1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 bool is_removed; 42 }; 43 44 unsigned int admin_timeout = 60; 45 module_param(admin_timeout, uint, 0644); 46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 47 EXPORT_SYMBOL_GPL(admin_timeout); 48 49 unsigned int nvme_io_timeout = 30; 50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 52 EXPORT_SYMBOL_GPL(nvme_io_timeout); 53 54 static unsigned char shutdown_timeout = 5; 55 module_param(shutdown_timeout, byte, 0644); 56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 57 58 static u8 nvme_max_retries = 5; 59 module_param_named(max_retries, nvme_max_retries, byte, 0644); 60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 61 62 static unsigned long default_ps_max_latency_us = 100000; 63 module_param(default_ps_max_latency_us, ulong, 0644); 64 MODULE_PARM_DESC(default_ps_max_latency_us, 65 "max power saving latency for new devices; use PM QOS to change per device"); 66 67 static bool force_apst; 68 module_param(force_apst, bool, 0644); 69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 70 71 static unsigned long apst_primary_timeout_ms = 100; 72 module_param(apst_primary_timeout_ms, ulong, 0644); 73 MODULE_PARM_DESC(apst_primary_timeout_ms, 74 "primary APST timeout in ms"); 75 76 static unsigned long apst_secondary_timeout_ms = 2000; 77 module_param(apst_secondary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_secondary_timeout_ms, 79 "secondary APST timeout in ms"); 80 81 static unsigned long apst_primary_latency_tol_us = 15000; 82 module_param(apst_primary_latency_tol_us, ulong, 0644); 83 MODULE_PARM_DESC(apst_primary_latency_tol_us, 84 "primary APST latency tolerance in us"); 85 86 static unsigned long apst_secondary_latency_tol_us = 100000; 87 module_param(apst_secondary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 89 "secondary APST latency tolerance in us"); 90 91 /* 92 * nvme_wq - hosts nvme related works that are not reset or delete 93 * nvme_reset_wq - hosts nvme reset works 94 * nvme_delete_wq - hosts nvme delete works 95 * 96 * nvme_wq will host works such as scan, aen handling, fw activation, 97 * keep-alive, periodic reconnects etc. nvme_reset_wq 98 * runs reset works which also flush works hosted on nvme_wq for 99 * serialization purposes. nvme_delete_wq host controller deletion 100 * works which flush reset works for serialization. 101 */ 102 struct workqueue_struct *nvme_wq; 103 EXPORT_SYMBOL_GPL(nvme_wq); 104 105 struct workqueue_struct *nvme_reset_wq; 106 EXPORT_SYMBOL_GPL(nvme_reset_wq); 107 108 struct workqueue_struct *nvme_delete_wq; 109 EXPORT_SYMBOL_GPL(nvme_delete_wq); 110 111 static LIST_HEAD(nvme_subsystems); 112 static DEFINE_MUTEX(nvme_subsystems_lock); 113 114 static DEFINE_IDA(nvme_instance_ida); 115 static dev_t nvme_ctrl_base_chr_devt; 116 static struct class *nvme_class; 117 static struct class *nvme_subsys_class; 118 119 static DEFINE_IDA(nvme_ns_chr_minor_ida); 120 static dev_t nvme_ns_chr_devt; 121 static struct class *nvme_ns_chr_class; 122 123 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 125 unsigned nsid); 126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 127 struct nvme_command *cmd); 128 129 void nvme_queue_scan(struct nvme_ctrl *ctrl) 130 { 131 /* 132 * Only new queue scan work when admin and IO queues are both alive 133 */ 134 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 135 queue_work(nvme_wq, &ctrl->scan_work); 136 } 137 138 /* 139 * Use this function to proceed with scheduling reset_work for a controller 140 * that had previously been set to the resetting state. This is intended for 141 * code paths that can't be interrupted by other reset attempts. A hot removal 142 * may prevent this from succeeding. 143 */ 144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 145 { 146 if (ctrl->state != NVME_CTRL_RESETTING) 147 return -EBUSY; 148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 149 return -EBUSY; 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 153 154 static void nvme_failfast_work(struct work_struct *work) 155 { 156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 157 struct nvme_ctrl, failfast_work); 158 159 if (ctrl->state != NVME_CTRL_CONNECTING) 160 return; 161 162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 163 dev_info(ctrl->device, "failfast expired\n"); 164 nvme_kick_requeue_lists(ctrl); 165 } 166 167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 168 { 169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 170 return; 171 172 schedule_delayed_work(&ctrl->failfast_work, 173 ctrl->opts->fast_io_fail_tmo * HZ); 174 } 175 176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 177 { 178 if (!ctrl->opts) 179 return; 180 181 cancel_delayed_work_sync(&ctrl->failfast_work); 182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 183 } 184 185 186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 187 { 188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 189 return -EBUSY; 190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 191 return -EBUSY; 192 return 0; 193 } 194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 195 196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 197 { 198 int ret; 199 200 ret = nvme_reset_ctrl(ctrl); 201 if (!ret) { 202 flush_work(&ctrl->reset_work); 203 if (ctrl->state != NVME_CTRL_LIVE) 204 ret = -ENETRESET; 205 } 206 207 return ret; 208 } 209 210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 211 { 212 dev_info(ctrl->device, 213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 214 215 flush_work(&ctrl->reset_work); 216 nvme_stop_ctrl(ctrl); 217 nvme_remove_namespaces(ctrl); 218 ctrl->ops->delete_ctrl(ctrl); 219 nvme_uninit_ctrl(ctrl); 220 } 221 222 static void nvme_delete_ctrl_work(struct work_struct *work) 223 { 224 struct nvme_ctrl *ctrl = 225 container_of(work, struct nvme_ctrl, delete_work); 226 227 nvme_do_delete_ctrl(ctrl); 228 } 229 230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 231 { 232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 233 return -EBUSY; 234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 235 return -EBUSY; 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 239 240 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 241 { 242 /* 243 * Keep a reference until nvme_do_delete_ctrl() complete, 244 * since ->delete_ctrl can free the controller. 245 */ 246 nvme_get_ctrl(ctrl); 247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 248 nvme_do_delete_ctrl(ctrl); 249 nvme_put_ctrl(ctrl); 250 } 251 252 static blk_status_t nvme_error_status(u16 status) 253 { 254 switch (status & 0x7ff) { 255 case NVME_SC_SUCCESS: 256 return BLK_STS_OK; 257 case NVME_SC_CAP_EXCEEDED: 258 return BLK_STS_NOSPC; 259 case NVME_SC_LBA_RANGE: 260 case NVME_SC_CMD_INTERRUPTED: 261 case NVME_SC_NS_NOT_READY: 262 return BLK_STS_TARGET; 263 case NVME_SC_BAD_ATTRIBUTES: 264 case NVME_SC_ONCS_NOT_SUPPORTED: 265 case NVME_SC_INVALID_OPCODE: 266 case NVME_SC_INVALID_FIELD: 267 case NVME_SC_INVALID_NS: 268 return BLK_STS_NOTSUPP; 269 case NVME_SC_WRITE_FAULT: 270 case NVME_SC_READ_ERROR: 271 case NVME_SC_UNWRITTEN_BLOCK: 272 case NVME_SC_ACCESS_DENIED: 273 case NVME_SC_READ_ONLY: 274 case NVME_SC_COMPARE_FAILED: 275 return BLK_STS_MEDIUM; 276 case NVME_SC_GUARD_CHECK: 277 case NVME_SC_APPTAG_CHECK: 278 case NVME_SC_REFTAG_CHECK: 279 case NVME_SC_INVALID_PI: 280 return BLK_STS_PROTECTION; 281 case NVME_SC_RESERVATION_CONFLICT: 282 return BLK_STS_NEXUS; 283 case NVME_SC_HOST_PATH_ERROR: 284 return BLK_STS_TRANSPORT; 285 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 286 return BLK_STS_ZONE_ACTIVE_RESOURCE; 287 case NVME_SC_ZONE_TOO_MANY_OPEN: 288 return BLK_STS_ZONE_OPEN_RESOURCE; 289 default: 290 return BLK_STS_IOERR; 291 } 292 } 293 294 static void nvme_retry_req(struct request *req) 295 { 296 unsigned long delay = 0; 297 u16 crd; 298 299 /* The mask and shift result must be <= 3 */ 300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 301 if (crd) 302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 303 304 nvme_req(req)->retries++; 305 blk_mq_requeue_request(req, false); 306 blk_mq_delay_kick_requeue_list(req->q, delay); 307 } 308 309 static void nvme_log_error(struct request *req) 310 { 311 struct nvme_ns *ns = req->q->queuedata; 312 struct nvme_request *nr = nvme_req(req); 313 314 if (ns) { 315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 316 ns->disk ? ns->disk->disk_name : "?", 317 nvme_get_opcode_str(nr->cmd->common.opcode), 318 nr->cmd->common.opcode, 319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 321 nvme_get_error_status_str(nr->status), 322 nr->status >> 8 & 7, /* Status Code Type */ 323 nr->status & 0xff, /* Status Code */ 324 nr->status & NVME_SC_MORE ? "MORE " : "", 325 nr->status & NVME_SC_DNR ? "DNR " : ""); 326 return; 327 } 328 329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 330 dev_name(nr->ctrl->device), 331 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 332 nr->cmd->common.opcode, 333 nvme_get_error_status_str(nr->status), 334 nr->status >> 8 & 7, /* Status Code Type */ 335 nr->status & 0xff, /* Status Code */ 336 nr->status & NVME_SC_MORE ? "MORE " : "", 337 nr->status & NVME_SC_DNR ? "DNR " : ""); 338 } 339 340 enum nvme_disposition { 341 COMPLETE, 342 RETRY, 343 FAILOVER, 344 AUTHENTICATE, 345 }; 346 347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 348 { 349 if (likely(nvme_req(req)->status == 0)) 350 return COMPLETE; 351 352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 353 return AUTHENTICATE; 354 355 if (blk_noretry_request(req) || 356 (nvme_req(req)->status & NVME_SC_DNR) || 357 nvme_req(req)->retries >= nvme_max_retries) 358 return COMPLETE; 359 360 if (req->cmd_flags & REQ_NVME_MPATH) { 361 if (nvme_is_path_error(nvme_req(req)->status) || 362 blk_queue_dying(req->q)) 363 return FAILOVER; 364 } else { 365 if (blk_queue_dying(req->q)) 366 return COMPLETE; 367 } 368 369 return RETRY; 370 } 371 372 static inline void nvme_end_req_zoned(struct request *req) 373 { 374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 375 req_op(req) == REQ_OP_ZONE_APPEND) 376 req->__sector = nvme_lba_to_sect(req->q->queuedata, 377 le64_to_cpu(nvme_req(req)->result.u64)); 378 } 379 380 static inline void nvme_end_req(struct request *req) 381 { 382 blk_status_t status = nvme_error_status(nvme_req(req)->status); 383 384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 385 nvme_log_error(req); 386 nvme_end_req_zoned(req); 387 nvme_trace_bio_complete(req); 388 if (req->cmd_flags & REQ_NVME_MPATH) 389 nvme_mpath_end_request(req); 390 blk_mq_end_request(req, status); 391 } 392 393 void nvme_complete_rq(struct request *req) 394 { 395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 396 397 trace_nvme_complete_rq(req); 398 nvme_cleanup_cmd(req); 399 400 if (ctrl->kas) 401 ctrl->comp_seen = true; 402 403 switch (nvme_decide_disposition(req)) { 404 case COMPLETE: 405 nvme_end_req(req); 406 return; 407 case RETRY: 408 nvme_retry_req(req); 409 return; 410 case FAILOVER: 411 nvme_failover_req(req); 412 return; 413 case AUTHENTICATE: 414 #ifdef CONFIG_NVME_AUTH 415 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 416 nvme_retry_req(req); 417 #else 418 nvme_end_req(req); 419 #endif 420 return; 421 } 422 } 423 EXPORT_SYMBOL_GPL(nvme_complete_rq); 424 425 void nvme_complete_batch_req(struct request *req) 426 { 427 trace_nvme_complete_rq(req); 428 nvme_cleanup_cmd(req); 429 nvme_end_req_zoned(req); 430 } 431 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 432 433 /* 434 * Called to unwind from ->queue_rq on a failed command submission so that the 435 * multipathing code gets called to potentially failover to another path. 436 * The caller needs to unwind all transport specific resource allocations and 437 * must return propagate the return value. 438 */ 439 blk_status_t nvme_host_path_error(struct request *req) 440 { 441 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 442 blk_mq_set_request_complete(req); 443 nvme_complete_rq(req); 444 return BLK_STS_OK; 445 } 446 EXPORT_SYMBOL_GPL(nvme_host_path_error); 447 448 bool nvme_cancel_request(struct request *req, void *data) 449 { 450 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 451 "Cancelling I/O %d", req->tag); 452 453 /* don't abort one completed or idle request */ 454 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 455 return true; 456 457 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 458 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 459 blk_mq_complete_request(req); 460 return true; 461 } 462 EXPORT_SYMBOL_GPL(nvme_cancel_request); 463 464 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 465 { 466 if (ctrl->tagset) { 467 blk_mq_tagset_busy_iter(ctrl->tagset, 468 nvme_cancel_request, ctrl); 469 blk_mq_tagset_wait_completed_request(ctrl->tagset); 470 } 471 } 472 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 473 474 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 475 { 476 if (ctrl->admin_tagset) { 477 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 478 nvme_cancel_request, ctrl); 479 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 480 } 481 } 482 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 483 484 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 485 enum nvme_ctrl_state new_state) 486 { 487 enum nvme_ctrl_state old_state; 488 unsigned long flags; 489 bool changed = false; 490 491 spin_lock_irqsave(&ctrl->lock, flags); 492 493 old_state = ctrl->state; 494 switch (new_state) { 495 case NVME_CTRL_LIVE: 496 switch (old_state) { 497 case NVME_CTRL_NEW: 498 case NVME_CTRL_RESETTING: 499 case NVME_CTRL_CONNECTING: 500 changed = true; 501 fallthrough; 502 default: 503 break; 504 } 505 break; 506 case NVME_CTRL_RESETTING: 507 switch (old_state) { 508 case NVME_CTRL_NEW: 509 case NVME_CTRL_LIVE: 510 changed = true; 511 fallthrough; 512 default: 513 break; 514 } 515 break; 516 case NVME_CTRL_CONNECTING: 517 switch (old_state) { 518 case NVME_CTRL_NEW: 519 case NVME_CTRL_RESETTING: 520 changed = true; 521 fallthrough; 522 default: 523 break; 524 } 525 break; 526 case NVME_CTRL_DELETING: 527 switch (old_state) { 528 case NVME_CTRL_LIVE: 529 case NVME_CTRL_RESETTING: 530 case NVME_CTRL_CONNECTING: 531 changed = true; 532 fallthrough; 533 default: 534 break; 535 } 536 break; 537 case NVME_CTRL_DELETING_NOIO: 538 switch (old_state) { 539 case NVME_CTRL_DELETING: 540 case NVME_CTRL_DEAD: 541 changed = true; 542 fallthrough; 543 default: 544 break; 545 } 546 break; 547 case NVME_CTRL_DEAD: 548 switch (old_state) { 549 case NVME_CTRL_DELETING: 550 changed = true; 551 fallthrough; 552 default: 553 break; 554 } 555 break; 556 default: 557 break; 558 } 559 560 if (changed) { 561 ctrl->state = new_state; 562 wake_up_all(&ctrl->state_wq); 563 } 564 565 spin_unlock_irqrestore(&ctrl->lock, flags); 566 if (!changed) 567 return false; 568 569 if (ctrl->state == NVME_CTRL_LIVE) { 570 if (old_state == NVME_CTRL_CONNECTING) 571 nvme_stop_failfast_work(ctrl); 572 nvme_kick_requeue_lists(ctrl); 573 } else if (ctrl->state == NVME_CTRL_CONNECTING && 574 old_state == NVME_CTRL_RESETTING) { 575 nvme_start_failfast_work(ctrl); 576 } 577 return changed; 578 } 579 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 580 581 /* 582 * Returns true for sink states that can't ever transition back to live. 583 */ 584 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 585 { 586 switch (ctrl->state) { 587 case NVME_CTRL_NEW: 588 case NVME_CTRL_LIVE: 589 case NVME_CTRL_RESETTING: 590 case NVME_CTRL_CONNECTING: 591 return false; 592 case NVME_CTRL_DELETING: 593 case NVME_CTRL_DELETING_NOIO: 594 case NVME_CTRL_DEAD: 595 return true; 596 default: 597 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 598 return true; 599 } 600 } 601 602 /* 603 * Waits for the controller state to be resetting, or returns false if it is 604 * not possible to ever transition to that state. 605 */ 606 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 607 { 608 wait_event(ctrl->state_wq, 609 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 610 nvme_state_terminal(ctrl)); 611 return ctrl->state == NVME_CTRL_RESETTING; 612 } 613 EXPORT_SYMBOL_GPL(nvme_wait_reset); 614 615 static void nvme_free_ns_head(struct kref *ref) 616 { 617 struct nvme_ns_head *head = 618 container_of(ref, struct nvme_ns_head, ref); 619 620 nvme_mpath_remove_disk(head); 621 ida_free(&head->subsys->ns_ida, head->instance); 622 cleanup_srcu_struct(&head->srcu); 623 nvme_put_subsystem(head->subsys); 624 kfree(head); 625 } 626 627 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 628 { 629 return kref_get_unless_zero(&head->ref); 630 } 631 632 void nvme_put_ns_head(struct nvme_ns_head *head) 633 { 634 kref_put(&head->ref, nvme_free_ns_head); 635 } 636 637 static void nvme_free_ns(struct kref *kref) 638 { 639 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 640 641 put_disk(ns->disk); 642 nvme_put_ns_head(ns->head); 643 nvme_put_ctrl(ns->ctrl); 644 kfree(ns); 645 } 646 647 static inline bool nvme_get_ns(struct nvme_ns *ns) 648 { 649 return kref_get_unless_zero(&ns->kref); 650 } 651 652 void nvme_put_ns(struct nvme_ns *ns) 653 { 654 kref_put(&ns->kref, nvme_free_ns); 655 } 656 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 657 658 static inline void nvme_clear_nvme_request(struct request *req) 659 { 660 nvme_req(req)->status = 0; 661 nvme_req(req)->retries = 0; 662 nvme_req(req)->flags = 0; 663 req->rq_flags |= RQF_DONTPREP; 664 } 665 666 /* initialize a passthrough request */ 667 void nvme_init_request(struct request *req, struct nvme_command *cmd) 668 { 669 if (req->q->queuedata) 670 req->timeout = NVME_IO_TIMEOUT; 671 else /* no queuedata implies admin queue */ 672 req->timeout = NVME_ADMIN_TIMEOUT; 673 674 /* passthru commands should let the driver set the SGL flags */ 675 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 676 677 req->cmd_flags |= REQ_FAILFAST_DRIVER; 678 if (req->mq_hctx->type == HCTX_TYPE_POLL) 679 req->cmd_flags |= REQ_POLLED; 680 nvme_clear_nvme_request(req); 681 req->rq_flags |= RQF_QUIET; 682 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 683 } 684 EXPORT_SYMBOL_GPL(nvme_init_request); 685 686 /* 687 * For something we're not in a state to send to the device the default action 688 * is to busy it and retry it after the controller state is recovered. However, 689 * if the controller is deleting or if anything is marked for failfast or 690 * nvme multipath it is immediately failed. 691 * 692 * Note: commands used to initialize the controller will be marked for failfast. 693 * Note: nvme cli/ioctl commands are marked for failfast. 694 */ 695 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 696 struct request *rq) 697 { 698 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 699 ctrl->state != NVME_CTRL_DELETING && 700 ctrl->state != NVME_CTRL_DEAD && 701 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 702 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 703 return BLK_STS_RESOURCE; 704 return nvme_host_path_error(rq); 705 } 706 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 707 708 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 709 bool queue_live) 710 { 711 struct nvme_request *req = nvme_req(rq); 712 713 /* 714 * currently we have a problem sending passthru commands 715 * on the admin_q if the controller is not LIVE because we can't 716 * make sure that they are going out after the admin connect, 717 * controller enable and/or other commands in the initialization 718 * sequence. until the controller will be LIVE, fail with 719 * BLK_STS_RESOURCE so that they will be rescheduled. 720 */ 721 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 722 return false; 723 724 if (ctrl->ops->flags & NVME_F_FABRICS) { 725 /* 726 * Only allow commands on a live queue, except for the connect 727 * command, which is require to set the queue live in the 728 * appropinquate states. 729 */ 730 switch (ctrl->state) { 731 case NVME_CTRL_CONNECTING: 732 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 733 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 734 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 735 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 736 return true; 737 break; 738 default: 739 break; 740 case NVME_CTRL_DEAD: 741 return false; 742 } 743 } 744 745 return queue_live; 746 } 747 EXPORT_SYMBOL_GPL(__nvme_check_ready); 748 749 static inline void nvme_setup_flush(struct nvme_ns *ns, 750 struct nvme_command *cmnd) 751 { 752 memset(cmnd, 0, sizeof(*cmnd)); 753 cmnd->common.opcode = nvme_cmd_flush; 754 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 755 } 756 757 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 758 struct nvme_command *cmnd) 759 { 760 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 761 struct nvme_dsm_range *range; 762 struct bio *bio; 763 764 /* 765 * Some devices do not consider the DSM 'Number of Ranges' field when 766 * determining how much data to DMA. Always allocate memory for maximum 767 * number of segments to prevent device reading beyond end of buffer. 768 */ 769 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 770 771 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 772 if (!range) { 773 /* 774 * If we fail allocation our range, fallback to the controller 775 * discard page. If that's also busy, it's safe to return 776 * busy, as we know we can make progress once that's freed. 777 */ 778 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 779 return BLK_STS_RESOURCE; 780 781 range = page_address(ns->ctrl->discard_page); 782 } 783 784 if (queue_max_discard_segments(req->q) == 1) { 785 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req)); 786 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9); 787 788 range[0].cattr = cpu_to_le32(0); 789 range[0].nlb = cpu_to_le32(nlb); 790 range[0].slba = cpu_to_le64(slba); 791 n = 1; 792 } else { 793 __rq_for_each_bio(bio, req) { 794 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 795 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 796 797 if (n < segments) { 798 range[n].cattr = cpu_to_le32(0); 799 range[n].nlb = cpu_to_le32(nlb); 800 range[n].slba = cpu_to_le64(slba); 801 } 802 n++; 803 } 804 } 805 806 if (WARN_ON_ONCE(n != segments)) { 807 if (virt_to_page(range) == ns->ctrl->discard_page) 808 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 809 else 810 kfree(range); 811 return BLK_STS_IOERR; 812 } 813 814 memset(cmnd, 0, sizeof(*cmnd)); 815 cmnd->dsm.opcode = nvme_cmd_dsm; 816 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 817 cmnd->dsm.nr = cpu_to_le32(segments - 1); 818 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 819 820 bvec_set_virt(&req->special_vec, range, alloc_size); 821 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 822 823 return BLK_STS_OK; 824 } 825 826 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 827 struct request *req) 828 { 829 u32 upper, lower; 830 u64 ref48; 831 832 /* both rw and write zeroes share the same reftag format */ 833 switch (ns->guard_type) { 834 case NVME_NVM_NS_16B_GUARD: 835 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 836 break; 837 case NVME_NVM_NS_64B_GUARD: 838 ref48 = ext_pi_ref_tag(req); 839 lower = lower_32_bits(ref48); 840 upper = upper_32_bits(ref48); 841 842 cmnd->rw.reftag = cpu_to_le32(lower); 843 cmnd->rw.cdw3 = cpu_to_le32(upper); 844 break; 845 default: 846 break; 847 } 848 } 849 850 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 851 struct request *req, struct nvme_command *cmnd) 852 { 853 memset(cmnd, 0, sizeof(*cmnd)); 854 855 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 856 return nvme_setup_discard(ns, req, cmnd); 857 858 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 859 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 860 cmnd->write_zeroes.slba = 861 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 862 cmnd->write_zeroes.length = 863 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 864 865 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC)) 866 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 867 868 if (nvme_ns_has_pi(ns)) { 869 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 870 871 switch (ns->pi_type) { 872 case NVME_NS_DPS_PI_TYPE1: 873 case NVME_NS_DPS_PI_TYPE2: 874 nvme_set_ref_tag(ns, cmnd, req); 875 break; 876 } 877 } 878 879 return BLK_STS_OK; 880 } 881 882 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 883 struct request *req, struct nvme_command *cmnd, 884 enum nvme_opcode op) 885 { 886 u16 control = 0; 887 u32 dsmgmt = 0; 888 889 if (req->cmd_flags & REQ_FUA) 890 control |= NVME_RW_FUA; 891 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 892 control |= NVME_RW_LR; 893 894 if (req->cmd_flags & REQ_RAHEAD) 895 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 896 897 cmnd->rw.opcode = op; 898 cmnd->rw.flags = 0; 899 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 900 cmnd->rw.cdw2 = 0; 901 cmnd->rw.cdw3 = 0; 902 cmnd->rw.metadata = 0; 903 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 904 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 905 cmnd->rw.reftag = 0; 906 cmnd->rw.apptag = 0; 907 cmnd->rw.appmask = 0; 908 909 if (ns->ms) { 910 /* 911 * If formated with metadata, the block layer always provides a 912 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 913 * we enable the PRACT bit for protection information or set the 914 * namespace capacity to zero to prevent any I/O. 915 */ 916 if (!blk_integrity_rq(req)) { 917 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 918 return BLK_STS_NOTSUPP; 919 control |= NVME_RW_PRINFO_PRACT; 920 } 921 922 switch (ns->pi_type) { 923 case NVME_NS_DPS_PI_TYPE3: 924 control |= NVME_RW_PRINFO_PRCHK_GUARD; 925 break; 926 case NVME_NS_DPS_PI_TYPE1: 927 case NVME_NS_DPS_PI_TYPE2: 928 control |= NVME_RW_PRINFO_PRCHK_GUARD | 929 NVME_RW_PRINFO_PRCHK_REF; 930 if (op == nvme_cmd_zone_append) 931 control |= NVME_RW_APPEND_PIREMAP; 932 nvme_set_ref_tag(ns, cmnd, req); 933 break; 934 } 935 } 936 937 cmnd->rw.control = cpu_to_le16(control); 938 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 939 return 0; 940 } 941 942 void nvme_cleanup_cmd(struct request *req) 943 { 944 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 945 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 946 947 if (req->special_vec.bv_page == ctrl->discard_page) 948 clear_bit_unlock(0, &ctrl->discard_page_busy); 949 else 950 kfree(bvec_virt(&req->special_vec)); 951 } 952 } 953 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 954 955 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 956 { 957 struct nvme_command *cmd = nvme_req(req)->cmd; 958 blk_status_t ret = BLK_STS_OK; 959 960 if (!(req->rq_flags & RQF_DONTPREP)) 961 nvme_clear_nvme_request(req); 962 963 switch (req_op(req)) { 964 case REQ_OP_DRV_IN: 965 case REQ_OP_DRV_OUT: 966 /* these are setup prior to execution in nvme_init_request() */ 967 break; 968 case REQ_OP_FLUSH: 969 nvme_setup_flush(ns, cmd); 970 break; 971 case REQ_OP_ZONE_RESET_ALL: 972 case REQ_OP_ZONE_RESET: 973 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 974 break; 975 case REQ_OP_ZONE_OPEN: 976 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 977 break; 978 case REQ_OP_ZONE_CLOSE: 979 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 980 break; 981 case REQ_OP_ZONE_FINISH: 982 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 983 break; 984 case REQ_OP_WRITE_ZEROES: 985 ret = nvme_setup_write_zeroes(ns, req, cmd); 986 break; 987 case REQ_OP_DISCARD: 988 ret = nvme_setup_discard(ns, req, cmd); 989 break; 990 case REQ_OP_READ: 991 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 992 break; 993 case REQ_OP_WRITE: 994 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 995 break; 996 case REQ_OP_ZONE_APPEND: 997 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 998 break; 999 default: 1000 WARN_ON_ONCE(1); 1001 return BLK_STS_IOERR; 1002 } 1003 1004 cmd->common.command_id = nvme_cid(req); 1005 trace_nvme_setup_cmd(req, cmd); 1006 return ret; 1007 } 1008 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1009 1010 /* 1011 * Return values: 1012 * 0: success 1013 * >0: nvme controller's cqe status response 1014 * <0: kernel error in lieu of controller response 1015 */ 1016 int nvme_execute_rq(struct request *rq, bool at_head) 1017 { 1018 blk_status_t status; 1019 1020 status = blk_execute_rq(rq, at_head); 1021 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1022 return -EINTR; 1023 if (nvme_req(rq)->status) 1024 return nvme_req(rq)->status; 1025 return blk_status_to_errno(status); 1026 } 1027 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1028 1029 /* 1030 * Returns 0 on success. If the result is negative, it's a Linux error code; 1031 * if the result is positive, it's an NVM Express status code 1032 */ 1033 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1034 union nvme_result *result, void *buffer, unsigned bufflen, 1035 int qid, int at_head, blk_mq_req_flags_t flags) 1036 { 1037 struct request *req; 1038 int ret; 1039 1040 if (qid == NVME_QID_ANY) 1041 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1042 else 1043 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1044 qid - 1); 1045 1046 if (IS_ERR(req)) 1047 return PTR_ERR(req); 1048 nvme_init_request(req, cmd); 1049 1050 if (buffer && bufflen) { 1051 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1052 if (ret) 1053 goto out; 1054 } 1055 1056 ret = nvme_execute_rq(req, at_head); 1057 if (result && ret >= 0) 1058 *result = nvme_req(req)->result; 1059 out: 1060 blk_mq_free_request(req); 1061 return ret; 1062 } 1063 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1064 1065 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1066 void *buffer, unsigned bufflen) 1067 { 1068 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1069 NVME_QID_ANY, 0, 0); 1070 } 1071 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1072 1073 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1074 { 1075 u32 effects = 0; 1076 1077 if (ns) { 1078 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1079 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1080 dev_warn_once(ctrl->device, 1081 "IO command:%02x has unusual effects:%08x\n", 1082 opcode, effects); 1083 1084 /* 1085 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1086 * which would deadlock when done on an I/O command. Note that 1087 * We already warn about an unusual effect above. 1088 */ 1089 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1090 } else { 1091 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1092 } 1093 1094 return effects; 1095 } 1096 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1097 1098 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1099 { 1100 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1101 1102 /* 1103 * For simplicity, IO to all namespaces is quiesced even if the command 1104 * effects say only one namespace is affected. 1105 */ 1106 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1107 mutex_lock(&ctrl->scan_lock); 1108 mutex_lock(&ctrl->subsys->lock); 1109 nvme_mpath_start_freeze(ctrl->subsys); 1110 nvme_mpath_wait_freeze(ctrl->subsys); 1111 nvme_start_freeze(ctrl); 1112 nvme_wait_freeze(ctrl); 1113 } 1114 return effects; 1115 } 1116 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1117 1118 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1119 struct nvme_command *cmd, int status) 1120 { 1121 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1122 nvme_unfreeze(ctrl); 1123 nvme_mpath_unfreeze(ctrl->subsys); 1124 mutex_unlock(&ctrl->subsys->lock); 1125 mutex_unlock(&ctrl->scan_lock); 1126 } 1127 if (effects & NVME_CMD_EFFECTS_CCC) { 1128 dev_info(ctrl->device, 1129 "controller capabilities changed, reset may be required to take effect.\n"); 1130 } 1131 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1132 nvme_queue_scan(ctrl); 1133 flush_work(&ctrl->scan_work); 1134 } 1135 1136 switch (cmd->common.opcode) { 1137 case nvme_admin_set_features: 1138 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1139 case NVME_FEAT_KATO: 1140 /* 1141 * Keep alive commands interval on the host should be 1142 * updated when KATO is modified by Set Features 1143 * commands. 1144 */ 1145 if (!status) 1146 nvme_update_keep_alive(ctrl, cmd); 1147 break; 1148 default: 1149 break; 1150 } 1151 break; 1152 default: 1153 break; 1154 } 1155 } 1156 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1157 1158 /* 1159 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1160 * 1161 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1162 * accounting for transport roundtrip times [..]. 1163 */ 1164 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1165 { 1166 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1167 } 1168 1169 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1170 blk_status_t status) 1171 { 1172 struct nvme_ctrl *ctrl = rq->end_io_data; 1173 unsigned long flags; 1174 bool startka = false; 1175 1176 blk_mq_free_request(rq); 1177 1178 if (status) { 1179 dev_err(ctrl->device, 1180 "failed nvme_keep_alive_end_io error=%d\n", 1181 status); 1182 return RQ_END_IO_NONE; 1183 } 1184 1185 ctrl->comp_seen = false; 1186 spin_lock_irqsave(&ctrl->lock, flags); 1187 if (ctrl->state == NVME_CTRL_LIVE || 1188 ctrl->state == NVME_CTRL_CONNECTING) 1189 startka = true; 1190 spin_unlock_irqrestore(&ctrl->lock, flags); 1191 if (startka) 1192 nvme_queue_keep_alive_work(ctrl); 1193 return RQ_END_IO_NONE; 1194 } 1195 1196 static void nvme_keep_alive_work(struct work_struct *work) 1197 { 1198 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1199 struct nvme_ctrl, ka_work); 1200 bool comp_seen = ctrl->comp_seen; 1201 struct request *rq; 1202 1203 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1204 dev_dbg(ctrl->device, 1205 "reschedule traffic based keep-alive timer\n"); 1206 ctrl->comp_seen = false; 1207 nvme_queue_keep_alive_work(ctrl); 1208 return; 1209 } 1210 1211 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1212 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1213 if (IS_ERR(rq)) { 1214 /* allocation failure, reset the controller */ 1215 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1216 nvme_reset_ctrl(ctrl); 1217 return; 1218 } 1219 nvme_init_request(rq, &ctrl->ka_cmd); 1220 1221 rq->timeout = ctrl->kato * HZ; 1222 rq->end_io = nvme_keep_alive_end_io; 1223 rq->end_io_data = ctrl; 1224 blk_execute_rq_nowait(rq, false); 1225 } 1226 1227 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1228 { 1229 if (unlikely(ctrl->kato == 0)) 1230 return; 1231 1232 nvme_queue_keep_alive_work(ctrl); 1233 } 1234 1235 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1236 { 1237 if (unlikely(ctrl->kato == 0)) 1238 return; 1239 1240 cancel_delayed_work_sync(&ctrl->ka_work); 1241 } 1242 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1243 1244 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1245 struct nvme_command *cmd) 1246 { 1247 unsigned int new_kato = 1248 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1249 1250 dev_info(ctrl->device, 1251 "keep alive interval updated from %u ms to %u ms\n", 1252 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1253 1254 nvme_stop_keep_alive(ctrl); 1255 ctrl->kato = new_kato; 1256 nvme_start_keep_alive(ctrl); 1257 } 1258 1259 /* 1260 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1261 * flag, thus sending any new CNS opcodes has a big chance of not working. 1262 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1263 * (but not for any later version). 1264 */ 1265 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1266 { 1267 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1268 return ctrl->vs < NVME_VS(1, 2, 0); 1269 return ctrl->vs < NVME_VS(1, 1, 0); 1270 } 1271 1272 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1273 { 1274 struct nvme_command c = { }; 1275 int error; 1276 1277 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1278 c.identify.opcode = nvme_admin_identify; 1279 c.identify.cns = NVME_ID_CNS_CTRL; 1280 1281 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1282 if (!*id) 1283 return -ENOMEM; 1284 1285 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1286 sizeof(struct nvme_id_ctrl)); 1287 if (error) 1288 kfree(*id); 1289 return error; 1290 } 1291 1292 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1293 struct nvme_ns_id_desc *cur, bool *csi_seen) 1294 { 1295 const char *warn_str = "ctrl returned bogus length:"; 1296 void *data = cur; 1297 1298 switch (cur->nidt) { 1299 case NVME_NIDT_EUI64: 1300 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1301 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1302 warn_str, cur->nidl); 1303 return -1; 1304 } 1305 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1306 return NVME_NIDT_EUI64_LEN; 1307 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1308 return NVME_NIDT_EUI64_LEN; 1309 case NVME_NIDT_NGUID: 1310 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1311 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1312 warn_str, cur->nidl); 1313 return -1; 1314 } 1315 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1316 return NVME_NIDT_NGUID_LEN; 1317 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1318 return NVME_NIDT_NGUID_LEN; 1319 case NVME_NIDT_UUID: 1320 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1321 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1322 warn_str, cur->nidl); 1323 return -1; 1324 } 1325 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1326 return NVME_NIDT_UUID_LEN; 1327 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1328 return NVME_NIDT_UUID_LEN; 1329 case NVME_NIDT_CSI: 1330 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1331 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1332 warn_str, cur->nidl); 1333 return -1; 1334 } 1335 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1336 *csi_seen = true; 1337 return NVME_NIDT_CSI_LEN; 1338 default: 1339 /* Skip unknown types */ 1340 return cur->nidl; 1341 } 1342 } 1343 1344 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1345 struct nvme_ns_info *info) 1346 { 1347 struct nvme_command c = { }; 1348 bool csi_seen = false; 1349 int status, pos, len; 1350 void *data; 1351 1352 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1353 return 0; 1354 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1355 return 0; 1356 1357 c.identify.opcode = nvme_admin_identify; 1358 c.identify.nsid = cpu_to_le32(info->nsid); 1359 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1360 1361 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1362 if (!data) 1363 return -ENOMEM; 1364 1365 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1366 NVME_IDENTIFY_DATA_SIZE); 1367 if (status) { 1368 dev_warn(ctrl->device, 1369 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1370 info->nsid, status); 1371 goto free_data; 1372 } 1373 1374 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1375 struct nvme_ns_id_desc *cur = data + pos; 1376 1377 if (cur->nidl == 0) 1378 break; 1379 1380 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1381 if (len < 0) 1382 break; 1383 1384 len += sizeof(*cur); 1385 } 1386 1387 if (nvme_multi_css(ctrl) && !csi_seen) { 1388 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1389 info->nsid); 1390 status = -EINVAL; 1391 } 1392 1393 free_data: 1394 kfree(data); 1395 return status; 1396 } 1397 1398 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1399 struct nvme_id_ns **id) 1400 { 1401 struct nvme_command c = { }; 1402 int error; 1403 1404 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1405 c.identify.opcode = nvme_admin_identify; 1406 c.identify.nsid = cpu_to_le32(nsid); 1407 c.identify.cns = NVME_ID_CNS_NS; 1408 1409 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1410 if (!*id) 1411 return -ENOMEM; 1412 1413 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1414 if (error) { 1415 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1416 kfree(*id); 1417 } 1418 return error; 1419 } 1420 1421 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1422 struct nvme_ns_info *info) 1423 { 1424 struct nvme_ns_ids *ids = &info->ids; 1425 struct nvme_id_ns *id; 1426 int ret; 1427 1428 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1429 if (ret) 1430 return ret; 1431 1432 if (id->ncap == 0) { 1433 /* namespace not allocated or attached */ 1434 info->is_removed = true; 1435 return -ENODEV; 1436 } 1437 1438 info->anagrpid = id->anagrpid; 1439 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1440 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1441 info->is_ready = true; 1442 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1443 dev_info(ctrl->device, 1444 "Ignoring bogus Namespace Identifiers\n"); 1445 } else { 1446 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1447 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1448 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1449 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1450 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1451 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1452 } 1453 kfree(id); 1454 return 0; 1455 } 1456 1457 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1458 struct nvme_ns_info *info) 1459 { 1460 struct nvme_id_ns_cs_indep *id; 1461 struct nvme_command c = { 1462 .identify.opcode = nvme_admin_identify, 1463 .identify.nsid = cpu_to_le32(info->nsid), 1464 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1465 }; 1466 int ret; 1467 1468 id = kmalloc(sizeof(*id), GFP_KERNEL); 1469 if (!id) 1470 return -ENOMEM; 1471 1472 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1473 if (!ret) { 1474 info->anagrpid = id->anagrpid; 1475 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1476 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1477 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1478 } 1479 kfree(id); 1480 return ret; 1481 } 1482 1483 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1484 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1485 { 1486 union nvme_result res = { 0 }; 1487 struct nvme_command c = { }; 1488 int ret; 1489 1490 c.features.opcode = op; 1491 c.features.fid = cpu_to_le32(fid); 1492 c.features.dword11 = cpu_to_le32(dword11); 1493 1494 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1495 buffer, buflen, NVME_QID_ANY, 0, 0); 1496 if (ret >= 0 && result) 1497 *result = le32_to_cpu(res.u32); 1498 return ret; 1499 } 1500 1501 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1502 unsigned int dword11, void *buffer, size_t buflen, 1503 u32 *result) 1504 { 1505 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1506 buflen, result); 1507 } 1508 EXPORT_SYMBOL_GPL(nvme_set_features); 1509 1510 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1511 unsigned int dword11, void *buffer, size_t buflen, 1512 u32 *result) 1513 { 1514 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1515 buflen, result); 1516 } 1517 EXPORT_SYMBOL_GPL(nvme_get_features); 1518 1519 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1520 { 1521 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1522 u32 result; 1523 int status, nr_io_queues; 1524 1525 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1526 &result); 1527 if (status < 0) 1528 return status; 1529 1530 /* 1531 * Degraded controllers might return an error when setting the queue 1532 * count. We still want to be able to bring them online and offer 1533 * access to the admin queue, as that might be only way to fix them up. 1534 */ 1535 if (status > 0) { 1536 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1537 *count = 0; 1538 } else { 1539 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1540 *count = min(*count, nr_io_queues); 1541 } 1542 1543 return 0; 1544 } 1545 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1546 1547 #define NVME_AEN_SUPPORTED \ 1548 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1549 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1550 1551 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1552 { 1553 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1554 int status; 1555 1556 if (!supported_aens) 1557 return; 1558 1559 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1560 NULL, 0, &result); 1561 if (status) 1562 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1563 supported_aens); 1564 1565 queue_work(nvme_wq, &ctrl->async_event_work); 1566 } 1567 1568 static int nvme_ns_open(struct nvme_ns *ns) 1569 { 1570 1571 /* should never be called due to GENHD_FL_HIDDEN */ 1572 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1573 goto fail; 1574 if (!nvme_get_ns(ns)) 1575 goto fail; 1576 if (!try_module_get(ns->ctrl->ops->module)) 1577 goto fail_put_ns; 1578 1579 return 0; 1580 1581 fail_put_ns: 1582 nvme_put_ns(ns); 1583 fail: 1584 return -ENXIO; 1585 } 1586 1587 static void nvme_ns_release(struct nvme_ns *ns) 1588 { 1589 1590 module_put(ns->ctrl->ops->module); 1591 nvme_put_ns(ns); 1592 } 1593 1594 static int nvme_open(struct block_device *bdev, fmode_t mode) 1595 { 1596 return nvme_ns_open(bdev->bd_disk->private_data); 1597 } 1598 1599 static void nvme_release(struct gendisk *disk, fmode_t mode) 1600 { 1601 nvme_ns_release(disk->private_data); 1602 } 1603 1604 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1605 { 1606 /* some standard values */ 1607 geo->heads = 1 << 6; 1608 geo->sectors = 1 << 5; 1609 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1610 return 0; 1611 } 1612 1613 #ifdef CONFIG_BLK_DEV_INTEGRITY 1614 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1615 u32 max_integrity_segments) 1616 { 1617 struct blk_integrity integrity = { }; 1618 1619 switch (ns->pi_type) { 1620 case NVME_NS_DPS_PI_TYPE3: 1621 switch (ns->guard_type) { 1622 case NVME_NVM_NS_16B_GUARD: 1623 integrity.profile = &t10_pi_type3_crc; 1624 integrity.tag_size = sizeof(u16) + sizeof(u32); 1625 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1626 break; 1627 case NVME_NVM_NS_64B_GUARD: 1628 integrity.profile = &ext_pi_type3_crc64; 1629 integrity.tag_size = sizeof(u16) + 6; 1630 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1631 break; 1632 default: 1633 integrity.profile = NULL; 1634 break; 1635 } 1636 break; 1637 case NVME_NS_DPS_PI_TYPE1: 1638 case NVME_NS_DPS_PI_TYPE2: 1639 switch (ns->guard_type) { 1640 case NVME_NVM_NS_16B_GUARD: 1641 integrity.profile = &t10_pi_type1_crc; 1642 integrity.tag_size = sizeof(u16); 1643 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1644 break; 1645 case NVME_NVM_NS_64B_GUARD: 1646 integrity.profile = &ext_pi_type1_crc64; 1647 integrity.tag_size = sizeof(u16); 1648 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1649 break; 1650 default: 1651 integrity.profile = NULL; 1652 break; 1653 } 1654 break; 1655 default: 1656 integrity.profile = NULL; 1657 break; 1658 } 1659 1660 integrity.tuple_size = ns->ms; 1661 blk_integrity_register(disk, &integrity); 1662 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1663 } 1664 #else 1665 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1666 u32 max_integrity_segments) 1667 { 1668 } 1669 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1670 1671 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1672 { 1673 struct nvme_ctrl *ctrl = ns->ctrl; 1674 struct request_queue *queue = disk->queue; 1675 u32 size = queue_logical_block_size(queue); 1676 1677 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1678 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1679 1680 if (ctrl->max_discard_sectors == 0) { 1681 blk_queue_max_discard_sectors(queue, 0); 1682 return; 1683 } 1684 1685 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1686 NVME_DSM_MAX_RANGES); 1687 1688 queue->limits.discard_granularity = size; 1689 1690 /* If discard is already enabled, don't reset queue limits */ 1691 if (queue->limits.max_discard_sectors) 1692 return; 1693 1694 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1695 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1696 1697 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1698 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1699 } 1700 1701 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1702 { 1703 return uuid_equal(&a->uuid, &b->uuid) && 1704 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1705 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1706 a->csi == b->csi; 1707 } 1708 1709 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1710 { 1711 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1712 unsigned lbaf = nvme_lbaf_index(id->flbas); 1713 struct nvme_ctrl *ctrl = ns->ctrl; 1714 struct nvme_command c = { }; 1715 struct nvme_id_ns_nvm *nvm; 1716 int ret = 0; 1717 u32 elbaf; 1718 1719 ns->pi_size = 0; 1720 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1721 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1722 ns->pi_size = sizeof(struct t10_pi_tuple); 1723 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1724 goto set_pi; 1725 } 1726 1727 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1728 if (!nvm) 1729 return -ENOMEM; 1730 1731 c.identify.opcode = nvme_admin_identify; 1732 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1733 c.identify.cns = NVME_ID_CNS_CS_NS; 1734 c.identify.csi = NVME_CSI_NVM; 1735 1736 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1737 if (ret) 1738 goto free_data; 1739 1740 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1741 1742 /* no support for storage tag formats right now */ 1743 if (nvme_elbaf_sts(elbaf)) 1744 goto free_data; 1745 1746 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1747 switch (ns->guard_type) { 1748 case NVME_NVM_NS_64B_GUARD: 1749 ns->pi_size = sizeof(struct crc64_pi_tuple); 1750 break; 1751 case NVME_NVM_NS_16B_GUARD: 1752 ns->pi_size = sizeof(struct t10_pi_tuple); 1753 break; 1754 default: 1755 break; 1756 } 1757 1758 free_data: 1759 kfree(nvm); 1760 set_pi: 1761 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1762 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1763 else 1764 ns->pi_type = 0; 1765 1766 return ret; 1767 } 1768 1769 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1770 { 1771 struct nvme_ctrl *ctrl = ns->ctrl; 1772 1773 if (nvme_init_ms(ns, id)) 1774 return; 1775 1776 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1777 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1778 return; 1779 1780 if (ctrl->ops->flags & NVME_F_FABRICS) { 1781 /* 1782 * The NVMe over Fabrics specification only supports metadata as 1783 * part of the extended data LBA. We rely on HCA/HBA support to 1784 * remap the separate metadata buffer from the block layer. 1785 */ 1786 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1787 return; 1788 1789 ns->features |= NVME_NS_EXT_LBAS; 1790 1791 /* 1792 * The current fabrics transport drivers support namespace 1793 * metadata formats only if nvme_ns_has_pi() returns true. 1794 * Suppress support for all other formats so the namespace will 1795 * have a 0 capacity and not be usable through the block stack. 1796 * 1797 * Note, this check will need to be modified if any drivers 1798 * gain the ability to use other metadata formats. 1799 */ 1800 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1801 ns->features |= NVME_NS_METADATA_SUPPORTED; 1802 } else { 1803 /* 1804 * For PCIe controllers, we can't easily remap the separate 1805 * metadata buffer from the block layer and thus require a 1806 * separate metadata buffer for block layer metadata/PI support. 1807 * We allow extended LBAs for the passthrough interface, though. 1808 */ 1809 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1810 ns->features |= NVME_NS_EXT_LBAS; 1811 else 1812 ns->features |= NVME_NS_METADATA_SUPPORTED; 1813 } 1814 } 1815 1816 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1817 struct request_queue *q) 1818 { 1819 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1820 1821 if (ctrl->max_hw_sectors) { 1822 u32 max_segments = 1823 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1824 1825 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1826 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1827 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1828 } 1829 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1830 blk_queue_dma_alignment(q, 3); 1831 blk_queue_write_cache(q, vwc, vwc); 1832 } 1833 1834 static void nvme_update_disk_info(struct gendisk *disk, 1835 struct nvme_ns *ns, struct nvme_id_ns *id) 1836 { 1837 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1838 unsigned short bs = 1 << ns->lba_shift; 1839 u32 atomic_bs, phys_bs, io_opt = 0; 1840 1841 /* 1842 * The block layer can't support LBA sizes larger than the page size 1843 * yet, so catch this early and don't allow block I/O. 1844 */ 1845 if (ns->lba_shift > PAGE_SHIFT) { 1846 capacity = 0; 1847 bs = (1 << 9); 1848 } 1849 1850 blk_integrity_unregister(disk); 1851 1852 atomic_bs = phys_bs = bs; 1853 if (id->nabo == 0) { 1854 /* 1855 * Bit 1 indicates whether NAWUPF is defined for this namespace 1856 * and whether it should be used instead of AWUPF. If NAWUPF == 1857 * 0 then AWUPF must be used instead. 1858 */ 1859 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1860 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1861 else 1862 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1863 } 1864 1865 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1866 /* NPWG = Namespace Preferred Write Granularity */ 1867 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1868 /* NOWS = Namespace Optimal Write Size */ 1869 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1870 } 1871 1872 blk_queue_logical_block_size(disk->queue, bs); 1873 /* 1874 * Linux filesystems assume writing a single physical block is 1875 * an atomic operation. Hence limit the physical block size to the 1876 * value of the Atomic Write Unit Power Fail parameter. 1877 */ 1878 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1879 blk_queue_io_min(disk->queue, phys_bs); 1880 blk_queue_io_opt(disk->queue, io_opt); 1881 1882 /* 1883 * Register a metadata profile for PI, or the plain non-integrity NVMe 1884 * metadata masquerading as Type 0 if supported, otherwise reject block 1885 * I/O to namespaces with metadata except when the namespace supports 1886 * PI, as it can strip/insert in that case. 1887 */ 1888 if (ns->ms) { 1889 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1890 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1891 nvme_init_integrity(disk, ns, 1892 ns->ctrl->max_integrity_segments); 1893 else if (!nvme_ns_has_pi(ns)) 1894 capacity = 0; 1895 } 1896 1897 set_capacity_and_notify(disk, capacity); 1898 1899 nvme_config_discard(disk, ns); 1900 blk_queue_max_write_zeroes_sectors(disk->queue, 1901 ns->ctrl->max_zeroes_sectors); 1902 } 1903 1904 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1905 { 1906 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1907 } 1908 1909 static inline bool nvme_first_scan(struct gendisk *disk) 1910 { 1911 /* nvme_alloc_ns() scans the disk prior to adding it */ 1912 return !disk_live(disk); 1913 } 1914 1915 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1916 { 1917 struct nvme_ctrl *ctrl = ns->ctrl; 1918 u32 iob; 1919 1920 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1921 is_power_of_2(ctrl->max_hw_sectors)) 1922 iob = ctrl->max_hw_sectors; 1923 else 1924 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1925 1926 if (!iob) 1927 return; 1928 1929 if (!is_power_of_2(iob)) { 1930 if (nvme_first_scan(ns->disk)) 1931 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1932 ns->disk->disk_name, iob); 1933 return; 1934 } 1935 1936 if (blk_queue_is_zoned(ns->disk->queue)) { 1937 if (nvme_first_scan(ns->disk)) 1938 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1939 ns->disk->disk_name); 1940 return; 1941 } 1942 1943 blk_queue_chunk_sectors(ns->queue, iob); 1944 } 1945 1946 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 1947 struct nvme_ns_info *info) 1948 { 1949 blk_mq_freeze_queue(ns->disk->queue); 1950 nvme_set_queue_limits(ns->ctrl, ns->queue); 1951 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 1952 blk_mq_unfreeze_queue(ns->disk->queue); 1953 1954 if (nvme_ns_head_multipath(ns->head)) { 1955 blk_mq_freeze_queue(ns->head->disk->queue); 1956 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 1957 nvme_mpath_revalidate_paths(ns); 1958 blk_stack_limits(&ns->head->disk->queue->limits, 1959 &ns->queue->limits, 0); 1960 ns->head->disk->flags |= GENHD_FL_HIDDEN; 1961 blk_mq_unfreeze_queue(ns->head->disk->queue); 1962 } 1963 1964 /* Hide the block-interface for these devices */ 1965 ns->disk->flags |= GENHD_FL_HIDDEN; 1966 set_bit(NVME_NS_READY, &ns->flags); 1967 1968 return 0; 1969 } 1970 1971 static int nvme_update_ns_info_block(struct nvme_ns *ns, 1972 struct nvme_ns_info *info) 1973 { 1974 struct nvme_id_ns *id; 1975 unsigned lbaf; 1976 int ret; 1977 1978 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 1979 if (ret) 1980 return ret; 1981 1982 blk_mq_freeze_queue(ns->disk->queue); 1983 lbaf = nvme_lbaf_index(id->flbas); 1984 ns->lba_shift = id->lbaf[lbaf].ds; 1985 nvme_set_queue_limits(ns->ctrl, ns->queue); 1986 1987 nvme_configure_metadata(ns, id); 1988 nvme_set_chunk_sectors(ns, id); 1989 nvme_update_disk_info(ns->disk, ns, id); 1990 1991 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1992 ret = nvme_update_zone_info(ns, lbaf); 1993 if (ret) { 1994 blk_mq_unfreeze_queue(ns->disk->queue); 1995 goto out; 1996 } 1997 } 1998 1999 /* 2000 * Only set the DEAC bit if the device guarantees that reads from 2001 * deallocated data return zeroes. While the DEAC bit does not 2002 * require that, it must be a no-op if reads from deallocated data 2003 * do not return zeroes. 2004 */ 2005 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2006 ns->features |= NVME_NS_DEAC; 2007 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2008 set_bit(NVME_NS_READY, &ns->flags); 2009 blk_mq_unfreeze_queue(ns->disk->queue); 2010 2011 if (blk_queue_is_zoned(ns->queue)) { 2012 ret = nvme_revalidate_zones(ns); 2013 if (ret && !nvme_first_scan(ns->disk)) 2014 goto out; 2015 } 2016 2017 if (nvme_ns_head_multipath(ns->head)) { 2018 blk_mq_freeze_queue(ns->head->disk->queue); 2019 nvme_update_disk_info(ns->head->disk, ns, id); 2020 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2021 nvme_mpath_revalidate_paths(ns); 2022 blk_stack_limits(&ns->head->disk->queue->limits, 2023 &ns->queue->limits, 0); 2024 disk_update_readahead(ns->head->disk); 2025 blk_mq_unfreeze_queue(ns->head->disk->queue); 2026 } 2027 2028 ret = 0; 2029 out: 2030 /* 2031 * If probing fails due an unsupported feature, hide the block device, 2032 * but still allow other access. 2033 */ 2034 if (ret == -ENODEV) { 2035 ns->disk->flags |= GENHD_FL_HIDDEN; 2036 set_bit(NVME_NS_READY, &ns->flags); 2037 ret = 0; 2038 } 2039 kfree(id); 2040 return ret; 2041 } 2042 2043 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2044 { 2045 switch (info->ids.csi) { 2046 case NVME_CSI_ZNS: 2047 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2048 dev_info(ns->ctrl->device, 2049 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2050 info->nsid); 2051 return nvme_update_ns_info_generic(ns, info); 2052 } 2053 return nvme_update_ns_info_block(ns, info); 2054 case NVME_CSI_NVM: 2055 return nvme_update_ns_info_block(ns, info); 2056 default: 2057 dev_info(ns->ctrl->device, 2058 "block device for nsid %u not supported (csi %u)\n", 2059 info->nsid, info->ids.csi); 2060 return nvme_update_ns_info_generic(ns, info); 2061 } 2062 } 2063 2064 static char nvme_pr_type(enum pr_type type) 2065 { 2066 switch (type) { 2067 case PR_WRITE_EXCLUSIVE: 2068 return 1; 2069 case PR_EXCLUSIVE_ACCESS: 2070 return 2; 2071 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2072 return 3; 2073 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2074 return 4; 2075 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2076 return 5; 2077 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2078 return 6; 2079 default: 2080 return 0; 2081 } 2082 } 2083 2084 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 2085 struct nvme_command *c, u8 data[16]) 2086 { 2087 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2088 int srcu_idx = srcu_read_lock(&head->srcu); 2089 struct nvme_ns *ns = nvme_find_path(head); 2090 int ret = -EWOULDBLOCK; 2091 2092 if (ns) { 2093 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2094 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 2095 } 2096 srcu_read_unlock(&head->srcu, srcu_idx); 2097 return ret; 2098 } 2099 2100 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2101 u8 data[16]) 2102 { 2103 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2104 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2105 } 2106 2107 static int nvme_sc_to_pr_err(int nvme_sc) 2108 { 2109 if (nvme_is_path_error(nvme_sc)) 2110 return PR_STS_PATH_FAILED; 2111 2112 switch (nvme_sc) { 2113 case NVME_SC_SUCCESS: 2114 return PR_STS_SUCCESS; 2115 case NVME_SC_RESERVATION_CONFLICT: 2116 return PR_STS_RESERVATION_CONFLICT; 2117 case NVME_SC_ONCS_NOT_SUPPORTED: 2118 return -EOPNOTSUPP; 2119 case NVME_SC_BAD_ATTRIBUTES: 2120 case NVME_SC_INVALID_OPCODE: 2121 case NVME_SC_INVALID_FIELD: 2122 case NVME_SC_INVALID_NS: 2123 return -EINVAL; 2124 default: 2125 return PR_STS_IOERR; 2126 } 2127 } 2128 2129 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2130 u64 key, u64 sa_key, u8 op) 2131 { 2132 struct nvme_command c = { }; 2133 u8 data[16] = { 0, }; 2134 int ret; 2135 2136 put_unaligned_le64(key, &data[0]); 2137 put_unaligned_le64(sa_key, &data[8]); 2138 2139 c.common.opcode = op; 2140 c.common.cdw10 = cpu_to_le32(cdw10); 2141 2142 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2143 bdev->bd_disk->fops == &nvme_ns_head_ops) 2144 ret = nvme_send_ns_head_pr_command(bdev, &c, data); 2145 else 2146 ret = nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, 2147 data); 2148 if (ret < 0) 2149 return ret; 2150 2151 return nvme_sc_to_pr_err(ret); 2152 } 2153 2154 static int nvme_pr_register(struct block_device *bdev, u64 old, 2155 u64 new, unsigned flags) 2156 { 2157 u32 cdw10; 2158 2159 if (flags & ~PR_FL_IGNORE_KEY) 2160 return -EOPNOTSUPP; 2161 2162 cdw10 = old ? 2 : 0; 2163 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2164 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2165 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2166 } 2167 2168 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2169 enum pr_type type, unsigned flags) 2170 { 2171 u32 cdw10; 2172 2173 if (flags & ~PR_FL_IGNORE_KEY) 2174 return -EOPNOTSUPP; 2175 2176 cdw10 = nvme_pr_type(type) << 8; 2177 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2178 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2179 } 2180 2181 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2182 enum pr_type type, bool abort) 2183 { 2184 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2185 2186 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2187 } 2188 2189 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2190 { 2191 u32 cdw10 = 1 | (key ? 0 : 1 << 3); 2192 2193 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2194 } 2195 2196 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2197 { 2198 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3); 2199 2200 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2201 } 2202 2203 const struct pr_ops nvme_pr_ops = { 2204 .pr_register = nvme_pr_register, 2205 .pr_reserve = nvme_pr_reserve, 2206 .pr_release = nvme_pr_release, 2207 .pr_preempt = nvme_pr_preempt, 2208 .pr_clear = nvme_pr_clear, 2209 }; 2210 2211 #ifdef CONFIG_BLK_SED_OPAL 2212 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2213 bool send) 2214 { 2215 struct nvme_ctrl *ctrl = data; 2216 struct nvme_command cmd = { }; 2217 2218 if (send) 2219 cmd.common.opcode = nvme_admin_security_send; 2220 else 2221 cmd.common.opcode = nvme_admin_security_recv; 2222 cmd.common.nsid = 0; 2223 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2224 cmd.common.cdw11 = cpu_to_le32(len); 2225 2226 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2227 NVME_QID_ANY, 1, 0); 2228 } 2229 2230 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2231 { 2232 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2233 if (!ctrl->opal_dev) 2234 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2235 else if (was_suspended) 2236 opal_unlock_from_suspend(ctrl->opal_dev); 2237 } else { 2238 free_opal_dev(ctrl->opal_dev); 2239 ctrl->opal_dev = NULL; 2240 } 2241 } 2242 #else 2243 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2244 { 2245 } 2246 #endif /* CONFIG_BLK_SED_OPAL */ 2247 2248 #ifdef CONFIG_BLK_DEV_ZONED 2249 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2250 unsigned int nr_zones, report_zones_cb cb, void *data) 2251 { 2252 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2253 data); 2254 } 2255 #else 2256 #define nvme_report_zones NULL 2257 #endif /* CONFIG_BLK_DEV_ZONED */ 2258 2259 static const struct block_device_operations nvme_bdev_ops = { 2260 .owner = THIS_MODULE, 2261 .ioctl = nvme_ioctl, 2262 .compat_ioctl = blkdev_compat_ptr_ioctl, 2263 .open = nvme_open, 2264 .release = nvme_release, 2265 .getgeo = nvme_getgeo, 2266 .report_zones = nvme_report_zones, 2267 .pr_ops = &nvme_pr_ops, 2268 }; 2269 2270 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2271 u32 timeout, const char *op) 2272 { 2273 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2274 u32 csts; 2275 int ret; 2276 2277 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2278 if (csts == ~0) 2279 return -ENODEV; 2280 if ((csts & mask) == val) 2281 break; 2282 2283 usleep_range(1000, 2000); 2284 if (fatal_signal_pending(current)) 2285 return -EINTR; 2286 if (time_after(jiffies, timeout_jiffies)) { 2287 dev_err(ctrl->device, 2288 "Device not ready; aborting %s, CSTS=0x%x\n", 2289 op, csts); 2290 return -ENODEV; 2291 } 2292 } 2293 2294 return ret; 2295 } 2296 2297 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2298 { 2299 int ret; 2300 2301 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2302 if (shutdown) 2303 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2304 else 2305 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2306 2307 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2308 if (ret) 2309 return ret; 2310 2311 if (shutdown) { 2312 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2313 NVME_CSTS_SHST_CMPLT, 2314 ctrl->shutdown_timeout, "shutdown"); 2315 } 2316 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2317 msleep(NVME_QUIRK_DELAY_AMOUNT); 2318 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2319 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2320 } 2321 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2322 2323 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2324 { 2325 unsigned dev_page_min; 2326 u32 timeout; 2327 int ret; 2328 2329 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2330 if (ret) { 2331 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2332 return ret; 2333 } 2334 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2335 2336 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2337 dev_err(ctrl->device, 2338 "Minimum device page size %u too large for host (%u)\n", 2339 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2340 return -ENODEV; 2341 } 2342 2343 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2344 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2345 else 2346 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2347 2348 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2349 u32 crto; 2350 2351 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2352 if (ret) { 2353 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2354 ret); 2355 return ret; 2356 } 2357 2358 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) { 2359 ctrl->ctrl_config |= NVME_CC_CRIME; 2360 timeout = NVME_CRTO_CRIMT(crto); 2361 } else { 2362 timeout = NVME_CRTO_CRWMT(crto); 2363 } 2364 } else { 2365 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2366 } 2367 2368 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2369 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2370 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2371 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2372 if (ret) 2373 return ret; 2374 2375 /* Flush write to device (required if transport is PCI) */ 2376 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2377 if (ret) 2378 return ret; 2379 2380 ctrl->ctrl_config |= NVME_CC_ENABLE; 2381 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2382 if (ret) 2383 return ret; 2384 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2385 (timeout + 1) / 2, "initialisation"); 2386 } 2387 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2388 2389 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2390 { 2391 __le64 ts; 2392 int ret; 2393 2394 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2395 return 0; 2396 2397 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2398 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2399 NULL); 2400 if (ret) 2401 dev_warn_once(ctrl->device, 2402 "could not set timestamp (%d)\n", ret); 2403 return ret; 2404 } 2405 2406 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2407 { 2408 struct nvme_feat_host_behavior *host; 2409 u8 acre = 0, lbafee = 0; 2410 int ret; 2411 2412 /* Don't bother enabling the feature if retry delay is not reported */ 2413 if (ctrl->crdt[0]) 2414 acre = NVME_ENABLE_ACRE; 2415 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2416 lbafee = NVME_ENABLE_LBAFEE; 2417 2418 if (!acre && !lbafee) 2419 return 0; 2420 2421 host = kzalloc(sizeof(*host), GFP_KERNEL); 2422 if (!host) 2423 return 0; 2424 2425 host->acre = acre; 2426 host->lbafee = lbafee; 2427 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2428 host, sizeof(*host), NULL); 2429 kfree(host); 2430 return ret; 2431 } 2432 2433 /* 2434 * The function checks whether the given total (exlat + enlat) latency of 2435 * a power state allows the latter to be used as an APST transition target. 2436 * It does so by comparing the latency to the primary and secondary latency 2437 * tolerances defined by module params. If there's a match, the corresponding 2438 * timeout value is returned and the matching tolerance index (1 or 2) is 2439 * reported. 2440 */ 2441 static bool nvme_apst_get_transition_time(u64 total_latency, 2442 u64 *transition_time, unsigned *last_index) 2443 { 2444 if (total_latency <= apst_primary_latency_tol_us) { 2445 if (*last_index == 1) 2446 return false; 2447 *last_index = 1; 2448 *transition_time = apst_primary_timeout_ms; 2449 return true; 2450 } 2451 if (apst_secondary_timeout_ms && 2452 total_latency <= apst_secondary_latency_tol_us) { 2453 if (*last_index <= 2) 2454 return false; 2455 *last_index = 2; 2456 *transition_time = apst_secondary_timeout_ms; 2457 return true; 2458 } 2459 return false; 2460 } 2461 2462 /* 2463 * APST (Autonomous Power State Transition) lets us program a table of power 2464 * state transitions that the controller will perform automatically. 2465 * 2466 * Depending on module params, one of the two supported techniques will be used: 2467 * 2468 * - If the parameters provide explicit timeouts and tolerances, they will be 2469 * used to build a table with up to 2 non-operational states to transition to. 2470 * The default parameter values were selected based on the values used by 2471 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2472 * regeneration of the APST table in the event of switching between external 2473 * and battery power, the timeouts and tolerances reflect a compromise 2474 * between values used by Microsoft for AC and battery scenarios. 2475 * - If not, we'll configure the table with a simple heuristic: we are willing 2476 * to spend at most 2% of the time transitioning between power states. 2477 * Therefore, when running in any given state, we will enter the next 2478 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2479 * microseconds, as long as that state's exit latency is under the requested 2480 * maximum latency. 2481 * 2482 * We will not autonomously enter any non-operational state for which the total 2483 * latency exceeds ps_max_latency_us. 2484 * 2485 * Users can set ps_max_latency_us to zero to turn off APST. 2486 */ 2487 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2488 { 2489 struct nvme_feat_auto_pst *table; 2490 unsigned apste = 0; 2491 u64 max_lat_us = 0; 2492 __le64 target = 0; 2493 int max_ps = -1; 2494 int state; 2495 int ret; 2496 unsigned last_lt_index = UINT_MAX; 2497 2498 /* 2499 * If APST isn't supported or if we haven't been initialized yet, 2500 * then don't do anything. 2501 */ 2502 if (!ctrl->apsta) 2503 return 0; 2504 2505 if (ctrl->npss > 31) { 2506 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2507 return 0; 2508 } 2509 2510 table = kzalloc(sizeof(*table), GFP_KERNEL); 2511 if (!table) 2512 return 0; 2513 2514 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2515 /* Turn off APST. */ 2516 dev_dbg(ctrl->device, "APST disabled\n"); 2517 goto done; 2518 } 2519 2520 /* 2521 * Walk through all states from lowest- to highest-power. 2522 * According to the spec, lower-numbered states use more power. NPSS, 2523 * despite the name, is the index of the lowest-power state, not the 2524 * number of states. 2525 */ 2526 for (state = (int)ctrl->npss; state >= 0; state--) { 2527 u64 total_latency_us, exit_latency_us, transition_ms; 2528 2529 if (target) 2530 table->entries[state] = target; 2531 2532 /* 2533 * Don't allow transitions to the deepest state if it's quirked 2534 * off. 2535 */ 2536 if (state == ctrl->npss && 2537 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2538 continue; 2539 2540 /* 2541 * Is this state a useful non-operational state for higher-power 2542 * states to autonomously transition to? 2543 */ 2544 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2545 continue; 2546 2547 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2548 if (exit_latency_us > ctrl->ps_max_latency_us) 2549 continue; 2550 2551 total_latency_us = exit_latency_us + 2552 le32_to_cpu(ctrl->psd[state].entry_lat); 2553 2554 /* 2555 * This state is good. It can be used as the APST idle target 2556 * for higher power states. 2557 */ 2558 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2559 if (!nvme_apst_get_transition_time(total_latency_us, 2560 &transition_ms, &last_lt_index)) 2561 continue; 2562 } else { 2563 transition_ms = total_latency_us + 19; 2564 do_div(transition_ms, 20); 2565 if (transition_ms > (1 << 24) - 1) 2566 transition_ms = (1 << 24) - 1; 2567 } 2568 2569 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2570 if (max_ps == -1) 2571 max_ps = state; 2572 if (total_latency_us > max_lat_us) 2573 max_lat_us = total_latency_us; 2574 } 2575 2576 if (max_ps == -1) 2577 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2578 else 2579 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2580 max_ps, max_lat_us, (int)sizeof(*table), table); 2581 apste = 1; 2582 2583 done: 2584 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2585 table, sizeof(*table), NULL); 2586 if (ret) 2587 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2588 kfree(table); 2589 return ret; 2590 } 2591 2592 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2593 { 2594 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2595 u64 latency; 2596 2597 switch (val) { 2598 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2599 case PM_QOS_LATENCY_ANY: 2600 latency = U64_MAX; 2601 break; 2602 2603 default: 2604 latency = val; 2605 } 2606 2607 if (ctrl->ps_max_latency_us != latency) { 2608 ctrl->ps_max_latency_us = latency; 2609 if (ctrl->state == NVME_CTRL_LIVE) 2610 nvme_configure_apst(ctrl); 2611 } 2612 } 2613 2614 struct nvme_core_quirk_entry { 2615 /* 2616 * NVMe model and firmware strings are padded with spaces. For 2617 * simplicity, strings in the quirk table are padded with NULLs 2618 * instead. 2619 */ 2620 u16 vid; 2621 const char *mn; 2622 const char *fr; 2623 unsigned long quirks; 2624 }; 2625 2626 static const struct nvme_core_quirk_entry core_quirks[] = { 2627 { 2628 /* 2629 * This Toshiba device seems to die using any APST states. See: 2630 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2631 */ 2632 .vid = 0x1179, 2633 .mn = "THNSF5256GPUK TOSHIBA", 2634 .quirks = NVME_QUIRK_NO_APST, 2635 }, 2636 { 2637 /* 2638 * This LiteON CL1-3D*-Q11 firmware version has a race 2639 * condition associated with actions related to suspend to idle 2640 * LiteON has resolved the problem in future firmware 2641 */ 2642 .vid = 0x14a4, 2643 .fr = "22301111", 2644 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2645 }, 2646 { 2647 /* 2648 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2649 * aborts I/O during any load, but more easily reproducible 2650 * with discards (fstrim). 2651 * 2652 * The device is left in a state where it is also not possible 2653 * to use "nvme set-feature" to disable APST, but booting with 2654 * nvme_core.default_ps_max_latency=0 works. 2655 */ 2656 .vid = 0x1e0f, 2657 .mn = "KCD6XVUL6T40", 2658 .quirks = NVME_QUIRK_NO_APST, 2659 }, 2660 { 2661 /* 2662 * The external Samsung X5 SSD fails initialization without a 2663 * delay before checking if it is ready and has a whole set of 2664 * other problems. To make this even more interesting, it 2665 * shares the PCI ID with internal Samsung 970 Evo Plus that 2666 * does not need or want these quirks. 2667 */ 2668 .vid = 0x144d, 2669 .mn = "Samsung Portable SSD X5", 2670 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2671 NVME_QUIRK_NO_DEEPEST_PS | 2672 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2673 } 2674 }; 2675 2676 /* match is null-terminated but idstr is space-padded. */ 2677 static bool string_matches(const char *idstr, const char *match, size_t len) 2678 { 2679 size_t matchlen; 2680 2681 if (!match) 2682 return true; 2683 2684 matchlen = strlen(match); 2685 WARN_ON_ONCE(matchlen > len); 2686 2687 if (memcmp(idstr, match, matchlen)) 2688 return false; 2689 2690 for (; matchlen < len; matchlen++) 2691 if (idstr[matchlen] != ' ') 2692 return false; 2693 2694 return true; 2695 } 2696 2697 static bool quirk_matches(const struct nvme_id_ctrl *id, 2698 const struct nvme_core_quirk_entry *q) 2699 { 2700 return q->vid == le16_to_cpu(id->vid) && 2701 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2702 string_matches(id->fr, q->fr, sizeof(id->fr)); 2703 } 2704 2705 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2706 struct nvme_id_ctrl *id) 2707 { 2708 size_t nqnlen; 2709 int off; 2710 2711 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2712 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2713 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2714 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2715 return; 2716 } 2717 2718 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2719 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2720 } 2721 2722 /* 2723 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2724 * Base Specification 2.0. It is slightly different from the format 2725 * specified there due to historic reasons, and we can't change it now. 2726 */ 2727 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2728 "nqn.2014.08.org.nvmexpress:%04x%04x", 2729 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2730 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2731 off += sizeof(id->sn); 2732 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2733 off += sizeof(id->mn); 2734 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2735 } 2736 2737 static void nvme_release_subsystem(struct device *dev) 2738 { 2739 struct nvme_subsystem *subsys = 2740 container_of(dev, struct nvme_subsystem, dev); 2741 2742 if (subsys->instance >= 0) 2743 ida_free(&nvme_instance_ida, subsys->instance); 2744 kfree(subsys); 2745 } 2746 2747 static void nvme_destroy_subsystem(struct kref *ref) 2748 { 2749 struct nvme_subsystem *subsys = 2750 container_of(ref, struct nvme_subsystem, ref); 2751 2752 mutex_lock(&nvme_subsystems_lock); 2753 list_del(&subsys->entry); 2754 mutex_unlock(&nvme_subsystems_lock); 2755 2756 ida_destroy(&subsys->ns_ida); 2757 device_del(&subsys->dev); 2758 put_device(&subsys->dev); 2759 } 2760 2761 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2762 { 2763 kref_put(&subsys->ref, nvme_destroy_subsystem); 2764 } 2765 2766 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2767 { 2768 struct nvme_subsystem *subsys; 2769 2770 lockdep_assert_held(&nvme_subsystems_lock); 2771 2772 /* 2773 * Fail matches for discovery subsystems. This results 2774 * in each discovery controller bound to a unique subsystem. 2775 * This avoids issues with validating controller values 2776 * that can only be true when there is a single unique subsystem. 2777 * There may be multiple and completely independent entities 2778 * that provide discovery controllers. 2779 */ 2780 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2781 return NULL; 2782 2783 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2784 if (strcmp(subsys->subnqn, subsysnqn)) 2785 continue; 2786 if (!kref_get_unless_zero(&subsys->ref)) 2787 continue; 2788 return subsys; 2789 } 2790 2791 return NULL; 2792 } 2793 2794 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2795 struct device_attribute subsys_attr_##_name = \ 2796 __ATTR(_name, _mode, _show, NULL) 2797 2798 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2799 struct device_attribute *attr, 2800 char *buf) 2801 { 2802 struct nvme_subsystem *subsys = 2803 container_of(dev, struct nvme_subsystem, dev); 2804 2805 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2806 } 2807 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2808 2809 static ssize_t nvme_subsys_show_type(struct device *dev, 2810 struct device_attribute *attr, 2811 char *buf) 2812 { 2813 struct nvme_subsystem *subsys = 2814 container_of(dev, struct nvme_subsystem, dev); 2815 2816 switch (subsys->subtype) { 2817 case NVME_NQN_DISC: 2818 return sysfs_emit(buf, "discovery\n"); 2819 case NVME_NQN_NVME: 2820 return sysfs_emit(buf, "nvm\n"); 2821 default: 2822 return sysfs_emit(buf, "reserved\n"); 2823 } 2824 } 2825 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2826 2827 #define nvme_subsys_show_str_function(field) \ 2828 static ssize_t subsys_##field##_show(struct device *dev, \ 2829 struct device_attribute *attr, char *buf) \ 2830 { \ 2831 struct nvme_subsystem *subsys = \ 2832 container_of(dev, struct nvme_subsystem, dev); \ 2833 return sysfs_emit(buf, "%.*s\n", \ 2834 (int)sizeof(subsys->field), subsys->field); \ 2835 } \ 2836 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2837 2838 nvme_subsys_show_str_function(model); 2839 nvme_subsys_show_str_function(serial); 2840 nvme_subsys_show_str_function(firmware_rev); 2841 2842 static struct attribute *nvme_subsys_attrs[] = { 2843 &subsys_attr_model.attr, 2844 &subsys_attr_serial.attr, 2845 &subsys_attr_firmware_rev.attr, 2846 &subsys_attr_subsysnqn.attr, 2847 &subsys_attr_subsystype.attr, 2848 #ifdef CONFIG_NVME_MULTIPATH 2849 &subsys_attr_iopolicy.attr, 2850 #endif 2851 NULL, 2852 }; 2853 2854 static const struct attribute_group nvme_subsys_attrs_group = { 2855 .attrs = nvme_subsys_attrs, 2856 }; 2857 2858 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2859 &nvme_subsys_attrs_group, 2860 NULL, 2861 }; 2862 2863 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2864 { 2865 return ctrl->opts && ctrl->opts->discovery_nqn; 2866 } 2867 2868 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2869 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2870 { 2871 struct nvme_ctrl *tmp; 2872 2873 lockdep_assert_held(&nvme_subsystems_lock); 2874 2875 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2876 if (nvme_state_terminal(tmp)) 2877 continue; 2878 2879 if (tmp->cntlid == ctrl->cntlid) { 2880 dev_err(ctrl->device, 2881 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2882 ctrl->cntlid, dev_name(tmp->device), 2883 subsys->subnqn); 2884 return false; 2885 } 2886 2887 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2888 nvme_discovery_ctrl(ctrl)) 2889 continue; 2890 2891 dev_err(ctrl->device, 2892 "Subsystem does not support multiple controllers\n"); 2893 return false; 2894 } 2895 2896 return true; 2897 } 2898 2899 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2900 { 2901 struct nvme_subsystem *subsys, *found; 2902 int ret; 2903 2904 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2905 if (!subsys) 2906 return -ENOMEM; 2907 2908 subsys->instance = -1; 2909 mutex_init(&subsys->lock); 2910 kref_init(&subsys->ref); 2911 INIT_LIST_HEAD(&subsys->ctrls); 2912 INIT_LIST_HEAD(&subsys->nsheads); 2913 nvme_init_subnqn(subsys, ctrl, id); 2914 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2915 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2916 subsys->vendor_id = le16_to_cpu(id->vid); 2917 subsys->cmic = id->cmic; 2918 2919 /* Versions prior to 1.4 don't necessarily report a valid type */ 2920 if (id->cntrltype == NVME_CTRL_DISC || 2921 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2922 subsys->subtype = NVME_NQN_DISC; 2923 else 2924 subsys->subtype = NVME_NQN_NVME; 2925 2926 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2927 dev_err(ctrl->device, 2928 "Subsystem %s is not a discovery controller", 2929 subsys->subnqn); 2930 kfree(subsys); 2931 return -EINVAL; 2932 } 2933 subsys->awupf = le16_to_cpu(id->awupf); 2934 nvme_mpath_default_iopolicy(subsys); 2935 2936 subsys->dev.class = nvme_subsys_class; 2937 subsys->dev.release = nvme_release_subsystem; 2938 subsys->dev.groups = nvme_subsys_attrs_groups; 2939 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2940 device_initialize(&subsys->dev); 2941 2942 mutex_lock(&nvme_subsystems_lock); 2943 found = __nvme_find_get_subsystem(subsys->subnqn); 2944 if (found) { 2945 put_device(&subsys->dev); 2946 subsys = found; 2947 2948 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2949 ret = -EINVAL; 2950 goto out_put_subsystem; 2951 } 2952 } else { 2953 ret = device_add(&subsys->dev); 2954 if (ret) { 2955 dev_err(ctrl->device, 2956 "failed to register subsystem device.\n"); 2957 put_device(&subsys->dev); 2958 goto out_unlock; 2959 } 2960 ida_init(&subsys->ns_ida); 2961 list_add_tail(&subsys->entry, &nvme_subsystems); 2962 } 2963 2964 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2965 dev_name(ctrl->device)); 2966 if (ret) { 2967 dev_err(ctrl->device, 2968 "failed to create sysfs link from subsystem.\n"); 2969 goto out_put_subsystem; 2970 } 2971 2972 if (!found) 2973 subsys->instance = ctrl->instance; 2974 ctrl->subsys = subsys; 2975 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2976 mutex_unlock(&nvme_subsystems_lock); 2977 return 0; 2978 2979 out_put_subsystem: 2980 nvme_put_subsystem(subsys); 2981 out_unlock: 2982 mutex_unlock(&nvme_subsystems_lock); 2983 return ret; 2984 } 2985 2986 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2987 void *log, size_t size, u64 offset) 2988 { 2989 struct nvme_command c = { }; 2990 u32 dwlen = nvme_bytes_to_numd(size); 2991 2992 c.get_log_page.opcode = nvme_admin_get_log_page; 2993 c.get_log_page.nsid = cpu_to_le32(nsid); 2994 c.get_log_page.lid = log_page; 2995 c.get_log_page.lsp = lsp; 2996 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2997 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2998 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2999 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3000 c.get_log_page.csi = csi; 3001 3002 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3003 } 3004 3005 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3006 struct nvme_effects_log **log) 3007 { 3008 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3009 int ret; 3010 3011 if (cel) 3012 goto out; 3013 3014 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3015 if (!cel) 3016 return -ENOMEM; 3017 3018 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3019 cel, sizeof(*cel), 0); 3020 if (ret) { 3021 kfree(cel); 3022 return ret; 3023 } 3024 3025 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3026 out: 3027 *log = cel; 3028 return 0; 3029 } 3030 3031 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3032 { 3033 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3034 3035 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3036 return UINT_MAX; 3037 return val; 3038 } 3039 3040 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3041 { 3042 struct nvme_command c = { }; 3043 struct nvme_id_ctrl_nvm *id; 3044 int ret; 3045 3046 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 3047 ctrl->max_discard_sectors = UINT_MAX; 3048 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 3049 } else { 3050 ctrl->max_discard_sectors = 0; 3051 ctrl->max_discard_segments = 0; 3052 } 3053 3054 /* 3055 * Even though NVMe spec explicitly states that MDTS is not applicable 3056 * to the write-zeroes, we are cautious and limit the size to the 3057 * controllers max_hw_sectors value, which is based on the MDTS field 3058 * and possibly other limiting factors. 3059 */ 3060 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3061 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3062 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3063 else 3064 ctrl->max_zeroes_sectors = 0; 3065 3066 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3067 nvme_ctrl_limited_cns(ctrl)) 3068 return 0; 3069 3070 id = kzalloc(sizeof(*id), GFP_KERNEL); 3071 if (!id) 3072 return -ENOMEM; 3073 3074 c.identify.opcode = nvme_admin_identify; 3075 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3076 c.identify.csi = NVME_CSI_NVM; 3077 3078 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3079 if (ret) 3080 goto free_data; 3081 3082 if (id->dmrl) 3083 ctrl->max_discard_segments = id->dmrl; 3084 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3085 if (id->wzsl) 3086 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3087 3088 free_data: 3089 kfree(id); 3090 return ret; 3091 } 3092 3093 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3094 { 3095 struct nvme_effects_log *log = ctrl->effects; 3096 3097 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3098 NVME_CMD_EFFECTS_NCC | 3099 NVME_CMD_EFFECTS_CSE_MASK); 3100 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3101 NVME_CMD_EFFECTS_CSE_MASK); 3102 3103 /* 3104 * The spec says the result of a security receive command depends on 3105 * the previous security send command. As such, many vendors log this 3106 * command as one to submitted only when no other commands to the same 3107 * namespace are outstanding. The intention is to tell the host to 3108 * prevent mixing security send and receive. 3109 * 3110 * This driver can only enforce such exclusive access against IO 3111 * queues, though. We are not readily able to enforce such a rule for 3112 * two commands to the admin queue, which is the only queue that 3113 * matters for this command. 3114 * 3115 * Rather than blindly freezing the IO queues for this effect that 3116 * doesn't even apply to IO, mask it off. 3117 */ 3118 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3119 3120 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3121 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3122 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3123 } 3124 3125 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3126 { 3127 int ret = 0; 3128 3129 if (ctrl->effects) 3130 return 0; 3131 3132 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3133 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3134 if (ret < 0) 3135 return ret; 3136 } 3137 3138 if (!ctrl->effects) { 3139 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3140 if (!ctrl->effects) 3141 return -ENOMEM; 3142 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3143 } 3144 3145 nvme_init_known_nvm_effects(ctrl); 3146 return 0; 3147 } 3148 3149 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3150 { 3151 struct nvme_id_ctrl *id; 3152 u32 max_hw_sectors; 3153 bool prev_apst_enabled; 3154 int ret; 3155 3156 ret = nvme_identify_ctrl(ctrl, &id); 3157 if (ret) { 3158 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3159 return -EIO; 3160 } 3161 3162 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3163 ctrl->cntlid = le16_to_cpu(id->cntlid); 3164 3165 if (!ctrl->identified) { 3166 unsigned int i; 3167 3168 /* 3169 * Check for quirks. Quirk can depend on firmware version, 3170 * so, in principle, the set of quirks present can change 3171 * across a reset. As a possible future enhancement, we 3172 * could re-scan for quirks every time we reinitialize 3173 * the device, but we'd have to make sure that the driver 3174 * behaves intelligently if the quirks change. 3175 */ 3176 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3177 if (quirk_matches(id, &core_quirks[i])) 3178 ctrl->quirks |= core_quirks[i].quirks; 3179 } 3180 3181 ret = nvme_init_subsystem(ctrl, id); 3182 if (ret) 3183 goto out_free; 3184 3185 ret = nvme_init_effects(ctrl, id); 3186 if (ret) 3187 goto out_free; 3188 } 3189 memcpy(ctrl->subsys->firmware_rev, id->fr, 3190 sizeof(ctrl->subsys->firmware_rev)); 3191 3192 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3193 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3194 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3195 } 3196 3197 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3198 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3199 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3200 3201 ctrl->oacs = le16_to_cpu(id->oacs); 3202 ctrl->oncs = le16_to_cpu(id->oncs); 3203 ctrl->mtfa = le16_to_cpu(id->mtfa); 3204 ctrl->oaes = le32_to_cpu(id->oaes); 3205 ctrl->wctemp = le16_to_cpu(id->wctemp); 3206 ctrl->cctemp = le16_to_cpu(id->cctemp); 3207 3208 atomic_set(&ctrl->abort_limit, id->acl + 1); 3209 ctrl->vwc = id->vwc; 3210 if (id->mdts) 3211 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3212 else 3213 max_hw_sectors = UINT_MAX; 3214 ctrl->max_hw_sectors = 3215 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3216 3217 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3218 ctrl->sgls = le32_to_cpu(id->sgls); 3219 ctrl->kas = le16_to_cpu(id->kas); 3220 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3221 ctrl->ctratt = le32_to_cpu(id->ctratt); 3222 3223 ctrl->cntrltype = id->cntrltype; 3224 ctrl->dctype = id->dctype; 3225 3226 if (id->rtd3e) { 3227 /* us -> s */ 3228 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3229 3230 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3231 shutdown_timeout, 60); 3232 3233 if (ctrl->shutdown_timeout != shutdown_timeout) 3234 dev_info(ctrl->device, 3235 "Shutdown timeout set to %u seconds\n", 3236 ctrl->shutdown_timeout); 3237 } else 3238 ctrl->shutdown_timeout = shutdown_timeout; 3239 3240 ctrl->npss = id->npss; 3241 ctrl->apsta = id->apsta; 3242 prev_apst_enabled = ctrl->apst_enabled; 3243 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3244 if (force_apst && id->apsta) { 3245 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3246 ctrl->apst_enabled = true; 3247 } else { 3248 ctrl->apst_enabled = false; 3249 } 3250 } else { 3251 ctrl->apst_enabled = id->apsta; 3252 } 3253 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3254 3255 if (ctrl->ops->flags & NVME_F_FABRICS) { 3256 ctrl->icdoff = le16_to_cpu(id->icdoff); 3257 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3258 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3259 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3260 3261 /* 3262 * In fabrics we need to verify the cntlid matches the 3263 * admin connect 3264 */ 3265 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3266 dev_err(ctrl->device, 3267 "Mismatching cntlid: Connect %u vs Identify " 3268 "%u, rejecting\n", 3269 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3270 ret = -EINVAL; 3271 goto out_free; 3272 } 3273 3274 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3275 dev_err(ctrl->device, 3276 "keep-alive support is mandatory for fabrics\n"); 3277 ret = -EINVAL; 3278 goto out_free; 3279 } 3280 } else { 3281 ctrl->hmpre = le32_to_cpu(id->hmpre); 3282 ctrl->hmmin = le32_to_cpu(id->hmmin); 3283 ctrl->hmminds = le32_to_cpu(id->hmminds); 3284 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3285 } 3286 3287 ret = nvme_mpath_init_identify(ctrl, id); 3288 if (ret < 0) 3289 goto out_free; 3290 3291 if (ctrl->apst_enabled && !prev_apst_enabled) 3292 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3293 else if (!ctrl->apst_enabled && prev_apst_enabled) 3294 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3295 3296 out_free: 3297 kfree(id); 3298 return ret; 3299 } 3300 3301 /* 3302 * Initialize the cached copies of the Identify data and various controller 3303 * register in our nvme_ctrl structure. This should be called as soon as 3304 * the admin queue is fully up and running. 3305 */ 3306 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3307 { 3308 int ret; 3309 3310 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3311 if (ret) { 3312 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3313 return ret; 3314 } 3315 3316 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3317 3318 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3319 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3320 3321 ret = nvme_init_identify(ctrl); 3322 if (ret) 3323 return ret; 3324 3325 ret = nvme_configure_apst(ctrl); 3326 if (ret < 0) 3327 return ret; 3328 3329 ret = nvme_configure_timestamp(ctrl); 3330 if (ret < 0) 3331 return ret; 3332 3333 ret = nvme_configure_host_options(ctrl); 3334 if (ret < 0) 3335 return ret; 3336 3337 nvme_configure_opal(ctrl, was_suspended); 3338 3339 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3340 /* 3341 * Do not return errors unless we are in a controller reset, 3342 * the controller works perfectly fine without hwmon. 3343 */ 3344 ret = nvme_hwmon_init(ctrl); 3345 if (ret == -EINTR) 3346 return ret; 3347 } 3348 3349 ctrl->identified = true; 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3354 3355 static int nvme_dev_open(struct inode *inode, struct file *file) 3356 { 3357 struct nvme_ctrl *ctrl = 3358 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3359 3360 switch (ctrl->state) { 3361 case NVME_CTRL_LIVE: 3362 break; 3363 default: 3364 return -EWOULDBLOCK; 3365 } 3366 3367 nvme_get_ctrl(ctrl); 3368 if (!try_module_get(ctrl->ops->module)) { 3369 nvme_put_ctrl(ctrl); 3370 return -EINVAL; 3371 } 3372 3373 file->private_data = ctrl; 3374 return 0; 3375 } 3376 3377 static int nvme_dev_release(struct inode *inode, struct file *file) 3378 { 3379 struct nvme_ctrl *ctrl = 3380 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3381 3382 module_put(ctrl->ops->module); 3383 nvme_put_ctrl(ctrl); 3384 return 0; 3385 } 3386 3387 static const struct file_operations nvme_dev_fops = { 3388 .owner = THIS_MODULE, 3389 .open = nvme_dev_open, 3390 .release = nvme_dev_release, 3391 .unlocked_ioctl = nvme_dev_ioctl, 3392 .compat_ioctl = compat_ptr_ioctl, 3393 .uring_cmd = nvme_dev_uring_cmd, 3394 }; 3395 3396 static ssize_t nvme_sysfs_reset(struct device *dev, 3397 struct device_attribute *attr, const char *buf, 3398 size_t count) 3399 { 3400 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3401 int ret; 3402 3403 ret = nvme_reset_ctrl_sync(ctrl); 3404 if (ret < 0) 3405 return ret; 3406 return count; 3407 } 3408 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3409 3410 static ssize_t nvme_sysfs_rescan(struct device *dev, 3411 struct device_attribute *attr, const char *buf, 3412 size_t count) 3413 { 3414 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3415 3416 nvme_queue_scan(ctrl); 3417 return count; 3418 } 3419 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3420 3421 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3422 { 3423 struct gendisk *disk = dev_to_disk(dev); 3424 3425 if (disk->fops == &nvme_bdev_ops) 3426 return nvme_get_ns_from_dev(dev)->head; 3427 else 3428 return disk->private_data; 3429 } 3430 3431 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3432 char *buf) 3433 { 3434 struct nvme_ns_head *head = dev_to_ns_head(dev); 3435 struct nvme_ns_ids *ids = &head->ids; 3436 struct nvme_subsystem *subsys = head->subsys; 3437 int serial_len = sizeof(subsys->serial); 3438 int model_len = sizeof(subsys->model); 3439 3440 if (!uuid_is_null(&ids->uuid)) 3441 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3442 3443 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3444 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3445 3446 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3447 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3448 3449 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3450 subsys->serial[serial_len - 1] == '\0')) 3451 serial_len--; 3452 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3453 subsys->model[model_len - 1] == '\0')) 3454 model_len--; 3455 3456 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3457 serial_len, subsys->serial, model_len, subsys->model, 3458 head->ns_id); 3459 } 3460 static DEVICE_ATTR_RO(wwid); 3461 3462 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3463 char *buf) 3464 { 3465 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3466 } 3467 static DEVICE_ATTR_RO(nguid); 3468 3469 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3470 char *buf) 3471 { 3472 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3473 3474 /* For backward compatibility expose the NGUID to userspace if 3475 * we have no UUID set 3476 */ 3477 if (uuid_is_null(&ids->uuid)) { 3478 dev_warn_ratelimited(dev, 3479 "No UUID available providing old NGUID\n"); 3480 return sysfs_emit(buf, "%pU\n", ids->nguid); 3481 } 3482 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3483 } 3484 static DEVICE_ATTR_RO(uuid); 3485 3486 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3487 char *buf) 3488 { 3489 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3490 } 3491 static DEVICE_ATTR_RO(eui); 3492 3493 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3494 char *buf) 3495 { 3496 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3497 } 3498 static DEVICE_ATTR_RO(nsid); 3499 3500 static struct attribute *nvme_ns_id_attrs[] = { 3501 &dev_attr_wwid.attr, 3502 &dev_attr_uuid.attr, 3503 &dev_attr_nguid.attr, 3504 &dev_attr_eui.attr, 3505 &dev_attr_nsid.attr, 3506 #ifdef CONFIG_NVME_MULTIPATH 3507 &dev_attr_ana_grpid.attr, 3508 &dev_attr_ana_state.attr, 3509 #endif 3510 NULL, 3511 }; 3512 3513 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3514 struct attribute *a, int n) 3515 { 3516 struct device *dev = container_of(kobj, struct device, kobj); 3517 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3518 3519 if (a == &dev_attr_uuid.attr) { 3520 if (uuid_is_null(&ids->uuid) && 3521 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3522 return 0; 3523 } 3524 if (a == &dev_attr_nguid.attr) { 3525 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3526 return 0; 3527 } 3528 if (a == &dev_attr_eui.attr) { 3529 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3530 return 0; 3531 } 3532 #ifdef CONFIG_NVME_MULTIPATH 3533 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3534 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3535 return 0; 3536 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3537 return 0; 3538 } 3539 #endif 3540 return a->mode; 3541 } 3542 3543 static const struct attribute_group nvme_ns_id_attr_group = { 3544 .attrs = nvme_ns_id_attrs, 3545 .is_visible = nvme_ns_id_attrs_are_visible, 3546 }; 3547 3548 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3549 &nvme_ns_id_attr_group, 3550 NULL, 3551 }; 3552 3553 #define nvme_show_str_function(field) \ 3554 static ssize_t field##_show(struct device *dev, \ 3555 struct device_attribute *attr, char *buf) \ 3556 { \ 3557 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3558 return sysfs_emit(buf, "%.*s\n", \ 3559 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3560 } \ 3561 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3562 3563 nvme_show_str_function(model); 3564 nvme_show_str_function(serial); 3565 nvme_show_str_function(firmware_rev); 3566 3567 #define nvme_show_int_function(field) \ 3568 static ssize_t field##_show(struct device *dev, \ 3569 struct device_attribute *attr, char *buf) \ 3570 { \ 3571 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3572 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3573 } \ 3574 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3575 3576 nvme_show_int_function(cntlid); 3577 nvme_show_int_function(numa_node); 3578 nvme_show_int_function(queue_count); 3579 nvme_show_int_function(sqsize); 3580 nvme_show_int_function(kato); 3581 3582 static ssize_t nvme_sysfs_delete(struct device *dev, 3583 struct device_attribute *attr, const char *buf, 3584 size_t count) 3585 { 3586 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3587 3588 if (!test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags)) 3589 return -EBUSY; 3590 3591 if (device_remove_file_self(dev, attr)) 3592 nvme_delete_ctrl_sync(ctrl); 3593 return count; 3594 } 3595 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3596 3597 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3598 struct device_attribute *attr, 3599 char *buf) 3600 { 3601 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3602 3603 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3604 } 3605 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3606 3607 static ssize_t nvme_sysfs_show_state(struct device *dev, 3608 struct device_attribute *attr, 3609 char *buf) 3610 { 3611 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3612 static const char *const state_name[] = { 3613 [NVME_CTRL_NEW] = "new", 3614 [NVME_CTRL_LIVE] = "live", 3615 [NVME_CTRL_RESETTING] = "resetting", 3616 [NVME_CTRL_CONNECTING] = "connecting", 3617 [NVME_CTRL_DELETING] = "deleting", 3618 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3619 [NVME_CTRL_DEAD] = "dead", 3620 }; 3621 3622 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3623 state_name[ctrl->state]) 3624 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3625 3626 return sysfs_emit(buf, "unknown state\n"); 3627 } 3628 3629 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3630 3631 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3632 struct device_attribute *attr, 3633 char *buf) 3634 { 3635 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3636 3637 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3638 } 3639 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3640 3641 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3642 struct device_attribute *attr, 3643 char *buf) 3644 { 3645 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3646 3647 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3648 } 3649 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3650 3651 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3652 struct device_attribute *attr, 3653 char *buf) 3654 { 3655 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3656 3657 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3658 } 3659 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3660 3661 static ssize_t nvme_sysfs_show_address(struct device *dev, 3662 struct device_attribute *attr, 3663 char *buf) 3664 { 3665 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3666 3667 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3668 } 3669 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3670 3671 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3672 struct device_attribute *attr, char *buf) 3673 { 3674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3675 struct nvmf_ctrl_options *opts = ctrl->opts; 3676 3677 if (ctrl->opts->max_reconnects == -1) 3678 return sysfs_emit(buf, "off\n"); 3679 return sysfs_emit(buf, "%d\n", 3680 opts->max_reconnects * opts->reconnect_delay); 3681 } 3682 3683 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3684 struct device_attribute *attr, const char *buf, size_t count) 3685 { 3686 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3687 struct nvmf_ctrl_options *opts = ctrl->opts; 3688 int ctrl_loss_tmo, err; 3689 3690 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3691 if (err) 3692 return -EINVAL; 3693 3694 if (ctrl_loss_tmo < 0) 3695 opts->max_reconnects = -1; 3696 else 3697 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3698 opts->reconnect_delay); 3699 return count; 3700 } 3701 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3702 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3703 3704 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3705 struct device_attribute *attr, char *buf) 3706 { 3707 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3708 3709 if (ctrl->opts->reconnect_delay == -1) 3710 return sysfs_emit(buf, "off\n"); 3711 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3712 } 3713 3714 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3715 struct device_attribute *attr, const char *buf, size_t count) 3716 { 3717 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3718 unsigned int v; 3719 int err; 3720 3721 err = kstrtou32(buf, 10, &v); 3722 if (err) 3723 return err; 3724 3725 ctrl->opts->reconnect_delay = v; 3726 return count; 3727 } 3728 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3729 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3730 3731 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3732 struct device_attribute *attr, char *buf) 3733 { 3734 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3735 3736 if (ctrl->opts->fast_io_fail_tmo == -1) 3737 return sysfs_emit(buf, "off\n"); 3738 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3739 } 3740 3741 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3742 struct device_attribute *attr, const char *buf, size_t count) 3743 { 3744 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3745 struct nvmf_ctrl_options *opts = ctrl->opts; 3746 int fast_io_fail_tmo, err; 3747 3748 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3749 if (err) 3750 return -EINVAL; 3751 3752 if (fast_io_fail_tmo < 0) 3753 opts->fast_io_fail_tmo = -1; 3754 else 3755 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3756 return count; 3757 } 3758 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3759 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3760 3761 static ssize_t cntrltype_show(struct device *dev, 3762 struct device_attribute *attr, char *buf) 3763 { 3764 static const char * const type[] = { 3765 [NVME_CTRL_IO] = "io\n", 3766 [NVME_CTRL_DISC] = "discovery\n", 3767 [NVME_CTRL_ADMIN] = "admin\n", 3768 }; 3769 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3770 3771 if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) 3772 return sysfs_emit(buf, "reserved\n"); 3773 3774 return sysfs_emit(buf, type[ctrl->cntrltype]); 3775 } 3776 static DEVICE_ATTR_RO(cntrltype); 3777 3778 static ssize_t dctype_show(struct device *dev, 3779 struct device_attribute *attr, char *buf) 3780 { 3781 static const char * const type[] = { 3782 [NVME_DCTYPE_NOT_REPORTED] = "none\n", 3783 [NVME_DCTYPE_DDC] = "ddc\n", 3784 [NVME_DCTYPE_CDC] = "cdc\n", 3785 }; 3786 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3787 3788 if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) 3789 return sysfs_emit(buf, "reserved\n"); 3790 3791 return sysfs_emit(buf, type[ctrl->dctype]); 3792 } 3793 static DEVICE_ATTR_RO(dctype); 3794 3795 #ifdef CONFIG_NVME_AUTH 3796 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev, 3797 struct device_attribute *attr, char *buf) 3798 { 3799 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3800 struct nvmf_ctrl_options *opts = ctrl->opts; 3801 3802 if (!opts->dhchap_secret) 3803 return sysfs_emit(buf, "none\n"); 3804 return sysfs_emit(buf, "%s\n", opts->dhchap_secret); 3805 } 3806 3807 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev, 3808 struct device_attribute *attr, const char *buf, size_t count) 3809 { 3810 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3811 struct nvmf_ctrl_options *opts = ctrl->opts; 3812 char *dhchap_secret; 3813 3814 if (!ctrl->opts->dhchap_secret) 3815 return -EINVAL; 3816 if (count < 7) 3817 return -EINVAL; 3818 if (memcmp(buf, "DHHC-1:", 7)) 3819 return -EINVAL; 3820 3821 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3822 if (!dhchap_secret) 3823 return -ENOMEM; 3824 memcpy(dhchap_secret, buf, count); 3825 nvme_auth_stop(ctrl); 3826 if (strcmp(dhchap_secret, opts->dhchap_secret)) { 3827 struct nvme_dhchap_key *key, *host_key; 3828 int ret; 3829 3830 ret = nvme_auth_generate_key(dhchap_secret, &key); 3831 if (ret) 3832 return ret; 3833 kfree(opts->dhchap_secret); 3834 opts->dhchap_secret = dhchap_secret; 3835 host_key = ctrl->host_key; 3836 mutex_lock(&ctrl->dhchap_auth_mutex); 3837 ctrl->host_key = key; 3838 mutex_unlock(&ctrl->dhchap_auth_mutex); 3839 nvme_auth_free_key(host_key); 3840 } 3841 /* Start re-authentication */ 3842 dev_info(ctrl->device, "re-authenticating controller\n"); 3843 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3844 3845 return count; 3846 } 3847 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR, 3848 nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store); 3849 3850 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev, 3851 struct device_attribute *attr, char *buf) 3852 { 3853 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3854 struct nvmf_ctrl_options *opts = ctrl->opts; 3855 3856 if (!opts->dhchap_ctrl_secret) 3857 return sysfs_emit(buf, "none\n"); 3858 return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret); 3859 } 3860 3861 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev, 3862 struct device_attribute *attr, const char *buf, size_t count) 3863 { 3864 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3865 struct nvmf_ctrl_options *opts = ctrl->opts; 3866 char *dhchap_secret; 3867 3868 if (!ctrl->opts->dhchap_ctrl_secret) 3869 return -EINVAL; 3870 if (count < 7) 3871 return -EINVAL; 3872 if (memcmp(buf, "DHHC-1:", 7)) 3873 return -EINVAL; 3874 3875 dhchap_secret = kzalloc(count + 1, GFP_KERNEL); 3876 if (!dhchap_secret) 3877 return -ENOMEM; 3878 memcpy(dhchap_secret, buf, count); 3879 nvme_auth_stop(ctrl); 3880 if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) { 3881 struct nvme_dhchap_key *key, *ctrl_key; 3882 int ret; 3883 3884 ret = nvme_auth_generate_key(dhchap_secret, &key); 3885 if (ret) 3886 return ret; 3887 kfree(opts->dhchap_ctrl_secret); 3888 opts->dhchap_ctrl_secret = dhchap_secret; 3889 ctrl_key = ctrl->ctrl_key; 3890 mutex_lock(&ctrl->dhchap_auth_mutex); 3891 ctrl->ctrl_key = key; 3892 mutex_unlock(&ctrl->dhchap_auth_mutex); 3893 nvme_auth_free_key(ctrl_key); 3894 } 3895 /* Start re-authentication */ 3896 dev_info(ctrl->device, "re-authenticating controller\n"); 3897 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 3898 3899 return count; 3900 } 3901 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR, 3902 nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store); 3903 #endif 3904 3905 static struct attribute *nvme_dev_attrs[] = { 3906 &dev_attr_reset_controller.attr, 3907 &dev_attr_rescan_controller.attr, 3908 &dev_attr_model.attr, 3909 &dev_attr_serial.attr, 3910 &dev_attr_firmware_rev.attr, 3911 &dev_attr_cntlid.attr, 3912 &dev_attr_delete_controller.attr, 3913 &dev_attr_transport.attr, 3914 &dev_attr_subsysnqn.attr, 3915 &dev_attr_address.attr, 3916 &dev_attr_state.attr, 3917 &dev_attr_numa_node.attr, 3918 &dev_attr_queue_count.attr, 3919 &dev_attr_sqsize.attr, 3920 &dev_attr_hostnqn.attr, 3921 &dev_attr_hostid.attr, 3922 &dev_attr_ctrl_loss_tmo.attr, 3923 &dev_attr_reconnect_delay.attr, 3924 &dev_attr_fast_io_fail_tmo.attr, 3925 &dev_attr_kato.attr, 3926 &dev_attr_cntrltype.attr, 3927 &dev_attr_dctype.attr, 3928 #ifdef CONFIG_NVME_AUTH 3929 &dev_attr_dhchap_secret.attr, 3930 &dev_attr_dhchap_ctrl_secret.attr, 3931 #endif 3932 NULL 3933 }; 3934 3935 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3936 struct attribute *a, int n) 3937 { 3938 struct device *dev = container_of(kobj, struct device, kobj); 3939 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3940 3941 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3942 return 0; 3943 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3944 return 0; 3945 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3946 return 0; 3947 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3948 return 0; 3949 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3950 return 0; 3951 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3952 return 0; 3953 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3954 return 0; 3955 #ifdef CONFIG_NVME_AUTH 3956 if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts) 3957 return 0; 3958 if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts) 3959 return 0; 3960 #endif 3961 3962 return a->mode; 3963 } 3964 3965 const struct attribute_group nvme_dev_attrs_group = { 3966 .attrs = nvme_dev_attrs, 3967 .is_visible = nvme_dev_attrs_are_visible, 3968 }; 3969 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group); 3970 3971 static const struct attribute_group *nvme_dev_attr_groups[] = { 3972 &nvme_dev_attrs_group, 3973 NULL, 3974 }; 3975 3976 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3977 unsigned nsid) 3978 { 3979 struct nvme_ns_head *h; 3980 3981 lockdep_assert_held(&ctrl->subsys->lock); 3982 3983 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3984 /* 3985 * Private namespaces can share NSIDs under some conditions. 3986 * In that case we can't use the same ns_head for namespaces 3987 * with the same NSID. 3988 */ 3989 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3990 continue; 3991 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3992 return h; 3993 } 3994 3995 return NULL; 3996 } 3997 3998 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3999 struct nvme_ns_ids *ids) 4000 { 4001 bool has_uuid = !uuid_is_null(&ids->uuid); 4002 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 4003 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 4004 struct nvme_ns_head *h; 4005 4006 lockdep_assert_held(&subsys->lock); 4007 4008 list_for_each_entry(h, &subsys->nsheads, entry) { 4009 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 4010 return -EINVAL; 4011 if (has_nguid && 4012 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 4013 return -EINVAL; 4014 if (has_eui64 && 4015 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 4016 return -EINVAL; 4017 } 4018 4019 return 0; 4020 } 4021 4022 static void nvme_cdev_rel(struct device *dev) 4023 { 4024 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 4025 } 4026 4027 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 4028 { 4029 cdev_device_del(cdev, cdev_device); 4030 put_device(cdev_device); 4031 } 4032 4033 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 4034 const struct file_operations *fops, struct module *owner) 4035 { 4036 int minor, ret; 4037 4038 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 4039 if (minor < 0) 4040 return minor; 4041 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 4042 cdev_device->class = nvme_ns_chr_class; 4043 cdev_device->release = nvme_cdev_rel; 4044 device_initialize(cdev_device); 4045 cdev_init(cdev, fops); 4046 cdev->owner = owner; 4047 ret = cdev_device_add(cdev, cdev_device); 4048 if (ret) 4049 put_device(cdev_device); 4050 4051 return ret; 4052 } 4053 4054 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 4055 { 4056 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 4057 } 4058 4059 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 4060 { 4061 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 4062 return 0; 4063 } 4064 4065 static const struct file_operations nvme_ns_chr_fops = { 4066 .owner = THIS_MODULE, 4067 .open = nvme_ns_chr_open, 4068 .release = nvme_ns_chr_release, 4069 .unlocked_ioctl = nvme_ns_chr_ioctl, 4070 .compat_ioctl = compat_ptr_ioctl, 4071 .uring_cmd = nvme_ns_chr_uring_cmd, 4072 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 4073 }; 4074 4075 static int nvme_add_ns_cdev(struct nvme_ns *ns) 4076 { 4077 int ret; 4078 4079 ns->cdev_device.parent = ns->ctrl->device; 4080 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 4081 ns->ctrl->instance, ns->head->instance); 4082 if (ret) 4083 return ret; 4084 4085 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 4086 ns->ctrl->ops->module); 4087 } 4088 4089 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 4090 struct nvme_ns_info *info) 4091 { 4092 struct nvme_ns_head *head; 4093 size_t size = sizeof(*head); 4094 int ret = -ENOMEM; 4095 4096 #ifdef CONFIG_NVME_MULTIPATH 4097 size += num_possible_nodes() * sizeof(struct nvme_ns *); 4098 #endif 4099 4100 head = kzalloc(size, GFP_KERNEL); 4101 if (!head) 4102 goto out; 4103 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 4104 if (ret < 0) 4105 goto out_free_head; 4106 head->instance = ret; 4107 INIT_LIST_HEAD(&head->list); 4108 ret = init_srcu_struct(&head->srcu); 4109 if (ret) 4110 goto out_ida_remove; 4111 head->subsys = ctrl->subsys; 4112 head->ns_id = info->nsid; 4113 head->ids = info->ids; 4114 head->shared = info->is_shared; 4115 kref_init(&head->ref); 4116 4117 if (head->ids.csi) { 4118 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 4119 if (ret) 4120 goto out_cleanup_srcu; 4121 } else 4122 head->effects = ctrl->effects; 4123 4124 ret = nvme_mpath_alloc_disk(ctrl, head); 4125 if (ret) 4126 goto out_cleanup_srcu; 4127 4128 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 4129 4130 kref_get(&ctrl->subsys->ref); 4131 4132 return head; 4133 out_cleanup_srcu: 4134 cleanup_srcu_struct(&head->srcu); 4135 out_ida_remove: 4136 ida_free(&ctrl->subsys->ns_ida, head->instance); 4137 out_free_head: 4138 kfree(head); 4139 out: 4140 if (ret > 0) 4141 ret = blk_status_to_errno(nvme_error_status(ret)); 4142 return ERR_PTR(ret); 4143 } 4144 4145 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 4146 struct nvme_ns_ids *ids) 4147 { 4148 struct nvme_subsystem *s; 4149 int ret = 0; 4150 4151 /* 4152 * Note that this check is racy as we try to avoid holding the global 4153 * lock over the whole ns_head creation. But it is only intended as 4154 * a sanity check anyway. 4155 */ 4156 mutex_lock(&nvme_subsystems_lock); 4157 list_for_each_entry(s, &nvme_subsystems, entry) { 4158 if (s == this) 4159 continue; 4160 mutex_lock(&s->lock); 4161 ret = nvme_subsys_check_duplicate_ids(s, ids); 4162 mutex_unlock(&s->lock); 4163 if (ret) 4164 break; 4165 } 4166 mutex_unlock(&nvme_subsystems_lock); 4167 4168 return ret; 4169 } 4170 4171 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 4172 { 4173 struct nvme_ctrl *ctrl = ns->ctrl; 4174 struct nvme_ns_head *head = NULL; 4175 int ret; 4176 4177 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 4178 if (ret) { 4179 dev_err(ctrl->device, 4180 "globally duplicate IDs for nsid %d\n", info->nsid); 4181 nvme_print_device_info(ctrl); 4182 return ret; 4183 } 4184 4185 mutex_lock(&ctrl->subsys->lock); 4186 head = nvme_find_ns_head(ctrl, info->nsid); 4187 if (!head) { 4188 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 4189 if (ret) { 4190 dev_err(ctrl->device, 4191 "duplicate IDs in subsystem for nsid %d\n", 4192 info->nsid); 4193 goto out_unlock; 4194 } 4195 head = nvme_alloc_ns_head(ctrl, info); 4196 if (IS_ERR(head)) { 4197 ret = PTR_ERR(head); 4198 goto out_unlock; 4199 } 4200 } else { 4201 ret = -EINVAL; 4202 if (!info->is_shared || !head->shared) { 4203 dev_err(ctrl->device, 4204 "Duplicate unshared namespace %d\n", 4205 info->nsid); 4206 goto out_put_ns_head; 4207 } 4208 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 4209 dev_err(ctrl->device, 4210 "IDs don't match for shared namespace %d\n", 4211 info->nsid); 4212 goto out_put_ns_head; 4213 } 4214 4215 if (!multipath && !list_empty(&head->list)) { 4216 dev_warn(ctrl->device, 4217 "Found shared namespace %d, but multipathing not supported.\n", 4218 info->nsid); 4219 dev_warn_once(ctrl->device, 4220 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 4221 } 4222 } 4223 4224 list_add_tail_rcu(&ns->siblings, &head->list); 4225 ns->head = head; 4226 mutex_unlock(&ctrl->subsys->lock); 4227 return 0; 4228 4229 out_put_ns_head: 4230 nvme_put_ns_head(head); 4231 out_unlock: 4232 mutex_unlock(&ctrl->subsys->lock); 4233 return ret; 4234 } 4235 4236 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4237 { 4238 struct nvme_ns *ns, *ret = NULL; 4239 4240 down_read(&ctrl->namespaces_rwsem); 4241 list_for_each_entry(ns, &ctrl->namespaces, list) { 4242 if (ns->head->ns_id == nsid) { 4243 if (!nvme_get_ns(ns)) 4244 continue; 4245 ret = ns; 4246 break; 4247 } 4248 if (ns->head->ns_id > nsid) 4249 break; 4250 } 4251 up_read(&ctrl->namespaces_rwsem); 4252 return ret; 4253 } 4254 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 4255 4256 /* 4257 * Add the namespace to the controller list while keeping the list ordered. 4258 */ 4259 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 4260 { 4261 struct nvme_ns *tmp; 4262 4263 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 4264 if (tmp->head->ns_id < ns->head->ns_id) { 4265 list_add(&ns->list, &tmp->list); 4266 return; 4267 } 4268 } 4269 list_add(&ns->list, &ns->ctrl->namespaces); 4270 } 4271 4272 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 4273 { 4274 struct nvme_ns *ns; 4275 struct gendisk *disk; 4276 int node = ctrl->numa_node; 4277 4278 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 4279 if (!ns) 4280 return; 4281 4282 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 4283 if (IS_ERR(disk)) 4284 goto out_free_ns; 4285 disk->fops = &nvme_bdev_ops; 4286 disk->private_data = ns; 4287 4288 ns->disk = disk; 4289 ns->queue = disk->queue; 4290 4291 if (ctrl->opts && ctrl->opts->data_digest) 4292 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 4293 4294 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 4295 if (ctrl->ops->supports_pci_p2pdma && 4296 ctrl->ops->supports_pci_p2pdma(ctrl)) 4297 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 4298 4299 ns->ctrl = ctrl; 4300 kref_init(&ns->kref); 4301 4302 if (nvme_init_ns_head(ns, info)) 4303 goto out_cleanup_disk; 4304 4305 /* 4306 * If multipathing is enabled, the device name for all disks and not 4307 * just those that represent shared namespaces needs to be based on the 4308 * subsystem instance. Using the controller instance for private 4309 * namespaces could lead to naming collisions between shared and private 4310 * namespaces if they don't use a common numbering scheme. 4311 * 4312 * If multipathing is not enabled, disk names must use the controller 4313 * instance as shared namespaces will show up as multiple block 4314 * devices. 4315 */ 4316 if (ns->head->disk) { 4317 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 4318 ctrl->instance, ns->head->instance); 4319 disk->flags |= GENHD_FL_HIDDEN; 4320 } else if (multipath) { 4321 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4322 ns->head->instance); 4323 } else { 4324 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4325 ns->head->instance); 4326 } 4327 4328 if (nvme_update_ns_info(ns, info)) 4329 goto out_unlink_ns; 4330 4331 down_write(&ctrl->namespaces_rwsem); 4332 nvme_ns_add_to_ctrl_list(ns); 4333 up_write(&ctrl->namespaces_rwsem); 4334 nvme_get_ctrl(ctrl); 4335 4336 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 4337 goto out_cleanup_ns_from_list; 4338 4339 if (!nvme_ns_head_multipath(ns->head)) 4340 nvme_add_ns_cdev(ns); 4341 4342 nvme_mpath_add_disk(ns, info->anagrpid); 4343 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4344 4345 return; 4346 4347 out_cleanup_ns_from_list: 4348 nvme_put_ctrl(ctrl); 4349 down_write(&ctrl->namespaces_rwsem); 4350 list_del_init(&ns->list); 4351 up_write(&ctrl->namespaces_rwsem); 4352 out_unlink_ns: 4353 mutex_lock(&ctrl->subsys->lock); 4354 list_del_rcu(&ns->siblings); 4355 if (list_empty(&ns->head->list)) 4356 list_del_init(&ns->head->entry); 4357 mutex_unlock(&ctrl->subsys->lock); 4358 nvme_put_ns_head(ns->head); 4359 out_cleanup_disk: 4360 put_disk(disk); 4361 out_free_ns: 4362 kfree(ns); 4363 } 4364 4365 static void nvme_ns_remove(struct nvme_ns *ns) 4366 { 4367 bool last_path = false; 4368 4369 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4370 return; 4371 4372 clear_bit(NVME_NS_READY, &ns->flags); 4373 set_capacity(ns->disk, 0); 4374 nvme_fault_inject_fini(&ns->fault_inject); 4375 4376 /* 4377 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4378 * this ns going back into current_path. 4379 */ 4380 synchronize_srcu(&ns->head->srcu); 4381 4382 /* wait for concurrent submissions */ 4383 if (nvme_mpath_clear_current_path(ns)) 4384 synchronize_srcu(&ns->head->srcu); 4385 4386 mutex_lock(&ns->ctrl->subsys->lock); 4387 list_del_rcu(&ns->siblings); 4388 if (list_empty(&ns->head->list)) { 4389 list_del_init(&ns->head->entry); 4390 last_path = true; 4391 } 4392 mutex_unlock(&ns->ctrl->subsys->lock); 4393 4394 /* guarantee not available in head->list */ 4395 synchronize_srcu(&ns->head->srcu); 4396 4397 if (!nvme_ns_head_multipath(ns->head)) 4398 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4399 del_gendisk(ns->disk); 4400 4401 down_write(&ns->ctrl->namespaces_rwsem); 4402 list_del_init(&ns->list); 4403 up_write(&ns->ctrl->namespaces_rwsem); 4404 4405 if (last_path) 4406 nvme_mpath_shutdown_disk(ns->head); 4407 nvme_put_ns(ns); 4408 } 4409 4410 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4411 { 4412 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4413 4414 if (ns) { 4415 nvme_ns_remove(ns); 4416 nvme_put_ns(ns); 4417 } 4418 } 4419 4420 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4421 { 4422 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 4423 4424 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4425 dev_err(ns->ctrl->device, 4426 "identifiers changed for nsid %d\n", ns->head->ns_id); 4427 goto out; 4428 } 4429 4430 ret = nvme_update_ns_info(ns, info); 4431 out: 4432 /* 4433 * Only remove the namespace if we got a fatal error back from the 4434 * device, otherwise ignore the error and just move on. 4435 * 4436 * TODO: we should probably schedule a delayed retry here. 4437 */ 4438 if (ret > 0 && (ret & NVME_SC_DNR)) 4439 nvme_ns_remove(ns); 4440 } 4441 4442 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4443 { 4444 struct nvme_ns_info info = { .nsid = nsid }; 4445 struct nvme_ns *ns; 4446 int ret; 4447 4448 if (nvme_identify_ns_descs(ctrl, &info)) 4449 return; 4450 4451 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4452 dev_warn(ctrl->device, 4453 "command set not reported for nsid: %d\n", nsid); 4454 return; 4455 } 4456 4457 /* 4458 * If available try to use the Command Set Idependent Identify Namespace 4459 * data structure to find all the generic information that is needed to 4460 * set up a namespace. If not fall back to the legacy version. 4461 */ 4462 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4463 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 4464 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4465 else 4466 ret = nvme_ns_info_from_identify(ctrl, &info); 4467 4468 if (info.is_removed) 4469 nvme_ns_remove_by_nsid(ctrl, nsid); 4470 4471 /* 4472 * Ignore the namespace if it is not ready. We will get an AEN once it 4473 * becomes ready and restart the scan. 4474 */ 4475 if (ret || !info.is_ready) 4476 return; 4477 4478 ns = nvme_find_get_ns(ctrl, nsid); 4479 if (ns) { 4480 nvme_validate_ns(ns, &info); 4481 nvme_put_ns(ns); 4482 } else { 4483 nvme_alloc_ns(ctrl, &info); 4484 } 4485 } 4486 4487 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4488 unsigned nsid) 4489 { 4490 struct nvme_ns *ns, *next; 4491 LIST_HEAD(rm_list); 4492 4493 down_write(&ctrl->namespaces_rwsem); 4494 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4495 if (ns->head->ns_id > nsid) 4496 list_move_tail(&ns->list, &rm_list); 4497 } 4498 up_write(&ctrl->namespaces_rwsem); 4499 4500 list_for_each_entry_safe(ns, next, &rm_list, list) 4501 nvme_ns_remove(ns); 4502 4503 } 4504 4505 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4506 { 4507 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4508 __le32 *ns_list; 4509 u32 prev = 0; 4510 int ret = 0, i; 4511 4512 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4513 if (!ns_list) 4514 return -ENOMEM; 4515 4516 for (;;) { 4517 struct nvme_command cmd = { 4518 .identify.opcode = nvme_admin_identify, 4519 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4520 .identify.nsid = cpu_to_le32(prev), 4521 }; 4522 4523 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4524 NVME_IDENTIFY_DATA_SIZE); 4525 if (ret) { 4526 dev_warn(ctrl->device, 4527 "Identify NS List failed (status=0x%x)\n", ret); 4528 goto free; 4529 } 4530 4531 for (i = 0; i < nr_entries; i++) { 4532 u32 nsid = le32_to_cpu(ns_list[i]); 4533 4534 if (!nsid) /* end of the list? */ 4535 goto out; 4536 nvme_scan_ns(ctrl, nsid); 4537 while (++prev < nsid) 4538 nvme_ns_remove_by_nsid(ctrl, prev); 4539 } 4540 } 4541 out: 4542 nvme_remove_invalid_namespaces(ctrl, prev); 4543 free: 4544 kfree(ns_list); 4545 return ret; 4546 } 4547 4548 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4549 { 4550 struct nvme_id_ctrl *id; 4551 u32 nn, i; 4552 4553 if (nvme_identify_ctrl(ctrl, &id)) 4554 return; 4555 nn = le32_to_cpu(id->nn); 4556 kfree(id); 4557 4558 for (i = 1; i <= nn; i++) 4559 nvme_scan_ns(ctrl, i); 4560 4561 nvme_remove_invalid_namespaces(ctrl, nn); 4562 } 4563 4564 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4565 { 4566 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4567 __le32 *log; 4568 int error; 4569 4570 log = kzalloc(log_size, GFP_KERNEL); 4571 if (!log) 4572 return; 4573 4574 /* 4575 * We need to read the log to clear the AEN, but we don't want to rely 4576 * on it for the changed namespace information as userspace could have 4577 * raced with us in reading the log page, which could cause us to miss 4578 * updates. 4579 */ 4580 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4581 NVME_CSI_NVM, log, log_size, 0); 4582 if (error) 4583 dev_warn(ctrl->device, 4584 "reading changed ns log failed: %d\n", error); 4585 4586 kfree(log); 4587 } 4588 4589 static void nvme_scan_work(struct work_struct *work) 4590 { 4591 struct nvme_ctrl *ctrl = 4592 container_of(work, struct nvme_ctrl, scan_work); 4593 int ret; 4594 4595 /* No tagset on a live ctrl means IO queues could not created */ 4596 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4597 return; 4598 4599 /* 4600 * Identify controller limits can change at controller reset due to 4601 * new firmware download, even though it is not common we cannot ignore 4602 * such scenario. Controller's non-mdts limits are reported in the unit 4603 * of logical blocks that is dependent on the format of attached 4604 * namespace. Hence re-read the limits at the time of ns allocation. 4605 */ 4606 ret = nvme_init_non_mdts_limits(ctrl); 4607 if (ret < 0) { 4608 dev_warn(ctrl->device, 4609 "reading non-mdts-limits failed: %d\n", ret); 4610 return; 4611 } 4612 4613 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4614 dev_info(ctrl->device, "rescanning namespaces.\n"); 4615 nvme_clear_changed_ns_log(ctrl); 4616 } 4617 4618 mutex_lock(&ctrl->scan_lock); 4619 if (nvme_ctrl_limited_cns(ctrl)) { 4620 nvme_scan_ns_sequential(ctrl); 4621 } else { 4622 /* 4623 * Fall back to sequential scan if DNR is set to handle broken 4624 * devices which should support Identify NS List (as per the VS 4625 * they report) but don't actually support it. 4626 */ 4627 ret = nvme_scan_ns_list(ctrl); 4628 if (ret > 0 && ret & NVME_SC_DNR) 4629 nvme_scan_ns_sequential(ctrl); 4630 } 4631 mutex_unlock(&ctrl->scan_lock); 4632 } 4633 4634 /* 4635 * This function iterates the namespace list unlocked to allow recovery from 4636 * controller failure. It is up to the caller to ensure the namespace list is 4637 * not modified by scan work while this function is executing. 4638 */ 4639 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4640 { 4641 struct nvme_ns *ns, *next; 4642 LIST_HEAD(ns_list); 4643 4644 /* 4645 * make sure to requeue I/O to all namespaces as these 4646 * might result from the scan itself and must complete 4647 * for the scan_work to make progress 4648 */ 4649 nvme_mpath_clear_ctrl_paths(ctrl); 4650 4651 /* prevent racing with ns scanning */ 4652 flush_work(&ctrl->scan_work); 4653 4654 /* 4655 * The dead states indicates the controller was not gracefully 4656 * disconnected. In that case, we won't be able to flush any data while 4657 * removing the namespaces' disks; fail all the queues now to avoid 4658 * potentially having to clean up the failed sync later. 4659 */ 4660 if (ctrl->state == NVME_CTRL_DEAD) { 4661 nvme_mark_namespaces_dead(ctrl); 4662 nvme_unquiesce_io_queues(ctrl); 4663 } 4664 4665 /* this is a no-op when called from the controller reset handler */ 4666 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4667 4668 down_write(&ctrl->namespaces_rwsem); 4669 list_splice_init(&ctrl->namespaces, &ns_list); 4670 up_write(&ctrl->namespaces_rwsem); 4671 4672 list_for_each_entry_safe(ns, next, &ns_list, list) 4673 nvme_ns_remove(ns); 4674 } 4675 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4676 4677 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4678 { 4679 const struct nvme_ctrl *ctrl = 4680 container_of(dev, struct nvme_ctrl, ctrl_device); 4681 struct nvmf_ctrl_options *opts = ctrl->opts; 4682 int ret; 4683 4684 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4685 if (ret) 4686 return ret; 4687 4688 if (opts) { 4689 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4690 if (ret) 4691 return ret; 4692 4693 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4694 opts->trsvcid ?: "none"); 4695 if (ret) 4696 return ret; 4697 4698 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4699 opts->host_traddr ?: "none"); 4700 if (ret) 4701 return ret; 4702 4703 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4704 opts->host_iface ?: "none"); 4705 } 4706 return ret; 4707 } 4708 4709 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4710 { 4711 char *envp[2] = { envdata, NULL }; 4712 4713 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4714 } 4715 4716 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4717 { 4718 char *envp[2] = { NULL, NULL }; 4719 u32 aen_result = ctrl->aen_result; 4720 4721 ctrl->aen_result = 0; 4722 if (!aen_result) 4723 return; 4724 4725 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4726 if (!envp[0]) 4727 return; 4728 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4729 kfree(envp[0]); 4730 } 4731 4732 static void nvme_async_event_work(struct work_struct *work) 4733 { 4734 struct nvme_ctrl *ctrl = 4735 container_of(work, struct nvme_ctrl, async_event_work); 4736 4737 nvme_aen_uevent(ctrl); 4738 4739 /* 4740 * The transport drivers must guarantee AER submission here is safe by 4741 * flushing ctrl async_event_work after changing the controller state 4742 * from LIVE and before freeing the admin queue. 4743 */ 4744 if (ctrl->state == NVME_CTRL_LIVE) 4745 ctrl->ops->submit_async_event(ctrl); 4746 } 4747 4748 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4749 { 4750 4751 u32 csts; 4752 4753 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4754 return false; 4755 4756 if (csts == ~0) 4757 return false; 4758 4759 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4760 } 4761 4762 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4763 { 4764 struct nvme_fw_slot_info_log *log; 4765 4766 log = kmalloc(sizeof(*log), GFP_KERNEL); 4767 if (!log) 4768 return; 4769 4770 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4771 log, sizeof(*log), 0)) 4772 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4773 kfree(log); 4774 } 4775 4776 static void nvme_fw_act_work(struct work_struct *work) 4777 { 4778 struct nvme_ctrl *ctrl = container_of(work, 4779 struct nvme_ctrl, fw_act_work); 4780 unsigned long fw_act_timeout; 4781 4782 if (ctrl->mtfa) 4783 fw_act_timeout = jiffies + 4784 msecs_to_jiffies(ctrl->mtfa * 100); 4785 else 4786 fw_act_timeout = jiffies + 4787 msecs_to_jiffies(admin_timeout * 1000); 4788 4789 nvme_quiesce_io_queues(ctrl); 4790 while (nvme_ctrl_pp_status(ctrl)) { 4791 if (time_after(jiffies, fw_act_timeout)) { 4792 dev_warn(ctrl->device, 4793 "Fw activation timeout, reset controller\n"); 4794 nvme_try_sched_reset(ctrl); 4795 return; 4796 } 4797 msleep(100); 4798 } 4799 4800 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4801 return; 4802 4803 nvme_unquiesce_io_queues(ctrl); 4804 /* read FW slot information to clear the AER */ 4805 nvme_get_fw_slot_info(ctrl); 4806 4807 queue_work(nvme_wq, &ctrl->async_event_work); 4808 } 4809 4810 static u32 nvme_aer_type(u32 result) 4811 { 4812 return result & 0x7; 4813 } 4814 4815 static u32 nvme_aer_subtype(u32 result) 4816 { 4817 return (result & 0xff00) >> 8; 4818 } 4819 4820 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4821 { 4822 u32 aer_notice_type = nvme_aer_subtype(result); 4823 bool requeue = true; 4824 4825 switch (aer_notice_type) { 4826 case NVME_AER_NOTICE_NS_CHANGED: 4827 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4828 nvme_queue_scan(ctrl); 4829 break; 4830 case NVME_AER_NOTICE_FW_ACT_STARTING: 4831 /* 4832 * We are (ab)using the RESETTING state to prevent subsequent 4833 * recovery actions from interfering with the controller's 4834 * firmware activation. 4835 */ 4836 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4837 nvme_auth_stop(ctrl); 4838 requeue = false; 4839 queue_work(nvme_wq, &ctrl->fw_act_work); 4840 } 4841 break; 4842 #ifdef CONFIG_NVME_MULTIPATH 4843 case NVME_AER_NOTICE_ANA: 4844 if (!ctrl->ana_log_buf) 4845 break; 4846 queue_work(nvme_wq, &ctrl->ana_work); 4847 break; 4848 #endif 4849 case NVME_AER_NOTICE_DISC_CHANGED: 4850 ctrl->aen_result = result; 4851 break; 4852 default: 4853 dev_warn(ctrl->device, "async event result %08x\n", result); 4854 } 4855 return requeue; 4856 } 4857 4858 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4859 { 4860 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4861 nvme_reset_ctrl(ctrl); 4862 } 4863 4864 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4865 volatile union nvme_result *res) 4866 { 4867 u32 result = le32_to_cpu(res->u32); 4868 u32 aer_type = nvme_aer_type(result); 4869 u32 aer_subtype = nvme_aer_subtype(result); 4870 bool requeue = true; 4871 4872 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4873 return; 4874 4875 trace_nvme_async_event(ctrl, result); 4876 switch (aer_type) { 4877 case NVME_AER_NOTICE: 4878 requeue = nvme_handle_aen_notice(ctrl, result); 4879 break; 4880 case NVME_AER_ERROR: 4881 /* 4882 * For a persistent internal error, don't run async_event_work 4883 * to submit a new AER. The controller reset will do it. 4884 */ 4885 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4886 nvme_handle_aer_persistent_error(ctrl); 4887 return; 4888 } 4889 fallthrough; 4890 case NVME_AER_SMART: 4891 case NVME_AER_CSS: 4892 case NVME_AER_VS: 4893 ctrl->aen_result = result; 4894 break; 4895 default: 4896 break; 4897 } 4898 4899 if (requeue) 4900 queue_work(nvme_wq, &ctrl->async_event_work); 4901 } 4902 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4903 4904 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4905 const struct blk_mq_ops *ops, unsigned int cmd_size) 4906 { 4907 int ret; 4908 4909 memset(set, 0, sizeof(*set)); 4910 set->ops = ops; 4911 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4912 if (ctrl->ops->flags & NVME_F_FABRICS) 4913 set->reserved_tags = NVMF_RESERVED_TAGS; 4914 set->numa_node = ctrl->numa_node; 4915 set->flags = BLK_MQ_F_NO_SCHED; 4916 if (ctrl->ops->flags & NVME_F_BLOCKING) 4917 set->flags |= BLK_MQ_F_BLOCKING; 4918 set->cmd_size = cmd_size; 4919 set->driver_data = ctrl; 4920 set->nr_hw_queues = 1; 4921 set->timeout = NVME_ADMIN_TIMEOUT; 4922 ret = blk_mq_alloc_tag_set(set); 4923 if (ret) 4924 return ret; 4925 4926 ctrl->admin_q = blk_mq_init_queue(set); 4927 if (IS_ERR(ctrl->admin_q)) { 4928 ret = PTR_ERR(ctrl->admin_q); 4929 goto out_free_tagset; 4930 } 4931 4932 if (ctrl->ops->flags & NVME_F_FABRICS) { 4933 ctrl->fabrics_q = blk_mq_init_queue(set); 4934 if (IS_ERR(ctrl->fabrics_q)) { 4935 ret = PTR_ERR(ctrl->fabrics_q); 4936 goto out_cleanup_admin_q; 4937 } 4938 } 4939 4940 ctrl->admin_tagset = set; 4941 return 0; 4942 4943 out_cleanup_admin_q: 4944 blk_mq_destroy_queue(ctrl->admin_q); 4945 blk_put_queue(ctrl->admin_q); 4946 out_free_tagset: 4947 blk_mq_free_tag_set(set); 4948 ctrl->admin_q = NULL; 4949 ctrl->fabrics_q = NULL; 4950 return ret; 4951 } 4952 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4953 4954 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4955 { 4956 blk_mq_destroy_queue(ctrl->admin_q); 4957 blk_put_queue(ctrl->admin_q); 4958 if (ctrl->ops->flags & NVME_F_FABRICS) { 4959 blk_mq_destroy_queue(ctrl->fabrics_q); 4960 blk_put_queue(ctrl->fabrics_q); 4961 } 4962 blk_mq_free_tag_set(ctrl->admin_tagset); 4963 } 4964 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4965 4966 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4967 const struct blk_mq_ops *ops, unsigned int nr_maps, 4968 unsigned int cmd_size) 4969 { 4970 int ret; 4971 4972 memset(set, 0, sizeof(*set)); 4973 set->ops = ops; 4974 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4975 /* 4976 * Some Apple controllers requires tags to be unique across admin and 4977 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4978 */ 4979 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4980 set->reserved_tags = NVME_AQ_DEPTH; 4981 else if (ctrl->ops->flags & NVME_F_FABRICS) 4982 set->reserved_tags = NVMF_RESERVED_TAGS; 4983 set->numa_node = ctrl->numa_node; 4984 set->flags = BLK_MQ_F_SHOULD_MERGE; 4985 if (ctrl->ops->flags & NVME_F_BLOCKING) 4986 set->flags |= BLK_MQ_F_BLOCKING; 4987 set->cmd_size = cmd_size, 4988 set->driver_data = ctrl; 4989 set->nr_hw_queues = ctrl->queue_count - 1; 4990 set->timeout = NVME_IO_TIMEOUT; 4991 set->nr_maps = nr_maps; 4992 ret = blk_mq_alloc_tag_set(set); 4993 if (ret) 4994 return ret; 4995 4996 if (ctrl->ops->flags & NVME_F_FABRICS) { 4997 ctrl->connect_q = blk_mq_init_queue(set); 4998 if (IS_ERR(ctrl->connect_q)) { 4999 ret = PTR_ERR(ctrl->connect_q); 5000 goto out_free_tag_set; 5001 } 5002 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 5003 ctrl->connect_q); 5004 } 5005 5006 ctrl->tagset = set; 5007 return 0; 5008 5009 out_free_tag_set: 5010 blk_mq_free_tag_set(set); 5011 ctrl->connect_q = NULL; 5012 return ret; 5013 } 5014 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 5015 5016 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 5017 { 5018 if (ctrl->ops->flags & NVME_F_FABRICS) { 5019 blk_mq_destroy_queue(ctrl->connect_q); 5020 blk_put_queue(ctrl->connect_q); 5021 } 5022 blk_mq_free_tag_set(ctrl->tagset); 5023 } 5024 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 5025 5026 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 5027 { 5028 nvme_mpath_stop(ctrl); 5029 nvme_auth_stop(ctrl); 5030 nvme_stop_keep_alive(ctrl); 5031 nvme_stop_failfast_work(ctrl); 5032 flush_work(&ctrl->async_event_work); 5033 cancel_work_sync(&ctrl->fw_act_work); 5034 if (ctrl->ops->stop_ctrl) 5035 ctrl->ops->stop_ctrl(ctrl); 5036 } 5037 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 5038 5039 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 5040 { 5041 nvme_start_keep_alive(ctrl); 5042 5043 nvme_enable_aen(ctrl); 5044 5045 /* 5046 * persistent discovery controllers need to send indication to userspace 5047 * to re-read the discovery log page to learn about possible changes 5048 * that were missed. We identify persistent discovery controllers by 5049 * checking that they started once before, hence are reconnecting back. 5050 */ 5051 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 5052 nvme_discovery_ctrl(ctrl)) 5053 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 5054 5055 if (ctrl->queue_count > 1) { 5056 nvme_queue_scan(ctrl); 5057 nvme_unquiesce_io_queues(ctrl); 5058 nvme_mpath_update(ctrl); 5059 } 5060 5061 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 5062 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 5063 } 5064 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 5065 5066 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 5067 { 5068 nvme_hwmon_exit(ctrl); 5069 nvme_fault_inject_fini(&ctrl->fault_inject); 5070 dev_pm_qos_hide_latency_tolerance(ctrl->device); 5071 cdev_device_del(&ctrl->cdev, ctrl->device); 5072 nvme_put_ctrl(ctrl); 5073 } 5074 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 5075 5076 static void nvme_free_cels(struct nvme_ctrl *ctrl) 5077 { 5078 struct nvme_effects_log *cel; 5079 unsigned long i; 5080 5081 xa_for_each(&ctrl->cels, i, cel) { 5082 xa_erase(&ctrl->cels, i); 5083 kfree(cel); 5084 } 5085 5086 xa_destroy(&ctrl->cels); 5087 } 5088 5089 static void nvme_free_ctrl(struct device *dev) 5090 { 5091 struct nvme_ctrl *ctrl = 5092 container_of(dev, struct nvme_ctrl, ctrl_device); 5093 struct nvme_subsystem *subsys = ctrl->subsys; 5094 5095 if (!subsys || ctrl->instance != subsys->instance) 5096 ida_free(&nvme_instance_ida, ctrl->instance); 5097 5098 nvme_free_cels(ctrl); 5099 nvme_mpath_uninit(ctrl); 5100 nvme_auth_stop(ctrl); 5101 nvme_auth_free(ctrl); 5102 __free_page(ctrl->discard_page); 5103 free_opal_dev(ctrl->opal_dev); 5104 5105 if (subsys) { 5106 mutex_lock(&nvme_subsystems_lock); 5107 list_del(&ctrl->subsys_entry); 5108 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 5109 mutex_unlock(&nvme_subsystems_lock); 5110 } 5111 5112 ctrl->ops->free_ctrl(ctrl); 5113 5114 if (subsys) 5115 nvme_put_subsystem(subsys); 5116 } 5117 5118 /* 5119 * Initialize a NVMe controller structures. This needs to be called during 5120 * earliest initialization so that we have the initialized structured around 5121 * during probing. 5122 */ 5123 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 5124 const struct nvme_ctrl_ops *ops, unsigned long quirks) 5125 { 5126 int ret; 5127 5128 ctrl->state = NVME_CTRL_NEW; 5129 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 5130 spin_lock_init(&ctrl->lock); 5131 mutex_init(&ctrl->scan_lock); 5132 INIT_LIST_HEAD(&ctrl->namespaces); 5133 xa_init(&ctrl->cels); 5134 init_rwsem(&ctrl->namespaces_rwsem); 5135 ctrl->dev = dev; 5136 ctrl->ops = ops; 5137 ctrl->quirks = quirks; 5138 ctrl->numa_node = NUMA_NO_NODE; 5139 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 5140 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 5141 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 5142 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 5143 init_waitqueue_head(&ctrl->state_wq); 5144 5145 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 5146 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 5147 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 5148 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 5149 5150 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 5151 PAGE_SIZE); 5152 ctrl->discard_page = alloc_page(GFP_KERNEL); 5153 if (!ctrl->discard_page) { 5154 ret = -ENOMEM; 5155 goto out; 5156 } 5157 5158 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 5159 if (ret < 0) 5160 goto out; 5161 ctrl->instance = ret; 5162 5163 device_initialize(&ctrl->ctrl_device); 5164 ctrl->device = &ctrl->ctrl_device; 5165 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 5166 ctrl->instance); 5167 ctrl->device->class = nvme_class; 5168 ctrl->device->parent = ctrl->dev; 5169 if (ops->dev_attr_groups) 5170 ctrl->device->groups = ops->dev_attr_groups; 5171 else 5172 ctrl->device->groups = nvme_dev_attr_groups; 5173 ctrl->device->release = nvme_free_ctrl; 5174 dev_set_drvdata(ctrl->device, ctrl); 5175 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 5176 if (ret) 5177 goto out_release_instance; 5178 5179 nvme_get_ctrl(ctrl); 5180 cdev_init(&ctrl->cdev, &nvme_dev_fops); 5181 ctrl->cdev.owner = ops->module; 5182 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 5183 if (ret) 5184 goto out_free_name; 5185 5186 /* 5187 * Initialize latency tolerance controls. The sysfs files won't 5188 * be visible to userspace unless the device actually supports APST. 5189 */ 5190 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 5191 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 5192 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 5193 5194 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 5195 nvme_mpath_init_ctrl(ctrl); 5196 ret = nvme_auth_init_ctrl(ctrl); 5197 if (ret) 5198 goto out_free_cdev; 5199 5200 return 0; 5201 out_free_cdev: 5202 cdev_device_del(&ctrl->cdev, ctrl->device); 5203 out_free_name: 5204 nvme_put_ctrl(ctrl); 5205 kfree_const(ctrl->device->kobj.name); 5206 out_release_instance: 5207 ida_free(&nvme_instance_ida, ctrl->instance); 5208 out: 5209 if (ctrl->discard_page) 5210 __free_page(ctrl->discard_page); 5211 return ret; 5212 } 5213 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 5214 5215 /* let I/O to all namespaces fail in preparation for surprise removal */ 5216 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 5217 { 5218 struct nvme_ns *ns; 5219 5220 down_read(&ctrl->namespaces_rwsem); 5221 list_for_each_entry(ns, &ctrl->namespaces, list) 5222 blk_mark_disk_dead(ns->disk); 5223 up_read(&ctrl->namespaces_rwsem); 5224 } 5225 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 5226 5227 void nvme_unfreeze(struct nvme_ctrl *ctrl) 5228 { 5229 struct nvme_ns *ns; 5230 5231 down_read(&ctrl->namespaces_rwsem); 5232 list_for_each_entry(ns, &ctrl->namespaces, list) 5233 blk_mq_unfreeze_queue(ns->queue); 5234 up_read(&ctrl->namespaces_rwsem); 5235 } 5236 EXPORT_SYMBOL_GPL(nvme_unfreeze); 5237 5238 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 5239 { 5240 struct nvme_ns *ns; 5241 5242 down_read(&ctrl->namespaces_rwsem); 5243 list_for_each_entry(ns, &ctrl->namespaces, list) { 5244 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 5245 if (timeout <= 0) 5246 break; 5247 } 5248 up_read(&ctrl->namespaces_rwsem); 5249 return timeout; 5250 } 5251 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 5252 5253 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 5254 { 5255 struct nvme_ns *ns; 5256 5257 down_read(&ctrl->namespaces_rwsem); 5258 list_for_each_entry(ns, &ctrl->namespaces, list) 5259 blk_mq_freeze_queue_wait(ns->queue); 5260 up_read(&ctrl->namespaces_rwsem); 5261 } 5262 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 5263 5264 void nvme_start_freeze(struct nvme_ctrl *ctrl) 5265 { 5266 struct nvme_ns *ns; 5267 5268 down_read(&ctrl->namespaces_rwsem); 5269 list_for_each_entry(ns, &ctrl->namespaces, list) 5270 blk_freeze_queue_start(ns->queue); 5271 up_read(&ctrl->namespaces_rwsem); 5272 } 5273 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5274 5275 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5276 { 5277 if (!ctrl->tagset) 5278 return; 5279 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5280 blk_mq_quiesce_tagset(ctrl->tagset); 5281 else 5282 blk_mq_wait_quiesce_done(ctrl->tagset); 5283 } 5284 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5285 5286 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5287 { 5288 if (!ctrl->tagset) 5289 return; 5290 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5291 blk_mq_unquiesce_tagset(ctrl->tagset); 5292 } 5293 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5294 5295 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5296 { 5297 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5298 blk_mq_quiesce_queue(ctrl->admin_q); 5299 else 5300 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5301 } 5302 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5303 5304 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5305 { 5306 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5307 blk_mq_unquiesce_queue(ctrl->admin_q); 5308 } 5309 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5310 5311 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5312 { 5313 struct nvme_ns *ns; 5314 5315 down_read(&ctrl->namespaces_rwsem); 5316 list_for_each_entry(ns, &ctrl->namespaces, list) 5317 blk_sync_queue(ns->queue); 5318 up_read(&ctrl->namespaces_rwsem); 5319 } 5320 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5321 5322 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5323 { 5324 nvme_sync_io_queues(ctrl); 5325 if (ctrl->admin_q) 5326 blk_sync_queue(ctrl->admin_q); 5327 } 5328 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5329 5330 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5331 { 5332 if (file->f_op != &nvme_dev_fops) 5333 return NULL; 5334 return file->private_data; 5335 } 5336 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 5337 5338 /* 5339 * Check we didn't inadvertently grow the command structure sizes: 5340 */ 5341 static inline void _nvme_check_size(void) 5342 { 5343 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5344 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5345 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5346 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5347 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5348 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5349 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5350 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5351 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5352 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5353 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5354 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5355 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5356 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5357 NVME_IDENTIFY_DATA_SIZE); 5358 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5359 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5360 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5361 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5362 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5363 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5364 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5365 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5366 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5367 } 5368 5369 5370 static int __init nvme_core_init(void) 5371 { 5372 int result = -ENOMEM; 5373 5374 _nvme_check_size(); 5375 5376 nvme_wq = alloc_workqueue("nvme-wq", 5377 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5378 if (!nvme_wq) 5379 goto out; 5380 5381 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 5382 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5383 if (!nvme_reset_wq) 5384 goto destroy_wq; 5385 5386 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5387 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5388 if (!nvme_delete_wq) 5389 goto destroy_reset_wq; 5390 5391 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5392 NVME_MINORS, "nvme"); 5393 if (result < 0) 5394 goto destroy_delete_wq; 5395 5396 nvme_class = class_create("nvme"); 5397 if (IS_ERR(nvme_class)) { 5398 result = PTR_ERR(nvme_class); 5399 goto unregister_chrdev; 5400 } 5401 nvme_class->dev_uevent = nvme_class_uevent; 5402 5403 nvme_subsys_class = class_create("nvme-subsystem"); 5404 if (IS_ERR(nvme_subsys_class)) { 5405 result = PTR_ERR(nvme_subsys_class); 5406 goto destroy_class; 5407 } 5408 5409 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5410 "nvme-generic"); 5411 if (result < 0) 5412 goto destroy_subsys_class; 5413 5414 nvme_ns_chr_class = class_create("nvme-generic"); 5415 if (IS_ERR(nvme_ns_chr_class)) { 5416 result = PTR_ERR(nvme_ns_chr_class); 5417 goto unregister_generic_ns; 5418 } 5419 5420 result = nvme_init_auth(); 5421 if (result) 5422 goto destroy_ns_chr; 5423 return 0; 5424 5425 destroy_ns_chr: 5426 class_destroy(nvme_ns_chr_class); 5427 unregister_generic_ns: 5428 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5429 destroy_subsys_class: 5430 class_destroy(nvme_subsys_class); 5431 destroy_class: 5432 class_destroy(nvme_class); 5433 unregister_chrdev: 5434 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5435 destroy_delete_wq: 5436 destroy_workqueue(nvme_delete_wq); 5437 destroy_reset_wq: 5438 destroy_workqueue(nvme_reset_wq); 5439 destroy_wq: 5440 destroy_workqueue(nvme_wq); 5441 out: 5442 return result; 5443 } 5444 5445 static void __exit nvme_core_exit(void) 5446 { 5447 nvme_exit_auth(); 5448 class_destroy(nvme_ns_chr_class); 5449 class_destroy(nvme_subsys_class); 5450 class_destroy(nvme_class); 5451 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5452 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5453 destroy_workqueue(nvme_delete_wq); 5454 destroy_workqueue(nvme_reset_wq); 5455 destroy_workqueue(nvme_wq); 5456 ida_destroy(&nvme_ns_chr_minor_ida); 5457 ida_destroy(&nvme_instance_ida); 5458 } 5459 5460 MODULE_LICENSE("GPL"); 5461 MODULE_VERSION("1.0"); 5462 module_init(nvme_core_init); 5463 module_exit(nvme_core_exit); 5464