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2105 	if (queue->qnum)
2106 		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2107 					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2108 	else
2109 		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2110 
2111 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2112 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2113 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2114 		dev_err(ctrl->dev,
2115 			"FCP Op failed - cmdiu dma mapping failed.\n");
2116 		ret = -EFAULT;
2117 		goto out_on_error;
2118 	}
2119 
2120 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2121 				&op->rsp_iu, sizeof(op->rsp_iu),
2122 				DMA_FROM_DEVICE);
2123 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2124 		dev_err(ctrl->dev,
2125 			"FCP Op failed - rspiu dma mapping failed.\n");
2126 		ret = -EFAULT;
2127 	}
2128 
2129 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2130 out_on_error:
2131 	return ret;
2132 }
2133 
2134 static int
2135 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2136 		unsigned int hctx_idx, unsigned int numa_node)
2137 {
2138 	struct nvme_fc_ctrl *ctrl = set->driver_data;
2139 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2140 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2141 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2142 	int res;
2143 
2144 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2145 	if (res)
2146 		return res;
2147 	op->op.fcp_req.first_sgl = op->sgl;
2148 	op->op.fcp_req.private = &op->priv[0];
2149 	nvme_req(rq)->ctrl = &ctrl->ctrl;
2150 	nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2151 	return res;
2152 }
2153 
2154 static int
2155 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2156 {
2157 	struct nvme_fc_fcp_op *aen_op;
2158 	struct nvme_fc_cmd_iu *cmdiu;
2159 	struct nvme_command *sqe;
2160 	void *private = NULL;
2161 	int i, ret;
2162 
2163 	aen_op = ctrl->aen_ops;
2164 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2165 		if (ctrl->lport->ops->fcprqst_priv_sz) {
2166 			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2167 						GFP_KERNEL);
2168 			if (!private)
2169 				return -ENOMEM;
2170 		}
2171 
2172 		cmdiu = &aen_op->cmd_iu;
2173 		sqe = &cmdiu->sqe;
2174 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2175 				aen_op, (struct request *)NULL,
2176 				(NVME_AQ_BLK_MQ_DEPTH + i));
2177 		if (ret) {
2178 			kfree(private);
2179 			return ret;
2180 		}
2181 
2182 		aen_op->flags = FCOP_FLAGS_AEN;
2183 		aen_op->fcp_req.private = private;
2184 
2185 		memset(sqe, 0, sizeof(*sqe));
2186 		sqe->common.opcode = nvme_admin_async_event;
2187 		/* Note: core layer may overwrite the sqe.command_id value */
2188 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2189 	}
2190 	return 0;
2191 }
2192 
2193 static void
2194 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2195 {
2196 	struct nvme_fc_fcp_op *aen_op;
2197 	int i;
2198 
2199 	cancel_work_sync(&ctrl->ctrl.async_event_work);
2200 	aen_op = ctrl->aen_ops;
2201 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2202 		__nvme_fc_exit_request(ctrl, aen_op);
2203 
2204 		kfree(aen_op->fcp_req.private);
2205 		aen_op->fcp_req.private = NULL;
2206 	}
2207 }
2208 
2209 static inline void
2210 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2211 		unsigned int qidx)
2212 {
2213 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2214 
2215 	hctx->driver_data = queue;
2216 	queue->hctx = hctx;
2217 }
2218 
2219 static int
2220 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2221 		unsigned int hctx_idx)
2222 {
2223 	struct nvme_fc_ctrl *ctrl = data;
2224 
2225 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2226 
2227 	return 0;
2228 }
2229 
2230 static int
2231 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2232 		unsigned int hctx_idx)
2233 {
2234 	struct nvme_fc_ctrl *ctrl = data;
2235 
2236 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2237 
2238 	return 0;
2239 }
2240 
2241 static void
2242 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2243 {
2244 	struct nvme_fc_queue *queue;
2245 
2246 	queue = &ctrl->queues[idx];
2247 	memset(queue, 0, sizeof(*queue));
2248 	queue->ctrl = ctrl;
2249 	queue->qnum = idx;
2250 	atomic_set(&queue->csn, 0);
2251 	queue->dev = ctrl->dev;
2252 
2253 	if (idx > 0)
2254 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2255 	else
2256 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2257 
2258 	/*
2259 	 * Considered whether we should allocate buffers for all SQEs
2260 	 * and CQEs and dma map them - mapping their respective entries
2261 	 * into the request structures (kernel vm addr and dma address)
2262 	 * thus the driver could use the buffers/mappings directly.
2263 	 * It only makes sense if the LLDD would use them for its
2264 	 * messaging api. It's very unlikely most adapter api's would use
2265 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2266 	 * structures were used instead.
2267 	 */
2268 }
2269 
2270 /*
2271  * This routine terminates a queue at the transport level.
2272  * The transport has already ensured that all outstanding ios on
2273  * the queue have been terminated.
2274  * The transport will send a Disconnect LS request to terminate
2275  * the queue's connection. Termination of the admin queue will also
2276  * terminate the association at the target.
2277  */
2278 static void
2279 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2280 {
2281 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2282 		return;
2283 
2284 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2285 	/*
2286 	 * Current implementation never disconnects a single queue.
2287 	 * It always terminates a whole association. So there is never
2288 	 * a disconnect(queue) LS sent to the target.
2289 	 */
2290 
2291 	queue->connection_id = 0;
2292 	atomic_set(&queue->csn, 0);
2293 }
2294 
2295 static void
2296 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2297 	struct nvme_fc_queue *queue, unsigned int qidx)
2298 {
2299 	if (ctrl->lport->ops->delete_queue)
2300 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2301 				queue->lldd_handle);
2302 	queue->lldd_handle = NULL;
2303 }
2304 
2305 static void
2306 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2307 {
2308 	int i;
2309 
2310 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2311 		nvme_fc_free_queue(&ctrl->queues[i]);
2312 }
2313 
2314 static int
2315 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2316 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2317 {
2318 	int ret = 0;
2319 
2320 	queue->lldd_handle = NULL;
2321 	if (ctrl->lport->ops->create_queue)
2322 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2323 				qidx, qsize, &queue->lldd_handle);
2324 
2325 	return ret;
2326 }
2327 
2328 static void
2329 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2330 {
2331 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2332 	int i;
2333 
2334 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2335 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2336 }
2337 
2338 static int
2339 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2340 {
2341 	struct nvme_fc_queue *queue = &ctrl->queues[1];
2342 	int i, ret;
2343 
2344 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2345 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2346 		if (ret)
2347 			goto delete_queues;
2348 	}
2349 
2350 	return 0;
2351 
2352 delete_queues:
2353 	for (; i > 0; i--)
2354 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2355 	return ret;
2356 }
2357 
2358 static int
2359 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2360 {
2361 	int i, ret = 0;
2362 
2363 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2364 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2365 					(qsize / 5));
2366 		if (ret)
2367 			break;
2368 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2369 		if (ret)
2370 			break;
2371 
2372 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2373 	}
2374 
2375 	return ret;
2376 }
2377 
2378 static void
2379 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2380 {
2381 	int i;
2382 
2383 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2384 		nvme_fc_init_queue(ctrl, i);
2385 }
2386 
2387 static void
2388 nvme_fc_ctrl_free(struct kref *ref)
2389 {
2390 	struct nvme_fc_ctrl *ctrl =
2391 		container_of(ref, struct nvme_fc_ctrl, ref);
2392 	unsigned long flags;
2393 
2394 	if (ctrl->ctrl.tagset) {
2395 		blk_mq_destroy_queue(ctrl->ctrl.connect_q);
2396 		blk_mq_free_tag_set(&ctrl->tag_set);
2397 	}
2398 
2399 	/* remove from rport list */
2400 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2401 	list_del(&ctrl->ctrl_list);
2402 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2403 
2404 	nvme_start_admin_queue(&ctrl->ctrl);
2405 	blk_mq_destroy_queue(ctrl->ctrl.admin_q);
2406 	blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
2407 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2408 
2409 	kfree(ctrl->queues);
2410 
2411 	put_device(ctrl->dev);
2412 	nvme_fc_rport_put(ctrl->rport);
2413 
2414 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2415 	if (ctrl->ctrl.opts)
2416 		nvmf_free_options(ctrl->ctrl.opts);
2417 	kfree(ctrl);
2418 }
2419 
2420 static void
2421 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2422 {
2423 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2424 }
2425 
2426 static int
2427 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2428 {
2429 	return kref_get_unless_zero(&ctrl->ref);
2430 }
2431 
2432 /*
2433  * All accesses from nvme core layer done - can now free the
2434  * controller. Called after last nvme_put_ctrl() call
2435  */
2436 static void
2437 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2438 {
2439 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2440 
2441 	WARN_ON(nctrl != &ctrl->ctrl);
2442 
2443 	nvme_fc_ctrl_put(ctrl);
2444 }
2445 
2446 /*
2447  * This routine is used by the transport when it needs to find active
2448  * io on a queue that is to be terminated. The transport uses
2449  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2450  * this routine to kill them on a 1 by 1 basis.
2451  *
2452  * As FC allocates FC exchange for each io, the transport must contact
2453  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2454  * After terminating the exchange the LLDD will call the transport's
2455  * normal io done path for the request, but it will have an aborted
2456  * status. The done path will return the io request back to the block
2457  * layer with an error status.
2458  */
2459 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2460 {
2461 	struct nvme_ctrl *nctrl = data;
2462 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2463 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2464 
2465 	op->nreq.flags |= NVME_REQ_CANCELLED;
2466 	__nvme_fc_abort_op(ctrl, op);
2467 	return true;
2468 }
2469 
2470 /*
2471  * This routine runs through all outstanding commands on the association
2472  * and aborts them.  This routine is typically be called by the
2473  * delete_association routine. It is also called due to an error during
2474  * reconnect. In that scenario, it is most likely a command that initializes
2475  * the controller, including fabric Connect commands on io queues, that
2476  * may have timed out or failed thus the io must be killed for the connect
2477  * thread to see the error.
2478  */
2479 static void
2480 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2481 {
2482 	int q;
2483 
2484 	/*
2485 	 * if aborting io, the queues are no longer good, mark them
2486 	 * all as not live.
2487 	 */
2488 	if (ctrl->ctrl.queue_count > 1) {
2489 		for (q = 1; q < ctrl->ctrl.queue_count; q++)
2490 			clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2491 	}
2492 	clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2493 
2494 	/*
2495 	 * If io queues are present, stop them and terminate all outstanding
2496 	 * ios on them. As FC allocates FC exchange for each io, the
2497 	 * transport must contact the LLDD to terminate the exchange,
2498 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2499 	 * to tell us what io's are busy and invoke a transport routine
2500 	 * to kill them with the LLDD.  After terminating the exchange
2501 	 * the LLDD will call the transport's normal io done path, but it
2502 	 * will have an aborted status. The done path will return the
2503 	 * io requests back to the block layer as part of normal completions
2504 	 * (but with error status).
2505 	 */
2506 	if (ctrl->ctrl.queue_count > 1) {
2507 		nvme_stop_queues(&ctrl->ctrl);
2508 		nvme_sync_io_queues(&ctrl->ctrl);
2509 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2510 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2511 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2512 		if (start_queues)
2513 			nvme_start_queues(&ctrl->ctrl);
2514 	}
2515 
2516 	/*
2517 	 * Other transports, which don't have link-level contexts bound
2518 	 * to sqe's, would try to gracefully shutdown the controller by
2519 	 * writing the registers for shutdown and polling (call
2520 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2521 	 * just aborted and we will wait on those contexts, and given
2522 	 * there was no indication of how live the controlelr is on the
2523 	 * link, don't send more io to create more contexts for the
2524 	 * shutdown. Let the controller fail via keepalive failure if
2525 	 * its still present.
2526 	 */
2527 
2528 	/*
2529 	 * clean up the admin queue. Same thing as above.
2530 	 */
2531 	nvme_stop_admin_queue(&ctrl->ctrl);
2532 	blk_sync_queue(ctrl->ctrl.admin_q);
2533 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2534 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2535 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2536 	if (start_queues)
2537 		nvme_start_admin_queue(&ctrl->ctrl);
2538 }
2539 
2540 static void
2541 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2542 {
2543 	/*
2544 	 * if an error (io timeout, etc) while (re)connecting, the remote
2545 	 * port requested terminating of the association (disconnect_ls)
2546 	 * or an error (timeout or abort) occurred on an io while creating
2547 	 * the controller.  Abort any ios on the association and let the
2548 	 * create_association error path resolve things.
2549 	 */
2550 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2551 		__nvme_fc_abort_outstanding_ios(ctrl, true);
2552 		set_bit(ASSOC_FAILED, &ctrl->flags);
2553 		return;
2554 	}
2555 
2556 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2557 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2558 		return;
2559 
2560 	dev_warn(ctrl->ctrl.device,
2561 		"NVME-FC{%d}: transport association event: %s\n",
2562 		ctrl->cnum, errmsg);
2563 	dev_warn(ctrl->ctrl.device,
2564 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2565 
2566 	nvme_reset_ctrl(&ctrl->ctrl);
2567 }
2568 
2569 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2570 {
2571 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2572 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2573 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2574 	struct nvme_command *sqe = &cmdiu->sqe;
2575 
2576 	/*
2577 	 * Attempt to abort the offending command. Command completion
2578 	 * will detect the aborted io and will fail the connection.
2579 	 */
2580 	dev_info(ctrl->ctrl.device,
2581 		"NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2582 		"x%08x/x%08x\n",
2583 		ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2584 		sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2585 	if (__nvme_fc_abort_op(ctrl, op))
2586 		nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2587 
2588 	/*
2589 	 * the io abort has been initiated. Have the reset timer
2590 	 * restarted and the abort completion will complete the io
2591 	 * shortly. Avoids a synchronous wait while the abort finishes.
2592 	 */
2593 	return BLK_EH_RESET_TIMER;
2594 }
2595 
2596 static int
2597 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2598 		struct nvme_fc_fcp_op *op)
2599 {
2600 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2601 	int ret;
2602 
2603 	freq->sg_cnt = 0;
2604 
2605 	if (!blk_rq_nr_phys_segments(rq))
2606 		return 0;
2607 
2608 	freq->sg_table.sgl = freq->first_sgl;
2609 	ret = sg_alloc_table_chained(&freq->sg_table,
2610 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2611 			NVME_INLINE_SG_CNT);
2612 	if (ret)
2613 		return -ENOMEM;
2614 
2615 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2616 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2617 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2618 				op->nents, rq_dma_dir(rq));
2619 	if (unlikely(freq->sg_cnt <= 0)) {
2620 		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2621 		freq->sg_cnt = 0;
2622 		return -EFAULT;
2623 	}
2624 
2625 	/*
2626 	 * TODO: blk_integrity_rq(rq)  for DIF
2627 	 */
2628 	return 0;
2629 }
2630 
2631 static void
2632 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2633 		struct nvme_fc_fcp_op *op)
2634 {
2635 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2636 
2637 	if (!freq->sg_cnt)
2638 		return;
2639 
2640 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2641 			rq_dma_dir(rq));
2642 
2643 	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2644 
2645 	freq->sg_cnt = 0;
2646 }
2647 
2648 /*
2649  * In FC, the queue is a logical thing. At transport connect, the target
2650  * creates its "queue" and returns a handle that is to be given to the
2651  * target whenever it posts something to the corresponding SQ.  When an
2652  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2653  * command contained within the SQE, an io, and assigns a FC exchange
2654  * to it. The SQE and the associated SQ handle are sent in the initial
2655  * CMD IU sents on the exchange. All transfers relative to the io occur
2656  * as part of the exchange.  The CQE is the last thing for the io,
2657  * which is transferred (explicitly or implicitly) with the RSP IU
2658  * sent on the exchange. After the CQE is received, the FC exchange is
2659  * terminaed and the Exchange may be used on a different io.
2660  *
2661  * The transport to LLDD api has the transport making a request for a
2662  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2663  * resource and transfers the command. The LLDD will then process all
2664  * steps to complete the io. Upon completion, the transport done routine
2665  * is called.
2666  *
2667  * So - while the operation is outstanding to the LLDD, there is a link
2668  * level FC exchange resource that is also outstanding. This must be
2669  * considered in all cleanup operations.
2670  */
2671 static blk_status_t
2672 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2673 	struct nvme_fc_fcp_op *op, u32 data_len,
2674 	enum nvmefc_fcp_datadir	io_dir)
2675 {
2676 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2677 	struct nvme_command *sqe = &cmdiu->sqe;
2678 	int ret, opstate;
2679 
2680 	/*
2681 	 * before attempting to send the io, check to see if we believe
2682 	 * the target device is present
2683 	 */
2684 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2685 		return BLK_STS_RESOURCE;
2686 
2687 	if (!nvme_fc_ctrl_get(ctrl))
2688 		return BLK_STS_IOERR;
2689 
2690 	/* format the FC-NVME CMD IU and fcp_req */
2691 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2692 	cmdiu->data_len = cpu_to_be32(data_len);
2693 	switch (io_dir) {
2694 	case NVMEFC_FCP_WRITE:
2695 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2696 		break;
2697 	case NVMEFC_FCP_READ:
2698 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2699 		break;
2700 	case NVMEFC_FCP_NODATA:
2701 		cmdiu->flags = 0;
2702 		break;
2703 	}
2704 	op->fcp_req.payload_length = data_len;
2705 	op->fcp_req.io_dir = io_dir;
2706 	op->fcp_req.transferred_length = 0;
2707 	op->fcp_req.rcv_rsplen = 0;
2708 	op->fcp_req.status = NVME_SC_SUCCESS;
2709 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2710 
2711 	/*
2712 	 * validate per fabric rules, set fields mandated by fabric spec
2713 	 * as well as those by FC-NVME spec.
2714 	 */
2715 	WARN_ON_ONCE(sqe->common.metadata);
2716 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2717 
2718 	/*
2719 	 * format SQE DPTR field per FC-NVME rules:
2720 	 *    type=0x5     Transport SGL Data Block Descriptor
2721 	 *    subtype=0xA  Transport-specific value
2722 	 *    address=0
2723 	 *    length=length of the data series
2724 	 */
2725 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2726 					NVME_SGL_FMT_TRANSPORT_A;
2727 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2728 	sqe->rw.dptr.sgl.addr = 0;
2729 
2730 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2731 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2732 		if (ret < 0) {
2733 			nvme_cleanup_cmd(op->rq);
2734 			nvme_fc_ctrl_put(ctrl);
2735 			if (ret == -ENOMEM || ret == -EAGAIN)
2736 				return BLK_STS_RESOURCE;
2737 			return BLK_STS_IOERR;
2738 		}
2739 	}
2740 
2741 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2742 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2743 
2744 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2745 
2746 	if (!(op->flags & FCOP_FLAGS_AEN))
2747 		blk_mq_start_request(op->rq);
2748 
2749 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2750 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2751 					&ctrl->rport->remoteport,
2752 					queue->lldd_handle, &op->fcp_req);
2753 
2754 	if (ret) {
2755 		/*
2756 		 * If the lld fails to send the command is there an issue with
2757 		 * the csn value?  If the command that fails is the Connect,
2758 		 * no - as the connection won't be live.  If it is a command
2759 		 * post-connect, it's possible a gap in csn may be created.
2760 		 * Does this matter?  As Linux initiators don't send fused
2761 		 * commands, no.  The gap would exist, but as there's nothing
2762 		 * that depends on csn order to be delivered on the target
2763 		 * side, it shouldn't hurt.  It would be difficult for a
2764 		 * target to even detect the csn gap as it has no idea when the
2765 		 * cmd with the csn was supposed to arrive.
2766 		 */
2767 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2768 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2769 
2770 		if (!(op->flags & FCOP_FLAGS_AEN)) {
2771 			nvme_fc_unmap_data(ctrl, op->rq, op);
2772 			nvme_cleanup_cmd(op->rq);
2773 		}
2774 
2775 		nvme_fc_ctrl_put(ctrl);
2776 
2777 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2778 				ret != -EBUSY)
2779 			return BLK_STS_IOERR;
2780 
2781 		return BLK_STS_RESOURCE;
2782 	}
2783 
2784 	return BLK_STS_OK;
2785 }
2786 
2787 static blk_status_t
2788 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2789 			const struct blk_mq_queue_data *bd)
2790 {
2791 	struct nvme_ns *ns = hctx->queue->queuedata;
2792 	struct nvme_fc_queue *queue = hctx->driver_data;
2793 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2794 	struct request *rq = bd->rq;
2795 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2796 	enum nvmefc_fcp_datadir	io_dir;
2797 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2798 	u32 data_len;
2799 	blk_status_t ret;
2800 
2801 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2802 	    !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2803 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2804 
2805 	ret = nvme_setup_cmd(ns, rq);
2806 	if (ret)
2807 		return ret;
2808 
2809 	/*
2810 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2811 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2812 	 * there is no actual payload to be transferred.
2813 	 * To get it right, key data transmission on there being 1 or
2814 	 * more physical segments in the sg list. If there is no
2815 	 * physical segments, there is no payload.
2816 	 */
2817 	if (blk_rq_nr_phys_segments(rq)) {
2818 		data_len = blk_rq_payload_bytes(rq);
2819 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2820 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2821 	} else {
2822 		data_len = 0;
2823 		io_dir = NVMEFC_FCP_NODATA;
2824 	}
2825 
2826 
2827 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2828 }
2829 
2830 static void
2831 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2832 {
2833 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2834 	struct nvme_fc_fcp_op *aen_op;
2835 	blk_status_t ret;
2836 
2837 	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2838 		return;
2839 
2840 	aen_op = &ctrl->aen_ops[0];
2841 
2842 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2843 					NVMEFC_FCP_NODATA);
2844 	if (ret)
2845 		dev_err(ctrl->ctrl.device,
2846 			"failed async event work\n");
2847 }
2848 
2849 static void
2850 nvme_fc_complete_rq(struct request *rq)
2851 {
2852 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2853 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2854 
2855 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2856 	op->flags &= ~FCOP_FLAGS_TERMIO;
2857 
2858 	nvme_fc_unmap_data(ctrl, rq, op);
2859 	nvme_complete_rq(rq);
2860 	nvme_fc_ctrl_put(ctrl);
2861 }
2862 
2863 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2864 {
2865 	struct nvme_fc_ctrl *ctrl = set->driver_data;
2866 	int i;
2867 
2868 	for (i = 0; i < set->nr_maps; i++) {
2869 		struct blk_mq_queue_map *map = &set->map[i];
2870 
2871 		if (!map->nr_queues) {
2872 			WARN_ON(i == HCTX_TYPE_DEFAULT);
2873 			continue;
2874 		}
2875 
2876 		/* Call LLDD map queue functionality if defined */
2877 		if (ctrl->lport->ops->map_queues)
2878 			ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2879 						     map);
2880 		else
2881 			blk_mq_map_queues(map);
2882 	}
2883 }
2884 
2885 static const struct blk_mq_ops nvme_fc_mq_ops = {
2886 	.queue_rq	= nvme_fc_queue_rq,
2887 	.complete	= nvme_fc_complete_rq,
2888 	.init_request	= nvme_fc_init_request,
2889 	.exit_request	= nvme_fc_exit_request,
2890 	.init_hctx	= nvme_fc_init_hctx,
2891 	.timeout	= nvme_fc_timeout,
2892 	.map_queues	= nvme_fc_map_queues,
2893 };
2894 
2895 static int
2896 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2897 {
2898 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2899 	unsigned int nr_io_queues;
2900 	int ret;
2901 
2902 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2903 				ctrl->lport->ops->max_hw_queues);
2904 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2905 	if (ret) {
2906 		dev_info(ctrl->ctrl.device,
2907 			"set_queue_count failed: %d\n", ret);
2908 		return ret;
2909 	}
2910 
2911 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2912 	if (!nr_io_queues)
2913 		return 0;
2914 
2915 	nvme_fc_init_io_queues(ctrl);
2916 
2917 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2918 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2919 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2920 	ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2921 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2922 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2923 	ctrl->tag_set.cmd_size =
2924 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2925 			    ctrl->lport->ops->fcprqst_priv_sz);
2926 	ctrl->tag_set.driver_data = ctrl;
2927 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2928 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2929 
2930 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2931 	if (ret)
2932 		return ret;
2933 
2934 	ctrl->ctrl.tagset = &ctrl->tag_set;
2935 
2936 	ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
2937 	if (ret)
2938 		goto out_free_tag_set;
2939 
2940 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2941 	if (ret)
2942 		goto out_cleanup_blk_queue;
2943 
2944 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2945 	if (ret)
2946 		goto out_delete_hw_queues;
2947 
2948 	ctrl->ioq_live = true;
2949 
2950 	return 0;
2951 
2952 out_delete_hw_queues:
2953 	nvme_fc_delete_hw_io_queues(ctrl);
2954 out_cleanup_blk_queue:
2955 	blk_mq_destroy_queue(ctrl->ctrl.connect_q);
2956 out_free_tag_set:
2957 	blk_mq_free_tag_set(&ctrl->tag_set);
2958 	nvme_fc_free_io_queues(ctrl);
2959 
2960 	/* force put free routine to ignore io queues */
2961 	ctrl->ctrl.tagset = NULL;
2962 
2963 	return ret;
2964 }
2965 
2966 static int
2967 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2968 {
2969 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2970 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2971 	unsigned int nr_io_queues;
2972 	int ret;
2973 
2974 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2975 				ctrl->lport->ops->max_hw_queues);
2976 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2977 	if (ret) {
2978 		dev_info(ctrl->ctrl.device,
2979 			"set_queue_count failed: %d\n", ret);
2980 		return ret;
2981 	}
2982 
2983 	if (!nr_io_queues && prior_ioq_cnt) {
2984 		dev_info(ctrl->ctrl.device,
2985 			"Fail Reconnect: At least 1 io queue "
2986 			"required (was %d)\n", prior_ioq_cnt);
2987 		return -ENOSPC;
2988 	}
2989 
2990 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2991 	/* check for io queues existing */
2992 	if (ctrl->ctrl.queue_count == 1)
2993 		return 0;
2994 
2995 	if (prior_ioq_cnt != nr_io_queues) {
2996 		dev_info(ctrl->ctrl.device,
2997 			"reconnect: revising io queue count from %d to %d\n",
2998 			prior_ioq_cnt, nr_io_queues);
2999 		blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
3000 	}
3001 
3002 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3003 	if (ret)
3004 		goto out_free_io_queues;
3005 
3006 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3007 	if (ret)
3008 		goto out_delete_hw_queues;
3009 
3010 	return 0;
3011 
3012 out_delete_hw_queues:
3013 	nvme_fc_delete_hw_io_queues(ctrl);
3014 out_free_io_queues:
3015 	nvme_fc_free_io_queues(ctrl);
3016 	return ret;
3017 }
3018 
3019 static void
3020 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3021 {
3022 	struct nvme_fc_lport *lport = rport->lport;
3023 
3024 	atomic_inc(&lport->act_rport_cnt);
3025 }
3026 
3027 static void
3028 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3029 {
3030 	struct nvme_fc_lport *lport = rport->lport;
3031 	u32 cnt;
3032 
3033 	cnt = atomic_dec_return(&lport->act_rport_cnt);
3034 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3035 		lport->ops->localport_delete(&lport->localport);
3036 }
3037 
3038 static int
3039 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3040 {
3041 	struct nvme_fc_rport *rport = ctrl->rport;
3042 	u32 cnt;
3043 
3044 	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3045 		return 1;
3046 
3047 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3048 	if (cnt == 1)
3049 		nvme_fc_rport_active_on_lport(rport);
3050 
3051 	return 0;
3052 }
3053 
3054 static int
3055 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3056 {
3057 	struct nvme_fc_rport *rport = ctrl->rport;
3058 	struct nvme_fc_lport *lport = rport->lport;
3059 	u32 cnt;
3060 
3061 	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3062 
3063 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3064 	if (cnt == 0) {
3065 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3066 			lport->ops->remoteport_delete(&rport->remoteport);
3067 		nvme_fc_rport_inactive_on_lport(rport);
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 /*
3074  * This routine restarts the controller on the host side, and
3075  * on the link side, recreates the controller association.
3076  */
3077 static int
3078 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3079 {
3080 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3081 	struct nvmefc_ls_rcv_op *disls = NULL;
3082 	unsigned long flags;
3083 	int ret;
3084 	bool changed;
3085 
3086 	++ctrl->ctrl.nr_reconnects;
3087 
3088 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3089 		return -ENODEV;
3090 
3091 	if (nvme_fc_ctlr_active_on_rport(ctrl))
3092 		return -ENOTUNIQ;
3093 
3094 	dev_info(ctrl->ctrl.device,
3095 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
3096 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
3097 		ctrl->cnum, ctrl->lport->localport.port_name,
3098 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3099 
3100 	clear_bit(ASSOC_FAILED, &ctrl->flags);
3101 
3102 	/*
3103 	 * Create the admin queue
3104 	 */
3105 
3106 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3107 				NVME_AQ_DEPTH);
3108 	if (ret)
3109 		goto out_free_queue;
3110 
3111 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3112 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3113 	if (ret)
3114 		goto out_delete_hw_queue;
3115 
3116 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3117 	if (ret)
3118 		goto out_disconnect_admin_queue;
3119 
3120 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3121 
3122 	/*
3123 	 * Check controller capabilities
3124 	 *
3125 	 * todo:- add code to check if ctrl attributes changed from
3126 	 * prior connection values
3127 	 */
3128 
3129 	ret = nvme_enable_ctrl(&ctrl->ctrl);
3130 	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3131 		goto out_disconnect_admin_queue;
3132 
3133 	ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3134 	ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3135 						(ilog2(SZ_4K) - 9);
3136 
3137 	nvme_start_admin_queue(&ctrl->ctrl);
3138 
3139 	ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3140 	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3141 		goto out_disconnect_admin_queue;
3142 
3143 	/* sanity checks */
3144 
3145 	/* FC-NVME does not have other data in the capsule */
3146 	if (ctrl->ctrl.icdoff) {
3147 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3148 				ctrl->ctrl.icdoff);
3149 		ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3150 		goto out_disconnect_admin_queue;
3151 	}
3152 
3153 	/* FC-NVME supports normal SGL Data Block Descriptors */
3154 	if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3155 		dev_err(ctrl->ctrl.device,
3156 			"Mandatory sgls are not supported!\n");
3157 		ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3158 		goto out_disconnect_admin_queue;
3159 	}
3160 
3161 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3162 		/* warn if maxcmd is lower than queue_size */
3163 		dev_warn(ctrl->ctrl.device,
3164 			"queue_size %zu > ctrl maxcmd %u, reducing "
3165 			"to maxcmd\n",
3166 			opts->queue_size, ctrl->ctrl.maxcmd);
3167 		opts->queue_size = ctrl->ctrl.maxcmd;
3168 		ctrl->ctrl.sqsize = opts->queue_size - 1;
3169 	}
3170 
3171 	ret = nvme_fc_init_aen_ops(ctrl);
3172 	if (ret)
3173 		goto out_term_aen_ops;
3174 
3175 	/*
3176 	 * Create the io queues
3177 	 */
3178 
3179 	if (ctrl->ctrl.queue_count > 1) {
3180 		if (!ctrl->ioq_live)
3181 			ret = nvme_fc_create_io_queues(ctrl);
3182 		else
3183 			ret = nvme_fc_recreate_io_queues(ctrl);
3184 	}
3185 	if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3186 		goto out_term_aen_ops;
3187 
3188 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3189 
3190 	ctrl->ctrl.nr_reconnects = 0;
3191 
3192 	if (changed)
3193 		nvme_start_ctrl(&ctrl->ctrl);
3194 
3195 	return 0;	/* Success */
3196 
3197 out_term_aen_ops:
3198 	nvme_fc_term_aen_ops(ctrl);
3199 out_disconnect_admin_queue:
3200 	/* send a Disconnect(association) LS to fc-nvme target */
3201 	nvme_fc_xmt_disconnect_assoc(ctrl);
3202 	spin_lock_irqsave(&ctrl->lock, flags);
3203 	ctrl->association_id = 0;
3204 	disls = ctrl->rcv_disconn;
3205 	ctrl->rcv_disconn = NULL;
3206 	spin_unlock_irqrestore(&ctrl->lock, flags);
3207 	if (disls)
3208 		nvme_fc_xmt_ls_rsp(disls);
3209 out_delete_hw_queue:
3210 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3211 out_free_queue:
3212 	nvme_fc_free_queue(&ctrl->queues[0]);
3213 	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3214 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3215 
3216 	return ret;
3217 }
3218 
3219 
3220 /*
3221  * This routine stops operation of the controller on the host side.
3222  * On the host os stack side: Admin and IO queues are stopped,
3223  *   outstanding ios on them terminated via FC ABTS.
3224  * On the link side: the association is terminated.
3225  */
3226 static void
3227 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3228 {
3229 	struct nvmefc_ls_rcv_op *disls = NULL;
3230 	unsigned long flags;
3231 
3232 	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3233 		return;
3234 
3235 	spin_lock_irqsave(&ctrl->lock, flags);
3236 	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3237 	ctrl->iocnt = 0;
3238 	spin_unlock_irqrestore(&ctrl->lock, flags);
3239 
3240 	__nvme_fc_abort_outstanding_ios(ctrl, false);
3241 
3242 	/* kill the aens as they are a separate path */
3243 	nvme_fc_abort_aen_ops(ctrl);
3244 
3245 	/* wait for all io that had to be aborted */
3246 	spin_lock_irq(&ctrl->lock);
3247 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3248 	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3249 	spin_unlock_irq(&ctrl->lock);
3250 
3251 	nvme_fc_term_aen_ops(ctrl);
3252 
3253 	/*
3254 	 * send a Disconnect(association) LS to fc-nvme target
3255 	 * Note: could have been sent at top of process, but
3256 	 * cleaner on link traffic if after the aborts complete.
3257 	 * Note: if association doesn't exist, association_id will be 0
3258 	 */
3259 	if (ctrl->association_id)
3260 		nvme_fc_xmt_disconnect_assoc(ctrl);
3261 
3262 	spin_lock_irqsave(&ctrl->lock, flags);
3263 	ctrl->association_id = 0;
3264 	disls = ctrl->rcv_disconn;
3265 	ctrl->rcv_disconn = NULL;
3266 	spin_unlock_irqrestore(&ctrl->lock, flags);
3267 	if (disls)
3268 		/*
3269 		 * if a Disconnect Request was waiting for a response, send
3270 		 * now that all ABTS's have been issued (and are complete).
3271 		 */
3272 		nvme_fc_xmt_ls_rsp(disls);
3273 
3274 	if (ctrl->ctrl.tagset) {
3275 		nvme_fc_delete_hw_io_queues(ctrl);
3276 		nvme_fc_free_io_queues(ctrl);
3277 	}
3278 
3279 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3280 	nvme_fc_free_queue(&ctrl->queues[0]);
3281 
3282 	/* re-enable the admin_q so anything new can fast fail */
3283 	nvme_start_admin_queue(&ctrl->ctrl);
3284 
3285 	/* resume the io queues so that things will fast fail */
3286 	nvme_start_queues(&ctrl->ctrl);
3287 
3288 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3289 }
3290 
3291 static void
3292 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3293 {
3294 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3295 
3296 	cancel_work_sync(&ctrl->ioerr_work);
3297 	cancel_delayed_work_sync(&ctrl->connect_work);
3298 	/*
3299 	 * kill the association on the link side.  this will block
3300 	 * waiting for io to terminate
3301 	 */
3302 	nvme_fc_delete_association(ctrl);
3303 }
3304 
3305 static void
3306 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3307 {
3308 	struct nvme_fc_rport *rport = ctrl->rport;
3309 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3310 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3311 	bool recon = true;
3312 
3313 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3314 		return;
3315 
3316 	if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3317 		dev_info(ctrl->ctrl.device,
3318 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3319 			ctrl->cnum, status);
3320 		if (status > 0 && (status & NVME_SC_DNR))
3321 			recon = false;
3322 	} else if (time_after_eq(jiffies, rport->dev_loss_end))
3323 		recon = false;
3324 
3325 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3326 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3327 			dev_info(ctrl->ctrl.device,
3328 				"NVME-FC{%d}: Reconnect attempt in %ld "
3329 				"seconds\n",
3330 				ctrl->cnum, recon_delay / HZ);
3331 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3332 			recon_delay = rport->dev_loss_end - jiffies;
3333 
3334 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3335 	} else {
3336 		if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3337 			if (status > 0 && (status & NVME_SC_DNR))
3338 				dev_warn(ctrl->ctrl.device,
3339 					 "NVME-FC{%d}: reconnect failure\n",
3340 					 ctrl->cnum);
3341 			else
3342 				dev_warn(ctrl->ctrl.device,
3343 					 "NVME-FC{%d}: Max reconnect attempts "
3344 					 "(%d) reached.\n",
3345 					 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3346 		} else
3347 			dev_warn(ctrl->ctrl.device,
3348 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3349 				"while waiting for remoteport connectivity.\n",
3350 				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3351 					(ctrl->ctrl.opts->max_reconnects *
3352 					 ctrl->ctrl.opts->reconnect_delay)));
3353 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3354 	}
3355 }
3356 
3357 static void
3358 nvme_fc_reset_ctrl_work(struct work_struct *work)
3359 {
3360 	struct nvme_fc_ctrl *ctrl =
3361 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3362 
3363 	nvme_stop_ctrl(&ctrl->ctrl);
3364 
3365 	/* will block will waiting for io to terminate */
3366 	nvme_fc_delete_association(ctrl);
3367 
3368 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3369 		dev_err(ctrl->ctrl.device,
3370 			"NVME-FC{%d}: error_recovery: Couldn't change state "
3371 			"to CONNECTING\n", ctrl->cnum);
3372 
3373 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3374 		if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3375 			dev_err(ctrl->ctrl.device,
3376 				"NVME-FC{%d}: failed to schedule connect "
3377 				"after reset\n", ctrl->cnum);
3378 		} else {
3379 			flush_delayed_work(&ctrl->connect_work);
3380 		}
3381 	} else {
3382 		nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3383 	}
3384 }
3385 
3386 
3387 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3388 	.name			= "fc",
3389 	.module			= THIS_MODULE,
3390 	.flags			= NVME_F_FABRICS,
3391 	.reg_read32		= nvmf_reg_read32,
3392 	.reg_read64		= nvmf_reg_read64,
3393 	.reg_write32		= nvmf_reg_write32,
3394 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
3395 	.submit_async_event	= nvme_fc_submit_async_event,
3396 	.delete_ctrl		= nvme_fc_delete_ctrl,
3397 	.get_address		= nvmf_get_address,
3398 };
3399 
3400 static void
3401 nvme_fc_connect_ctrl_work(struct work_struct *work)
3402 {
3403 	int ret;
3404 
3405 	struct nvme_fc_ctrl *ctrl =
3406 			container_of(to_delayed_work(work),
3407 				struct nvme_fc_ctrl, connect_work);
3408 
3409 	ret = nvme_fc_create_association(ctrl);
3410 	if (ret)
3411 		nvme_fc_reconnect_or_delete(ctrl, ret);
3412 	else
3413 		dev_info(ctrl->ctrl.device,
3414 			"NVME-FC{%d}: controller connect complete\n",
3415 			ctrl->cnum);
3416 }
3417 
3418 
3419 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3420 	.queue_rq	= nvme_fc_queue_rq,
3421 	.complete	= nvme_fc_complete_rq,
3422 	.init_request	= nvme_fc_init_request,
3423 	.exit_request	= nvme_fc_exit_request,
3424 	.init_hctx	= nvme_fc_init_admin_hctx,
3425 	.timeout	= nvme_fc_timeout,
3426 };
3427 
3428 
3429 /*
3430  * Fails a controller request if it matches an existing controller
3431  * (association) with the same tuple:
3432  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3433  *
3434  * The ports don't need to be compared as they are intrinsically
3435  * already matched by the port pointers supplied.
3436  */
3437 static bool
3438 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3439 		struct nvmf_ctrl_options *opts)
3440 {
3441 	struct nvme_fc_ctrl *ctrl;
3442 	unsigned long flags;
3443 	bool found = false;
3444 
3445 	spin_lock_irqsave(&rport->lock, flags);
3446 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3447 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3448 		if (found)
3449 			break;
3450 	}
3451 	spin_unlock_irqrestore(&rport->lock, flags);
3452 
3453 	return found;
3454 }
3455 
3456 static struct nvme_ctrl *
3457 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3458 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3459 {
3460 	struct nvme_fc_ctrl *ctrl;
3461 	unsigned long flags;
3462 	int ret, idx, ctrl_loss_tmo;
3463 
3464 	if (!(rport->remoteport.port_role &
3465 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3466 		ret = -EBADR;
3467 		goto out_fail;
3468 	}
3469 
3470 	if (!opts->duplicate_connect &&
3471 	    nvme_fc_existing_controller(rport, opts)) {
3472 		ret = -EALREADY;
3473 		goto out_fail;
3474 	}
3475 
3476 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3477 	if (!ctrl) {
3478 		ret = -ENOMEM;
3479 		goto out_fail;
3480 	}
3481 
3482 	idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3483 	if (idx < 0) {
3484 		ret = -ENOSPC;
3485 		goto out_free_ctrl;
3486 	}
3487 
3488 	/*
3489 	 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3490 	 * is being used, change to a shorter reconnect delay for FC.
3491 	 */
3492 	if (opts->max_reconnects != -1 &&
3493 	    opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3494 	    opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3495 		ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3496 		opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3497 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3498 						opts->reconnect_delay);
3499 	}
3500 
3501 	ctrl->ctrl.opts = opts;
3502 	ctrl->ctrl.nr_reconnects = 0;
3503 	if (lport->dev)
3504 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3505 	else
3506 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3507 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3508 	ctrl->lport = lport;
3509 	ctrl->rport = rport;
3510 	ctrl->dev = lport->dev;
3511 	ctrl->cnum = idx;
3512 	ctrl->ioq_live = false;
3513 	init_waitqueue_head(&ctrl->ioabort_wait);
3514 
3515 	get_device(ctrl->dev);
3516 	kref_init(&ctrl->ref);
3517 
3518 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3519 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3520 	INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3521 	spin_lock_init(&ctrl->lock);
3522 
3523 	/* io queue count */
3524 	ctrl->ctrl.queue_count = min_t(unsigned int,
3525 				opts->nr_io_queues,
3526 				lport->ops->max_hw_queues);
3527 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3528 
3529 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3530 	ctrl->ctrl.kato = opts->kato;
3531 	ctrl->ctrl.cntlid = 0xffff;
3532 
3533 	ret = -ENOMEM;
3534 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3535 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3536 	if (!ctrl->queues)
3537 		goto out_free_ida;
3538 
3539 	nvme_fc_init_queue(ctrl, 0);
3540 
3541 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3542 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3543 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3544 	ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3545 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3546 	ctrl->admin_tag_set.cmd_size =
3547 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3548 			    ctrl->lport->ops->fcprqst_priv_sz);
3549 	ctrl->admin_tag_set.driver_data = ctrl;
3550 	ctrl->admin_tag_set.nr_hw_queues = 1;
3551 	ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3552 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3553 
3554 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3555 	if (ret)
3556 		goto out_free_queues;
3557 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3558 
3559 	ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3560 	if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3561 		ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3562 		goto out_free_admin_tag_set;
3563 	}
3564 
3565 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3566 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3567 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3568 		goto out_cleanup_fabrics_q;
3569 	}
3570 
3571 	/*
3572 	 * Would have been nice to init io queues tag set as well.
3573 	 * However, we require interaction from the controller
3574 	 * for max io queue count before we can do so.
3575 	 * Defer this to the connect path.
3576 	 */
3577 
3578 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3579 	if (ret)
3580 		goto out_cleanup_admin_q;
3581 
3582 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3583 
3584 	spin_lock_irqsave(&rport->lock, flags);
3585 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3586 	spin_unlock_irqrestore(&rport->lock, flags);
3587 
3588 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3589 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3590 		dev_err(ctrl->ctrl.device,
3591 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3592 		goto fail_ctrl;
3593 	}
3594 
3595 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3596 		dev_err(ctrl->ctrl.device,
3597 			"NVME-FC{%d}: failed to schedule initial connect\n",
3598 			ctrl->cnum);
3599 		goto fail_ctrl;
3600 	}
3601 
3602 	flush_delayed_work(&ctrl->connect_work);
3603 
3604 	dev_info(ctrl->ctrl.device,
3605 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3606 		ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3607 
3608 	return &ctrl->ctrl;
3609 
3610 fail_ctrl:
3611 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3612 	cancel_work_sync(&ctrl->ioerr_work);
3613 	cancel_work_sync(&ctrl->ctrl.reset_work);
3614 	cancel_delayed_work_sync(&ctrl->connect_work);
3615 
3616 	ctrl->ctrl.opts = NULL;
3617 
3618 	/* initiate nvme ctrl ref counting teardown */
3619 	nvme_uninit_ctrl(&ctrl->ctrl);
3620 
3621 	/* Remove core ctrl ref. */
3622 	nvme_put_ctrl(&ctrl->ctrl);
3623 
3624 	/* as we're past the point where we transition to the ref
3625 	 * counting teardown path, if we return a bad pointer here,
3626 	 * the calling routine, thinking it's prior to the
3627 	 * transition, will do an rport put. Since the teardown
3628 	 * path also does a rport put, we do an extra get here to
3629 	 * so proper order/teardown happens.
3630 	 */
3631 	nvme_fc_rport_get(rport);
3632 
3633 	return ERR_PTR(-EIO);
3634 
3635 out_cleanup_admin_q:
3636 	blk_mq_destroy_queue(ctrl->ctrl.admin_q);
3637 out_cleanup_fabrics_q:
3638 	blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
3639 out_free_admin_tag_set:
3640 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3641 out_free_queues:
3642 	kfree(ctrl->queues);
3643 out_free_ida:
3644 	put_device(ctrl->dev);
3645 	ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3646 out_free_ctrl:
3647 	kfree(ctrl);
3648 out_fail:
3649 	/* exit via here doesn't follow ctlr ref points */
3650 	return ERR_PTR(ret);
3651 }
3652 
3653 
3654 struct nvmet_fc_traddr {
3655 	u64	nn;
3656 	u64	pn;
3657 };
3658 
3659 static int
3660 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3661 {
3662 	u64 token64;
3663 
3664 	if (match_u64(sstr, &token64))
3665 		return -EINVAL;
3666 	*val = token64;
3667 
3668 	return 0;
3669 }
3670 
3671 /*
3672  * This routine validates and extracts the WWN's from the TRADDR string.
3673  * As kernel parsers need the 0x to determine number base, universally
3674  * build string to parse with 0x prefix before parsing name strings.
3675  */
3676 static int
3677 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3678 {
3679 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3680 	substring_t wwn = { name, &name[sizeof(name)-1] };
3681 	int nnoffset, pnoffset;
3682 
3683 	/* validate if string is one of the 2 allowed formats */
3684 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3685 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3686 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3687 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3688 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3689 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3690 						NVME_FC_TRADDR_OXNNLEN;
3691 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3692 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3693 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3694 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3695 		nnoffset = NVME_FC_TRADDR_NNLEN;
3696 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3697 	} else
3698 		goto out_einval;
3699 
3700 	name[0] = '0';
3701 	name[1] = 'x';
3702 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3703 
3704 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3705 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3706 		goto out_einval;
3707 
3708 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3709 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3710 		goto out_einval;
3711 
3712 	return 0;
3713 
3714 out_einval:
3715 	pr_warn("%s: bad traddr string\n", __func__);
3716 	return -EINVAL;
3717 }
3718 
3719 static struct nvme_ctrl *
3720 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3721 {
3722 	struct nvme_fc_lport *lport;
3723 	struct nvme_fc_rport *rport;
3724 	struct nvme_ctrl *ctrl;
3725 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3726 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3727 	unsigned long flags;
3728 	int ret;
3729 
3730 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3731 	if (ret || !raddr.nn || !raddr.pn)
3732 		return ERR_PTR(-EINVAL);
3733 
3734 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3735 	if (ret || !laddr.nn || !laddr.pn)
3736 		return ERR_PTR(-EINVAL);
3737 
3738 	/* find the host and remote ports to connect together */
3739 	spin_lock_irqsave(&nvme_fc_lock, flags);
3740 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3741 		if (lport->localport.node_name != laddr.nn ||
3742 		    lport->localport.port_name != laddr.pn ||
3743 		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3744 			continue;
3745 
3746 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3747 			if (rport->remoteport.node_name != raddr.nn ||
3748 			    rport->remoteport.port_name != raddr.pn ||
3749 			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3750 				continue;
3751 
3752 			/* if fail to get reference fall through. Will error */
3753 			if (!nvme_fc_rport_get(rport))
3754 				break;
3755 
3756 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3757 
3758 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3759 			if (IS_ERR(ctrl))
3760 				nvme_fc_rport_put(rport);
3761 			return ctrl;
3762 		}
3763 	}
3764 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3765 
3766 	pr_warn("%s: %s - %s combination not found\n",
3767 		__func__, opts->traddr, opts->host_traddr);
3768 	return ERR_PTR(-ENOENT);
3769 }
3770 
3771 
3772 static struct nvmf_transport_ops nvme_fc_transport = {
3773 	.name		= "fc",
3774 	.module		= THIS_MODULE,
3775 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3776 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3777 	.create_ctrl	= nvme_fc_create_ctrl,
3778 };
3779 
3780 /* Arbitrary successive failures max. With lots of subsystems could be high */
3781 #define DISCOVERY_MAX_FAIL	20
3782 
3783 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3784 		struct device_attribute *attr, const char *buf, size_t count)
3785 {
3786 	unsigned long flags;
3787 	LIST_HEAD(local_disc_list);
3788 	struct nvme_fc_lport *lport;
3789 	struct nvme_fc_rport *rport;
3790 	int failcnt = 0;
3791 
3792 	spin_lock_irqsave(&nvme_fc_lock, flags);
3793 restart:
3794 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3795 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3796 			if (!nvme_fc_lport_get(lport))
3797 				continue;
3798 			if (!nvme_fc_rport_get(rport)) {
3799 				/*
3800 				 * This is a temporary condition. Upon restart
3801 				 * this rport will be gone from the list.
3802 				 *
3803 				 * Revert the lport put and retry.  Anything
3804 				 * added to the list already will be skipped (as
3805 				 * they are no longer list_empty).  Loops should
3806 				 * resume at rports that were not yet seen.
3807 				 */
3808 				nvme_fc_lport_put(lport);
3809 
3810 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3811 					goto restart;
3812 
3813 				pr_err("nvme_discovery: too many reference "
3814 				       "failures\n");
3815 				goto process_local_list;
3816 			}
3817 			if (list_empty(&rport->disc_list))
3818 				list_add_tail(&rport->disc_list,
3819 					      &local_disc_list);
3820 		}
3821 	}
3822 
3823 process_local_list:
3824 	while (!list_empty(&local_disc_list)) {
3825 		rport = list_first_entry(&local_disc_list,
3826 					 struct nvme_fc_rport, disc_list);
3827 		list_del_init(&rport->disc_list);
3828 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3829 
3830 		lport = rport->lport;
3831 		/* signal discovery. Won't hurt if it repeats */
3832 		nvme_fc_signal_discovery_scan(lport, rport);
3833 		nvme_fc_rport_put(rport);
3834 		nvme_fc_lport_put(lport);
3835 
3836 		spin_lock_irqsave(&nvme_fc_lock, flags);
3837 	}
3838 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3839 
3840 	return count;
3841 }
3842 
3843 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3844 
3845 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3846 /* Parse the cgroup id from a buf and return the length of cgrpid */
3847 static int fc_parse_cgrpid(const char *buf, u64 *id)
3848 {
3849 	char cgrp_id[16+1];
3850 	int cgrpid_len, j;
3851 
3852 	memset(cgrp_id, 0x0, sizeof(cgrp_id));
3853 	for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3854 		if (buf[cgrpid_len] != ':')
3855 			cgrp_id[cgrpid_len] = buf[cgrpid_len];
3856 		else {
3857 			j = 1;
3858 			break;
3859 		}
3860 	}
3861 	if (!j)
3862 		return -EINVAL;
3863 	if (kstrtou64(cgrp_id, 16, id) < 0)
3864 		return -EINVAL;
3865 	return cgrpid_len;
3866 }
3867 
3868 /*
3869  * Parse and update the appid in the blkcg associated with the cgroupid.
3870  */
3871 static ssize_t fc_appid_store(struct device *dev,
3872 		struct device_attribute *attr, const char *buf, size_t count)
3873 {
3874 	size_t orig_count = count;
3875 	u64 cgrp_id;
3876 	int appid_len = 0;
3877 	int cgrpid_len = 0;
3878 	char app_id[FC_APPID_LEN];
3879 	int ret = 0;
3880 
3881 	if (buf[count-1] == '\n')
3882 		count--;
3883 
3884 	if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3885 		return -EINVAL;
3886 
3887 	cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3888 	if (cgrpid_len < 0)
3889 		return -EINVAL;
3890 	appid_len = count - cgrpid_len - 1;
3891 	if (appid_len > FC_APPID_LEN)
3892 		return -EINVAL;
3893 
3894 	memset(app_id, 0x0, sizeof(app_id));
3895 	memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3896 	ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3897 	if (ret < 0)
3898 		return ret;
3899 	return orig_count;
3900 }
3901 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3902 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3903 
3904 static struct attribute *nvme_fc_attrs[] = {
3905 	&dev_attr_nvme_discovery.attr,
3906 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3907 	&dev_attr_appid_store.attr,
3908 #endif
3909 	NULL
3910 };
3911 
3912 static const struct attribute_group nvme_fc_attr_group = {
3913 	.attrs = nvme_fc_attrs,
3914 };
3915 
3916 static const struct attribute_group *nvme_fc_attr_groups[] = {
3917 	&nvme_fc_attr_group,
3918 	NULL
3919 };
3920 
3921 static struct class fc_class = {
3922 	.name = "fc",
3923 	.dev_groups = nvme_fc_attr_groups,
3924 	.owner = THIS_MODULE,
3925 };
3926 
3927 static int __init nvme_fc_init_module(void)
3928 {
3929 	int ret;
3930 
3931 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3932 	if (!nvme_fc_wq)
3933 		return -ENOMEM;
3934 
3935 	/*
3936 	 * NOTE:
3937 	 * It is expected that in the future the kernel will combine
3938 	 * the FC-isms that are currently under scsi and now being
3939 	 * added to by NVME into a new standalone FC class. The SCSI
3940 	 * and NVME protocols and their devices would be under this
3941 	 * new FC class.
3942 	 *
3943 	 * As we need something to post FC-specific udev events to,
3944 	 * specifically for nvme probe events, start by creating the
3945 	 * new device class.  When the new standalone FC class is
3946 	 * put in place, this code will move to a more generic
3947 	 * location for the class.
3948 	 */
3949 	ret = class_register(&fc_class);
3950 	if (ret) {
3951 		pr_err("couldn't register class fc\n");
3952 		goto out_destroy_wq;
3953 	}
3954 
3955 	/*
3956 	 * Create a device for the FC-centric udev events
3957 	 */
3958 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3959 				"fc_udev_device");
3960 	if (IS_ERR(fc_udev_device)) {
3961 		pr_err("couldn't create fc_udev device!\n");
3962 		ret = PTR_ERR(fc_udev_device);
3963 		goto out_destroy_class;
3964 	}
3965 
3966 	ret = nvmf_register_transport(&nvme_fc_transport);
3967 	if (ret)
3968 		goto out_destroy_device;
3969 
3970 	return 0;
3971 
3972 out_destroy_device:
3973 	device_destroy(&fc_class, MKDEV(0, 0));
3974 out_destroy_class:
3975 	class_unregister(&fc_class);
3976 out_destroy_wq:
3977 	destroy_workqueue(nvme_fc_wq);
3978 
3979 	return ret;
3980 }
3981 
3982 static void
3983 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3984 {
3985 	struct nvme_fc_ctrl *ctrl;
3986 
3987 	spin_lock(&rport->lock);
3988 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3989 		dev_warn(ctrl->ctrl.device,
3990 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3991 			ctrl->cnum);
3992 		nvme_delete_ctrl(&ctrl->ctrl);
3993 	}
3994 	spin_unlock(&rport->lock);
3995 }
3996 
3997 static void
3998 nvme_fc_cleanup_for_unload(void)
3999 {
4000 	struct nvme_fc_lport *lport;
4001 	struct nvme_fc_rport *rport;
4002 
4003 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
4004 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
4005 			nvme_fc_delete_controllers(rport);
4006 		}
4007 	}
4008 }
4009 
4010 static void __exit nvme_fc_exit_module(void)
4011 {
4012 	unsigned long flags;
4013 	bool need_cleanup = false;
4014 
4015 	spin_lock_irqsave(&nvme_fc_lock, flags);
4016 	nvme_fc_waiting_to_unload = true;
4017 	if (!list_empty(&nvme_fc_lport_list)) {
4018 		need_cleanup = true;
4019 		nvme_fc_cleanup_for_unload();
4020 	}
4021 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
4022 	if (need_cleanup) {
4023 		pr_info("%s: waiting for ctlr deletes\n", __func__);
4024 		wait_for_completion(&nvme_fc_unload_proceed);
4025 		pr_info("%s: ctrl deletes complete\n", __func__);
4026 	}
4027 
4028 	nvmf_unregister_transport(&nvme_fc_transport);
4029 
4030 	ida_destroy(&nvme_fc_local_port_cnt);
4031 	ida_destroy(&nvme_fc_ctrl_cnt);
4032 
4033 	device_destroy(&fc_class, MKDEV(0, 0));
4034 	class_unregister(&fc_class);
4035 	destroy_workqueue(nvme_fc_wq);
4036 }
4037 
4038 module_init(nvme_fc_init_module);
4039 module_exit(nvme_fc_exit_module);
4040 
4041 MODULE_LICENSE("GPL v2");
4042