xref: /openbmc/linux/drivers/nvme/host/fc.c (revision 0c874100)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 #include <linux/overflow.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29 
30 
31 /* *************************** Data Structures/Defines ****************** */
32 
33 
34 enum nvme_fc_queue_flags {
35 	NVME_FC_Q_CONNECTED = 0,
36 	NVME_FC_Q_LIVE,
37 };
38 
39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
40 
41 struct nvme_fc_queue {
42 	struct nvme_fc_ctrl	*ctrl;
43 	struct device		*dev;
44 	struct blk_mq_hw_ctx	*hctx;
45 	void			*lldd_handle;
46 	size_t			cmnd_capsule_len;
47 	u32			qnum;
48 	u32			rqcnt;
49 	u32			seqno;
50 
51 	u64			connection_id;
52 	atomic_t		csn;
53 
54 	unsigned long		flags;
55 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
56 
57 enum nvme_fcop_flags {
58 	FCOP_FLAGS_TERMIO	= (1 << 0),
59 	FCOP_FLAGS_AEN		= (1 << 1),
60 };
61 
62 struct nvmefc_ls_req_op {
63 	struct nvmefc_ls_req	ls_req;
64 
65 	struct nvme_fc_rport	*rport;
66 	struct nvme_fc_queue	*queue;
67 	struct request		*rq;
68 	u32			flags;
69 
70 	int			ls_error;
71 	struct completion	ls_done;
72 	struct list_head	lsreq_list;	/* rport->ls_req_list */
73 	bool			req_queued;
74 };
75 
76 enum nvme_fcpop_state {
77 	FCPOP_STATE_UNINIT	= 0,
78 	FCPOP_STATE_IDLE	= 1,
79 	FCPOP_STATE_ACTIVE	= 2,
80 	FCPOP_STATE_ABORTED	= 3,
81 	FCPOP_STATE_COMPLETE	= 4,
82 };
83 
84 struct nvme_fc_fcp_op {
85 	struct nvme_request	nreq;		/*
86 						 * nvme/host/core.c
87 						 * requires this to be
88 						 * the 1st element in the
89 						 * private structure
90 						 * associated with the
91 						 * request.
92 						 */
93 	struct nvmefc_fcp_req	fcp_req;
94 
95 	struct nvme_fc_ctrl	*ctrl;
96 	struct nvme_fc_queue	*queue;
97 	struct request		*rq;
98 
99 	atomic_t		state;
100 	u32			flags;
101 	u32			rqno;
102 	u32			nents;
103 
104 	struct nvme_fc_cmd_iu	cmd_iu;
105 	struct nvme_fc_ersp_iu	rsp_iu;
106 };
107 
108 struct nvme_fcp_op_w_sgl {
109 	struct nvme_fc_fcp_op	op;
110 	struct scatterlist	sgl[SG_CHUNK_SIZE];
111 	uint8_t			priv[0];
112 };
113 
114 struct nvme_fc_lport {
115 	struct nvme_fc_local_port	localport;
116 
117 	struct ida			endp_cnt;
118 	struct list_head		port_list;	/* nvme_fc_port_list */
119 	struct list_head		endp_list;
120 	struct device			*dev;	/* physical device for dma */
121 	struct nvme_fc_port_template	*ops;
122 	struct kref			ref;
123 	atomic_t                        act_rport_cnt;
124 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
125 
126 struct nvme_fc_rport {
127 	struct nvme_fc_remote_port	remoteport;
128 
129 	struct list_head		endp_list; /* for lport->endp_list */
130 	struct list_head		ctrl_list;
131 	struct list_head		ls_req_list;
132 	struct list_head		disc_list;
133 	struct device			*dev;	/* physical device for dma */
134 	struct nvme_fc_lport		*lport;
135 	spinlock_t			lock;
136 	struct kref			ref;
137 	atomic_t                        act_ctrl_cnt;
138 	unsigned long			dev_loss_end;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			cnum;
152 
153 	bool			ioq_live;
154 	bool			assoc_active;
155 	u64			association_id;
156 
157 	struct list_head	ctrl_list;	/* rport->ctrl_list */
158 
159 	struct blk_mq_tag_set	admin_tag_set;
160 	struct blk_mq_tag_set	tag_set;
161 
162 	struct delayed_work	connect_work;
163 
164 	struct kref		ref;
165 	u32			flags;
166 	u32			iocnt;
167 	wait_queue_head_t	ioabort_wait;
168 
169 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
170 
171 	struct nvme_ctrl	ctrl;
172 };
173 
174 static inline struct nvme_fc_ctrl *
175 to_fc_ctrl(struct nvme_ctrl *ctrl)
176 {
177 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
178 }
179 
180 static inline struct nvme_fc_lport *
181 localport_to_lport(struct nvme_fc_local_port *portptr)
182 {
183 	return container_of(portptr, struct nvme_fc_lport, localport);
184 }
185 
186 static inline struct nvme_fc_rport *
187 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
188 {
189 	return container_of(portptr, struct nvme_fc_rport, remoteport);
190 }
191 
192 static inline struct nvmefc_ls_req_op *
193 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
194 {
195 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
196 }
197 
198 static inline struct nvme_fc_fcp_op *
199 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
200 {
201 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
202 }
203 
204 
205 
206 /* *************************** Globals **************************** */
207 
208 
209 static DEFINE_SPINLOCK(nvme_fc_lock);
210 
211 static LIST_HEAD(nvme_fc_lport_list);
212 static DEFINE_IDA(nvme_fc_local_port_cnt);
213 static DEFINE_IDA(nvme_fc_ctrl_cnt);
214 
215 
216 
217 /*
218  * These items are short-term. They will eventually be moved into
219  * a generic FC class. See comments in module init.
220  */
221 static struct device *fc_udev_device;
222 
223 
224 /* *********************** FC-NVME Port Management ************************ */
225 
226 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
227 			struct nvme_fc_queue *, unsigned int);
228 
229 static void
230 nvme_fc_free_lport(struct kref *ref)
231 {
232 	struct nvme_fc_lport *lport =
233 		container_of(ref, struct nvme_fc_lport, ref);
234 	unsigned long flags;
235 
236 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
237 	WARN_ON(!list_empty(&lport->endp_list));
238 
239 	/* remove from transport list */
240 	spin_lock_irqsave(&nvme_fc_lock, flags);
241 	list_del(&lport->port_list);
242 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
243 
244 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
245 	ida_destroy(&lport->endp_cnt);
246 
247 	put_device(lport->dev);
248 
249 	kfree(lport);
250 }
251 
252 static void
253 nvme_fc_lport_put(struct nvme_fc_lport *lport)
254 {
255 	kref_put(&lport->ref, nvme_fc_free_lport);
256 }
257 
258 static int
259 nvme_fc_lport_get(struct nvme_fc_lport *lport)
260 {
261 	return kref_get_unless_zero(&lport->ref);
262 }
263 
264 
265 static struct nvme_fc_lport *
266 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
267 			struct nvme_fc_port_template *ops,
268 			struct device *dev)
269 {
270 	struct nvme_fc_lport *lport;
271 	unsigned long flags;
272 
273 	spin_lock_irqsave(&nvme_fc_lock, flags);
274 
275 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
276 		if (lport->localport.node_name != pinfo->node_name ||
277 		    lport->localport.port_name != pinfo->port_name)
278 			continue;
279 
280 		if (lport->dev != dev) {
281 			lport = ERR_PTR(-EXDEV);
282 			goto out_done;
283 		}
284 
285 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
286 			lport = ERR_PTR(-EEXIST);
287 			goto out_done;
288 		}
289 
290 		if (!nvme_fc_lport_get(lport)) {
291 			/*
292 			 * fails if ref cnt already 0. If so,
293 			 * act as if lport already deleted
294 			 */
295 			lport = NULL;
296 			goto out_done;
297 		}
298 
299 		/* resume the lport */
300 
301 		lport->ops = ops;
302 		lport->localport.port_role = pinfo->port_role;
303 		lport->localport.port_id = pinfo->port_id;
304 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
305 
306 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
307 
308 		return lport;
309 	}
310 
311 	lport = NULL;
312 
313 out_done:
314 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
315 
316 	return lport;
317 }
318 
319 /**
320  * nvme_fc_register_localport - transport entry point called by an
321  *                              LLDD to register the existence of a NVME
322  *                              host FC port.
323  * @pinfo:     pointer to information about the port to be registered
324  * @template:  LLDD entrypoints and operational parameters for the port
325  * @dev:       physical hardware device node port corresponds to. Will be
326  *             used for DMA mappings
327  * @portptr:   pointer to a local port pointer. Upon success, the routine
328  *             will allocate a nvme_fc_local_port structure and place its
329  *             address in the local port pointer. Upon failure, local port
330  *             pointer will be set to 0.
331  *
332  * Returns:
333  * a completion status. Must be 0 upon success; a negative errno
334  * (ex: -ENXIO) upon failure.
335  */
336 int
337 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
338 			struct nvme_fc_port_template *template,
339 			struct device *dev,
340 			struct nvme_fc_local_port **portptr)
341 {
342 	struct nvme_fc_lport *newrec;
343 	unsigned long flags;
344 	int ret, idx;
345 
346 	if (!template->localport_delete || !template->remoteport_delete ||
347 	    !template->ls_req || !template->fcp_io ||
348 	    !template->ls_abort || !template->fcp_abort ||
349 	    !template->max_hw_queues || !template->max_sgl_segments ||
350 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
351 		ret = -EINVAL;
352 		goto out_reghost_failed;
353 	}
354 
355 	/*
356 	 * look to see if there is already a localport that had been
357 	 * deregistered and in the process of waiting for all the
358 	 * references to fully be removed.  If the references haven't
359 	 * expired, we can simply re-enable the localport. Remoteports
360 	 * and controller reconnections should resume naturally.
361 	 */
362 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
363 
364 	/* found an lport, but something about its state is bad */
365 	if (IS_ERR(newrec)) {
366 		ret = PTR_ERR(newrec);
367 		goto out_reghost_failed;
368 
369 	/* found existing lport, which was resumed */
370 	} else if (newrec) {
371 		*portptr = &newrec->localport;
372 		return 0;
373 	}
374 
375 	/* nothing found - allocate a new localport struct */
376 
377 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
378 			 GFP_KERNEL);
379 	if (!newrec) {
380 		ret = -ENOMEM;
381 		goto out_reghost_failed;
382 	}
383 
384 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
385 	if (idx < 0) {
386 		ret = -ENOSPC;
387 		goto out_fail_kfree;
388 	}
389 
390 	if (!get_device(dev) && dev) {
391 		ret = -ENODEV;
392 		goto out_ida_put;
393 	}
394 
395 	INIT_LIST_HEAD(&newrec->port_list);
396 	INIT_LIST_HEAD(&newrec->endp_list);
397 	kref_init(&newrec->ref);
398 	atomic_set(&newrec->act_rport_cnt, 0);
399 	newrec->ops = template;
400 	newrec->dev = dev;
401 	ida_init(&newrec->endp_cnt);
402 	newrec->localport.private = &newrec[1];
403 	newrec->localport.node_name = pinfo->node_name;
404 	newrec->localport.port_name = pinfo->port_name;
405 	newrec->localport.port_role = pinfo->port_role;
406 	newrec->localport.port_id = pinfo->port_id;
407 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
408 	newrec->localport.port_num = idx;
409 
410 	spin_lock_irqsave(&nvme_fc_lock, flags);
411 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
412 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
413 
414 	if (dev)
415 		dma_set_seg_boundary(dev, template->dma_boundary);
416 
417 	*portptr = &newrec->localport;
418 	return 0;
419 
420 out_ida_put:
421 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
422 out_fail_kfree:
423 	kfree(newrec);
424 out_reghost_failed:
425 	*portptr = NULL;
426 
427 	return ret;
428 }
429 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
430 
431 /**
432  * nvme_fc_unregister_localport - transport entry point called by an
433  *                              LLDD to deregister/remove a previously
434  *                              registered a NVME host FC port.
435  * @portptr: pointer to the (registered) local port that is to be deregistered.
436  *
437  * Returns:
438  * a completion status. Must be 0 upon success; a negative errno
439  * (ex: -ENXIO) upon failure.
440  */
441 int
442 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
443 {
444 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
445 	unsigned long flags;
446 
447 	if (!portptr)
448 		return -EINVAL;
449 
450 	spin_lock_irqsave(&nvme_fc_lock, flags);
451 
452 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
453 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 		return -EINVAL;
455 	}
456 	portptr->port_state = FC_OBJSTATE_DELETED;
457 
458 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
459 
460 	if (atomic_read(&lport->act_rport_cnt) == 0)
461 		lport->ops->localport_delete(&lport->localport);
462 
463 	nvme_fc_lport_put(lport);
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
468 
469 /*
470  * TRADDR strings, per FC-NVME are fixed format:
471  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
472  * udev event will only differ by prefix of what field is
473  * being specified:
474  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
475  *  19 + 43 + null_fudge = 64 characters
476  */
477 #define FCNVME_TRADDR_LENGTH		64
478 
479 static void
480 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
481 		struct nvme_fc_rport *rport)
482 {
483 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
484 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
485 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
486 
487 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
488 		return;
489 
490 	snprintf(hostaddr, sizeof(hostaddr),
491 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
492 		lport->localport.node_name, lport->localport.port_name);
493 	snprintf(tgtaddr, sizeof(tgtaddr),
494 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
495 		rport->remoteport.node_name, rport->remoteport.port_name);
496 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
497 }
498 
499 static void
500 nvme_fc_free_rport(struct kref *ref)
501 {
502 	struct nvme_fc_rport *rport =
503 		container_of(ref, struct nvme_fc_rport, ref);
504 	struct nvme_fc_lport *lport =
505 			localport_to_lport(rport->remoteport.localport);
506 	unsigned long flags;
507 
508 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
509 	WARN_ON(!list_empty(&rport->ctrl_list));
510 
511 	/* remove from lport list */
512 	spin_lock_irqsave(&nvme_fc_lock, flags);
513 	list_del(&rport->endp_list);
514 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
515 
516 	WARN_ON(!list_empty(&rport->disc_list));
517 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
518 
519 	kfree(rport);
520 
521 	nvme_fc_lport_put(lport);
522 }
523 
524 static void
525 nvme_fc_rport_put(struct nvme_fc_rport *rport)
526 {
527 	kref_put(&rport->ref, nvme_fc_free_rport);
528 }
529 
530 static int
531 nvme_fc_rport_get(struct nvme_fc_rport *rport)
532 {
533 	return kref_get_unless_zero(&rport->ref);
534 }
535 
536 static void
537 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
538 {
539 	switch (ctrl->ctrl.state) {
540 	case NVME_CTRL_NEW:
541 	case NVME_CTRL_CONNECTING:
542 		/*
543 		 * As all reconnects were suppressed, schedule a
544 		 * connect.
545 		 */
546 		dev_info(ctrl->ctrl.device,
547 			"NVME-FC{%d}: connectivity re-established. "
548 			"Attempting reconnect\n", ctrl->cnum);
549 
550 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
551 		break;
552 
553 	case NVME_CTRL_RESETTING:
554 		/*
555 		 * Controller is already in the process of terminating the
556 		 * association. No need to do anything further. The reconnect
557 		 * step will naturally occur after the reset completes.
558 		 */
559 		break;
560 
561 	default:
562 		/* no action to take - let it delete */
563 		break;
564 	}
565 }
566 
567 static struct nvme_fc_rport *
568 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
569 				struct nvme_fc_port_info *pinfo)
570 {
571 	struct nvme_fc_rport *rport;
572 	struct nvme_fc_ctrl *ctrl;
573 	unsigned long flags;
574 
575 	spin_lock_irqsave(&nvme_fc_lock, flags);
576 
577 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
578 		if (rport->remoteport.node_name != pinfo->node_name ||
579 		    rport->remoteport.port_name != pinfo->port_name)
580 			continue;
581 
582 		if (!nvme_fc_rport_get(rport)) {
583 			rport = ERR_PTR(-ENOLCK);
584 			goto out_done;
585 		}
586 
587 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
588 
589 		spin_lock_irqsave(&rport->lock, flags);
590 
591 		/* has it been unregistered */
592 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
593 			/* means lldd called us twice */
594 			spin_unlock_irqrestore(&rport->lock, flags);
595 			nvme_fc_rport_put(rport);
596 			return ERR_PTR(-ESTALE);
597 		}
598 
599 		rport->remoteport.port_role = pinfo->port_role;
600 		rport->remoteport.port_id = pinfo->port_id;
601 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
602 		rport->dev_loss_end = 0;
603 
604 		/*
605 		 * kick off a reconnect attempt on all associations to the
606 		 * remote port. A successful reconnects will resume i/o.
607 		 */
608 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
609 			nvme_fc_resume_controller(ctrl);
610 
611 		spin_unlock_irqrestore(&rport->lock, flags);
612 
613 		return rport;
614 	}
615 
616 	rport = NULL;
617 
618 out_done:
619 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
620 
621 	return rport;
622 }
623 
624 static inline void
625 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
626 			struct nvme_fc_port_info *pinfo)
627 {
628 	if (pinfo->dev_loss_tmo)
629 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
630 	else
631 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
632 }
633 
634 /**
635  * nvme_fc_register_remoteport - transport entry point called by an
636  *                              LLDD to register the existence of a NVME
637  *                              subsystem FC port on its fabric.
638  * @localport: pointer to the (registered) local port that the remote
639  *             subsystem port is connected to.
640  * @pinfo:     pointer to information about the port to be registered
641  * @portptr:   pointer to a remote port pointer. Upon success, the routine
642  *             will allocate a nvme_fc_remote_port structure and place its
643  *             address in the remote port pointer. Upon failure, remote port
644  *             pointer will be set to 0.
645  *
646  * Returns:
647  * a completion status. Must be 0 upon success; a negative errno
648  * (ex: -ENXIO) upon failure.
649  */
650 int
651 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
652 				struct nvme_fc_port_info *pinfo,
653 				struct nvme_fc_remote_port **portptr)
654 {
655 	struct nvme_fc_lport *lport = localport_to_lport(localport);
656 	struct nvme_fc_rport *newrec;
657 	unsigned long flags;
658 	int ret, idx;
659 
660 	if (!nvme_fc_lport_get(lport)) {
661 		ret = -ESHUTDOWN;
662 		goto out_reghost_failed;
663 	}
664 
665 	/*
666 	 * look to see if there is already a remoteport that is waiting
667 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
668 	 * If so, transition to it and reconnect.
669 	 */
670 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
671 
672 	/* found an rport, but something about its state is bad */
673 	if (IS_ERR(newrec)) {
674 		ret = PTR_ERR(newrec);
675 		goto out_lport_put;
676 
677 	/* found existing rport, which was resumed */
678 	} else if (newrec) {
679 		nvme_fc_lport_put(lport);
680 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
681 		nvme_fc_signal_discovery_scan(lport, newrec);
682 		*portptr = &newrec->remoteport;
683 		return 0;
684 	}
685 
686 	/* nothing found - allocate a new remoteport struct */
687 
688 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
689 			 GFP_KERNEL);
690 	if (!newrec) {
691 		ret = -ENOMEM;
692 		goto out_lport_put;
693 	}
694 
695 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
696 	if (idx < 0) {
697 		ret = -ENOSPC;
698 		goto out_kfree_rport;
699 	}
700 
701 	INIT_LIST_HEAD(&newrec->endp_list);
702 	INIT_LIST_HEAD(&newrec->ctrl_list);
703 	INIT_LIST_HEAD(&newrec->ls_req_list);
704 	INIT_LIST_HEAD(&newrec->disc_list);
705 	kref_init(&newrec->ref);
706 	atomic_set(&newrec->act_ctrl_cnt, 0);
707 	spin_lock_init(&newrec->lock);
708 	newrec->remoteport.localport = &lport->localport;
709 	newrec->dev = lport->dev;
710 	newrec->lport = lport;
711 	newrec->remoteport.private = &newrec[1];
712 	newrec->remoteport.port_role = pinfo->port_role;
713 	newrec->remoteport.node_name = pinfo->node_name;
714 	newrec->remoteport.port_name = pinfo->port_name;
715 	newrec->remoteport.port_id = pinfo->port_id;
716 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
717 	newrec->remoteport.port_num = idx;
718 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
719 
720 	spin_lock_irqsave(&nvme_fc_lock, flags);
721 	list_add_tail(&newrec->endp_list, &lport->endp_list);
722 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
723 
724 	nvme_fc_signal_discovery_scan(lport, newrec);
725 
726 	*portptr = &newrec->remoteport;
727 	return 0;
728 
729 out_kfree_rport:
730 	kfree(newrec);
731 out_lport_put:
732 	nvme_fc_lport_put(lport);
733 out_reghost_failed:
734 	*portptr = NULL;
735 	return ret;
736 }
737 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
738 
739 static int
740 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
741 {
742 	struct nvmefc_ls_req_op *lsop;
743 	unsigned long flags;
744 
745 restart:
746 	spin_lock_irqsave(&rport->lock, flags);
747 
748 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
749 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
750 			lsop->flags |= FCOP_FLAGS_TERMIO;
751 			spin_unlock_irqrestore(&rport->lock, flags);
752 			rport->lport->ops->ls_abort(&rport->lport->localport,
753 						&rport->remoteport,
754 						&lsop->ls_req);
755 			goto restart;
756 		}
757 	}
758 	spin_unlock_irqrestore(&rport->lock, flags);
759 
760 	return 0;
761 }
762 
763 static void
764 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
765 {
766 	dev_info(ctrl->ctrl.device,
767 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
768 		"Reconnect", ctrl->cnum);
769 
770 	switch (ctrl->ctrl.state) {
771 	case NVME_CTRL_NEW:
772 	case NVME_CTRL_LIVE:
773 		/*
774 		 * Schedule a controller reset. The reset will terminate the
775 		 * association and schedule the reconnect timer.  Reconnects
776 		 * will be attempted until either the ctlr_loss_tmo
777 		 * (max_retries * connect_delay) expires or the remoteport's
778 		 * dev_loss_tmo expires.
779 		 */
780 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
781 			dev_warn(ctrl->ctrl.device,
782 				"NVME-FC{%d}: Couldn't schedule reset.\n",
783 				ctrl->cnum);
784 			nvme_delete_ctrl(&ctrl->ctrl);
785 		}
786 		break;
787 
788 	case NVME_CTRL_CONNECTING:
789 		/*
790 		 * The association has already been terminated and the
791 		 * controller is attempting reconnects.  No need to do anything
792 		 * futher.  Reconnects will be attempted until either the
793 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
794 		 * remoteport's dev_loss_tmo expires.
795 		 */
796 		break;
797 
798 	case NVME_CTRL_RESETTING:
799 		/*
800 		 * Controller is already in the process of terminating the
801 		 * association.  No need to do anything further. The reconnect
802 		 * step will kick in naturally after the association is
803 		 * terminated.
804 		 */
805 		break;
806 
807 	case NVME_CTRL_DELETING:
808 	default:
809 		/* no action to take - let it delete */
810 		break;
811 	}
812 }
813 
814 /**
815  * nvme_fc_unregister_remoteport - transport entry point called by an
816  *                              LLDD to deregister/remove a previously
817  *                              registered a NVME subsystem FC port.
818  * @portptr: pointer to the (registered) remote port that is to be
819  *           deregistered.
820  *
821  * Returns:
822  * a completion status. Must be 0 upon success; a negative errno
823  * (ex: -ENXIO) upon failure.
824  */
825 int
826 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
827 {
828 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
829 	struct nvme_fc_ctrl *ctrl;
830 	unsigned long flags;
831 
832 	if (!portptr)
833 		return -EINVAL;
834 
835 	spin_lock_irqsave(&rport->lock, flags);
836 
837 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
838 		spin_unlock_irqrestore(&rport->lock, flags);
839 		return -EINVAL;
840 	}
841 	portptr->port_state = FC_OBJSTATE_DELETED;
842 
843 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
844 
845 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
846 		/* if dev_loss_tmo==0, dev loss is immediate */
847 		if (!portptr->dev_loss_tmo) {
848 			dev_warn(ctrl->ctrl.device,
849 				"NVME-FC{%d}: controller connectivity lost.\n",
850 				ctrl->cnum);
851 			nvme_delete_ctrl(&ctrl->ctrl);
852 		} else
853 			nvme_fc_ctrl_connectivity_loss(ctrl);
854 	}
855 
856 	spin_unlock_irqrestore(&rport->lock, flags);
857 
858 	nvme_fc_abort_lsops(rport);
859 
860 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
861 		rport->lport->ops->remoteport_delete(portptr);
862 
863 	/*
864 	 * release the reference, which will allow, if all controllers
865 	 * go away, which should only occur after dev_loss_tmo occurs,
866 	 * for the rport to be torn down.
867 	 */
868 	nvme_fc_rport_put(rport);
869 
870 	return 0;
871 }
872 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
873 
874 /**
875  * nvme_fc_rescan_remoteport - transport entry point called by an
876  *                              LLDD to request a nvme device rescan.
877  * @remoteport: pointer to the (registered) remote port that is to be
878  *              rescanned.
879  *
880  * Returns: N/A
881  */
882 void
883 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
884 {
885 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
886 
887 	nvme_fc_signal_discovery_scan(rport->lport, rport);
888 }
889 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
890 
891 int
892 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
893 			u32 dev_loss_tmo)
894 {
895 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
896 	unsigned long flags;
897 
898 	spin_lock_irqsave(&rport->lock, flags);
899 
900 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
901 		spin_unlock_irqrestore(&rport->lock, flags);
902 		return -EINVAL;
903 	}
904 
905 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
906 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
907 
908 	spin_unlock_irqrestore(&rport->lock, flags);
909 
910 	return 0;
911 }
912 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
913 
914 
915 /* *********************** FC-NVME DMA Handling **************************** */
916 
917 /*
918  * The fcloop device passes in a NULL device pointer. Real LLD's will
919  * pass in a valid device pointer. If NULL is passed to the dma mapping
920  * routines, depending on the platform, it may or may not succeed, and
921  * may crash.
922  *
923  * As such:
924  * Wrapper all the dma routines and check the dev pointer.
925  *
926  * If simple mappings (return just a dma address, we'll noop them,
927  * returning a dma address of 0.
928  *
929  * On more complex mappings (dma_map_sg), a pseudo routine fills
930  * in the scatter list, setting all dma addresses to 0.
931  */
932 
933 static inline dma_addr_t
934 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
935 		enum dma_data_direction dir)
936 {
937 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
938 }
939 
940 static inline int
941 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
942 {
943 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
944 }
945 
946 static inline void
947 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
948 	enum dma_data_direction dir)
949 {
950 	if (dev)
951 		dma_unmap_single(dev, addr, size, dir);
952 }
953 
954 static inline void
955 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
956 		enum dma_data_direction dir)
957 {
958 	if (dev)
959 		dma_sync_single_for_cpu(dev, addr, size, dir);
960 }
961 
962 static inline void
963 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
964 		enum dma_data_direction dir)
965 {
966 	if (dev)
967 		dma_sync_single_for_device(dev, addr, size, dir);
968 }
969 
970 /* pseudo dma_map_sg call */
971 static int
972 fc_map_sg(struct scatterlist *sg, int nents)
973 {
974 	struct scatterlist *s;
975 	int i;
976 
977 	WARN_ON(nents == 0 || sg[0].length == 0);
978 
979 	for_each_sg(sg, s, nents, i) {
980 		s->dma_address = 0L;
981 #ifdef CONFIG_NEED_SG_DMA_LENGTH
982 		s->dma_length = s->length;
983 #endif
984 	}
985 	return nents;
986 }
987 
988 static inline int
989 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
990 		enum dma_data_direction dir)
991 {
992 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
993 }
994 
995 static inline void
996 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
997 		enum dma_data_direction dir)
998 {
999 	if (dev)
1000 		dma_unmap_sg(dev, sg, nents, dir);
1001 }
1002 
1003 /* *********************** FC-NVME LS Handling **************************** */
1004 
1005 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1006 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1007 
1008 
1009 static void
1010 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1011 {
1012 	struct nvme_fc_rport *rport = lsop->rport;
1013 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1014 	unsigned long flags;
1015 
1016 	spin_lock_irqsave(&rport->lock, flags);
1017 
1018 	if (!lsop->req_queued) {
1019 		spin_unlock_irqrestore(&rport->lock, flags);
1020 		return;
1021 	}
1022 
1023 	list_del(&lsop->lsreq_list);
1024 
1025 	lsop->req_queued = false;
1026 
1027 	spin_unlock_irqrestore(&rport->lock, flags);
1028 
1029 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1030 				  (lsreq->rqstlen + lsreq->rsplen),
1031 				  DMA_BIDIRECTIONAL);
1032 
1033 	nvme_fc_rport_put(rport);
1034 }
1035 
1036 static int
1037 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1038 		struct nvmefc_ls_req_op *lsop,
1039 		void (*done)(struct nvmefc_ls_req *req, int status))
1040 {
1041 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 	unsigned long flags;
1043 	int ret = 0;
1044 
1045 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1046 		return -ECONNREFUSED;
1047 
1048 	if (!nvme_fc_rport_get(rport))
1049 		return -ESHUTDOWN;
1050 
1051 	lsreq->done = done;
1052 	lsop->rport = rport;
1053 	lsop->req_queued = false;
1054 	INIT_LIST_HEAD(&lsop->lsreq_list);
1055 	init_completion(&lsop->ls_done);
1056 
1057 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1058 				  lsreq->rqstlen + lsreq->rsplen,
1059 				  DMA_BIDIRECTIONAL);
1060 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1061 		ret = -EFAULT;
1062 		goto out_putrport;
1063 	}
1064 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1065 
1066 	spin_lock_irqsave(&rport->lock, flags);
1067 
1068 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1069 
1070 	lsop->req_queued = true;
1071 
1072 	spin_unlock_irqrestore(&rport->lock, flags);
1073 
1074 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1075 					&rport->remoteport, lsreq);
1076 	if (ret)
1077 		goto out_unlink;
1078 
1079 	return 0;
1080 
1081 out_unlink:
1082 	lsop->ls_error = ret;
1083 	spin_lock_irqsave(&rport->lock, flags);
1084 	lsop->req_queued = false;
1085 	list_del(&lsop->lsreq_list);
1086 	spin_unlock_irqrestore(&rport->lock, flags);
1087 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1088 				  (lsreq->rqstlen + lsreq->rsplen),
1089 				  DMA_BIDIRECTIONAL);
1090 out_putrport:
1091 	nvme_fc_rport_put(rport);
1092 
1093 	return ret;
1094 }
1095 
1096 static void
1097 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1098 {
1099 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1100 
1101 	lsop->ls_error = status;
1102 	complete(&lsop->ls_done);
1103 }
1104 
1105 static int
1106 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1107 {
1108 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1109 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1110 	int ret;
1111 
1112 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1113 
1114 	if (!ret) {
1115 		/*
1116 		 * No timeout/not interruptible as we need the struct
1117 		 * to exist until the lldd calls us back. Thus mandate
1118 		 * wait until driver calls back. lldd responsible for
1119 		 * the timeout action
1120 		 */
1121 		wait_for_completion(&lsop->ls_done);
1122 
1123 		__nvme_fc_finish_ls_req(lsop);
1124 
1125 		ret = lsop->ls_error;
1126 	}
1127 
1128 	if (ret)
1129 		return ret;
1130 
1131 	/* ACC or RJT payload ? */
1132 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1133 		return -ENXIO;
1134 
1135 	return 0;
1136 }
1137 
1138 static int
1139 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1140 		struct nvmefc_ls_req_op *lsop,
1141 		void (*done)(struct nvmefc_ls_req *req, int status))
1142 {
1143 	/* don't wait for completion */
1144 
1145 	return __nvme_fc_send_ls_req(rport, lsop, done);
1146 }
1147 
1148 /* Validation Error indexes into the string table below */
1149 enum {
1150 	VERR_NO_ERROR		= 0,
1151 	VERR_LSACC		= 1,
1152 	VERR_LSDESC_RQST	= 2,
1153 	VERR_LSDESC_RQST_LEN	= 3,
1154 	VERR_ASSOC_ID		= 4,
1155 	VERR_ASSOC_ID_LEN	= 5,
1156 	VERR_CONN_ID		= 6,
1157 	VERR_CONN_ID_LEN	= 7,
1158 	VERR_CR_ASSOC		= 8,
1159 	VERR_CR_ASSOC_ACC_LEN	= 9,
1160 	VERR_CR_CONN		= 10,
1161 	VERR_CR_CONN_ACC_LEN	= 11,
1162 	VERR_DISCONN		= 12,
1163 	VERR_DISCONN_ACC_LEN	= 13,
1164 };
1165 
1166 static char *validation_errors[] = {
1167 	"OK",
1168 	"Not LS_ACC",
1169 	"Not LSDESC_RQST",
1170 	"Bad LSDESC_RQST Length",
1171 	"Not Association ID",
1172 	"Bad Association ID Length",
1173 	"Not Connection ID",
1174 	"Bad Connection ID Length",
1175 	"Not CR_ASSOC Rqst",
1176 	"Bad CR_ASSOC ACC Length",
1177 	"Not CR_CONN Rqst",
1178 	"Bad CR_CONN ACC Length",
1179 	"Not Disconnect Rqst",
1180 	"Bad Disconnect ACC Length",
1181 };
1182 
1183 static int
1184 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1185 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1186 {
1187 	struct nvmefc_ls_req_op *lsop;
1188 	struct nvmefc_ls_req *lsreq;
1189 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1190 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1191 	int ret, fcret = 0;
1192 
1193 	lsop = kzalloc((sizeof(*lsop) +
1194 			 ctrl->lport->ops->lsrqst_priv_sz +
1195 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1196 	if (!lsop) {
1197 		ret = -ENOMEM;
1198 		goto out_no_memory;
1199 	}
1200 	lsreq = &lsop->ls_req;
1201 
1202 	lsreq->private = (void *)&lsop[1];
1203 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1204 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1205 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1206 
1207 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1208 	assoc_rqst->desc_list_len =
1209 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210 
1211 	assoc_rqst->assoc_cmd.desc_tag =
1212 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1213 	assoc_rqst->assoc_cmd.desc_len =
1214 			fcnvme_lsdesc_len(
1215 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1216 
1217 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1218 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1219 	/* Linux supports only Dynamic controllers */
1220 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1221 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1222 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1223 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1224 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1225 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1226 
1227 	lsop->queue = queue;
1228 	lsreq->rqstaddr = assoc_rqst;
1229 	lsreq->rqstlen = sizeof(*assoc_rqst);
1230 	lsreq->rspaddr = assoc_acc;
1231 	lsreq->rsplen = sizeof(*assoc_acc);
1232 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1233 
1234 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1235 	if (ret)
1236 		goto out_free_buffer;
1237 
1238 	/* process connect LS completion */
1239 
1240 	/* validate the ACC response */
1241 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1242 		fcret = VERR_LSACC;
1243 	else if (assoc_acc->hdr.desc_list_len !=
1244 			fcnvme_lsdesc_len(
1245 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1246 		fcret = VERR_CR_ASSOC_ACC_LEN;
1247 	else if (assoc_acc->hdr.rqst.desc_tag !=
1248 			cpu_to_be32(FCNVME_LSDESC_RQST))
1249 		fcret = VERR_LSDESC_RQST;
1250 	else if (assoc_acc->hdr.rqst.desc_len !=
1251 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1252 		fcret = VERR_LSDESC_RQST_LEN;
1253 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1254 		fcret = VERR_CR_ASSOC;
1255 	else if (assoc_acc->associd.desc_tag !=
1256 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1257 		fcret = VERR_ASSOC_ID;
1258 	else if (assoc_acc->associd.desc_len !=
1259 			fcnvme_lsdesc_len(
1260 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1261 		fcret = VERR_ASSOC_ID_LEN;
1262 	else if (assoc_acc->connectid.desc_tag !=
1263 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1264 		fcret = VERR_CONN_ID;
1265 	else if (assoc_acc->connectid.desc_len !=
1266 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1267 		fcret = VERR_CONN_ID_LEN;
1268 
1269 	if (fcret) {
1270 		ret = -EBADF;
1271 		dev_err(ctrl->dev,
1272 			"q %d connect failed: %s\n",
1273 			queue->qnum, validation_errors[fcret]);
1274 	} else {
1275 		ctrl->association_id =
1276 			be64_to_cpu(assoc_acc->associd.association_id);
1277 		queue->connection_id =
1278 			be64_to_cpu(assoc_acc->connectid.connection_id);
1279 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 	}
1281 
1282 out_free_buffer:
1283 	kfree(lsop);
1284 out_no_memory:
1285 	if (ret)
1286 		dev_err(ctrl->dev,
1287 			"queue %d connect admin queue failed (%d).\n",
1288 			queue->qnum, ret);
1289 	return ret;
1290 }
1291 
1292 static int
1293 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1294 			u16 qsize, u16 ersp_ratio)
1295 {
1296 	struct nvmefc_ls_req_op *lsop;
1297 	struct nvmefc_ls_req *lsreq;
1298 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1299 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1300 	int ret, fcret = 0;
1301 
1302 	lsop = kzalloc((sizeof(*lsop) +
1303 			 ctrl->lport->ops->lsrqst_priv_sz +
1304 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1305 	if (!lsop) {
1306 		ret = -ENOMEM;
1307 		goto out_no_memory;
1308 	}
1309 	lsreq = &lsop->ls_req;
1310 
1311 	lsreq->private = (void *)&lsop[1];
1312 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1313 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1314 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1315 
1316 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1317 	conn_rqst->desc_list_len = cpu_to_be32(
1318 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1319 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1320 
1321 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1322 	conn_rqst->associd.desc_len =
1323 			fcnvme_lsdesc_len(
1324 				sizeof(struct fcnvme_lsdesc_assoc_id));
1325 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1326 	conn_rqst->connect_cmd.desc_tag =
1327 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1328 	conn_rqst->connect_cmd.desc_len =
1329 			fcnvme_lsdesc_len(
1330 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1331 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1332 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1333 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1334 
1335 	lsop->queue = queue;
1336 	lsreq->rqstaddr = conn_rqst;
1337 	lsreq->rqstlen = sizeof(*conn_rqst);
1338 	lsreq->rspaddr = conn_acc;
1339 	lsreq->rsplen = sizeof(*conn_acc);
1340 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1341 
1342 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1343 	if (ret)
1344 		goto out_free_buffer;
1345 
1346 	/* process connect LS completion */
1347 
1348 	/* validate the ACC response */
1349 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1350 		fcret = VERR_LSACC;
1351 	else if (conn_acc->hdr.desc_list_len !=
1352 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1353 		fcret = VERR_CR_CONN_ACC_LEN;
1354 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1355 		fcret = VERR_LSDESC_RQST;
1356 	else if (conn_acc->hdr.rqst.desc_len !=
1357 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1358 		fcret = VERR_LSDESC_RQST_LEN;
1359 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1360 		fcret = VERR_CR_CONN;
1361 	else if (conn_acc->connectid.desc_tag !=
1362 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1363 		fcret = VERR_CONN_ID;
1364 	else if (conn_acc->connectid.desc_len !=
1365 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1366 		fcret = VERR_CONN_ID_LEN;
1367 
1368 	if (fcret) {
1369 		ret = -EBADF;
1370 		dev_err(ctrl->dev,
1371 			"q %d connect failed: %s\n",
1372 			queue->qnum, validation_errors[fcret]);
1373 	} else {
1374 		queue->connection_id =
1375 			be64_to_cpu(conn_acc->connectid.connection_id);
1376 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1377 	}
1378 
1379 out_free_buffer:
1380 	kfree(lsop);
1381 out_no_memory:
1382 	if (ret)
1383 		dev_err(ctrl->dev,
1384 			"queue %d connect command failed (%d).\n",
1385 			queue->qnum, ret);
1386 	return ret;
1387 }
1388 
1389 static void
1390 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1391 {
1392 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1393 
1394 	__nvme_fc_finish_ls_req(lsop);
1395 
1396 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1397 
1398 	kfree(lsop);
1399 }
1400 
1401 /*
1402  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1403  * the FC-NVME Association.  Terminating the association also
1404  * terminates the FC-NVME connections (per queue, both admin and io
1405  * queues) that are part of the association. E.g. things are torn
1406  * down, and the related FC-NVME Association ID and Connection IDs
1407  * become invalid.
1408  *
1409  * The behavior of the fc-nvme initiator is such that it's
1410  * understanding of the association and connections will implicitly
1411  * be torn down. The action is implicit as it may be due to a loss of
1412  * connectivity with the fc-nvme target, so you may never get a
1413  * response even if you tried.  As such, the action of this routine
1414  * is to asynchronously send the LS, ignore any results of the LS, and
1415  * continue on with terminating the association. If the fc-nvme target
1416  * is present and receives the LS, it too can tear down.
1417  */
1418 static void
1419 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1420 {
1421 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1422 	struct fcnvme_ls_disconnect_acc *discon_acc;
1423 	struct nvmefc_ls_req_op *lsop;
1424 	struct nvmefc_ls_req *lsreq;
1425 	int ret;
1426 
1427 	lsop = kzalloc((sizeof(*lsop) +
1428 			 ctrl->lport->ops->lsrqst_priv_sz +
1429 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1430 			GFP_KERNEL);
1431 	if (!lsop)
1432 		/* couldn't sent it... too bad */
1433 		return;
1434 
1435 	lsreq = &lsop->ls_req;
1436 
1437 	lsreq->private = (void *)&lsop[1];
1438 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1439 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1440 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1441 
1442 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1443 	discon_rqst->desc_list_len = cpu_to_be32(
1444 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1445 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1446 
1447 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1448 	discon_rqst->associd.desc_len =
1449 			fcnvme_lsdesc_len(
1450 				sizeof(struct fcnvme_lsdesc_assoc_id));
1451 
1452 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1453 
1454 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1455 						FCNVME_LSDESC_DISCONN_CMD);
1456 	discon_rqst->discon_cmd.desc_len =
1457 			fcnvme_lsdesc_len(
1458 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1459 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1460 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1461 
1462 	lsreq->rqstaddr = discon_rqst;
1463 	lsreq->rqstlen = sizeof(*discon_rqst);
1464 	lsreq->rspaddr = discon_acc;
1465 	lsreq->rsplen = sizeof(*discon_acc);
1466 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1467 
1468 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1469 				nvme_fc_disconnect_assoc_done);
1470 	if (ret)
1471 		kfree(lsop);
1472 
1473 	/* only meaningful part to terminating the association */
1474 	ctrl->association_id = 0;
1475 }
1476 
1477 
1478 /* *********************** NVME Ctrl Routines **************************** */
1479 
1480 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1481 
1482 static void
1483 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1484 		struct nvme_fc_fcp_op *op)
1485 {
1486 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1487 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1488 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1489 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1490 
1491 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1492 }
1493 
1494 static void
1495 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1496 		unsigned int hctx_idx)
1497 {
1498 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1499 
1500 	return __nvme_fc_exit_request(set->driver_data, op);
1501 }
1502 
1503 static int
1504 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1505 {
1506 	unsigned long flags;
1507 	int opstate;
1508 
1509 	spin_lock_irqsave(&ctrl->lock, flags);
1510 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1511 	if (opstate != FCPOP_STATE_ACTIVE)
1512 		atomic_set(&op->state, opstate);
1513 	else if (ctrl->flags & FCCTRL_TERMIO)
1514 		ctrl->iocnt++;
1515 	spin_unlock_irqrestore(&ctrl->lock, flags);
1516 
1517 	if (opstate != FCPOP_STATE_ACTIVE)
1518 		return -ECANCELED;
1519 
1520 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1521 					&ctrl->rport->remoteport,
1522 					op->queue->lldd_handle,
1523 					&op->fcp_req);
1524 
1525 	return 0;
1526 }
1527 
1528 static void
1529 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1530 {
1531 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1532 	int i;
1533 
1534 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1535 		__nvme_fc_abort_op(ctrl, aen_op);
1536 }
1537 
1538 static inline void
1539 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1540 		struct nvme_fc_fcp_op *op, int opstate)
1541 {
1542 	unsigned long flags;
1543 
1544 	if (opstate == FCPOP_STATE_ABORTED) {
1545 		spin_lock_irqsave(&ctrl->lock, flags);
1546 		if (ctrl->flags & FCCTRL_TERMIO) {
1547 			if (!--ctrl->iocnt)
1548 				wake_up(&ctrl->ioabort_wait);
1549 		}
1550 		spin_unlock_irqrestore(&ctrl->lock, flags);
1551 	}
1552 }
1553 
1554 static void
1555 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1556 {
1557 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1558 	struct request *rq = op->rq;
1559 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1560 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1561 	struct nvme_fc_queue *queue = op->queue;
1562 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1563 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1564 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1565 	union nvme_result result;
1566 	bool terminate_assoc = true;
1567 	int opstate;
1568 
1569 	/*
1570 	 * WARNING:
1571 	 * The current linux implementation of a nvme controller
1572 	 * allocates a single tag set for all io queues and sizes
1573 	 * the io queues to fully hold all possible tags. Thus, the
1574 	 * implementation does not reference or care about the sqhd
1575 	 * value as it never needs to use the sqhd/sqtail pointers
1576 	 * for submission pacing.
1577 	 *
1578 	 * This affects the FC-NVME implementation in two ways:
1579 	 * 1) As the value doesn't matter, we don't need to waste
1580 	 *    cycles extracting it from ERSPs and stamping it in the
1581 	 *    cases where the transport fabricates CQEs on successful
1582 	 *    completions.
1583 	 * 2) The FC-NVME implementation requires that delivery of
1584 	 *    ERSP completions are to go back to the nvme layer in order
1585 	 *    relative to the rsn, such that the sqhd value will always
1586 	 *    be "in order" for the nvme layer. As the nvme layer in
1587 	 *    linux doesn't care about sqhd, there's no need to return
1588 	 *    them in order.
1589 	 *
1590 	 * Additionally:
1591 	 * As the core nvme layer in linux currently does not look at
1592 	 * every field in the cqe - in cases where the FC transport must
1593 	 * fabricate a CQE, the following fields will not be set as they
1594 	 * are not referenced:
1595 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1596 	 *
1597 	 * Failure or error of an individual i/o, in a transport
1598 	 * detected fashion unrelated to the nvme completion status,
1599 	 * potentially cause the initiator and target sides to get out
1600 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1601 	 * Per FC-NVME spec, failure of an individual command requires
1602 	 * the connection to be terminated, which in turn requires the
1603 	 * association to be terminated.
1604 	 */
1605 
1606 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1607 
1608 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1609 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1610 
1611 	if (opstate == FCPOP_STATE_ABORTED)
1612 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1613 	else if (freq->status)
1614 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1615 
1616 	/*
1617 	 * For the linux implementation, if we have an unsuccesful
1618 	 * status, they blk-mq layer can typically be called with the
1619 	 * non-zero status and the content of the cqe isn't important.
1620 	 */
1621 	if (status)
1622 		goto done;
1623 
1624 	/*
1625 	 * command completed successfully relative to the wire
1626 	 * protocol. However, validate anything received and
1627 	 * extract the status and result from the cqe (create it
1628 	 * where necessary).
1629 	 */
1630 
1631 	switch (freq->rcv_rsplen) {
1632 
1633 	case 0:
1634 	case NVME_FC_SIZEOF_ZEROS_RSP:
1635 		/*
1636 		 * No response payload or 12 bytes of payload (which
1637 		 * should all be zeros) are considered successful and
1638 		 * no payload in the CQE by the transport.
1639 		 */
1640 		if (freq->transferred_length !=
1641 			be32_to_cpu(op->cmd_iu.data_len)) {
1642 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1643 			goto done;
1644 		}
1645 		result.u64 = 0;
1646 		break;
1647 
1648 	case sizeof(struct nvme_fc_ersp_iu):
1649 		/*
1650 		 * The ERSP IU contains a full completion with CQE.
1651 		 * Validate ERSP IU and look at cqe.
1652 		 */
1653 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1654 					(freq->rcv_rsplen / 4) ||
1655 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1656 					freq->transferred_length ||
1657 			     op->rsp_iu.status_code ||
1658 			     sqe->common.command_id != cqe->command_id)) {
1659 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1660 			goto done;
1661 		}
1662 		result = cqe->result;
1663 		status = cqe->status;
1664 		break;
1665 
1666 	default:
1667 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1668 		goto done;
1669 	}
1670 
1671 	terminate_assoc = false;
1672 
1673 done:
1674 	if (op->flags & FCOP_FLAGS_AEN) {
1675 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1676 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1677 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1678 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1679 		nvme_fc_ctrl_put(ctrl);
1680 		goto check_error;
1681 	}
1682 
1683 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1684 	nvme_end_request(rq, status, result);
1685 
1686 check_error:
1687 	if (terminate_assoc)
1688 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1689 }
1690 
1691 static int
1692 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1693 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1694 		struct request *rq, u32 rqno)
1695 {
1696 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1697 		container_of(op, typeof(*op_w_sgl), op);
1698 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1699 	int ret = 0;
1700 
1701 	memset(op, 0, sizeof(*op));
1702 	op->fcp_req.cmdaddr = &op->cmd_iu;
1703 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1704 	op->fcp_req.rspaddr = &op->rsp_iu;
1705 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1706 	op->fcp_req.done = nvme_fc_fcpio_done;
1707 	op->ctrl = ctrl;
1708 	op->queue = queue;
1709 	op->rq = rq;
1710 	op->rqno = rqno;
1711 
1712 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1713 	cmdiu->fc_id = NVME_CMD_FC_ID;
1714 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1715 
1716 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1717 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1718 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1719 		dev_err(ctrl->dev,
1720 			"FCP Op failed - cmdiu dma mapping failed.\n");
1721 		ret = EFAULT;
1722 		goto out_on_error;
1723 	}
1724 
1725 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1726 				&op->rsp_iu, sizeof(op->rsp_iu),
1727 				DMA_FROM_DEVICE);
1728 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1729 		dev_err(ctrl->dev,
1730 			"FCP Op failed - rspiu dma mapping failed.\n");
1731 		ret = EFAULT;
1732 	}
1733 
1734 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1735 out_on_error:
1736 	return ret;
1737 }
1738 
1739 static int
1740 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1741 		unsigned int hctx_idx, unsigned int numa_node)
1742 {
1743 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1744 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1745 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1746 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1747 	int res;
1748 
1749 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1750 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1751 	if (res)
1752 		return res;
1753 	op->op.fcp_req.first_sgl = &op->sgl[0];
1754 	op->op.fcp_req.private = &op->priv[0];
1755 	return res;
1756 }
1757 
1758 static int
1759 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1760 {
1761 	struct nvme_fc_fcp_op *aen_op;
1762 	struct nvme_fc_cmd_iu *cmdiu;
1763 	struct nvme_command *sqe;
1764 	void *private;
1765 	int i, ret;
1766 
1767 	aen_op = ctrl->aen_ops;
1768 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1769 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1770 						GFP_KERNEL);
1771 		if (!private)
1772 			return -ENOMEM;
1773 
1774 		cmdiu = &aen_op->cmd_iu;
1775 		sqe = &cmdiu->sqe;
1776 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1777 				aen_op, (struct request *)NULL,
1778 				(NVME_AQ_BLK_MQ_DEPTH + i));
1779 		if (ret) {
1780 			kfree(private);
1781 			return ret;
1782 		}
1783 
1784 		aen_op->flags = FCOP_FLAGS_AEN;
1785 		aen_op->fcp_req.private = private;
1786 
1787 		memset(sqe, 0, sizeof(*sqe));
1788 		sqe->common.opcode = nvme_admin_async_event;
1789 		/* Note: core layer may overwrite the sqe.command_id value */
1790 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1791 	}
1792 	return 0;
1793 }
1794 
1795 static void
1796 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1797 {
1798 	struct nvme_fc_fcp_op *aen_op;
1799 	int i;
1800 
1801 	aen_op = ctrl->aen_ops;
1802 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1803 		if (!aen_op->fcp_req.private)
1804 			continue;
1805 
1806 		__nvme_fc_exit_request(ctrl, aen_op);
1807 
1808 		kfree(aen_op->fcp_req.private);
1809 		aen_op->fcp_req.private = NULL;
1810 	}
1811 }
1812 
1813 static inline void
1814 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1815 		unsigned int qidx)
1816 {
1817 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1818 
1819 	hctx->driver_data = queue;
1820 	queue->hctx = hctx;
1821 }
1822 
1823 static int
1824 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1825 		unsigned int hctx_idx)
1826 {
1827 	struct nvme_fc_ctrl *ctrl = data;
1828 
1829 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1830 
1831 	return 0;
1832 }
1833 
1834 static int
1835 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1836 		unsigned int hctx_idx)
1837 {
1838 	struct nvme_fc_ctrl *ctrl = data;
1839 
1840 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1841 
1842 	return 0;
1843 }
1844 
1845 static void
1846 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1847 {
1848 	struct nvme_fc_queue *queue;
1849 
1850 	queue = &ctrl->queues[idx];
1851 	memset(queue, 0, sizeof(*queue));
1852 	queue->ctrl = ctrl;
1853 	queue->qnum = idx;
1854 	atomic_set(&queue->csn, 1);
1855 	queue->dev = ctrl->dev;
1856 
1857 	if (idx > 0)
1858 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1859 	else
1860 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1861 
1862 	/*
1863 	 * Considered whether we should allocate buffers for all SQEs
1864 	 * and CQEs and dma map them - mapping their respective entries
1865 	 * into the request structures (kernel vm addr and dma address)
1866 	 * thus the driver could use the buffers/mappings directly.
1867 	 * It only makes sense if the LLDD would use them for its
1868 	 * messaging api. It's very unlikely most adapter api's would use
1869 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1870 	 * structures were used instead.
1871 	 */
1872 }
1873 
1874 /*
1875  * This routine terminates a queue at the transport level.
1876  * The transport has already ensured that all outstanding ios on
1877  * the queue have been terminated.
1878  * The transport will send a Disconnect LS request to terminate
1879  * the queue's connection. Termination of the admin queue will also
1880  * terminate the association at the target.
1881  */
1882 static void
1883 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1884 {
1885 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1886 		return;
1887 
1888 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1889 	/*
1890 	 * Current implementation never disconnects a single queue.
1891 	 * It always terminates a whole association. So there is never
1892 	 * a disconnect(queue) LS sent to the target.
1893 	 */
1894 
1895 	queue->connection_id = 0;
1896 	atomic_set(&queue->csn, 1);
1897 }
1898 
1899 static void
1900 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1901 	struct nvme_fc_queue *queue, unsigned int qidx)
1902 {
1903 	if (ctrl->lport->ops->delete_queue)
1904 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1905 				queue->lldd_handle);
1906 	queue->lldd_handle = NULL;
1907 }
1908 
1909 static void
1910 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1911 {
1912 	int i;
1913 
1914 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1915 		nvme_fc_free_queue(&ctrl->queues[i]);
1916 }
1917 
1918 static int
1919 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1920 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1921 {
1922 	int ret = 0;
1923 
1924 	queue->lldd_handle = NULL;
1925 	if (ctrl->lport->ops->create_queue)
1926 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1927 				qidx, qsize, &queue->lldd_handle);
1928 
1929 	return ret;
1930 }
1931 
1932 static void
1933 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1934 {
1935 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1936 	int i;
1937 
1938 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1939 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1940 }
1941 
1942 static int
1943 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1944 {
1945 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1946 	int i, ret;
1947 
1948 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1949 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1950 		if (ret)
1951 			goto delete_queues;
1952 	}
1953 
1954 	return 0;
1955 
1956 delete_queues:
1957 	for (; i >= 0; i--)
1958 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1959 	return ret;
1960 }
1961 
1962 static int
1963 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1964 {
1965 	int i, ret = 0;
1966 
1967 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1968 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1969 					(qsize / 5));
1970 		if (ret)
1971 			break;
1972 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1973 		if (ret)
1974 			break;
1975 
1976 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1977 	}
1978 
1979 	return ret;
1980 }
1981 
1982 static void
1983 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1984 {
1985 	int i;
1986 
1987 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1988 		nvme_fc_init_queue(ctrl, i);
1989 }
1990 
1991 static void
1992 nvme_fc_ctrl_free(struct kref *ref)
1993 {
1994 	struct nvme_fc_ctrl *ctrl =
1995 		container_of(ref, struct nvme_fc_ctrl, ref);
1996 	unsigned long flags;
1997 
1998 	if (ctrl->ctrl.tagset) {
1999 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2000 		blk_mq_free_tag_set(&ctrl->tag_set);
2001 	}
2002 
2003 	/* remove from rport list */
2004 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2005 	list_del(&ctrl->ctrl_list);
2006 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2007 
2008 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2009 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2010 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2011 
2012 	kfree(ctrl->queues);
2013 
2014 	put_device(ctrl->dev);
2015 	nvme_fc_rport_put(ctrl->rport);
2016 
2017 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2018 	if (ctrl->ctrl.opts)
2019 		nvmf_free_options(ctrl->ctrl.opts);
2020 	kfree(ctrl);
2021 }
2022 
2023 static void
2024 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2025 {
2026 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2027 }
2028 
2029 static int
2030 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2031 {
2032 	return kref_get_unless_zero(&ctrl->ref);
2033 }
2034 
2035 /*
2036  * All accesses from nvme core layer done - can now free the
2037  * controller. Called after last nvme_put_ctrl() call
2038  */
2039 static void
2040 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2041 {
2042 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2043 
2044 	WARN_ON(nctrl != &ctrl->ctrl);
2045 
2046 	nvme_fc_ctrl_put(ctrl);
2047 }
2048 
2049 static void
2050 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2051 {
2052 	/* only proceed if in LIVE state - e.g. on first error */
2053 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2054 		return;
2055 
2056 	dev_warn(ctrl->ctrl.device,
2057 		"NVME-FC{%d}: transport association error detected: %s\n",
2058 		ctrl->cnum, errmsg);
2059 	dev_warn(ctrl->ctrl.device,
2060 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2061 
2062 	nvme_reset_ctrl(&ctrl->ctrl);
2063 }
2064 
2065 static enum blk_eh_timer_return
2066 nvme_fc_timeout(struct request *rq, bool reserved)
2067 {
2068 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2069 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2070 
2071 	/*
2072 	 * we can't individually ABTS an io without affecting the queue,
2073 	 * thus killing the queue, and thus the association.
2074 	 * So resolve by performing a controller reset, which will stop
2075 	 * the host/io stack, terminate the association on the link,
2076 	 * and recreate an association on the link.
2077 	 */
2078 	nvme_fc_error_recovery(ctrl, "io timeout error");
2079 
2080 	/*
2081 	 * the io abort has been initiated. Have the reset timer
2082 	 * restarted and the abort completion will complete the io
2083 	 * shortly. Avoids a synchronous wait while the abort finishes.
2084 	 */
2085 	return BLK_EH_RESET_TIMER;
2086 }
2087 
2088 static int
2089 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2090 		struct nvme_fc_fcp_op *op)
2091 {
2092 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2093 	enum dma_data_direction dir;
2094 	int ret;
2095 
2096 	freq->sg_cnt = 0;
2097 
2098 	if (!blk_rq_payload_bytes(rq))
2099 		return 0;
2100 
2101 	freq->sg_table.sgl = freq->first_sgl;
2102 	ret = sg_alloc_table_chained(&freq->sg_table,
2103 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2104 	if (ret)
2105 		return -ENOMEM;
2106 
2107 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2108 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2109 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2110 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2111 				op->nents, dir);
2112 	if (unlikely(freq->sg_cnt <= 0)) {
2113 		sg_free_table_chained(&freq->sg_table, true);
2114 		freq->sg_cnt = 0;
2115 		return -EFAULT;
2116 	}
2117 
2118 	/*
2119 	 * TODO: blk_integrity_rq(rq)  for DIF
2120 	 */
2121 	return 0;
2122 }
2123 
2124 static void
2125 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2126 		struct nvme_fc_fcp_op *op)
2127 {
2128 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2129 
2130 	if (!freq->sg_cnt)
2131 		return;
2132 
2133 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2134 				((rq_data_dir(rq) == WRITE) ?
2135 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2136 
2137 	nvme_cleanup_cmd(rq);
2138 
2139 	sg_free_table_chained(&freq->sg_table, true);
2140 
2141 	freq->sg_cnt = 0;
2142 }
2143 
2144 /*
2145  * In FC, the queue is a logical thing. At transport connect, the target
2146  * creates its "queue" and returns a handle that is to be given to the
2147  * target whenever it posts something to the corresponding SQ.  When an
2148  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2149  * command contained within the SQE, an io, and assigns a FC exchange
2150  * to it. The SQE and the associated SQ handle are sent in the initial
2151  * CMD IU sents on the exchange. All transfers relative to the io occur
2152  * as part of the exchange.  The CQE is the last thing for the io,
2153  * which is transferred (explicitly or implicitly) with the RSP IU
2154  * sent on the exchange. After the CQE is received, the FC exchange is
2155  * terminaed and the Exchange may be used on a different io.
2156  *
2157  * The transport to LLDD api has the transport making a request for a
2158  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2159  * resource and transfers the command. The LLDD will then process all
2160  * steps to complete the io. Upon completion, the transport done routine
2161  * is called.
2162  *
2163  * So - while the operation is outstanding to the LLDD, there is a link
2164  * level FC exchange resource that is also outstanding. This must be
2165  * considered in all cleanup operations.
2166  */
2167 static blk_status_t
2168 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2169 	struct nvme_fc_fcp_op *op, u32 data_len,
2170 	enum nvmefc_fcp_datadir	io_dir)
2171 {
2172 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2173 	struct nvme_command *sqe = &cmdiu->sqe;
2174 	u32 csn;
2175 	int ret, opstate;
2176 
2177 	/*
2178 	 * before attempting to send the io, check to see if we believe
2179 	 * the target device is present
2180 	 */
2181 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2182 		return BLK_STS_RESOURCE;
2183 
2184 	if (!nvme_fc_ctrl_get(ctrl))
2185 		return BLK_STS_IOERR;
2186 
2187 	/* format the FC-NVME CMD IU and fcp_req */
2188 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2189 	csn = atomic_inc_return(&queue->csn);
2190 	cmdiu->csn = cpu_to_be32(csn);
2191 	cmdiu->data_len = cpu_to_be32(data_len);
2192 	switch (io_dir) {
2193 	case NVMEFC_FCP_WRITE:
2194 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2195 		break;
2196 	case NVMEFC_FCP_READ:
2197 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2198 		break;
2199 	case NVMEFC_FCP_NODATA:
2200 		cmdiu->flags = 0;
2201 		break;
2202 	}
2203 	op->fcp_req.payload_length = data_len;
2204 	op->fcp_req.io_dir = io_dir;
2205 	op->fcp_req.transferred_length = 0;
2206 	op->fcp_req.rcv_rsplen = 0;
2207 	op->fcp_req.status = NVME_SC_SUCCESS;
2208 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2209 
2210 	/*
2211 	 * validate per fabric rules, set fields mandated by fabric spec
2212 	 * as well as those by FC-NVME spec.
2213 	 */
2214 	WARN_ON_ONCE(sqe->common.metadata);
2215 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2216 
2217 	/*
2218 	 * format SQE DPTR field per FC-NVME rules:
2219 	 *    type=0x5     Transport SGL Data Block Descriptor
2220 	 *    subtype=0xA  Transport-specific value
2221 	 *    address=0
2222 	 *    length=length of the data series
2223 	 */
2224 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2225 					NVME_SGL_FMT_TRANSPORT_A;
2226 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2227 	sqe->rw.dptr.sgl.addr = 0;
2228 
2229 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2230 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2231 		if (ret < 0) {
2232 			nvme_cleanup_cmd(op->rq);
2233 			nvme_fc_ctrl_put(ctrl);
2234 			if (ret == -ENOMEM || ret == -EAGAIN)
2235 				return BLK_STS_RESOURCE;
2236 			return BLK_STS_IOERR;
2237 		}
2238 	}
2239 
2240 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2241 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2242 
2243 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2244 
2245 	if (!(op->flags & FCOP_FLAGS_AEN))
2246 		blk_mq_start_request(op->rq);
2247 
2248 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2249 					&ctrl->rport->remoteport,
2250 					queue->lldd_handle, &op->fcp_req);
2251 
2252 	if (ret) {
2253 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2254 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2255 
2256 		if (!(op->flags & FCOP_FLAGS_AEN))
2257 			nvme_fc_unmap_data(ctrl, op->rq, op);
2258 
2259 		nvme_fc_ctrl_put(ctrl);
2260 
2261 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2262 				ret != -EBUSY)
2263 			return BLK_STS_IOERR;
2264 
2265 		return BLK_STS_RESOURCE;
2266 	}
2267 
2268 	return BLK_STS_OK;
2269 }
2270 
2271 static blk_status_t
2272 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2273 			const struct blk_mq_queue_data *bd)
2274 {
2275 	struct nvme_ns *ns = hctx->queue->queuedata;
2276 	struct nvme_fc_queue *queue = hctx->driver_data;
2277 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2278 	struct request *rq = bd->rq;
2279 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2280 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2281 	struct nvme_command *sqe = &cmdiu->sqe;
2282 	enum nvmefc_fcp_datadir	io_dir;
2283 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2284 	u32 data_len;
2285 	blk_status_t ret;
2286 
2287 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2288 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2289 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2290 
2291 	ret = nvme_setup_cmd(ns, rq, sqe);
2292 	if (ret)
2293 		return ret;
2294 
2295 	data_len = blk_rq_payload_bytes(rq);
2296 	if (data_len)
2297 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2298 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2299 	else
2300 		io_dir = NVMEFC_FCP_NODATA;
2301 
2302 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2303 }
2304 
2305 static struct blk_mq_tags *
2306 nvme_fc_tagset(struct nvme_fc_queue *queue)
2307 {
2308 	if (queue->qnum == 0)
2309 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2310 
2311 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2312 }
2313 
2314 static int
2315 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2316 
2317 {
2318 	struct nvme_fc_queue *queue = hctx->driver_data;
2319 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2320 	struct request *req;
2321 	struct nvme_fc_fcp_op *op;
2322 
2323 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2324 	if (!req)
2325 		return 0;
2326 
2327 	op = blk_mq_rq_to_pdu(req);
2328 
2329 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2330 		 (ctrl->lport->ops->poll_queue))
2331 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2332 						 queue->lldd_handle);
2333 
2334 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2335 }
2336 
2337 static void
2338 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2339 {
2340 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2341 	struct nvme_fc_fcp_op *aen_op;
2342 	unsigned long flags;
2343 	bool terminating = false;
2344 	blk_status_t ret;
2345 
2346 	spin_lock_irqsave(&ctrl->lock, flags);
2347 	if (ctrl->flags & FCCTRL_TERMIO)
2348 		terminating = true;
2349 	spin_unlock_irqrestore(&ctrl->lock, flags);
2350 
2351 	if (terminating)
2352 		return;
2353 
2354 	aen_op = &ctrl->aen_ops[0];
2355 
2356 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2357 					NVMEFC_FCP_NODATA);
2358 	if (ret)
2359 		dev_err(ctrl->ctrl.device,
2360 			"failed async event work\n");
2361 }
2362 
2363 static void
2364 nvme_fc_complete_rq(struct request *rq)
2365 {
2366 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2367 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2368 
2369 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2370 
2371 	nvme_fc_unmap_data(ctrl, rq, op);
2372 	nvme_complete_rq(rq);
2373 	nvme_fc_ctrl_put(ctrl);
2374 }
2375 
2376 /*
2377  * This routine is used by the transport when it needs to find active
2378  * io on a queue that is to be terminated. The transport uses
2379  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2380  * this routine to kill them on a 1 by 1 basis.
2381  *
2382  * As FC allocates FC exchange for each io, the transport must contact
2383  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2384  * After terminating the exchange the LLDD will call the transport's
2385  * normal io done path for the request, but it will have an aborted
2386  * status. The done path will return the io request back to the block
2387  * layer with an error status.
2388  */
2389 static void
2390 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2391 {
2392 	struct nvme_ctrl *nctrl = data;
2393 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2394 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2395 
2396 	__nvme_fc_abort_op(ctrl, op);
2397 }
2398 
2399 
2400 static const struct blk_mq_ops nvme_fc_mq_ops = {
2401 	.queue_rq	= nvme_fc_queue_rq,
2402 	.complete	= nvme_fc_complete_rq,
2403 	.init_request	= nvme_fc_init_request,
2404 	.exit_request	= nvme_fc_exit_request,
2405 	.init_hctx	= nvme_fc_init_hctx,
2406 	.poll		= nvme_fc_poll,
2407 	.timeout	= nvme_fc_timeout,
2408 };
2409 
2410 static int
2411 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2412 {
2413 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2414 	unsigned int nr_io_queues;
2415 	int ret;
2416 
2417 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2418 				ctrl->lport->ops->max_hw_queues);
2419 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2420 	if (ret) {
2421 		dev_info(ctrl->ctrl.device,
2422 			"set_queue_count failed: %d\n", ret);
2423 		return ret;
2424 	}
2425 
2426 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2427 	if (!nr_io_queues)
2428 		return 0;
2429 
2430 	nvme_fc_init_io_queues(ctrl);
2431 
2432 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2433 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2434 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2435 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2436 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2437 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2438 	ctrl->tag_set.cmd_size =
2439 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2440 			    ctrl->lport->ops->fcprqst_priv_sz);
2441 	ctrl->tag_set.driver_data = ctrl;
2442 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2443 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2444 
2445 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2446 	if (ret)
2447 		return ret;
2448 
2449 	ctrl->ctrl.tagset = &ctrl->tag_set;
2450 
2451 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2452 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2453 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2454 		goto out_free_tag_set;
2455 	}
2456 
2457 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2458 	if (ret)
2459 		goto out_cleanup_blk_queue;
2460 
2461 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2462 	if (ret)
2463 		goto out_delete_hw_queues;
2464 
2465 	ctrl->ioq_live = true;
2466 
2467 	return 0;
2468 
2469 out_delete_hw_queues:
2470 	nvme_fc_delete_hw_io_queues(ctrl);
2471 out_cleanup_blk_queue:
2472 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2473 out_free_tag_set:
2474 	blk_mq_free_tag_set(&ctrl->tag_set);
2475 	nvme_fc_free_io_queues(ctrl);
2476 
2477 	/* force put free routine to ignore io queues */
2478 	ctrl->ctrl.tagset = NULL;
2479 
2480 	return ret;
2481 }
2482 
2483 static int
2484 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2485 {
2486 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2487 	unsigned int nr_io_queues;
2488 	int ret;
2489 
2490 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2491 				ctrl->lport->ops->max_hw_queues);
2492 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2493 	if (ret) {
2494 		dev_info(ctrl->ctrl.device,
2495 			"set_queue_count failed: %d\n", ret);
2496 		return ret;
2497 	}
2498 
2499 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2500 	/* check for io queues existing */
2501 	if (ctrl->ctrl.queue_count == 1)
2502 		return 0;
2503 
2504 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2505 	if (ret)
2506 		goto out_free_io_queues;
2507 
2508 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2509 	if (ret)
2510 		goto out_delete_hw_queues;
2511 
2512 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2513 
2514 	return 0;
2515 
2516 out_delete_hw_queues:
2517 	nvme_fc_delete_hw_io_queues(ctrl);
2518 out_free_io_queues:
2519 	nvme_fc_free_io_queues(ctrl);
2520 	return ret;
2521 }
2522 
2523 static void
2524 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2525 {
2526 	struct nvme_fc_lport *lport = rport->lport;
2527 
2528 	atomic_inc(&lport->act_rport_cnt);
2529 }
2530 
2531 static void
2532 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2533 {
2534 	struct nvme_fc_lport *lport = rport->lport;
2535 	u32 cnt;
2536 
2537 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2538 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2539 		lport->ops->localport_delete(&lport->localport);
2540 }
2541 
2542 static int
2543 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2544 {
2545 	struct nvme_fc_rport *rport = ctrl->rport;
2546 	u32 cnt;
2547 
2548 	if (ctrl->assoc_active)
2549 		return 1;
2550 
2551 	ctrl->assoc_active = true;
2552 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2553 	if (cnt == 1)
2554 		nvme_fc_rport_active_on_lport(rport);
2555 
2556 	return 0;
2557 }
2558 
2559 static int
2560 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2561 {
2562 	struct nvme_fc_rport *rport = ctrl->rport;
2563 	struct nvme_fc_lport *lport = rport->lport;
2564 	u32 cnt;
2565 
2566 	/* ctrl->assoc_active=false will be set independently */
2567 
2568 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2569 	if (cnt == 0) {
2570 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2571 			lport->ops->remoteport_delete(&rport->remoteport);
2572 		nvme_fc_rport_inactive_on_lport(rport);
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /*
2579  * This routine restarts the controller on the host side, and
2580  * on the link side, recreates the controller association.
2581  */
2582 static int
2583 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2584 {
2585 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2586 	int ret;
2587 	bool changed;
2588 
2589 	++ctrl->ctrl.nr_reconnects;
2590 
2591 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2592 		return -ENODEV;
2593 
2594 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2595 		return -ENOTUNIQ;
2596 
2597 	/*
2598 	 * Create the admin queue
2599 	 */
2600 
2601 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2602 				NVME_AQ_DEPTH);
2603 	if (ret)
2604 		goto out_free_queue;
2605 
2606 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2607 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2608 	if (ret)
2609 		goto out_delete_hw_queue;
2610 
2611 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2612 
2613 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2614 	if (ret)
2615 		goto out_disconnect_admin_queue;
2616 
2617 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2618 
2619 	/*
2620 	 * Check controller capabilities
2621 	 *
2622 	 * todo:- add code to check if ctrl attributes changed from
2623 	 * prior connection values
2624 	 */
2625 
2626 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2627 	if (ret) {
2628 		dev_err(ctrl->ctrl.device,
2629 			"prop_get NVME_REG_CAP failed\n");
2630 		goto out_disconnect_admin_queue;
2631 	}
2632 
2633 	ctrl->ctrl.sqsize =
2634 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2635 
2636 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2637 	if (ret)
2638 		goto out_disconnect_admin_queue;
2639 
2640 	ctrl->ctrl.max_hw_sectors =
2641 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2642 
2643 	ret = nvme_init_identify(&ctrl->ctrl);
2644 	if (ret)
2645 		goto out_disconnect_admin_queue;
2646 
2647 	/* sanity checks */
2648 
2649 	/* FC-NVME does not have other data in the capsule */
2650 	if (ctrl->ctrl.icdoff) {
2651 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2652 				ctrl->ctrl.icdoff);
2653 		goto out_disconnect_admin_queue;
2654 	}
2655 
2656 	/* FC-NVME supports normal SGL Data Block Descriptors */
2657 
2658 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2659 		/* warn if maxcmd is lower than queue_size */
2660 		dev_warn(ctrl->ctrl.device,
2661 			"queue_size %zu > ctrl maxcmd %u, reducing "
2662 			"to queue_size\n",
2663 			opts->queue_size, ctrl->ctrl.maxcmd);
2664 		opts->queue_size = ctrl->ctrl.maxcmd;
2665 	}
2666 
2667 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2668 		/* warn if sqsize is lower than queue_size */
2669 		dev_warn(ctrl->ctrl.device,
2670 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2671 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2672 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2673 	}
2674 
2675 	ret = nvme_fc_init_aen_ops(ctrl);
2676 	if (ret)
2677 		goto out_term_aen_ops;
2678 
2679 	/*
2680 	 * Create the io queues
2681 	 */
2682 
2683 	if (ctrl->ctrl.queue_count > 1) {
2684 		if (!ctrl->ioq_live)
2685 			ret = nvme_fc_create_io_queues(ctrl);
2686 		else
2687 			ret = nvme_fc_recreate_io_queues(ctrl);
2688 		if (ret)
2689 			goto out_term_aen_ops;
2690 	}
2691 
2692 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2693 
2694 	ctrl->ctrl.nr_reconnects = 0;
2695 
2696 	if (changed)
2697 		nvme_start_ctrl(&ctrl->ctrl);
2698 
2699 	return 0;	/* Success */
2700 
2701 out_term_aen_ops:
2702 	nvme_fc_term_aen_ops(ctrl);
2703 out_disconnect_admin_queue:
2704 	/* send a Disconnect(association) LS to fc-nvme target */
2705 	nvme_fc_xmt_disconnect_assoc(ctrl);
2706 out_delete_hw_queue:
2707 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2708 out_free_queue:
2709 	nvme_fc_free_queue(&ctrl->queues[0]);
2710 	ctrl->assoc_active = false;
2711 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2712 
2713 	return ret;
2714 }
2715 
2716 /*
2717  * This routine stops operation of the controller on the host side.
2718  * On the host os stack side: Admin and IO queues are stopped,
2719  *   outstanding ios on them terminated via FC ABTS.
2720  * On the link side: the association is terminated.
2721  */
2722 static void
2723 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2724 {
2725 	unsigned long flags;
2726 
2727 	if (!ctrl->assoc_active)
2728 		return;
2729 	ctrl->assoc_active = false;
2730 
2731 	spin_lock_irqsave(&ctrl->lock, flags);
2732 	ctrl->flags |= FCCTRL_TERMIO;
2733 	ctrl->iocnt = 0;
2734 	spin_unlock_irqrestore(&ctrl->lock, flags);
2735 
2736 	/*
2737 	 * If io queues are present, stop them and terminate all outstanding
2738 	 * ios on them. As FC allocates FC exchange for each io, the
2739 	 * transport must contact the LLDD to terminate the exchange,
2740 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2741 	 * to tell us what io's are busy and invoke a transport routine
2742 	 * to kill them with the LLDD.  After terminating the exchange
2743 	 * the LLDD will call the transport's normal io done path, but it
2744 	 * will have an aborted status. The done path will return the
2745 	 * io requests back to the block layer as part of normal completions
2746 	 * (but with error status).
2747 	 */
2748 	if (ctrl->ctrl.queue_count > 1) {
2749 		nvme_stop_queues(&ctrl->ctrl);
2750 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2751 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2752 	}
2753 
2754 	/*
2755 	 * Other transports, which don't have link-level contexts bound
2756 	 * to sqe's, would try to gracefully shutdown the controller by
2757 	 * writing the registers for shutdown and polling (call
2758 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2759 	 * just aborted and we will wait on those contexts, and given
2760 	 * there was no indication of how live the controlelr is on the
2761 	 * link, don't send more io to create more contexts for the
2762 	 * shutdown. Let the controller fail via keepalive failure if
2763 	 * its still present.
2764 	 */
2765 
2766 	/*
2767 	 * clean up the admin queue. Same thing as above.
2768 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2769 	 * terminate the exchanges.
2770 	 */
2771 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2772 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2773 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2774 
2775 	/* kill the aens as they are a separate path */
2776 	nvme_fc_abort_aen_ops(ctrl);
2777 
2778 	/* wait for all io that had to be aborted */
2779 	spin_lock_irq(&ctrl->lock);
2780 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2781 	ctrl->flags &= ~FCCTRL_TERMIO;
2782 	spin_unlock_irq(&ctrl->lock);
2783 
2784 	nvme_fc_term_aen_ops(ctrl);
2785 
2786 	/*
2787 	 * send a Disconnect(association) LS to fc-nvme target
2788 	 * Note: could have been sent at top of process, but
2789 	 * cleaner on link traffic if after the aborts complete.
2790 	 * Note: if association doesn't exist, association_id will be 0
2791 	 */
2792 	if (ctrl->association_id)
2793 		nvme_fc_xmt_disconnect_assoc(ctrl);
2794 
2795 	if (ctrl->ctrl.tagset) {
2796 		nvme_fc_delete_hw_io_queues(ctrl);
2797 		nvme_fc_free_io_queues(ctrl);
2798 	}
2799 
2800 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2801 	nvme_fc_free_queue(&ctrl->queues[0]);
2802 
2803 	/* re-enable the admin_q so anything new can fast fail */
2804 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2805 
2806 	/* resume the io queues so that things will fast fail */
2807 	nvme_start_queues(&ctrl->ctrl);
2808 
2809 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2810 }
2811 
2812 static void
2813 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2814 {
2815 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2816 
2817 	cancel_delayed_work_sync(&ctrl->connect_work);
2818 	/*
2819 	 * kill the association on the link side.  this will block
2820 	 * waiting for io to terminate
2821 	 */
2822 	nvme_fc_delete_association(ctrl);
2823 }
2824 
2825 static void
2826 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2827 {
2828 	struct nvme_fc_rport *rport = ctrl->rport;
2829 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2830 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2831 	bool recon = true;
2832 
2833 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2834 		return;
2835 
2836 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2837 		dev_info(ctrl->ctrl.device,
2838 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2839 			ctrl->cnum, status);
2840 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2841 		recon = false;
2842 
2843 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2844 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2845 			dev_info(ctrl->ctrl.device,
2846 				"NVME-FC{%d}: Reconnect attempt in %ld "
2847 				"seconds\n",
2848 				ctrl->cnum, recon_delay / HZ);
2849 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2850 			recon_delay = rport->dev_loss_end - jiffies;
2851 
2852 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2853 	} else {
2854 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2855 			dev_warn(ctrl->ctrl.device,
2856 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2857 				"reached.\n",
2858 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2859 		else
2860 			dev_warn(ctrl->ctrl.device,
2861 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2862 				"while waiting for remoteport connectivity.\n",
2863 				ctrl->cnum, portptr->dev_loss_tmo);
2864 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2865 	}
2866 }
2867 
2868 static void
2869 nvme_fc_reset_ctrl_work(struct work_struct *work)
2870 {
2871 	struct nvme_fc_ctrl *ctrl =
2872 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2873 	int ret;
2874 
2875 	nvme_stop_ctrl(&ctrl->ctrl);
2876 
2877 	/* will block will waiting for io to terminate */
2878 	nvme_fc_delete_association(ctrl);
2879 
2880 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2881 		dev_err(ctrl->ctrl.device,
2882 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2883 			"to CONNECTING\n", ctrl->cnum);
2884 		return;
2885 	}
2886 
2887 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2888 		ret = nvme_fc_create_association(ctrl);
2889 	else
2890 		ret = -ENOTCONN;
2891 
2892 	if (ret)
2893 		nvme_fc_reconnect_or_delete(ctrl, ret);
2894 	else
2895 		dev_info(ctrl->ctrl.device,
2896 			"NVME-FC{%d}: controller reset complete\n",
2897 			ctrl->cnum);
2898 }
2899 
2900 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2901 	.name			= "fc",
2902 	.module			= THIS_MODULE,
2903 	.flags			= NVME_F_FABRICS,
2904 	.reg_read32		= nvmf_reg_read32,
2905 	.reg_read64		= nvmf_reg_read64,
2906 	.reg_write32		= nvmf_reg_write32,
2907 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2908 	.submit_async_event	= nvme_fc_submit_async_event,
2909 	.delete_ctrl		= nvme_fc_delete_ctrl,
2910 	.get_address		= nvmf_get_address,
2911 };
2912 
2913 static void
2914 nvme_fc_connect_ctrl_work(struct work_struct *work)
2915 {
2916 	int ret;
2917 
2918 	struct nvme_fc_ctrl *ctrl =
2919 			container_of(to_delayed_work(work),
2920 				struct nvme_fc_ctrl, connect_work);
2921 
2922 	ret = nvme_fc_create_association(ctrl);
2923 	if (ret)
2924 		nvme_fc_reconnect_or_delete(ctrl, ret);
2925 	else
2926 		dev_info(ctrl->ctrl.device,
2927 			"NVME-FC{%d}: controller connect complete\n",
2928 			ctrl->cnum);
2929 }
2930 
2931 
2932 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2933 	.queue_rq	= nvme_fc_queue_rq,
2934 	.complete	= nvme_fc_complete_rq,
2935 	.init_request	= nvme_fc_init_request,
2936 	.exit_request	= nvme_fc_exit_request,
2937 	.init_hctx	= nvme_fc_init_admin_hctx,
2938 	.timeout	= nvme_fc_timeout,
2939 };
2940 
2941 
2942 /*
2943  * Fails a controller request if it matches an existing controller
2944  * (association) with the same tuple:
2945  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2946  *
2947  * The ports don't need to be compared as they are intrinsically
2948  * already matched by the port pointers supplied.
2949  */
2950 static bool
2951 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2952 		struct nvmf_ctrl_options *opts)
2953 {
2954 	struct nvme_fc_ctrl *ctrl;
2955 	unsigned long flags;
2956 	bool found = false;
2957 
2958 	spin_lock_irqsave(&rport->lock, flags);
2959 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2960 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2961 		if (found)
2962 			break;
2963 	}
2964 	spin_unlock_irqrestore(&rport->lock, flags);
2965 
2966 	return found;
2967 }
2968 
2969 static struct nvme_ctrl *
2970 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2971 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2972 {
2973 	struct nvme_fc_ctrl *ctrl;
2974 	unsigned long flags;
2975 	int ret, idx;
2976 
2977 	if (!(rport->remoteport.port_role &
2978 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2979 		ret = -EBADR;
2980 		goto out_fail;
2981 	}
2982 
2983 	if (!opts->duplicate_connect &&
2984 	    nvme_fc_existing_controller(rport, opts)) {
2985 		ret = -EALREADY;
2986 		goto out_fail;
2987 	}
2988 
2989 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2990 	if (!ctrl) {
2991 		ret = -ENOMEM;
2992 		goto out_fail;
2993 	}
2994 
2995 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2996 	if (idx < 0) {
2997 		ret = -ENOSPC;
2998 		goto out_free_ctrl;
2999 	}
3000 
3001 	ctrl->ctrl.opts = opts;
3002 	ctrl->ctrl.nr_reconnects = 0;
3003 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3004 	ctrl->lport = lport;
3005 	ctrl->rport = rport;
3006 	ctrl->dev = lport->dev;
3007 	ctrl->cnum = idx;
3008 	ctrl->ioq_live = false;
3009 	ctrl->assoc_active = false;
3010 	init_waitqueue_head(&ctrl->ioabort_wait);
3011 
3012 	get_device(ctrl->dev);
3013 	kref_init(&ctrl->ref);
3014 
3015 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3016 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3017 	spin_lock_init(&ctrl->lock);
3018 
3019 	/* io queue count */
3020 	ctrl->ctrl.queue_count = min_t(unsigned int,
3021 				opts->nr_io_queues,
3022 				lport->ops->max_hw_queues);
3023 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3024 
3025 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3026 	ctrl->ctrl.kato = opts->kato;
3027 	ctrl->ctrl.cntlid = 0xffff;
3028 
3029 	ret = -ENOMEM;
3030 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3031 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3032 	if (!ctrl->queues)
3033 		goto out_free_ida;
3034 
3035 	nvme_fc_init_queue(ctrl, 0);
3036 
3037 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3038 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3039 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3040 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3041 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3042 	ctrl->admin_tag_set.cmd_size =
3043 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3044 			    ctrl->lport->ops->fcprqst_priv_sz);
3045 	ctrl->admin_tag_set.driver_data = ctrl;
3046 	ctrl->admin_tag_set.nr_hw_queues = 1;
3047 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3048 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3049 
3050 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3051 	if (ret)
3052 		goto out_free_queues;
3053 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3054 
3055 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3056 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3057 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3058 		goto out_free_admin_tag_set;
3059 	}
3060 
3061 	/*
3062 	 * Would have been nice to init io queues tag set as well.
3063 	 * However, we require interaction from the controller
3064 	 * for max io queue count before we can do so.
3065 	 * Defer this to the connect path.
3066 	 */
3067 
3068 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3069 	if (ret)
3070 		goto out_cleanup_admin_q;
3071 
3072 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3073 
3074 	spin_lock_irqsave(&rport->lock, flags);
3075 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3076 	spin_unlock_irqrestore(&rport->lock, flags);
3077 
3078 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3079 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3080 		dev_err(ctrl->ctrl.device,
3081 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3082 		goto fail_ctrl;
3083 	}
3084 
3085 	nvme_get_ctrl(&ctrl->ctrl);
3086 
3087 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3088 		nvme_put_ctrl(&ctrl->ctrl);
3089 		dev_err(ctrl->ctrl.device,
3090 			"NVME-FC{%d}: failed to schedule initial connect\n",
3091 			ctrl->cnum);
3092 		goto fail_ctrl;
3093 	}
3094 
3095 	flush_delayed_work(&ctrl->connect_work);
3096 
3097 	dev_info(ctrl->ctrl.device,
3098 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3099 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3100 
3101 	return &ctrl->ctrl;
3102 
3103 fail_ctrl:
3104 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3105 	cancel_work_sync(&ctrl->ctrl.reset_work);
3106 	cancel_delayed_work_sync(&ctrl->connect_work);
3107 
3108 	ctrl->ctrl.opts = NULL;
3109 
3110 	/* initiate nvme ctrl ref counting teardown */
3111 	nvme_uninit_ctrl(&ctrl->ctrl);
3112 
3113 	/* Remove core ctrl ref. */
3114 	nvme_put_ctrl(&ctrl->ctrl);
3115 
3116 	/* as we're past the point where we transition to the ref
3117 	 * counting teardown path, if we return a bad pointer here,
3118 	 * the calling routine, thinking it's prior to the
3119 	 * transition, will do an rport put. Since the teardown
3120 	 * path also does a rport put, we do an extra get here to
3121 	 * so proper order/teardown happens.
3122 	 */
3123 	nvme_fc_rport_get(rport);
3124 
3125 	return ERR_PTR(-EIO);
3126 
3127 out_cleanup_admin_q:
3128 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3129 out_free_admin_tag_set:
3130 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3131 out_free_queues:
3132 	kfree(ctrl->queues);
3133 out_free_ida:
3134 	put_device(ctrl->dev);
3135 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3136 out_free_ctrl:
3137 	kfree(ctrl);
3138 out_fail:
3139 	/* exit via here doesn't follow ctlr ref points */
3140 	return ERR_PTR(ret);
3141 }
3142 
3143 
3144 struct nvmet_fc_traddr {
3145 	u64	nn;
3146 	u64	pn;
3147 };
3148 
3149 static int
3150 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3151 {
3152 	u64 token64;
3153 
3154 	if (match_u64(sstr, &token64))
3155 		return -EINVAL;
3156 	*val = token64;
3157 
3158 	return 0;
3159 }
3160 
3161 /*
3162  * This routine validates and extracts the WWN's from the TRADDR string.
3163  * As kernel parsers need the 0x to determine number base, universally
3164  * build string to parse with 0x prefix before parsing name strings.
3165  */
3166 static int
3167 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3168 {
3169 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3170 	substring_t wwn = { name, &name[sizeof(name)-1] };
3171 	int nnoffset, pnoffset;
3172 
3173 	/* validate if string is one of the 2 allowed formats */
3174 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3175 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3176 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3177 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3178 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3179 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3180 						NVME_FC_TRADDR_OXNNLEN;
3181 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3182 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3183 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3184 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3185 		nnoffset = NVME_FC_TRADDR_NNLEN;
3186 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3187 	} else
3188 		goto out_einval;
3189 
3190 	name[0] = '0';
3191 	name[1] = 'x';
3192 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3193 
3194 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3195 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3196 		goto out_einval;
3197 
3198 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3199 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3200 		goto out_einval;
3201 
3202 	return 0;
3203 
3204 out_einval:
3205 	pr_warn("%s: bad traddr string\n", __func__);
3206 	return -EINVAL;
3207 }
3208 
3209 static struct nvme_ctrl *
3210 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3211 {
3212 	struct nvme_fc_lport *lport;
3213 	struct nvme_fc_rport *rport;
3214 	struct nvme_ctrl *ctrl;
3215 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3216 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3217 	unsigned long flags;
3218 	int ret;
3219 
3220 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3221 	if (ret || !raddr.nn || !raddr.pn)
3222 		return ERR_PTR(-EINVAL);
3223 
3224 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3225 	if (ret || !laddr.nn || !laddr.pn)
3226 		return ERR_PTR(-EINVAL);
3227 
3228 	/* find the host and remote ports to connect together */
3229 	spin_lock_irqsave(&nvme_fc_lock, flags);
3230 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3231 		if (lport->localport.node_name != laddr.nn ||
3232 		    lport->localport.port_name != laddr.pn)
3233 			continue;
3234 
3235 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3236 			if (rport->remoteport.node_name != raddr.nn ||
3237 			    rport->remoteport.port_name != raddr.pn)
3238 				continue;
3239 
3240 			/* if fail to get reference fall through. Will error */
3241 			if (!nvme_fc_rport_get(rport))
3242 				break;
3243 
3244 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3245 
3246 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3247 			if (IS_ERR(ctrl))
3248 				nvme_fc_rport_put(rport);
3249 			return ctrl;
3250 		}
3251 	}
3252 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3253 
3254 	pr_warn("%s: %s - %s combination not found\n",
3255 		__func__, opts->traddr, opts->host_traddr);
3256 	return ERR_PTR(-ENOENT);
3257 }
3258 
3259 
3260 static struct nvmf_transport_ops nvme_fc_transport = {
3261 	.name		= "fc",
3262 	.module		= THIS_MODULE,
3263 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3264 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3265 	.create_ctrl	= nvme_fc_create_ctrl,
3266 };
3267 
3268 /* Arbitrary successive failures max. With lots of subsystems could be high */
3269 #define DISCOVERY_MAX_FAIL	20
3270 
3271 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3272 		struct device_attribute *attr, const char *buf, size_t count)
3273 {
3274 	unsigned long flags;
3275 	LIST_HEAD(local_disc_list);
3276 	struct nvme_fc_lport *lport;
3277 	struct nvme_fc_rport *rport;
3278 	int failcnt = 0;
3279 
3280 	spin_lock_irqsave(&nvme_fc_lock, flags);
3281 restart:
3282 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3283 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3284 			if (!nvme_fc_lport_get(lport))
3285 				continue;
3286 			if (!nvme_fc_rport_get(rport)) {
3287 				/*
3288 				 * This is a temporary condition. Upon restart
3289 				 * this rport will be gone from the list.
3290 				 *
3291 				 * Revert the lport put and retry.  Anything
3292 				 * added to the list already will be skipped (as
3293 				 * they are no longer list_empty).  Loops should
3294 				 * resume at rports that were not yet seen.
3295 				 */
3296 				nvme_fc_lport_put(lport);
3297 
3298 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3299 					goto restart;
3300 
3301 				pr_err("nvme_discovery: too many reference "
3302 				       "failures\n");
3303 				goto process_local_list;
3304 			}
3305 			if (list_empty(&rport->disc_list))
3306 				list_add_tail(&rport->disc_list,
3307 					      &local_disc_list);
3308 		}
3309 	}
3310 
3311 process_local_list:
3312 	while (!list_empty(&local_disc_list)) {
3313 		rport = list_first_entry(&local_disc_list,
3314 					 struct nvme_fc_rport, disc_list);
3315 		list_del_init(&rport->disc_list);
3316 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3317 
3318 		lport = rport->lport;
3319 		/* signal discovery. Won't hurt if it repeats */
3320 		nvme_fc_signal_discovery_scan(lport, rport);
3321 		nvme_fc_rport_put(rport);
3322 		nvme_fc_lport_put(lport);
3323 
3324 		spin_lock_irqsave(&nvme_fc_lock, flags);
3325 	}
3326 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3327 
3328 	return count;
3329 }
3330 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3331 
3332 static struct attribute *nvme_fc_attrs[] = {
3333 	&dev_attr_nvme_discovery.attr,
3334 	NULL
3335 };
3336 
3337 static struct attribute_group nvme_fc_attr_group = {
3338 	.attrs = nvme_fc_attrs,
3339 };
3340 
3341 static const struct attribute_group *nvme_fc_attr_groups[] = {
3342 	&nvme_fc_attr_group,
3343 	NULL
3344 };
3345 
3346 static struct class fc_class = {
3347 	.name = "fc",
3348 	.dev_groups = nvme_fc_attr_groups,
3349 	.owner = THIS_MODULE,
3350 };
3351 
3352 static int __init nvme_fc_init_module(void)
3353 {
3354 	int ret;
3355 
3356 	/*
3357 	 * NOTE:
3358 	 * It is expected that in the future the kernel will combine
3359 	 * the FC-isms that are currently under scsi and now being
3360 	 * added to by NVME into a new standalone FC class. The SCSI
3361 	 * and NVME protocols and their devices would be under this
3362 	 * new FC class.
3363 	 *
3364 	 * As we need something to post FC-specific udev events to,
3365 	 * specifically for nvme probe events, start by creating the
3366 	 * new device class.  When the new standalone FC class is
3367 	 * put in place, this code will move to a more generic
3368 	 * location for the class.
3369 	 */
3370 	ret = class_register(&fc_class);
3371 	if (ret) {
3372 		pr_err("couldn't register class fc\n");
3373 		return ret;
3374 	}
3375 
3376 	/*
3377 	 * Create a device for the FC-centric udev events
3378 	 */
3379 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3380 				"fc_udev_device");
3381 	if (IS_ERR(fc_udev_device)) {
3382 		pr_err("couldn't create fc_udev device!\n");
3383 		ret = PTR_ERR(fc_udev_device);
3384 		goto out_destroy_class;
3385 	}
3386 
3387 	ret = nvmf_register_transport(&nvme_fc_transport);
3388 	if (ret)
3389 		goto out_destroy_device;
3390 
3391 	return 0;
3392 
3393 out_destroy_device:
3394 	device_destroy(&fc_class, MKDEV(0, 0));
3395 out_destroy_class:
3396 	class_unregister(&fc_class);
3397 	return ret;
3398 }
3399 
3400 static void __exit nvme_fc_exit_module(void)
3401 {
3402 	/* sanity check - all lports should be removed */
3403 	if (!list_empty(&nvme_fc_lport_list))
3404 		pr_warn("%s: localport list not empty\n", __func__);
3405 
3406 	nvmf_unregister_transport(&nvme_fc_transport);
3407 
3408 	ida_destroy(&nvme_fc_local_port_cnt);
3409 	ida_destroy(&nvme_fc_ctrl_cnt);
3410 
3411 	device_destroy(&fc_class, MKDEV(0, 0));
3412 	class_unregister(&fc_class);
3413 }
3414 
3415 module_init(nvme_fc_init_module);
3416 module_exit(nvme_fc_exit_module);
3417 
3418 MODULE_LICENSE("GPL v2");
3419