1 /* 2 * NVMe over Fabrics common host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/init.h> 16 #include <linux/miscdevice.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/parser.h> 20 #include <linux/seq_file.h> 21 #include "nvme.h" 22 #include "fabrics.h" 23 24 static LIST_HEAD(nvmf_transports); 25 static DECLARE_RWSEM(nvmf_transports_rwsem); 26 27 static LIST_HEAD(nvmf_hosts); 28 static DEFINE_MUTEX(nvmf_hosts_mutex); 29 30 static struct nvmf_host *nvmf_default_host; 31 32 static struct nvmf_host *__nvmf_host_find(const char *hostnqn) 33 { 34 struct nvmf_host *host; 35 36 list_for_each_entry(host, &nvmf_hosts, list) { 37 if (!strcmp(host->nqn, hostnqn)) 38 return host; 39 } 40 41 return NULL; 42 } 43 44 static struct nvmf_host *nvmf_host_add(const char *hostnqn) 45 { 46 struct nvmf_host *host; 47 48 mutex_lock(&nvmf_hosts_mutex); 49 host = __nvmf_host_find(hostnqn); 50 if (host) { 51 kref_get(&host->ref); 52 goto out_unlock; 53 } 54 55 host = kmalloc(sizeof(*host), GFP_KERNEL); 56 if (!host) 57 goto out_unlock; 58 59 kref_init(&host->ref); 60 memcpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 61 62 list_add_tail(&host->list, &nvmf_hosts); 63 out_unlock: 64 mutex_unlock(&nvmf_hosts_mutex); 65 return host; 66 } 67 68 static struct nvmf_host *nvmf_host_default(void) 69 { 70 struct nvmf_host *host; 71 72 host = kmalloc(sizeof(*host), GFP_KERNEL); 73 if (!host) 74 return NULL; 75 76 kref_init(&host->ref); 77 uuid_gen(&host->id); 78 snprintf(host->nqn, NVMF_NQN_SIZE, 79 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &host->id); 80 81 mutex_lock(&nvmf_hosts_mutex); 82 list_add_tail(&host->list, &nvmf_hosts); 83 mutex_unlock(&nvmf_hosts_mutex); 84 85 return host; 86 } 87 88 static void nvmf_host_destroy(struct kref *ref) 89 { 90 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 91 92 mutex_lock(&nvmf_hosts_mutex); 93 list_del(&host->list); 94 mutex_unlock(&nvmf_hosts_mutex); 95 96 kfree(host); 97 } 98 99 static void nvmf_host_put(struct nvmf_host *host) 100 { 101 if (host) 102 kref_put(&host->ref, nvmf_host_destroy); 103 } 104 105 /** 106 * nvmf_get_address() - Get address/port 107 * @ctrl: Host NVMe controller instance which we got the address 108 * @buf: OUTPUT parameter that will contain the address/port 109 * @size: buffer size 110 */ 111 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 112 { 113 int len = 0; 114 115 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 116 len += snprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 117 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 118 len += snprintf(buf + len, size - len, "%strsvcid=%s", 119 (len) ? "," : "", ctrl->opts->trsvcid); 120 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 121 len += snprintf(buf + len, size - len, "%shost_traddr=%s", 122 (len) ? "," : "", ctrl->opts->host_traddr); 123 len += snprintf(buf + len, size - len, "\n"); 124 125 return len; 126 } 127 EXPORT_SYMBOL_GPL(nvmf_get_address); 128 129 /** 130 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 131 * @ctrl: Host NVMe controller instance maintaining the admin 132 * queue used to submit the property read command to 133 * the allocated NVMe controller resource on the target system. 134 * @off: Starting offset value of the targeted property 135 * register (see the fabrics section of the NVMe standard). 136 * @val: OUTPUT parameter that will contain the value of 137 * the property after a successful read. 138 * 139 * Used by the host system to retrieve a 32-bit capsule property value 140 * from an NVMe controller on the target system. 141 * 142 * ("Capsule property" is an "PCIe register concept" applied to the 143 * NVMe fabrics space.) 144 * 145 * Return: 146 * 0: successful read 147 * > 0: NVMe error status code 148 * < 0: Linux errno error code 149 */ 150 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 151 { 152 struct nvme_command cmd; 153 union nvme_result res; 154 int ret; 155 156 memset(&cmd, 0, sizeof(cmd)); 157 cmd.prop_get.opcode = nvme_fabrics_command; 158 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 159 cmd.prop_get.offset = cpu_to_le32(off); 160 161 ret = __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, &res, NULL, 0, 0, 162 NVME_QID_ANY, 0, 0); 163 164 if (ret >= 0) 165 *val = le64_to_cpu(res.u64); 166 if (unlikely(ret != 0)) 167 dev_err(ctrl->device, 168 "Property Get error: %d, offset %#x\n", 169 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 170 171 return ret; 172 } 173 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 174 175 /** 176 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 177 * @ctrl: Host NVMe controller instance maintaining the admin 178 * queue used to submit the property read command to 179 * the allocated controller resource on the target system. 180 * @off: Starting offset value of the targeted property 181 * register (see the fabrics section of the NVMe standard). 182 * @val: OUTPUT parameter that will contain the value of 183 * the property after a successful read. 184 * 185 * Used by the host system to retrieve a 64-bit capsule property value 186 * from an NVMe controller on the target system. 187 * 188 * ("Capsule property" is an "PCIe register concept" applied to the 189 * NVMe fabrics space.) 190 * 191 * Return: 192 * 0: successful read 193 * > 0: NVMe error status code 194 * < 0: Linux errno error code 195 */ 196 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 197 { 198 struct nvme_command cmd; 199 union nvme_result res; 200 int ret; 201 202 memset(&cmd, 0, sizeof(cmd)); 203 cmd.prop_get.opcode = nvme_fabrics_command; 204 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 205 cmd.prop_get.attrib = 1; 206 cmd.prop_get.offset = cpu_to_le32(off); 207 208 ret = __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, &res, NULL, 0, 0, 209 NVME_QID_ANY, 0, 0); 210 211 if (ret >= 0) 212 *val = le64_to_cpu(res.u64); 213 if (unlikely(ret != 0)) 214 dev_err(ctrl->device, 215 "Property Get error: %d, offset %#x\n", 216 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 217 return ret; 218 } 219 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 220 221 /** 222 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 223 * @ctrl: Host NVMe controller instance maintaining the admin 224 * queue used to submit the property read command to 225 * the allocated NVMe controller resource on the target system. 226 * @off: Starting offset value of the targeted property 227 * register (see the fabrics section of the NVMe standard). 228 * @val: Input parameter that contains the value to be 229 * written to the property. 230 * 231 * Used by the NVMe host system to write a 32-bit capsule property value 232 * to an NVMe controller on the target system. 233 * 234 * ("Capsule property" is an "PCIe register concept" applied to the 235 * NVMe fabrics space.) 236 * 237 * Return: 238 * 0: successful write 239 * > 0: NVMe error status code 240 * < 0: Linux errno error code 241 */ 242 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 243 { 244 struct nvme_command cmd; 245 int ret; 246 247 memset(&cmd, 0, sizeof(cmd)); 248 cmd.prop_set.opcode = nvme_fabrics_command; 249 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 250 cmd.prop_set.attrib = 0; 251 cmd.prop_set.offset = cpu_to_le32(off); 252 cmd.prop_set.value = cpu_to_le64(val); 253 254 ret = __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, NULL, 0, 0, 255 NVME_QID_ANY, 0, 0); 256 if (unlikely(ret)) 257 dev_err(ctrl->device, 258 "Property Set error: %d, offset %#x\n", 259 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 260 return ret; 261 } 262 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 263 264 /** 265 * nvmf_log_connect_error() - Error-parsing-diagnostic print 266 * out function for connect() errors. 267 * 268 * @ctrl: the specific /dev/nvmeX device that had the error. 269 * 270 * @errval: Error code to be decoded in a more human-friendly 271 * printout. 272 * 273 * @offset: For use with the NVMe error code NVME_SC_CONNECT_INVALID_PARAM. 274 * 275 * @cmd: This is the SQE portion of a submission capsule. 276 * 277 * @data: This is the "Data" portion of a submission capsule. 278 */ 279 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 280 int errval, int offset, struct nvme_command *cmd, 281 struct nvmf_connect_data *data) 282 { 283 int err_sctype = errval & (~NVME_SC_DNR); 284 285 switch (err_sctype) { 286 287 case (NVME_SC_CONNECT_INVALID_PARAM): 288 if (offset >> 16) { 289 char *inv_data = "Connect Invalid Data Parameter"; 290 291 switch (offset & 0xffff) { 292 case (offsetof(struct nvmf_connect_data, cntlid)): 293 dev_err(ctrl->device, 294 "%s, cntlid: %d\n", 295 inv_data, data->cntlid); 296 break; 297 case (offsetof(struct nvmf_connect_data, hostnqn)): 298 dev_err(ctrl->device, 299 "%s, hostnqn \"%s\"\n", 300 inv_data, data->hostnqn); 301 break; 302 case (offsetof(struct nvmf_connect_data, subsysnqn)): 303 dev_err(ctrl->device, 304 "%s, subsysnqn \"%s\"\n", 305 inv_data, data->subsysnqn); 306 break; 307 default: 308 dev_err(ctrl->device, 309 "%s, starting byte offset: %d\n", 310 inv_data, offset & 0xffff); 311 break; 312 } 313 } else { 314 char *inv_sqe = "Connect Invalid SQE Parameter"; 315 316 switch (offset) { 317 case (offsetof(struct nvmf_connect_command, qid)): 318 dev_err(ctrl->device, 319 "%s, qid %d\n", 320 inv_sqe, cmd->connect.qid); 321 break; 322 default: 323 dev_err(ctrl->device, 324 "%s, starting byte offset: %d\n", 325 inv_sqe, offset); 326 } 327 } 328 break; 329 330 case NVME_SC_CONNECT_INVALID_HOST: 331 dev_err(ctrl->device, 332 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 333 data->subsysnqn, data->hostnqn); 334 break; 335 336 case NVME_SC_CONNECT_CTRL_BUSY: 337 dev_err(ctrl->device, 338 "Connect command failed: controller is busy or not available\n"); 339 break; 340 341 case NVME_SC_CONNECT_FORMAT: 342 dev_err(ctrl->device, 343 "Connect incompatible format: %d", 344 cmd->connect.recfmt); 345 break; 346 347 default: 348 dev_err(ctrl->device, 349 "Connect command failed, error wo/DNR bit: %d\n", 350 err_sctype); 351 break; 352 } /* switch (err_sctype) */ 353 } 354 355 /** 356 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 357 * API function. 358 * @ctrl: Host nvme controller instance used to request 359 * a new NVMe controller allocation on the target 360 * system and establish an NVMe Admin connection to 361 * that controller. 362 * 363 * This function enables an NVMe host device to request a new allocation of 364 * an NVMe controller resource on a target system as well establish a 365 * fabrics-protocol connection of the NVMe Admin queue between the 366 * host system device and the allocated NVMe controller on the 367 * target system via a NVMe Fabrics "Connect" command. 368 * 369 * Return: 370 * 0: success 371 * > 0: NVMe error status code 372 * < 0: Linux errno error code 373 * 374 */ 375 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 376 { 377 struct nvme_command cmd; 378 union nvme_result res; 379 struct nvmf_connect_data *data; 380 int ret; 381 382 memset(&cmd, 0, sizeof(cmd)); 383 cmd.connect.opcode = nvme_fabrics_command; 384 cmd.connect.fctype = nvme_fabrics_type_connect; 385 cmd.connect.qid = 0; 386 cmd.connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 387 388 /* 389 * Set keep-alive timeout in seconds granularity (ms * 1000) 390 * and add a grace period for controller kato enforcement 391 */ 392 cmd.connect.kato = ctrl->opts->discovery_nqn ? 0 : 393 cpu_to_le32((ctrl->kato + NVME_KATO_GRACE) * 1000); 394 395 data = kzalloc(sizeof(*data), GFP_KERNEL); 396 if (!data) 397 return -ENOMEM; 398 399 uuid_copy(&data->hostid, &ctrl->opts->host->id); 400 data->cntlid = cpu_to_le16(0xffff); 401 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 402 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 403 404 ret = __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, &res, 405 data, sizeof(*data), 0, NVME_QID_ANY, 1, 406 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 407 if (ret) { 408 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 409 &cmd, data); 410 goto out_free_data; 411 } 412 413 ctrl->cntlid = le16_to_cpu(res.u16); 414 415 out_free_data: 416 kfree(data); 417 return ret; 418 } 419 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 420 421 /** 422 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 423 * API function. 424 * @ctrl: Host nvme controller instance used to establish an 425 * NVMe I/O queue connection to the already allocated NVMe 426 * controller on the target system. 427 * @qid: NVMe I/O queue number for the new I/O connection between 428 * host and target (note qid == 0 is illegal as this is 429 * the Admin queue, per NVMe standard). 430 * 431 * This function issues a fabrics-protocol connection 432 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 433 * between the host system device and the allocated NVMe controller 434 * on the target system. 435 * 436 * Return: 437 * 0: success 438 * > 0: NVMe error status code 439 * < 0: Linux errno error code 440 */ 441 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) 442 { 443 struct nvme_command cmd; 444 struct nvmf_connect_data *data; 445 union nvme_result res; 446 int ret; 447 448 memset(&cmd, 0, sizeof(cmd)); 449 cmd.connect.opcode = nvme_fabrics_command; 450 cmd.connect.fctype = nvme_fabrics_type_connect; 451 cmd.connect.qid = cpu_to_le16(qid); 452 cmd.connect.sqsize = cpu_to_le16(ctrl->sqsize); 453 454 data = kzalloc(sizeof(*data), GFP_KERNEL); 455 if (!data) 456 return -ENOMEM; 457 458 uuid_copy(&data->hostid, &ctrl->opts->host->id); 459 data->cntlid = cpu_to_le16(ctrl->cntlid); 460 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 461 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 462 463 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 464 data, sizeof(*data), 0, qid, 1, 465 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 466 if (ret) { 467 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 468 &cmd, data); 469 } 470 kfree(data); 471 return ret; 472 } 473 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 474 475 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 476 { 477 if (ctrl->opts->max_reconnects != -1 && 478 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 479 return true; 480 481 return false; 482 } 483 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 484 485 /** 486 * nvmf_register_transport() - NVMe Fabrics Library registration function. 487 * @ops: Transport ops instance to be registered to the 488 * common fabrics library. 489 * 490 * API function that registers the type of specific transport fabric 491 * being implemented to the common NVMe fabrics library. Part of 492 * the overall init sequence of starting up a fabrics driver. 493 */ 494 int nvmf_register_transport(struct nvmf_transport_ops *ops) 495 { 496 if (!ops->create_ctrl) 497 return -EINVAL; 498 499 down_write(&nvmf_transports_rwsem); 500 list_add_tail(&ops->entry, &nvmf_transports); 501 up_write(&nvmf_transports_rwsem); 502 503 return 0; 504 } 505 EXPORT_SYMBOL_GPL(nvmf_register_transport); 506 507 /** 508 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 509 * @ops: Transport ops instance to be unregistered from the 510 * common fabrics library. 511 * 512 * Fabrics API function that unregisters the type of specific transport 513 * fabric being implemented from the common NVMe fabrics library. 514 * Part of the overall exit sequence of unloading the implemented driver. 515 */ 516 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 517 { 518 down_write(&nvmf_transports_rwsem); 519 list_del(&ops->entry); 520 up_write(&nvmf_transports_rwsem); 521 } 522 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 523 524 static struct nvmf_transport_ops *nvmf_lookup_transport( 525 struct nvmf_ctrl_options *opts) 526 { 527 struct nvmf_transport_ops *ops; 528 529 lockdep_assert_held(&nvmf_transports_rwsem); 530 531 list_for_each_entry(ops, &nvmf_transports, entry) { 532 if (strcmp(ops->name, opts->transport) == 0) 533 return ops; 534 } 535 536 return NULL; 537 } 538 539 blk_status_t nvmf_check_if_ready(struct nvme_ctrl *ctrl, struct request *rq, 540 bool queue_live, bool is_connected) 541 { 542 struct nvme_command *cmd = nvme_req(rq)->cmd; 543 544 if (likely(ctrl->state == NVME_CTRL_LIVE && is_connected)) 545 return BLK_STS_OK; 546 547 switch (ctrl->state) { 548 case NVME_CTRL_DELETING: 549 goto reject_io; 550 551 case NVME_CTRL_NEW: 552 case NVME_CTRL_CONNECTING: 553 if (!is_connected) 554 /* 555 * This is the case of starting a new 556 * association but connectivity was lost 557 * before it was fully created. We need to 558 * error the commands used to initialize the 559 * controller so the reconnect can go into a 560 * retry attempt. The commands should all be 561 * marked REQ_FAILFAST_DRIVER, which will hit 562 * the reject path below. Anything else will 563 * be queued while the state settles. 564 */ 565 goto reject_or_queue_io; 566 567 if ((queue_live && 568 !(nvme_req(rq)->flags & NVME_REQ_USERCMD)) || 569 (!queue_live && blk_rq_is_passthrough(rq) && 570 cmd->common.opcode == nvme_fabrics_command && 571 cmd->fabrics.fctype == nvme_fabrics_type_connect)) 572 /* 573 * If queue is live, allow only commands that 574 * are internally generated pass through. These 575 * are commands on the admin queue to initialize 576 * the controller. This will reject any ioctl 577 * admin cmds received while initializing. 578 * 579 * If the queue is not live, allow only a 580 * connect command. This will reject any ioctl 581 * admin cmd as well as initialization commands 582 * if the controller reverted the queue to non-live. 583 */ 584 return BLK_STS_OK; 585 586 /* 587 * fall-thru to the reject_or_queue_io clause 588 */ 589 break; 590 591 /* these cases fall-thru 592 * case NVME_CTRL_LIVE: 593 * case NVME_CTRL_RESETTING: 594 */ 595 default: 596 break; 597 } 598 599 reject_or_queue_io: 600 /* 601 * Any other new io is something we're not in a state to send 602 * to the device. Default action is to busy it and retry it 603 * after the controller state is recovered. However, anything 604 * marked for failfast or nvme multipath is immediately failed. 605 * Note: commands used to initialize the controller will be 606 * marked for failfast. 607 * Note: nvme cli/ioctl commands are marked for failfast. 608 */ 609 if (!blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 610 return BLK_STS_RESOURCE; 611 612 reject_io: 613 nvme_req(rq)->status = NVME_SC_ABORT_REQ; 614 return BLK_STS_IOERR; 615 } 616 EXPORT_SYMBOL_GPL(nvmf_check_if_ready); 617 618 static const match_table_t opt_tokens = { 619 { NVMF_OPT_TRANSPORT, "transport=%s" }, 620 { NVMF_OPT_TRADDR, "traddr=%s" }, 621 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 622 { NVMF_OPT_NQN, "nqn=%s" }, 623 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 624 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 625 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 626 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 627 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 628 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 629 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 630 { NVMF_OPT_HOST_ID, "hostid=%s" }, 631 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 632 { NVMF_OPT_ERR, NULL } 633 }; 634 635 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 636 const char *buf) 637 { 638 substring_t args[MAX_OPT_ARGS]; 639 char *options, *o, *p; 640 int token, ret = 0; 641 size_t nqnlen = 0; 642 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO; 643 uuid_t hostid; 644 645 /* Set defaults */ 646 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 647 opts->nr_io_queues = num_online_cpus(); 648 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 649 opts->kato = NVME_DEFAULT_KATO; 650 opts->duplicate_connect = false; 651 652 options = o = kstrdup(buf, GFP_KERNEL); 653 if (!options) 654 return -ENOMEM; 655 656 uuid_gen(&hostid); 657 658 while ((p = strsep(&o, ",\n")) != NULL) { 659 if (!*p) 660 continue; 661 662 token = match_token(p, opt_tokens, args); 663 opts->mask |= token; 664 switch (token) { 665 case NVMF_OPT_TRANSPORT: 666 p = match_strdup(args); 667 if (!p) { 668 ret = -ENOMEM; 669 goto out; 670 } 671 kfree(opts->transport); 672 opts->transport = p; 673 break; 674 case NVMF_OPT_NQN: 675 p = match_strdup(args); 676 if (!p) { 677 ret = -ENOMEM; 678 goto out; 679 } 680 kfree(opts->subsysnqn); 681 opts->subsysnqn = p; 682 nqnlen = strlen(opts->subsysnqn); 683 if (nqnlen >= NVMF_NQN_SIZE) { 684 pr_err("%s needs to be < %d bytes\n", 685 opts->subsysnqn, NVMF_NQN_SIZE); 686 ret = -EINVAL; 687 goto out; 688 } 689 opts->discovery_nqn = 690 !(strcmp(opts->subsysnqn, 691 NVME_DISC_SUBSYS_NAME)); 692 if (opts->discovery_nqn) { 693 opts->kato = 0; 694 opts->nr_io_queues = 0; 695 } 696 break; 697 case NVMF_OPT_TRADDR: 698 p = match_strdup(args); 699 if (!p) { 700 ret = -ENOMEM; 701 goto out; 702 } 703 kfree(opts->traddr); 704 opts->traddr = p; 705 break; 706 case NVMF_OPT_TRSVCID: 707 p = match_strdup(args); 708 if (!p) { 709 ret = -ENOMEM; 710 goto out; 711 } 712 kfree(opts->trsvcid); 713 opts->trsvcid = p; 714 break; 715 case NVMF_OPT_QUEUE_SIZE: 716 if (match_int(args, &token)) { 717 ret = -EINVAL; 718 goto out; 719 } 720 if (token < NVMF_MIN_QUEUE_SIZE || 721 token > NVMF_MAX_QUEUE_SIZE) { 722 pr_err("Invalid queue_size %d\n", token); 723 ret = -EINVAL; 724 goto out; 725 } 726 opts->queue_size = token; 727 break; 728 case NVMF_OPT_NR_IO_QUEUES: 729 if (match_int(args, &token)) { 730 ret = -EINVAL; 731 goto out; 732 } 733 if (token <= 0) { 734 pr_err("Invalid number of IOQs %d\n", token); 735 ret = -EINVAL; 736 goto out; 737 } 738 if (opts->discovery_nqn) { 739 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 740 break; 741 } 742 743 opts->nr_io_queues = min_t(unsigned int, 744 num_online_cpus(), token); 745 break; 746 case NVMF_OPT_KATO: 747 if (match_int(args, &token)) { 748 ret = -EINVAL; 749 goto out; 750 } 751 752 if (token < 0) { 753 pr_err("Invalid keep_alive_tmo %d\n", token); 754 ret = -EINVAL; 755 goto out; 756 } else if (token == 0 && !opts->discovery_nqn) { 757 /* Allowed for debug */ 758 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 759 } 760 opts->kato = token; 761 762 if (opts->discovery_nqn && opts->kato) { 763 pr_err("Discovery controllers cannot accept KATO != 0\n"); 764 ret = -EINVAL; 765 goto out; 766 } 767 768 break; 769 case NVMF_OPT_CTRL_LOSS_TMO: 770 if (match_int(args, &token)) { 771 ret = -EINVAL; 772 goto out; 773 } 774 775 if (token < 0) 776 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 777 ctrl_loss_tmo = token; 778 break; 779 case NVMF_OPT_HOSTNQN: 780 if (opts->host) { 781 pr_err("hostnqn already user-assigned: %s\n", 782 opts->host->nqn); 783 ret = -EADDRINUSE; 784 goto out; 785 } 786 p = match_strdup(args); 787 if (!p) { 788 ret = -ENOMEM; 789 goto out; 790 } 791 nqnlen = strlen(p); 792 if (nqnlen >= NVMF_NQN_SIZE) { 793 pr_err("%s needs to be < %d bytes\n", 794 p, NVMF_NQN_SIZE); 795 kfree(p); 796 ret = -EINVAL; 797 goto out; 798 } 799 nvmf_host_put(opts->host); 800 opts->host = nvmf_host_add(p); 801 kfree(p); 802 if (!opts->host) { 803 ret = -ENOMEM; 804 goto out; 805 } 806 break; 807 case NVMF_OPT_RECONNECT_DELAY: 808 if (match_int(args, &token)) { 809 ret = -EINVAL; 810 goto out; 811 } 812 if (token <= 0) { 813 pr_err("Invalid reconnect_delay %d\n", token); 814 ret = -EINVAL; 815 goto out; 816 } 817 opts->reconnect_delay = token; 818 break; 819 case NVMF_OPT_HOST_TRADDR: 820 p = match_strdup(args); 821 if (!p) { 822 ret = -ENOMEM; 823 goto out; 824 } 825 kfree(opts->host_traddr); 826 opts->host_traddr = p; 827 break; 828 case NVMF_OPT_HOST_ID: 829 p = match_strdup(args); 830 if (!p) { 831 ret = -ENOMEM; 832 goto out; 833 } 834 ret = uuid_parse(p, &hostid); 835 if (ret) { 836 pr_err("Invalid hostid %s\n", p); 837 ret = -EINVAL; 838 kfree(p); 839 goto out; 840 } 841 kfree(p); 842 break; 843 case NVMF_OPT_DUP_CONNECT: 844 opts->duplicate_connect = true; 845 break; 846 default: 847 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 848 p); 849 ret = -EINVAL; 850 goto out; 851 } 852 } 853 854 if (ctrl_loss_tmo < 0) 855 opts->max_reconnects = -1; 856 else 857 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 858 opts->reconnect_delay); 859 860 if (!opts->host) { 861 kref_get(&nvmf_default_host->ref); 862 opts->host = nvmf_default_host; 863 } 864 865 uuid_copy(&opts->host->id, &hostid); 866 867 out: 868 kfree(options); 869 return ret; 870 } 871 872 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 873 unsigned int required_opts) 874 { 875 if ((opts->mask & required_opts) != required_opts) { 876 int i; 877 878 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 879 if ((opt_tokens[i].token & required_opts) && 880 !(opt_tokens[i].token & opts->mask)) { 881 pr_warn("missing parameter '%s'\n", 882 opt_tokens[i].pattern); 883 } 884 } 885 886 return -EINVAL; 887 } 888 889 return 0; 890 } 891 892 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 893 unsigned int allowed_opts) 894 { 895 if (opts->mask & ~allowed_opts) { 896 int i; 897 898 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 899 if ((opt_tokens[i].token & opts->mask) && 900 (opt_tokens[i].token & ~allowed_opts)) { 901 pr_warn("invalid parameter '%s'\n", 902 opt_tokens[i].pattern); 903 } 904 } 905 906 return -EINVAL; 907 } 908 909 return 0; 910 } 911 912 void nvmf_free_options(struct nvmf_ctrl_options *opts) 913 { 914 nvmf_host_put(opts->host); 915 kfree(opts->transport); 916 kfree(opts->traddr); 917 kfree(opts->trsvcid); 918 kfree(opts->subsysnqn); 919 kfree(opts->host_traddr); 920 kfree(opts); 921 } 922 EXPORT_SYMBOL_GPL(nvmf_free_options); 923 924 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 925 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 926 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 927 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT) 928 929 static struct nvme_ctrl * 930 nvmf_create_ctrl(struct device *dev, const char *buf, size_t count) 931 { 932 struct nvmf_ctrl_options *opts; 933 struct nvmf_transport_ops *ops; 934 struct nvme_ctrl *ctrl; 935 int ret; 936 937 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 938 if (!opts) 939 return ERR_PTR(-ENOMEM); 940 941 ret = nvmf_parse_options(opts, buf); 942 if (ret) 943 goto out_free_opts; 944 945 946 request_module("nvme-%s", opts->transport); 947 948 /* 949 * Check the generic options first as we need a valid transport for 950 * the lookup below. Then clear the generic flags so that transport 951 * drivers don't have to care about them. 952 */ 953 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 954 if (ret) 955 goto out_free_opts; 956 opts->mask &= ~NVMF_REQUIRED_OPTS; 957 958 down_read(&nvmf_transports_rwsem); 959 ops = nvmf_lookup_transport(opts); 960 if (!ops) { 961 pr_info("no handler found for transport %s.\n", 962 opts->transport); 963 ret = -EINVAL; 964 goto out_unlock; 965 } 966 967 if (!try_module_get(ops->module)) { 968 ret = -EBUSY; 969 goto out_unlock; 970 } 971 972 ret = nvmf_check_required_opts(opts, ops->required_opts); 973 if (ret) 974 goto out_module_put; 975 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 976 ops->allowed_opts | ops->required_opts); 977 if (ret) 978 goto out_module_put; 979 980 ctrl = ops->create_ctrl(dev, opts); 981 if (IS_ERR(ctrl)) { 982 ret = PTR_ERR(ctrl); 983 goto out_module_put; 984 } 985 986 if (strcmp(ctrl->subsys->subnqn, opts->subsysnqn)) { 987 dev_warn(ctrl->device, 988 "controller returned incorrect NQN: \"%s\".\n", 989 ctrl->subsys->subnqn); 990 module_put(ops->module); 991 up_read(&nvmf_transports_rwsem); 992 nvme_delete_ctrl_sync(ctrl); 993 return ERR_PTR(-EINVAL); 994 } 995 996 module_put(ops->module); 997 up_read(&nvmf_transports_rwsem); 998 return ctrl; 999 1000 out_module_put: 1001 module_put(ops->module); 1002 out_unlock: 1003 up_read(&nvmf_transports_rwsem); 1004 out_free_opts: 1005 nvmf_free_options(opts); 1006 return ERR_PTR(ret); 1007 } 1008 1009 static struct class *nvmf_class; 1010 static struct device *nvmf_device; 1011 static DEFINE_MUTEX(nvmf_dev_mutex); 1012 1013 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1014 size_t count, loff_t *pos) 1015 { 1016 struct seq_file *seq_file = file->private_data; 1017 struct nvme_ctrl *ctrl; 1018 const char *buf; 1019 int ret = 0; 1020 1021 if (count > PAGE_SIZE) 1022 return -ENOMEM; 1023 1024 buf = memdup_user_nul(ubuf, count); 1025 if (IS_ERR(buf)) 1026 return PTR_ERR(buf); 1027 1028 mutex_lock(&nvmf_dev_mutex); 1029 if (seq_file->private) { 1030 ret = -EINVAL; 1031 goto out_unlock; 1032 } 1033 1034 ctrl = nvmf_create_ctrl(nvmf_device, buf, count); 1035 if (IS_ERR(ctrl)) { 1036 ret = PTR_ERR(ctrl); 1037 goto out_unlock; 1038 } 1039 1040 seq_file->private = ctrl; 1041 1042 out_unlock: 1043 mutex_unlock(&nvmf_dev_mutex); 1044 kfree(buf); 1045 return ret ? ret : count; 1046 } 1047 1048 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1049 { 1050 struct nvme_ctrl *ctrl; 1051 int ret = 0; 1052 1053 mutex_lock(&nvmf_dev_mutex); 1054 ctrl = seq_file->private; 1055 if (!ctrl) { 1056 ret = -EINVAL; 1057 goto out_unlock; 1058 } 1059 1060 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1061 ctrl->instance, ctrl->cntlid); 1062 1063 out_unlock: 1064 mutex_unlock(&nvmf_dev_mutex); 1065 return ret; 1066 } 1067 1068 static int nvmf_dev_open(struct inode *inode, struct file *file) 1069 { 1070 /* 1071 * The miscdevice code initializes file->private_data, but doesn't 1072 * make use of it later. 1073 */ 1074 file->private_data = NULL; 1075 return single_open(file, nvmf_dev_show, NULL); 1076 } 1077 1078 static int nvmf_dev_release(struct inode *inode, struct file *file) 1079 { 1080 struct seq_file *seq_file = file->private_data; 1081 struct nvme_ctrl *ctrl = seq_file->private; 1082 1083 if (ctrl) 1084 nvme_put_ctrl(ctrl); 1085 return single_release(inode, file); 1086 } 1087 1088 static const struct file_operations nvmf_dev_fops = { 1089 .owner = THIS_MODULE, 1090 .write = nvmf_dev_write, 1091 .read = seq_read, 1092 .open = nvmf_dev_open, 1093 .release = nvmf_dev_release, 1094 }; 1095 1096 static struct miscdevice nvmf_misc = { 1097 .minor = MISC_DYNAMIC_MINOR, 1098 .name = "nvme-fabrics", 1099 .fops = &nvmf_dev_fops, 1100 }; 1101 1102 static int __init nvmf_init(void) 1103 { 1104 int ret; 1105 1106 nvmf_default_host = nvmf_host_default(); 1107 if (!nvmf_default_host) 1108 return -ENOMEM; 1109 1110 nvmf_class = class_create(THIS_MODULE, "nvme-fabrics"); 1111 if (IS_ERR(nvmf_class)) { 1112 pr_err("couldn't register class nvme-fabrics\n"); 1113 ret = PTR_ERR(nvmf_class); 1114 goto out_free_host; 1115 } 1116 1117 nvmf_device = 1118 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1119 if (IS_ERR(nvmf_device)) { 1120 pr_err("couldn't create nvme-fabris device!\n"); 1121 ret = PTR_ERR(nvmf_device); 1122 goto out_destroy_class; 1123 } 1124 1125 ret = misc_register(&nvmf_misc); 1126 if (ret) { 1127 pr_err("couldn't register misc device: %d\n", ret); 1128 goto out_destroy_device; 1129 } 1130 1131 return 0; 1132 1133 out_destroy_device: 1134 device_destroy(nvmf_class, MKDEV(0, 0)); 1135 out_destroy_class: 1136 class_destroy(nvmf_class); 1137 out_free_host: 1138 nvmf_host_put(nvmf_default_host); 1139 return ret; 1140 } 1141 1142 static void __exit nvmf_exit(void) 1143 { 1144 misc_deregister(&nvmf_misc); 1145 device_destroy(nvmf_class, MKDEV(0, 0)); 1146 class_destroy(nvmf_class); 1147 nvmf_host_put(nvmf_default_host); 1148 1149 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1150 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1151 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1152 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1153 } 1154 1155 MODULE_LICENSE("GPL v2"); 1156 1157 module_init(nvmf_init); 1158 module_exit(nvmf_exit); 1159