1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 16 static LIST_HEAD(nvmf_transports); 17 static DECLARE_RWSEM(nvmf_transports_rwsem); 18 19 static LIST_HEAD(nvmf_hosts); 20 static DEFINE_MUTEX(nvmf_hosts_mutex); 21 22 static struct nvmf_host *nvmf_default_host; 23 24 static struct nvmf_host *__nvmf_host_find(const char *hostnqn) 25 { 26 struct nvmf_host *host; 27 28 list_for_each_entry(host, &nvmf_hosts, list) { 29 if (!strcmp(host->nqn, hostnqn)) 30 return host; 31 } 32 33 return NULL; 34 } 35 36 static struct nvmf_host *nvmf_host_add(const char *hostnqn) 37 { 38 struct nvmf_host *host; 39 40 mutex_lock(&nvmf_hosts_mutex); 41 host = __nvmf_host_find(hostnqn); 42 if (host) { 43 kref_get(&host->ref); 44 goto out_unlock; 45 } 46 47 host = kmalloc(sizeof(*host), GFP_KERNEL); 48 if (!host) 49 goto out_unlock; 50 51 kref_init(&host->ref); 52 strlcpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 53 54 list_add_tail(&host->list, &nvmf_hosts); 55 out_unlock: 56 mutex_unlock(&nvmf_hosts_mutex); 57 return host; 58 } 59 60 static struct nvmf_host *nvmf_host_default(void) 61 { 62 struct nvmf_host *host; 63 64 host = kmalloc(sizeof(*host), GFP_KERNEL); 65 if (!host) 66 return NULL; 67 68 kref_init(&host->ref); 69 uuid_gen(&host->id); 70 snprintf(host->nqn, NVMF_NQN_SIZE, 71 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &host->id); 72 73 mutex_lock(&nvmf_hosts_mutex); 74 list_add_tail(&host->list, &nvmf_hosts); 75 mutex_unlock(&nvmf_hosts_mutex); 76 77 return host; 78 } 79 80 static void nvmf_host_destroy(struct kref *ref) 81 { 82 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 83 84 mutex_lock(&nvmf_hosts_mutex); 85 list_del(&host->list); 86 mutex_unlock(&nvmf_hosts_mutex); 87 88 kfree(host); 89 } 90 91 static void nvmf_host_put(struct nvmf_host *host) 92 { 93 if (host) 94 kref_put(&host->ref, nvmf_host_destroy); 95 } 96 97 /** 98 * nvmf_get_address() - Get address/port 99 * @ctrl: Host NVMe controller instance which we got the address 100 * @buf: OUTPUT parameter that will contain the address/port 101 * @size: buffer size 102 */ 103 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 104 { 105 int len = 0; 106 107 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 108 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 109 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 110 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 111 (len) ? "," : "", ctrl->opts->trsvcid); 112 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 113 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 114 (len) ? "," : "", ctrl->opts->host_traddr); 115 len += scnprintf(buf + len, size - len, "\n"); 116 117 return len; 118 } 119 EXPORT_SYMBOL_GPL(nvmf_get_address); 120 121 /** 122 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 123 * @ctrl: Host NVMe controller instance maintaining the admin 124 * queue used to submit the property read command to 125 * the allocated NVMe controller resource on the target system. 126 * @off: Starting offset value of the targeted property 127 * register (see the fabrics section of the NVMe standard). 128 * @val: OUTPUT parameter that will contain the value of 129 * the property after a successful read. 130 * 131 * Used by the host system to retrieve a 32-bit capsule property value 132 * from an NVMe controller on the target system. 133 * 134 * ("Capsule property" is an "PCIe register concept" applied to the 135 * NVMe fabrics space.) 136 * 137 * Return: 138 * 0: successful read 139 * > 0: NVMe error status code 140 * < 0: Linux errno error code 141 */ 142 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 143 { 144 struct nvme_command cmd; 145 union nvme_result res; 146 int ret; 147 148 memset(&cmd, 0, sizeof(cmd)); 149 cmd.prop_get.opcode = nvme_fabrics_command; 150 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 151 cmd.prop_get.offset = cpu_to_le32(off); 152 153 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 0, 154 NVME_QID_ANY, 0, 0, false); 155 156 if (ret >= 0) 157 *val = le64_to_cpu(res.u64); 158 if (unlikely(ret != 0)) 159 dev_err(ctrl->device, 160 "Property Get error: %d, offset %#x\n", 161 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 162 163 return ret; 164 } 165 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 166 167 /** 168 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 169 * @ctrl: Host NVMe controller instance maintaining the admin 170 * queue used to submit the property read command to 171 * the allocated controller resource on the target system. 172 * @off: Starting offset value of the targeted property 173 * register (see the fabrics section of the NVMe standard). 174 * @val: OUTPUT parameter that will contain the value of 175 * the property after a successful read. 176 * 177 * Used by the host system to retrieve a 64-bit capsule property value 178 * from an NVMe controller on the target system. 179 * 180 * ("Capsule property" is an "PCIe register concept" applied to the 181 * NVMe fabrics space.) 182 * 183 * Return: 184 * 0: successful read 185 * > 0: NVMe error status code 186 * < 0: Linux errno error code 187 */ 188 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 189 { 190 struct nvme_command cmd; 191 union nvme_result res; 192 int ret; 193 194 memset(&cmd, 0, sizeof(cmd)); 195 cmd.prop_get.opcode = nvme_fabrics_command; 196 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 197 cmd.prop_get.attrib = 1; 198 cmd.prop_get.offset = cpu_to_le32(off); 199 200 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 0, 201 NVME_QID_ANY, 0, 0, false); 202 203 if (ret >= 0) 204 *val = le64_to_cpu(res.u64); 205 if (unlikely(ret != 0)) 206 dev_err(ctrl->device, 207 "Property Get error: %d, offset %#x\n", 208 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 209 return ret; 210 } 211 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 212 213 /** 214 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 215 * @ctrl: Host NVMe controller instance maintaining the admin 216 * queue used to submit the property read command to 217 * the allocated NVMe controller resource on the target system. 218 * @off: Starting offset value of the targeted property 219 * register (see the fabrics section of the NVMe standard). 220 * @val: Input parameter that contains the value to be 221 * written to the property. 222 * 223 * Used by the NVMe host system to write a 32-bit capsule property value 224 * to an NVMe controller on the target system. 225 * 226 * ("Capsule property" is an "PCIe register concept" applied to the 227 * NVMe fabrics space.) 228 * 229 * Return: 230 * 0: successful write 231 * > 0: NVMe error status code 232 * < 0: Linux errno error code 233 */ 234 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 235 { 236 struct nvme_command cmd; 237 int ret; 238 239 memset(&cmd, 0, sizeof(cmd)); 240 cmd.prop_set.opcode = nvme_fabrics_command; 241 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 242 cmd.prop_set.attrib = 0; 243 cmd.prop_set.offset = cpu_to_le32(off); 244 cmd.prop_set.value = cpu_to_le64(val); 245 246 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 0, 247 NVME_QID_ANY, 0, 0, false); 248 if (unlikely(ret)) 249 dev_err(ctrl->device, 250 "Property Set error: %d, offset %#x\n", 251 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 252 return ret; 253 } 254 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 255 256 /** 257 * nvmf_log_connect_error() - Error-parsing-diagnostic print 258 * out function for connect() errors. 259 * 260 * @ctrl: the specific /dev/nvmeX device that had the error. 261 * 262 * @errval: Error code to be decoded in a more human-friendly 263 * printout. 264 * 265 * @offset: For use with the NVMe error code NVME_SC_CONNECT_INVALID_PARAM. 266 * 267 * @cmd: This is the SQE portion of a submission capsule. 268 * 269 * @data: This is the "Data" portion of a submission capsule. 270 */ 271 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 272 int errval, int offset, struct nvme_command *cmd, 273 struct nvmf_connect_data *data) 274 { 275 int err_sctype = errval & (~NVME_SC_DNR); 276 277 switch (err_sctype) { 278 279 case (NVME_SC_CONNECT_INVALID_PARAM): 280 if (offset >> 16) { 281 char *inv_data = "Connect Invalid Data Parameter"; 282 283 switch (offset & 0xffff) { 284 case (offsetof(struct nvmf_connect_data, cntlid)): 285 dev_err(ctrl->device, 286 "%s, cntlid: %d\n", 287 inv_data, data->cntlid); 288 break; 289 case (offsetof(struct nvmf_connect_data, hostnqn)): 290 dev_err(ctrl->device, 291 "%s, hostnqn \"%s\"\n", 292 inv_data, data->hostnqn); 293 break; 294 case (offsetof(struct nvmf_connect_data, subsysnqn)): 295 dev_err(ctrl->device, 296 "%s, subsysnqn \"%s\"\n", 297 inv_data, data->subsysnqn); 298 break; 299 default: 300 dev_err(ctrl->device, 301 "%s, starting byte offset: %d\n", 302 inv_data, offset & 0xffff); 303 break; 304 } 305 } else { 306 char *inv_sqe = "Connect Invalid SQE Parameter"; 307 308 switch (offset) { 309 case (offsetof(struct nvmf_connect_command, qid)): 310 dev_err(ctrl->device, 311 "%s, qid %d\n", 312 inv_sqe, cmd->connect.qid); 313 break; 314 default: 315 dev_err(ctrl->device, 316 "%s, starting byte offset: %d\n", 317 inv_sqe, offset); 318 } 319 } 320 break; 321 322 case NVME_SC_CONNECT_INVALID_HOST: 323 dev_err(ctrl->device, 324 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 325 data->subsysnqn, data->hostnqn); 326 break; 327 328 case NVME_SC_CONNECT_CTRL_BUSY: 329 dev_err(ctrl->device, 330 "Connect command failed: controller is busy or not available\n"); 331 break; 332 333 case NVME_SC_CONNECT_FORMAT: 334 dev_err(ctrl->device, 335 "Connect incompatible format: %d", 336 cmd->connect.recfmt); 337 break; 338 339 default: 340 dev_err(ctrl->device, 341 "Connect command failed, error wo/DNR bit: %d\n", 342 err_sctype); 343 break; 344 } /* switch (err_sctype) */ 345 } 346 347 /** 348 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 349 * API function. 350 * @ctrl: Host nvme controller instance used to request 351 * a new NVMe controller allocation on the target 352 * system and establish an NVMe Admin connection to 353 * that controller. 354 * 355 * This function enables an NVMe host device to request a new allocation of 356 * an NVMe controller resource on a target system as well establish a 357 * fabrics-protocol connection of the NVMe Admin queue between the 358 * host system device and the allocated NVMe controller on the 359 * target system via a NVMe Fabrics "Connect" command. 360 * 361 * Return: 362 * 0: success 363 * > 0: NVMe error status code 364 * < 0: Linux errno error code 365 * 366 */ 367 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 368 { 369 struct nvme_command cmd; 370 union nvme_result res; 371 struct nvmf_connect_data *data; 372 int ret; 373 374 memset(&cmd, 0, sizeof(cmd)); 375 cmd.connect.opcode = nvme_fabrics_command; 376 cmd.connect.fctype = nvme_fabrics_type_connect; 377 cmd.connect.qid = 0; 378 cmd.connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 379 380 /* 381 * Set keep-alive timeout in seconds granularity (ms * 1000) 382 */ 383 cmd.connect.kato = cpu_to_le32(ctrl->kato * 1000); 384 385 if (ctrl->opts->disable_sqflow) 386 cmd.connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 387 388 data = kzalloc(sizeof(*data), GFP_KERNEL); 389 if (!data) 390 return -ENOMEM; 391 392 uuid_copy(&data->hostid, &ctrl->opts->host->id); 393 data->cntlid = cpu_to_le16(0xffff); 394 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 395 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 396 397 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 398 data, sizeof(*data), 0, NVME_QID_ANY, 1, 399 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT, false); 400 if (ret) { 401 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 402 &cmd, data); 403 goto out_free_data; 404 } 405 406 ctrl->cntlid = le16_to_cpu(res.u16); 407 408 out_free_data: 409 kfree(data); 410 return ret; 411 } 412 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 413 414 /** 415 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 416 * API function. 417 * @ctrl: Host nvme controller instance used to establish an 418 * NVMe I/O queue connection to the already allocated NVMe 419 * controller on the target system. 420 * @qid: NVMe I/O queue number for the new I/O connection between 421 * host and target (note qid == 0 is illegal as this is 422 * the Admin queue, per NVMe standard). 423 * @poll: Whether or not to poll for the completion of the connect cmd. 424 * 425 * This function issues a fabrics-protocol connection 426 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 427 * between the host system device and the allocated NVMe controller 428 * on the target system. 429 * 430 * Return: 431 * 0: success 432 * > 0: NVMe error status code 433 * < 0: Linux errno error code 434 */ 435 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid, bool poll) 436 { 437 struct nvme_command cmd; 438 struct nvmf_connect_data *data; 439 union nvme_result res; 440 int ret; 441 442 memset(&cmd, 0, sizeof(cmd)); 443 cmd.connect.opcode = nvme_fabrics_command; 444 cmd.connect.fctype = nvme_fabrics_type_connect; 445 cmd.connect.qid = cpu_to_le16(qid); 446 cmd.connect.sqsize = cpu_to_le16(ctrl->sqsize); 447 448 if (ctrl->opts->disable_sqflow) 449 cmd.connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 450 451 data = kzalloc(sizeof(*data), GFP_KERNEL); 452 if (!data) 453 return -ENOMEM; 454 455 uuid_copy(&data->hostid, &ctrl->opts->host->id); 456 data->cntlid = cpu_to_le16(ctrl->cntlid); 457 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 458 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 459 460 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 461 data, sizeof(*data), 0, qid, 1, 462 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT, poll); 463 if (ret) { 464 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 465 &cmd, data); 466 } 467 kfree(data); 468 return ret; 469 } 470 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 471 472 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 473 { 474 if (ctrl->opts->max_reconnects == -1 || 475 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 476 return true; 477 478 return false; 479 } 480 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 481 482 /** 483 * nvmf_register_transport() - NVMe Fabrics Library registration function. 484 * @ops: Transport ops instance to be registered to the 485 * common fabrics library. 486 * 487 * API function that registers the type of specific transport fabric 488 * being implemented to the common NVMe fabrics library. Part of 489 * the overall init sequence of starting up a fabrics driver. 490 */ 491 int nvmf_register_transport(struct nvmf_transport_ops *ops) 492 { 493 if (!ops->create_ctrl) 494 return -EINVAL; 495 496 down_write(&nvmf_transports_rwsem); 497 list_add_tail(&ops->entry, &nvmf_transports); 498 up_write(&nvmf_transports_rwsem); 499 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(nvmf_register_transport); 503 504 /** 505 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 506 * @ops: Transport ops instance to be unregistered from the 507 * common fabrics library. 508 * 509 * Fabrics API function that unregisters the type of specific transport 510 * fabric being implemented from the common NVMe fabrics library. 511 * Part of the overall exit sequence of unloading the implemented driver. 512 */ 513 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 514 { 515 down_write(&nvmf_transports_rwsem); 516 list_del(&ops->entry); 517 up_write(&nvmf_transports_rwsem); 518 } 519 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 520 521 static struct nvmf_transport_ops *nvmf_lookup_transport( 522 struct nvmf_ctrl_options *opts) 523 { 524 struct nvmf_transport_ops *ops; 525 526 lockdep_assert_held(&nvmf_transports_rwsem); 527 528 list_for_each_entry(ops, &nvmf_transports, entry) { 529 if (strcmp(ops->name, opts->transport) == 0) 530 return ops; 531 } 532 533 return NULL; 534 } 535 536 /* 537 * For something we're not in a state to send to the device the default action 538 * is to busy it and retry it after the controller state is recovered. However, 539 * if the controller is deleting or if anything is marked for failfast or 540 * nvme multipath it is immediately failed. 541 * 542 * Note: commands used to initialize the controller will be marked for failfast. 543 * Note: nvme cli/ioctl commands are marked for failfast. 544 */ 545 blk_status_t nvmf_fail_nonready_command(struct nvme_ctrl *ctrl, 546 struct request *rq) 547 { 548 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 549 ctrl->state != NVME_CTRL_DEAD && 550 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 551 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 552 return BLK_STS_RESOURCE; 553 return nvme_host_path_error(rq); 554 } 555 EXPORT_SYMBOL_GPL(nvmf_fail_nonready_command); 556 557 bool __nvmf_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 558 bool queue_live) 559 { 560 struct nvme_request *req = nvme_req(rq); 561 562 /* 563 * currently we have a problem sending passthru commands 564 * on the admin_q if the controller is not LIVE because we can't 565 * make sure that they are going out after the admin connect, 566 * controller enable and/or other commands in the initialization 567 * sequence. until the controller will be LIVE, fail with 568 * BLK_STS_RESOURCE so that they will be rescheduled. 569 */ 570 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 571 return false; 572 573 /* 574 * Only allow commands on a live queue, except for the connect command, 575 * which is require to set the queue live in the appropinquate states. 576 */ 577 switch (ctrl->state) { 578 case NVME_CTRL_CONNECTING: 579 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 580 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 581 return true; 582 break; 583 default: 584 break; 585 case NVME_CTRL_DEAD: 586 return false; 587 } 588 589 return queue_live; 590 } 591 EXPORT_SYMBOL_GPL(__nvmf_check_ready); 592 593 static const match_table_t opt_tokens = { 594 { NVMF_OPT_TRANSPORT, "transport=%s" }, 595 { NVMF_OPT_TRADDR, "traddr=%s" }, 596 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 597 { NVMF_OPT_NQN, "nqn=%s" }, 598 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 599 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 600 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 601 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 602 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 603 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 604 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 605 { NVMF_OPT_HOST_ID, "hostid=%s" }, 606 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 607 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 608 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 609 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 610 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 611 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 612 { NVMF_OPT_TOS, "tos=%d" }, 613 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 614 { NVMF_OPT_ERR, NULL } 615 }; 616 617 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 618 const char *buf) 619 { 620 substring_t args[MAX_OPT_ARGS]; 621 char *options, *o, *p; 622 int token, ret = 0; 623 size_t nqnlen = 0; 624 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO; 625 uuid_t hostid; 626 627 /* Set defaults */ 628 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 629 opts->nr_io_queues = num_online_cpus(); 630 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 631 opts->kato = 0; 632 opts->duplicate_connect = false; 633 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 634 opts->hdr_digest = false; 635 opts->data_digest = false; 636 opts->tos = -1; /* < 0 == use transport default */ 637 638 options = o = kstrdup(buf, GFP_KERNEL); 639 if (!options) 640 return -ENOMEM; 641 642 uuid_gen(&hostid); 643 644 while ((p = strsep(&o, ",\n")) != NULL) { 645 if (!*p) 646 continue; 647 648 token = match_token(p, opt_tokens, args); 649 opts->mask |= token; 650 switch (token) { 651 case NVMF_OPT_TRANSPORT: 652 p = match_strdup(args); 653 if (!p) { 654 ret = -ENOMEM; 655 goto out; 656 } 657 kfree(opts->transport); 658 opts->transport = p; 659 break; 660 case NVMF_OPT_NQN: 661 p = match_strdup(args); 662 if (!p) { 663 ret = -ENOMEM; 664 goto out; 665 } 666 kfree(opts->subsysnqn); 667 opts->subsysnqn = p; 668 nqnlen = strlen(opts->subsysnqn); 669 if (nqnlen >= NVMF_NQN_SIZE) { 670 pr_err("%s needs to be < %d bytes\n", 671 opts->subsysnqn, NVMF_NQN_SIZE); 672 ret = -EINVAL; 673 goto out; 674 } 675 opts->discovery_nqn = 676 !(strcmp(opts->subsysnqn, 677 NVME_DISC_SUBSYS_NAME)); 678 break; 679 case NVMF_OPT_TRADDR: 680 p = match_strdup(args); 681 if (!p) { 682 ret = -ENOMEM; 683 goto out; 684 } 685 kfree(opts->traddr); 686 opts->traddr = p; 687 break; 688 case NVMF_OPT_TRSVCID: 689 p = match_strdup(args); 690 if (!p) { 691 ret = -ENOMEM; 692 goto out; 693 } 694 kfree(opts->trsvcid); 695 opts->trsvcid = p; 696 break; 697 case NVMF_OPT_QUEUE_SIZE: 698 if (match_int(args, &token)) { 699 ret = -EINVAL; 700 goto out; 701 } 702 if (token < NVMF_MIN_QUEUE_SIZE || 703 token > NVMF_MAX_QUEUE_SIZE) { 704 pr_err("Invalid queue_size %d\n", token); 705 ret = -EINVAL; 706 goto out; 707 } 708 opts->queue_size = token; 709 break; 710 case NVMF_OPT_NR_IO_QUEUES: 711 if (match_int(args, &token)) { 712 ret = -EINVAL; 713 goto out; 714 } 715 if (token <= 0) { 716 pr_err("Invalid number of IOQs %d\n", token); 717 ret = -EINVAL; 718 goto out; 719 } 720 if (opts->discovery_nqn) { 721 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 722 break; 723 } 724 725 opts->nr_io_queues = min_t(unsigned int, 726 num_online_cpus(), token); 727 break; 728 case NVMF_OPT_KATO: 729 if (match_int(args, &token)) { 730 ret = -EINVAL; 731 goto out; 732 } 733 734 if (token < 0) { 735 pr_err("Invalid keep_alive_tmo %d\n", token); 736 ret = -EINVAL; 737 goto out; 738 } else if (token == 0 && !opts->discovery_nqn) { 739 /* Allowed for debug */ 740 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 741 } 742 opts->kato = token; 743 break; 744 case NVMF_OPT_CTRL_LOSS_TMO: 745 if (match_int(args, &token)) { 746 ret = -EINVAL; 747 goto out; 748 } 749 750 if (token < 0) 751 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 752 ctrl_loss_tmo = token; 753 break; 754 case NVMF_OPT_FAIL_FAST_TMO: 755 if (match_int(args, &token)) { 756 ret = -EINVAL; 757 goto out; 758 } 759 760 if (token >= 0) 761 pr_warn("I/O fail on reconnect controller after %d sec\n", 762 token); 763 opts->fast_io_fail_tmo = token; 764 break; 765 case NVMF_OPT_HOSTNQN: 766 if (opts->host) { 767 pr_err("hostnqn already user-assigned: %s\n", 768 opts->host->nqn); 769 ret = -EADDRINUSE; 770 goto out; 771 } 772 p = match_strdup(args); 773 if (!p) { 774 ret = -ENOMEM; 775 goto out; 776 } 777 nqnlen = strlen(p); 778 if (nqnlen >= NVMF_NQN_SIZE) { 779 pr_err("%s needs to be < %d bytes\n", 780 p, NVMF_NQN_SIZE); 781 kfree(p); 782 ret = -EINVAL; 783 goto out; 784 } 785 nvmf_host_put(opts->host); 786 opts->host = nvmf_host_add(p); 787 kfree(p); 788 if (!opts->host) { 789 ret = -ENOMEM; 790 goto out; 791 } 792 break; 793 case NVMF_OPT_RECONNECT_DELAY: 794 if (match_int(args, &token)) { 795 ret = -EINVAL; 796 goto out; 797 } 798 if (token <= 0) { 799 pr_err("Invalid reconnect_delay %d\n", token); 800 ret = -EINVAL; 801 goto out; 802 } 803 opts->reconnect_delay = token; 804 break; 805 case NVMF_OPT_HOST_TRADDR: 806 p = match_strdup(args); 807 if (!p) { 808 ret = -ENOMEM; 809 goto out; 810 } 811 kfree(opts->host_traddr); 812 opts->host_traddr = p; 813 break; 814 case NVMF_OPT_HOST_ID: 815 p = match_strdup(args); 816 if (!p) { 817 ret = -ENOMEM; 818 goto out; 819 } 820 ret = uuid_parse(p, &hostid); 821 if (ret) { 822 pr_err("Invalid hostid %s\n", p); 823 ret = -EINVAL; 824 kfree(p); 825 goto out; 826 } 827 kfree(p); 828 break; 829 case NVMF_OPT_DUP_CONNECT: 830 opts->duplicate_connect = true; 831 break; 832 case NVMF_OPT_DISABLE_SQFLOW: 833 opts->disable_sqflow = true; 834 break; 835 case NVMF_OPT_HDR_DIGEST: 836 opts->hdr_digest = true; 837 break; 838 case NVMF_OPT_DATA_DIGEST: 839 opts->data_digest = true; 840 break; 841 case NVMF_OPT_NR_WRITE_QUEUES: 842 if (match_int(args, &token)) { 843 ret = -EINVAL; 844 goto out; 845 } 846 if (token <= 0) { 847 pr_err("Invalid nr_write_queues %d\n", token); 848 ret = -EINVAL; 849 goto out; 850 } 851 opts->nr_write_queues = token; 852 break; 853 case NVMF_OPT_NR_POLL_QUEUES: 854 if (match_int(args, &token)) { 855 ret = -EINVAL; 856 goto out; 857 } 858 if (token <= 0) { 859 pr_err("Invalid nr_poll_queues %d\n", token); 860 ret = -EINVAL; 861 goto out; 862 } 863 opts->nr_poll_queues = token; 864 break; 865 case NVMF_OPT_TOS: 866 if (match_int(args, &token)) { 867 ret = -EINVAL; 868 goto out; 869 } 870 if (token < 0) { 871 pr_err("Invalid type of service %d\n", token); 872 ret = -EINVAL; 873 goto out; 874 } 875 if (token > 255) { 876 pr_warn("Clamping type of service to 255\n"); 877 token = 255; 878 } 879 opts->tos = token; 880 break; 881 default: 882 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 883 p); 884 ret = -EINVAL; 885 goto out; 886 } 887 } 888 889 if (opts->discovery_nqn) { 890 opts->nr_io_queues = 0; 891 opts->nr_write_queues = 0; 892 opts->nr_poll_queues = 0; 893 opts->duplicate_connect = true; 894 } else { 895 if (!opts->kato) 896 opts->kato = NVME_DEFAULT_KATO; 897 } 898 if (ctrl_loss_tmo < 0) { 899 opts->max_reconnects = -1; 900 } else { 901 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 902 opts->reconnect_delay); 903 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 904 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 905 opts->fast_io_fail_tmo, ctrl_loss_tmo); 906 } 907 908 if (!opts->host) { 909 kref_get(&nvmf_default_host->ref); 910 opts->host = nvmf_default_host; 911 } 912 913 uuid_copy(&opts->host->id, &hostid); 914 915 out: 916 kfree(options); 917 return ret; 918 } 919 920 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 921 unsigned int required_opts) 922 { 923 if ((opts->mask & required_opts) != required_opts) { 924 int i; 925 926 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 927 if ((opt_tokens[i].token & required_opts) && 928 !(opt_tokens[i].token & opts->mask)) { 929 pr_warn("missing parameter '%s'\n", 930 opt_tokens[i].pattern); 931 } 932 } 933 934 return -EINVAL; 935 } 936 937 return 0; 938 } 939 940 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 941 struct nvmf_ctrl_options *opts) 942 { 943 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 944 strcmp(opts->traddr, ctrl->opts->traddr) || 945 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 946 return false; 947 948 /* 949 * Checking the local address is rough. In most cases, none is specified 950 * and the host port is selected by the stack. 951 * 952 * Assume no match if: 953 * - local address is specified and address is not the same 954 * - local address is not specified but remote is, or vice versa 955 * (admin using specific host_traddr when it matters). 956 */ 957 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 958 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 959 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 960 return false; 961 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 962 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 963 return false; 964 } 965 966 return true; 967 } 968 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 969 970 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 971 unsigned int allowed_opts) 972 { 973 if (opts->mask & ~allowed_opts) { 974 int i; 975 976 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 977 if ((opt_tokens[i].token & opts->mask) && 978 (opt_tokens[i].token & ~allowed_opts)) { 979 pr_warn("invalid parameter '%s'\n", 980 opt_tokens[i].pattern); 981 } 982 } 983 984 return -EINVAL; 985 } 986 987 return 0; 988 } 989 990 void nvmf_free_options(struct nvmf_ctrl_options *opts) 991 { 992 nvmf_host_put(opts->host); 993 kfree(opts->transport); 994 kfree(opts->traddr); 995 kfree(opts->trsvcid); 996 kfree(opts->subsysnqn); 997 kfree(opts->host_traddr); 998 kfree(opts); 999 } 1000 EXPORT_SYMBOL_GPL(nvmf_free_options); 1001 1002 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 1003 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 1004 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 1005 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 1006 NVMF_OPT_DISABLE_SQFLOW |\ 1007 NVMF_OPT_FAIL_FAST_TMO) 1008 1009 static struct nvme_ctrl * 1010 nvmf_create_ctrl(struct device *dev, const char *buf) 1011 { 1012 struct nvmf_ctrl_options *opts; 1013 struct nvmf_transport_ops *ops; 1014 struct nvme_ctrl *ctrl; 1015 int ret; 1016 1017 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1018 if (!opts) 1019 return ERR_PTR(-ENOMEM); 1020 1021 ret = nvmf_parse_options(opts, buf); 1022 if (ret) 1023 goto out_free_opts; 1024 1025 1026 request_module("nvme-%s", opts->transport); 1027 1028 /* 1029 * Check the generic options first as we need a valid transport for 1030 * the lookup below. Then clear the generic flags so that transport 1031 * drivers don't have to care about them. 1032 */ 1033 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 1034 if (ret) 1035 goto out_free_opts; 1036 opts->mask &= ~NVMF_REQUIRED_OPTS; 1037 1038 down_read(&nvmf_transports_rwsem); 1039 ops = nvmf_lookup_transport(opts); 1040 if (!ops) { 1041 pr_info("no handler found for transport %s.\n", 1042 opts->transport); 1043 ret = -EINVAL; 1044 goto out_unlock; 1045 } 1046 1047 if (!try_module_get(ops->module)) { 1048 ret = -EBUSY; 1049 goto out_unlock; 1050 } 1051 up_read(&nvmf_transports_rwsem); 1052 1053 ret = nvmf_check_required_opts(opts, ops->required_opts); 1054 if (ret) 1055 goto out_module_put; 1056 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1057 ops->allowed_opts | ops->required_opts); 1058 if (ret) 1059 goto out_module_put; 1060 1061 ctrl = ops->create_ctrl(dev, opts); 1062 if (IS_ERR(ctrl)) { 1063 ret = PTR_ERR(ctrl); 1064 goto out_module_put; 1065 } 1066 1067 module_put(ops->module); 1068 return ctrl; 1069 1070 out_module_put: 1071 module_put(ops->module); 1072 goto out_free_opts; 1073 out_unlock: 1074 up_read(&nvmf_transports_rwsem); 1075 out_free_opts: 1076 nvmf_free_options(opts); 1077 return ERR_PTR(ret); 1078 } 1079 1080 static struct class *nvmf_class; 1081 static struct device *nvmf_device; 1082 static DEFINE_MUTEX(nvmf_dev_mutex); 1083 1084 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1085 size_t count, loff_t *pos) 1086 { 1087 struct seq_file *seq_file = file->private_data; 1088 struct nvme_ctrl *ctrl; 1089 const char *buf; 1090 int ret = 0; 1091 1092 if (count > PAGE_SIZE) 1093 return -ENOMEM; 1094 1095 buf = memdup_user_nul(ubuf, count); 1096 if (IS_ERR(buf)) 1097 return PTR_ERR(buf); 1098 1099 mutex_lock(&nvmf_dev_mutex); 1100 if (seq_file->private) { 1101 ret = -EINVAL; 1102 goto out_unlock; 1103 } 1104 1105 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1106 if (IS_ERR(ctrl)) { 1107 ret = PTR_ERR(ctrl); 1108 goto out_unlock; 1109 } 1110 1111 seq_file->private = ctrl; 1112 1113 out_unlock: 1114 mutex_unlock(&nvmf_dev_mutex); 1115 kfree(buf); 1116 return ret ? ret : count; 1117 } 1118 1119 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1120 { 1121 struct nvme_ctrl *ctrl; 1122 int ret = 0; 1123 1124 mutex_lock(&nvmf_dev_mutex); 1125 ctrl = seq_file->private; 1126 if (!ctrl) { 1127 ret = -EINVAL; 1128 goto out_unlock; 1129 } 1130 1131 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1132 ctrl->instance, ctrl->cntlid); 1133 1134 out_unlock: 1135 mutex_unlock(&nvmf_dev_mutex); 1136 return ret; 1137 } 1138 1139 static int nvmf_dev_open(struct inode *inode, struct file *file) 1140 { 1141 /* 1142 * The miscdevice code initializes file->private_data, but doesn't 1143 * make use of it later. 1144 */ 1145 file->private_data = NULL; 1146 return single_open(file, nvmf_dev_show, NULL); 1147 } 1148 1149 static int nvmf_dev_release(struct inode *inode, struct file *file) 1150 { 1151 struct seq_file *seq_file = file->private_data; 1152 struct nvme_ctrl *ctrl = seq_file->private; 1153 1154 if (ctrl) 1155 nvme_put_ctrl(ctrl); 1156 return single_release(inode, file); 1157 } 1158 1159 static const struct file_operations nvmf_dev_fops = { 1160 .owner = THIS_MODULE, 1161 .write = nvmf_dev_write, 1162 .read = seq_read, 1163 .open = nvmf_dev_open, 1164 .release = nvmf_dev_release, 1165 }; 1166 1167 static struct miscdevice nvmf_misc = { 1168 .minor = MISC_DYNAMIC_MINOR, 1169 .name = "nvme-fabrics", 1170 .fops = &nvmf_dev_fops, 1171 }; 1172 1173 static int __init nvmf_init(void) 1174 { 1175 int ret; 1176 1177 nvmf_default_host = nvmf_host_default(); 1178 if (!nvmf_default_host) 1179 return -ENOMEM; 1180 1181 nvmf_class = class_create(THIS_MODULE, "nvme-fabrics"); 1182 if (IS_ERR(nvmf_class)) { 1183 pr_err("couldn't register class nvme-fabrics\n"); 1184 ret = PTR_ERR(nvmf_class); 1185 goto out_free_host; 1186 } 1187 1188 nvmf_device = 1189 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1190 if (IS_ERR(nvmf_device)) { 1191 pr_err("couldn't create nvme-fabris device!\n"); 1192 ret = PTR_ERR(nvmf_device); 1193 goto out_destroy_class; 1194 } 1195 1196 ret = misc_register(&nvmf_misc); 1197 if (ret) { 1198 pr_err("couldn't register misc device: %d\n", ret); 1199 goto out_destroy_device; 1200 } 1201 1202 return 0; 1203 1204 out_destroy_device: 1205 device_destroy(nvmf_class, MKDEV(0, 0)); 1206 out_destroy_class: 1207 class_destroy(nvmf_class); 1208 out_free_host: 1209 nvmf_host_put(nvmf_default_host); 1210 return ret; 1211 } 1212 1213 static void __exit nvmf_exit(void) 1214 { 1215 misc_deregister(&nvmf_misc); 1216 device_destroy(nvmf_class, MKDEV(0, 0)); 1217 class_destroy(nvmf_class); 1218 nvmf_host_put(nvmf_default_host); 1219 1220 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1221 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1222 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1223 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1224 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1225 } 1226 1227 MODULE_LICENSE("GPL v2"); 1228 1229 module_init(nvmf_init); 1230 module_exit(nvmf_exit); 1231