1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 16 static LIST_HEAD(nvmf_transports); 17 static DECLARE_RWSEM(nvmf_transports_rwsem); 18 19 static LIST_HEAD(nvmf_hosts); 20 static DEFINE_MUTEX(nvmf_hosts_mutex); 21 22 static struct nvmf_host *nvmf_default_host; 23 24 static struct nvmf_host *__nvmf_host_find(const char *hostnqn) 25 { 26 struct nvmf_host *host; 27 28 list_for_each_entry(host, &nvmf_hosts, list) { 29 if (!strcmp(host->nqn, hostnqn)) 30 return host; 31 } 32 33 return NULL; 34 } 35 36 static struct nvmf_host *nvmf_host_add(const char *hostnqn) 37 { 38 struct nvmf_host *host; 39 40 mutex_lock(&nvmf_hosts_mutex); 41 host = __nvmf_host_find(hostnqn); 42 if (host) { 43 kref_get(&host->ref); 44 goto out_unlock; 45 } 46 47 host = kmalloc(sizeof(*host), GFP_KERNEL); 48 if (!host) 49 goto out_unlock; 50 51 kref_init(&host->ref); 52 strlcpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 53 54 list_add_tail(&host->list, &nvmf_hosts); 55 out_unlock: 56 mutex_unlock(&nvmf_hosts_mutex); 57 return host; 58 } 59 60 static struct nvmf_host *nvmf_host_default(void) 61 { 62 struct nvmf_host *host; 63 64 host = kmalloc(sizeof(*host), GFP_KERNEL); 65 if (!host) 66 return NULL; 67 68 kref_init(&host->ref); 69 uuid_gen(&host->id); 70 snprintf(host->nqn, NVMF_NQN_SIZE, 71 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &host->id); 72 73 mutex_lock(&nvmf_hosts_mutex); 74 list_add_tail(&host->list, &nvmf_hosts); 75 mutex_unlock(&nvmf_hosts_mutex); 76 77 return host; 78 } 79 80 static void nvmf_host_destroy(struct kref *ref) 81 { 82 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 83 84 mutex_lock(&nvmf_hosts_mutex); 85 list_del(&host->list); 86 mutex_unlock(&nvmf_hosts_mutex); 87 88 kfree(host); 89 } 90 91 static void nvmf_host_put(struct nvmf_host *host) 92 { 93 if (host) 94 kref_put(&host->ref, nvmf_host_destroy); 95 } 96 97 /** 98 * nvmf_get_address() - Get address/port 99 * @ctrl: Host NVMe controller instance which we got the address 100 * @buf: OUTPUT parameter that will contain the address/port 101 * @size: buffer size 102 */ 103 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 104 { 105 int len = 0; 106 107 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 108 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 109 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 110 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 111 (len) ? "," : "", ctrl->opts->trsvcid); 112 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 113 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 114 (len) ? "," : "", ctrl->opts->host_traddr); 115 len += scnprintf(buf + len, size - len, "\n"); 116 117 return len; 118 } 119 EXPORT_SYMBOL_GPL(nvmf_get_address); 120 121 /** 122 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 123 * @ctrl: Host NVMe controller instance maintaining the admin 124 * queue used to submit the property read command to 125 * the allocated NVMe controller resource on the target system. 126 * @off: Starting offset value of the targeted property 127 * register (see the fabrics section of the NVMe standard). 128 * @val: OUTPUT parameter that will contain the value of 129 * the property after a successful read. 130 * 131 * Used by the host system to retrieve a 32-bit capsule property value 132 * from an NVMe controller on the target system. 133 * 134 * ("Capsule property" is an "PCIe register concept" applied to the 135 * NVMe fabrics space.) 136 * 137 * Return: 138 * 0: successful read 139 * > 0: NVMe error status code 140 * < 0: Linux errno error code 141 */ 142 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 143 { 144 struct nvme_command cmd; 145 union nvme_result res; 146 int ret; 147 148 memset(&cmd, 0, sizeof(cmd)); 149 cmd.prop_get.opcode = nvme_fabrics_command; 150 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 151 cmd.prop_get.offset = cpu_to_le32(off); 152 153 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 0, 154 NVME_QID_ANY, 0, 0, false); 155 156 if (ret >= 0) 157 *val = le64_to_cpu(res.u64); 158 if (unlikely(ret != 0)) 159 dev_err(ctrl->device, 160 "Property Get error: %d, offset %#x\n", 161 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 162 163 return ret; 164 } 165 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 166 167 /** 168 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 169 * @ctrl: Host NVMe controller instance maintaining the admin 170 * queue used to submit the property read command to 171 * the allocated controller resource on the target system. 172 * @off: Starting offset value of the targeted property 173 * register (see the fabrics section of the NVMe standard). 174 * @val: OUTPUT parameter that will contain the value of 175 * the property after a successful read. 176 * 177 * Used by the host system to retrieve a 64-bit capsule property value 178 * from an NVMe controller on the target system. 179 * 180 * ("Capsule property" is an "PCIe register concept" applied to the 181 * NVMe fabrics space.) 182 * 183 * Return: 184 * 0: successful read 185 * > 0: NVMe error status code 186 * < 0: Linux errno error code 187 */ 188 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 189 { 190 struct nvme_command cmd; 191 union nvme_result res; 192 int ret; 193 194 memset(&cmd, 0, sizeof(cmd)); 195 cmd.prop_get.opcode = nvme_fabrics_command; 196 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 197 cmd.prop_get.attrib = 1; 198 cmd.prop_get.offset = cpu_to_le32(off); 199 200 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 0, 201 NVME_QID_ANY, 0, 0, false); 202 203 if (ret >= 0) 204 *val = le64_to_cpu(res.u64); 205 if (unlikely(ret != 0)) 206 dev_err(ctrl->device, 207 "Property Get error: %d, offset %#x\n", 208 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 209 return ret; 210 } 211 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 212 213 /** 214 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 215 * @ctrl: Host NVMe controller instance maintaining the admin 216 * queue used to submit the property read command to 217 * the allocated NVMe controller resource on the target system. 218 * @off: Starting offset value of the targeted property 219 * register (see the fabrics section of the NVMe standard). 220 * @val: Input parameter that contains the value to be 221 * written to the property. 222 * 223 * Used by the NVMe host system to write a 32-bit capsule property value 224 * to an NVMe controller on the target system. 225 * 226 * ("Capsule property" is an "PCIe register concept" applied to the 227 * NVMe fabrics space.) 228 * 229 * Return: 230 * 0: successful write 231 * > 0: NVMe error status code 232 * < 0: Linux errno error code 233 */ 234 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 235 { 236 struct nvme_command cmd; 237 int ret; 238 239 memset(&cmd, 0, sizeof(cmd)); 240 cmd.prop_set.opcode = nvme_fabrics_command; 241 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 242 cmd.prop_set.attrib = 0; 243 cmd.prop_set.offset = cpu_to_le32(off); 244 cmd.prop_set.value = cpu_to_le64(val); 245 246 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 0, 247 NVME_QID_ANY, 0, 0, false); 248 if (unlikely(ret)) 249 dev_err(ctrl->device, 250 "Property Set error: %d, offset %#x\n", 251 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 252 return ret; 253 } 254 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 255 256 /** 257 * nvmf_log_connect_error() - Error-parsing-diagnostic print 258 * out function for connect() errors. 259 * 260 * @ctrl: the specific /dev/nvmeX device that had the error. 261 * 262 * @errval: Error code to be decoded in a more human-friendly 263 * printout. 264 * 265 * @offset: For use with the NVMe error code NVME_SC_CONNECT_INVALID_PARAM. 266 * 267 * @cmd: This is the SQE portion of a submission capsule. 268 * 269 * @data: This is the "Data" portion of a submission capsule. 270 */ 271 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 272 int errval, int offset, struct nvme_command *cmd, 273 struct nvmf_connect_data *data) 274 { 275 int err_sctype = errval & (~NVME_SC_DNR); 276 277 switch (err_sctype) { 278 279 case (NVME_SC_CONNECT_INVALID_PARAM): 280 if (offset >> 16) { 281 char *inv_data = "Connect Invalid Data Parameter"; 282 283 switch (offset & 0xffff) { 284 case (offsetof(struct nvmf_connect_data, cntlid)): 285 dev_err(ctrl->device, 286 "%s, cntlid: %d\n", 287 inv_data, data->cntlid); 288 break; 289 case (offsetof(struct nvmf_connect_data, hostnqn)): 290 dev_err(ctrl->device, 291 "%s, hostnqn \"%s\"\n", 292 inv_data, data->hostnqn); 293 break; 294 case (offsetof(struct nvmf_connect_data, subsysnqn)): 295 dev_err(ctrl->device, 296 "%s, subsysnqn \"%s\"\n", 297 inv_data, data->subsysnqn); 298 break; 299 default: 300 dev_err(ctrl->device, 301 "%s, starting byte offset: %d\n", 302 inv_data, offset & 0xffff); 303 break; 304 } 305 } else { 306 char *inv_sqe = "Connect Invalid SQE Parameter"; 307 308 switch (offset) { 309 case (offsetof(struct nvmf_connect_command, qid)): 310 dev_err(ctrl->device, 311 "%s, qid %d\n", 312 inv_sqe, cmd->connect.qid); 313 break; 314 default: 315 dev_err(ctrl->device, 316 "%s, starting byte offset: %d\n", 317 inv_sqe, offset); 318 } 319 } 320 break; 321 322 case NVME_SC_CONNECT_INVALID_HOST: 323 dev_err(ctrl->device, 324 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 325 data->subsysnqn, data->hostnqn); 326 break; 327 328 case NVME_SC_CONNECT_CTRL_BUSY: 329 dev_err(ctrl->device, 330 "Connect command failed: controller is busy or not available\n"); 331 break; 332 333 case NVME_SC_CONNECT_FORMAT: 334 dev_err(ctrl->device, 335 "Connect incompatible format: %d", 336 cmd->connect.recfmt); 337 break; 338 339 default: 340 dev_err(ctrl->device, 341 "Connect command failed, error wo/DNR bit: %d\n", 342 err_sctype); 343 break; 344 } /* switch (err_sctype) */ 345 } 346 347 /** 348 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 349 * API function. 350 * @ctrl: Host nvme controller instance used to request 351 * a new NVMe controller allocation on the target 352 * system and establish an NVMe Admin connection to 353 * that controller. 354 * 355 * This function enables an NVMe host device to request a new allocation of 356 * an NVMe controller resource on a target system as well establish a 357 * fabrics-protocol connection of the NVMe Admin queue between the 358 * host system device and the allocated NVMe controller on the 359 * target system via a NVMe Fabrics "Connect" command. 360 * 361 * Return: 362 * 0: success 363 * > 0: NVMe error status code 364 * < 0: Linux errno error code 365 * 366 */ 367 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 368 { 369 struct nvme_command cmd; 370 union nvme_result res; 371 struct nvmf_connect_data *data; 372 int ret; 373 374 memset(&cmd, 0, sizeof(cmd)); 375 cmd.connect.opcode = nvme_fabrics_command; 376 cmd.connect.fctype = nvme_fabrics_type_connect; 377 cmd.connect.qid = 0; 378 cmd.connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 379 380 /* 381 * Set keep-alive timeout in seconds granularity (ms * 1000) 382 */ 383 cmd.connect.kato = cpu_to_le32(ctrl->kato * 1000); 384 385 if (ctrl->opts->disable_sqflow) 386 cmd.connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 387 388 data = kzalloc(sizeof(*data), GFP_KERNEL); 389 if (!data) 390 return -ENOMEM; 391 392 uuid_copy(&data->hostid, &ctrl->opts->host->id); 393 data->cntlid = cpu_to_le16(0xffff); 394 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 395 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 396 397 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 398 data, sizeof(*data), 0, NVME_QID_ANY, 1, 399 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT, false); 400 if (ret) { 401 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 402 &cmd, data); 403 goto out_free_data; 404 } 405 406 ctrl->cntlid = le16_to_cpu(res.u16); 407 408 out_free_data: 409 kfree(data); 410 return ret; 411 } 412 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 413 414 /** 415 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 416 * API function. 417 * @ctrl: Host nvme controller instance used to establish an 418 * NVMe I/O queue connection to the already allocated NVMe 419 * controller on the target system. 420 * @qid: NVMe I/O queue number for the new I/O connection between 421 * host and target (note qid == 0 is illegal as this is 422 * the Admin queue, per NVMe standard). 423 * @poll: Whether or not to poll for the completion of the connect cmd. 424 * 425 * This function issues a fabrics-protocol connection 426 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 427 * between the host system device and the allocated NVMe controller 428 * on the target system. 429 * 430 * Return: 431 * 0: success 432 * > 0: NVMe error status code 433 * < 0: Linux errno error code 434 */ 435 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid, bool poll) 436 { 437 struct nvme_command cmd; 438 struct nvmf_connect_data *data; 439 union nvme_result res; 440 int ret; 441 442 memset(&cmd, 0, sizeof(cmd)); 443 cmd.connect.opcode = nvme_fabrics_command; 444 cmd.connect.fctype = nvme_fabrics_type_connect; 445 cmd.connect.qid = cpu_to_le16(qid); 446 cmd.connect.sqsize = cpu_to_le16(ctrl->sqsize); 447 448 if (ctrl->opts->disable_sqflow) 449 cmd.connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 450 451 data = kzalloc(sizeof(*data), GFP_KERNEL); 452 if (!data) 453 return -ENOMEM; 454 455 uuid_copy(&data->hostid, &ctrl->opts->host->id); 456 data->cntlid = cpu_to_le16(ctrl->cntlid); 457 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 458 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 459 460 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 461 data, sizeof(*data), 0, qid, 1, 462 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT, poll); 463 if (ret) { 464 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 465 &cmd, data); 466 } 467 kfree(data); 468 return ret; 469 } 470 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 471 472 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 473 { 474 if (ctrl->opts->max_reconnects == -1 || 475 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 476 return true; 477 478 return false; 479 } 480 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 481 482 /** 483 * nvmf_register_transport() - NVMe Fabrics Library registration function. 484 * @ops: Transport ops instance to be registered to the 485 * common fabrics library. 486 * 487 * API function that registers the type of specific transport fabric 488 * being implemented to the common NVMe fabrics library. Part of 489 * the overall init sequence of starting up a fabrics driver. 490 */ 491 int nvmf_register_transport(struct nvmf_transport_ops *ops) 492 { 493 if (!ops->create_ctrl) 494 return -EINVAL; 495 496 down_write(&nvmf_transports_rwsem); 497 list_add_tail(&ops->entry, &nvmf_transports); 498 up_write(&nvmf_transports_rwsem); 499 500 return 0; 501 } 502 EXPORT_SYMBOL_GPL(nvmf_register_transport); 503 504 /** 505 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 506 * @ops: Transport ops instance to be unregistered from the 507 * common fabrics library. 508 * 509 * Fabrics API function that unregisters the type of specific transport 510 * fabric being implemented from the common NVMe fabrics library. 511 * Part of the overall exit sequence of unloading the implemented driver. 512 */ 513 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 514 { 515 down_write(&nvmf_transports_rwsem); 516 list_del(&ops->entry); 517 up_write(&nvmf_transports_rwsem); 518 } 519 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 520 521 static struct nvmf_transport_ops *nvmf_lookup_transport( 522 struct nvmf_ctrl_options *opts) 523 { 524 struct nvmf_transport_ops *ops; 525 526 lockdep_assert_held(&nvmf_transports_rwsem); 527 528 list_for_each_entry(ops, &nvmf_transports, entry) { 529 if (strcmp(ops->name, opts->transport) == 0) 530 return ops; 531 } 532 533 return NULL; 534 } 535 536 static const match_table_t opt_tokens = { 537 { NVMF_OPT_TRANSPORT, "transport=%s" }, 538 { NVMF_OPT_TRADDR, "traddr=%s" }, 539 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 540 { NVMF_OPT_NQN, "nqn=%s" }, 541 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 542 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 543 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 544 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 545 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 546 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 547 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 548 { NVMF_OPT_HOST_ID, "hostid=%s" }, 549 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 550 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 551 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 552 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 553 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 554 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 555 { NVMF_OPT_TOS, "tos=%d" }, 556 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 557 { NVMF_OPT_ERR, NULL } 558 }; 559 560 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 561 const char *buf) 562 { 563 substring_t args[MAX_OPT_ARGS]; 564 char *options, *o, *p; 565 int token, ret = 0; 566 size_t nqnlen = 0; 567 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO; 568 uuid_t hostid; 569 570 /* Set defaults */ 571 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 572 opts->nr_io_queues = num_online_cpus(); 573 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 574 opts->kato = 0; 575 opts->duplicate_connect = false; 576 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 577 opts->hdr_digest = false; 578 opts->data_digest = false; 579 opts->tos = -1; /* < 0 == use transport default */ 580 581 options = o = kstrdup(buf, GFP_KERNEL); 582 if (!options) 583 return -ENOMEM; 584 585 uuid_gen(&hostid); 586 587 while ((p = strsep(&o, ",\n")) != NULL) { 588 if (!*p) 589 continue; 590 591 token = match_token(p, opt_tokens, args); 592 opts->mask |= token; 593 switch (token) { 594 case NVMF_OPT_TRANSPORT: 595 p = match_strdup(args); 596 if (!p) { 597 ret = -ENOMEM; 598 goto out; 599 } 600 kfree(opts->transport); 601 opts->transport = p; 602 break; 603 case NVMF_OPT_NQN: 604 p = match_strdup(args); 605 if (!p) { 606 ret = -ENOMEM; 607 goto out; 608 } 609 kfree(opts->subsysnqn); 610 opts->subsysnqn = p; 611 nqnlen = strlen(opts->subsysnqn); 612 if (nqnlen >= NVMF_NQN_SIZE) { 613 pr_err("%s needs to be < %d bytes\n", 614 opts->subsysnqn, NVMF_NQN_SIZE); 615 ret = -EINVAL; 616 goto out; 617 } 618 opts->discovery_nqn = 619 !(strcmp(opts->subsysnqn, 620 NVME_DISC_SUBSYS_NAME)); 621 break; 622 case NVMF_OPT_TRADDR: 623 p = match_strdup(args); 624 if (!p) { 625 ret = -ENOMEM; 626 goto out; 627 } 628 kfree(opts->traddr); 629 opts->traddr = p; 630 break; 631 case NVMF_OPT_TRSVCID: 632 p = match_strdup(args); 633 if (!p) { 634 ret = -ENOMEM; 635 goto out; 636 } 637 kfree(opts->trsvcid); 638 opts->trsvcid = p; 639 break; 640 case NVMF_OPT_QUEUE_SIZE: 641 if (match_int(args, &token)) { 642 ret = -EINVAL; 643 goto out; 644 } 645 if (token < NVMF_MIN_QUEUE_SIZE || 646 token > NVMF_MAX_QUEUE_SIZE) { 647 pr_err("Invalid queue_size %d\n", token); 648 ret = -EINVAL; 649 goto out; 650 } 651 opts->queue_size = token; 652 break; 653 case NVMF_OPT_NR_IO_QUEUES: 654 if (match_int(args, &token)) { 655 ret = -EINVAL; 656 goto out; 657 } 658 if (token <= 0) { 659 pr_err("Invalid number of IOQs %d\n", token); 660 ret = -EINVAL; 661 goto out; 662 } 663 if (opts->discovery_nqn) { 664 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 665 break; 666 } 667 668 opts->nr_io_queues = min_t(unsigned int, 669 num_online_cpus(), token); 670 break; 671 case NVMF_OPT_KATO: 672 if (match_int(args, &token)) { 673 ret = -EINVAL; 674 goto out; 675 } 676 677 if (token < 0) { 678 pr_err("Invalid keep_alive_tmo %d\n", token); 679 ret = -EINVAL; 680 goto out; 681 } else if (token == 0 && !opts->discovery_nqn) { 682 /* Allowed for debug */ 683 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 684 } 685 opts->kato = token; 686 break; 687 case NVMF_OPT_CTRL_LOSS_TMO: 688 if (match_int(args, &token)) { 689 ret = -EINVAL; 690 goto out; 691 } 692 693 if (token < 0) 694 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 695 ctrl_loss_tmo = token; 696 break; 697 case NVMF_OPT_FAIL_FAST_TMO: 698 if (match_int(args, &token)) { 699 ret = -EINVAL; 700 goto out; 701 } 702 703 if (token >= 0) 704 pr_warn("I/O fail on reconnect controller after %d sec\n", 705 token); 706 opts->fast_io_fail_tmo = token; 707 break; 708 case NVMF_OPT_HOSTNQN: 709 if (opts->host) { 710 pr_err("hostnqn already user-assigned: %s\n", 711 opts->host->nqn); 712 ret = -EADDRINUSE; 713 goto out; 714 } 715 p = match_strdup(args); 716 if (!p) { 717 ret = -ENOMEM; 718 goto out; 719 } 720 nqnlen = strlen(p); 721 if (nqnlen >= NVMF_NQN_SIZE) { 722 pr_err("%s needs to be < %d bytes\n", 723 p, NVMF_NQN_SIZE); 724 kfree(p); 725 ret = -EINVAL; 726 goto out; 727 } 728 nvmf_host_put(opts->host); 729 opts->host = nvmf_host_add(p); 730 kfree(p); 731 if (!opts->host) { 732 ret = -ENOMEM; 733 goto out; 734 } 735 break; 736 case NVMF_OPT_RECONNECT_DELAY: 737 if (match_int(args, &token)) { 738 ret = -EINVAL; 739 goto out; 740 } 741 if (token <= 0) { 742 pr_err("Invalid reconnect_delay %d\n", token); 743 ret = -EINVAL; 744 goto out; 745 } 746 opts->reconnect_delay = token; 747 break; 748 case NVMF_OPT_HOST_TRADDR: 749 p = match_strdup(args); 750 if (!p) { 751 ret = -ENOMEM; 752 goto out; 753 } 754 kfree(opts->host_traddr); 755 opts->host_traddr = p; 756 break; 757 case NVMF_OPT_HOST_ID: 758 p = match_strdup(args); 759 if (!p) { 760 ret = -ENOMEM; 761 goto out; 762 } 763 ret = uuid_parse(p, &hostid); 764 if (ret) { 765 pr_err("Invalid hostid %s\n", p); 766 ret = -EINVAL; 767 kfree(p); 768 goto out; 769 } 770 kfree(p); 771 break; 772 case NVMF_OPT_DUP_CONNECT: 773 opts->duplicate_connect = true; 774 break; 775 case NVMF_OPT_DISABLE_SQFLOW: 776 opts->disable_sqflow = true; 777 break; 778 case NVMF_OPT_HDR_DIGEST: 779 opts->hdr_digest = true; 780 break; 781 case NVMF_OPT_DATA_DIGEST: 782 opts->data_digest = true; 783 break; 784 case NVMF_OPT_NR_WRITE_QUEUES: 785 if (match_int(args, &token)) { 786 ret = -EINVAL; 787 goto out; 788 } 789 if (token <= 0) { 790 pr_err("Invalid nr_write_queues %d\n", token); 791 ret = -EINVAL; 792 goto out; 793 } 794 opts->nr_write_queues = token; 795 break; 796 case NVMF_OPT_NR_POLL_QUEUES: 797 if (match_int(args, &token)) { 798 ret = -EINVAL; 799 goto out; 800 } 801 if (token <= 0) { 802 pr_err("Invalid nr_poll_queues %d\n", token); 803 ret = -EINVAL; 804 goto out; 805 } 806 opts->nr_poll_queues = token; 807 break; 808 case NVMF_OPT_TOS: 809 if (match_int(args, &token)) { 810 ret = -EINVAL; 811 goto out; 812 } 813 if (token < 0) { 814 pr_err("Invalid type of service %d\n", token); 815 ret = -EINVAL; 816 goto out; 817 } 818 if (token > 255) { 819 pr_warn("Clamping type of service to 255\n"); 820 token = 255; 821 } 822 opts->tos = token; 823 break; 824 default: 825 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 826 p); 827 ret = -EINVAL; 828 goto out; 829 } 830 } 831 832 if (opts->discovery_nqn) { 833 opts->nr_io_queues = 0; 834 opts->nr_write_queues = 0; 835 opts->nr_poll_queues = 0; 836 opts->duplicate_connect = true; 837 } else { 838 if (!opts->kato) 839 opts->kato = NVME_DEFAULT_KATO; 840 } 841 if (ctrl_loss_tmo < 0) { 842 opts->max_reconnects = -1; 843 } else { 844 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 845 opts->reconnect_delay); 846 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 847 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 848 opts->fast_io_fail_tmo, ctrl_loss_tmo); 849 } 850 851 if (!opts->host) { 852 kref_get(&nvmf_default_host->ref); 853 opts->host = nvmf_default_host; 854 } 855 856 uuid_copy(&opts->host->id, &hostid); 857 858 out: 859 kfree(options); 860 return ret; 861 } 862 863 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 864 unsigned int required_opts) 865 { 866 if ((opts->mask & required_opts) != required_opts) { 867 int i; 868 869 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 870 if ((opt_tokens[i].token & required_opts) && 871 !(opt_tokens[i].token & opts->mask)) { 872 pr_warn("missing parameter '%s'\n", 873 opt_tokens[i].pattern); 874 } 875 } 876 877 return -EINVAL; 878 } 879 880 return 0; 881 } 882 883 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 884 struct nvmf_ctrl_options *opts) 885 { 886 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 887 strcmp(opts->traddr, ctrl->opts->traddr) || 888 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 889 return false; 890 891 /* 892 * Checking the local address is rough. In most cases, none is specified 893 * and the host port is selected by the stack. 894 * 895 * Assume no match if: 896 * - local address is specified and address is not the same 897 * - local address is not specified but remote is, or vice versa 898 * (admin using specific host_traddr when it matters). 899 */ 900 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 901 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 902 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 903 return false; 904 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 905 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 906 return false; 907 } 908 909 return true; 910 } 911 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 912 913 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 914 unsigned int allowed_opts) 915 { 916 if (opts->mask & ~allowed_opts) { 917 int i; 918 919 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 920 if ((opt_tokens[i].token & opts->mask) && 921 (opt_tokens[i].token & ~allowed_opts)) { 922 pr_warn("invalid parameter '%s'\n", 923 opt_tokens[i].pattern); 924 } 925 } 926 927 return -EINVAL; 928 } 929 930 return 0; 931 } 932 933 void nvmf_free_options(struct nvmf_ctrl_options *opts) 934 { 935 nvmf_host_put(opts->host); 936 kfree(opts->transport); 937 kfree(opts->traddr); 938 kfree(opts->trsvcid); 939 kfree(opts->subsysnqn); 940 kfree(opts->host_traddr); 941 kfree(opts); 942 } 943 EXPORT_SYMBOL_GPL(nvmf_free_options); 944 945 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 946 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 947 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 948 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 949 NVMF_OPT_DISABLE_SQFLOW |\ 950 NVMF_OPT_FAIL_FAST_TMO) 951 952 static struct nvme_ctrl * 953 nvmf_create_ctrl(struct device *dev, const char *buf) 954 { 955 struct nvmf_ctrl_options *opts; 956 struct nvmf_transport_ops *ops; 957 struct nvme_ctrl *ctrl; 958 int ret; 959 960 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 961 if (!opts) 962 return ERR_PTR(-ENOMEM); 963 964 ret = nvmf_parse_options(opts, buf); 965 if (ret) 966 goto out_free_opts; 967 968 969 request_module("nvme-%s", opts->transport); 970 971 /* 972 * Check the generic options first as we need a valid transport for 973 * the lookup below. Then clear the generic flags so that transport 974 * drivers don't have to care about them. 975 */ 976 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 977 if (ret) 978 goto out_free_opts; 979 opts->mask &= ~NVMF_REQUIRED_OPTS; 980 981 down_read(&nvmf_transports_rwsem); 982 ops = nvmf_lookup_transport(opts); 983 if (!ops) { 984 pr_info("no handler found for transport %s.\n", 985 opts->transport); 986 ret = -EINVAL; 987 goto out_unlock; 988 } 989 990 if (!try_module_get(ops->module)) { 991 ret = -EBUSY; 992 goto out_unlock; 993 } 994 up_read(&nvmf_transports_rwsem); 995 996 ret = nvmf_check_required_opts(opts, ops->required_opts); 997 if (ret) 998 goto out_module_put; 999 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1000 ops->allowed_opts | ops->required_opts); 1001 if (ret) 1002 goto out_module_put; 1003 1004 ctrl = ops->create_ctrl(dev, opts); 1005 if (IS_ERR(ctrl)) { 1006 ret = PTR_ERR(ctrl); 1007 goto out_module_put; 1008 } 1009 1010 module_put(ops->module); 1011 return ctrl; 1012 1013 out_module_put: 1014 module_put(ops->module); 1015 goto out_free_opts; 1016 out_unlock: 1017 up_read(&nvmf_transports_rwsem); 1018 out_free_opts: 1019 nvmf_free_options(opts); 1020 return ERR_PTR(ret); 1021 } 1022 1023 static struct class *nvmf_class; 1024 static struct device *nvmf_device; 1025 static DEFINE_MUTEX(nvmf_dev_mutex); 1026 1027 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1028 size_t count, loff_t *pos) 1029 { 1030 struct seq_file *seq_file = file->private_data; 1031 struct nvme_ctrl *ctrl; 1032 const char *buf; 1033 int ret = 0; 1034 1035 if (count > PAGE_SIZE) 1036 return -ENOMEM; 1037 1038 buf = memdup_user_nul(ubuf, count); 1039 if (IS_ERR(buf)) 1040 return PTR_ERR(buf); 1041 1042 mutex_lock(&nvmf_dev_mutex); 1043 if (seq_file->private) { 1044 ret = -EINVAL; 1045 goto out_unlock; 1046 } 1047 1048 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1049 if (IS_ERR(ctrl)) { 1050 ret = PTR_ERR(ctrl); 1051 goto out_unlock; 1052 } 1053 1054 seq_file->private = ctrl; 1055 1056 out_unlock: 1057 mutex_unlock(&nvmf_dev_mutex); 1058 kfree(buf); 1059 return ret ? ret : count; 1060 } 1061 1062 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1063 { 1064 struct nvme_ctrl *ctrl; 1065 int ret = 0; 1066 1067 mutex_lock(&nvmf_dev_mutex); 1068 ctrl = seq_file->private; 1069 if (!ctrl) { 1070 ret = -EINVAL; 1071 goto out_unlock; 1072 } 1073 1074 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1075 ctrl->instance, ctrl->cntlid); 1076 1077 out_unlock: 1078 mutex_unlock(&nvmf_dev_mutex); 1079 return ret; 1080 } 1081 1082 static int nvmf_dev_open(struct inode *inode, struct file *file) 1083 { 1084 /* 1085 * The miscdevice code initializes file->private_data, but doesn't 1086 * make use of it later. 1087 */ 1088 file->private_data = NULL; 1089 return single_open(file, nvmf_dev_show, NULL); 1090 } 1091 1092 static int nvmf_dev_release(struct inode *inode, struct file *file) 1093 { 1094 struct seq_file *seq_file = file->private_data; 1095 struct nvme_ctrl *ctrl = seq_file->private; 1096 1097 if (ctrl) 1098 nvme_put_ctrl(ctrl); 1099 return single_release(inode, file); 1100 } 1101 1102 static const struct file_operations nvmf_dev_fops = { 1103 .owner = THIS_MODULE, 1104 .write = nvmf_dev_write, 1105 .read = seq_read, 1106 .open = nvmf_dev_open, 1107 .release = nvmf_dev_release, 1108 }; 1109 1110 static struct miscdevice nvmf_misc = { 1111 .minor = MISC_DYNAMIC_MINOR, 1112 .name = "nvme-fabrics", 1113 .fops = &nvmf_dev_fops, 1114 }; 1115 1116 static int __init nvmf_init(void) 1117 { 1118 int ret; 1119 1120 nvmf_default_host = nvmf_host_default(); 1121 if (!nvmf_default_host) 1122 return -ENOMEM; 1123 1124 nvmf_class = class_create(THIS_MODULE, "nvme-fabrics"); 1125 if (IS_ERR(nvmf_class)) { 1126 pr_err("couldn't register class nvme-fabrics\n"); 1127 ret = PTR_ERR(nvmf_class); 1128 goto out_free_host; 1129 } 1130 1131 nvmf_device = 1132 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1133 if (IS_ERR(nvmf_device)) { 1134 pr_err("couldn't create nvme-fabris device!\n"); 1135 ret = PTR_ERR(nvmf_device); 1136 goto out_destroy_class; 1137 } 1138 1139 ret = misc_register(&nvmf_misc); 1140 if (ret) { 1141 pr_err("couldn't register misc device: %d\n", ret); 1142 goto out_destroy_device; 1143 } 1144 1145 return 0; 1146 1147 out_destroy_device: 1148 device_destroy(nvmf_class, MKDEV(0, 0)); 1149 out_destroy_class: 1150 class_destroy(nvmf_class); 1151 out_free_host: 1152 nvmf_host_put(nvmf_default_host); 1153 return ret; 1154 } 1155 1156 static void __exit nvmf_exit(void) 1157 { 1158 misc_deregister(&nvmf_misc); 1159 device_destroy(nvmf_class, MKDEV(0, 0)); 1160 class_destroy(nvmf_class); 1161 nvmf_host_put(nvmf_default_host); 1162 1163 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1164 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1165 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1166 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1167 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1168 } 1169 1170 MODULE_LICENSE("GPL v2"); 1171 1172 module_init(nvmf_init); 1173 module_exit(nvmf_exit); 1174