1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/list_sort.h> 15 #include <linux/slab.h> 16 #include <linux/types.h> 17 #include <linux/pr.h> 18 #include <linux/ptrace.h> 19 #include <linux/nvme_ioctl.h> 20 #include <linux/t10-pi.h> 21 #include <linux/pm_qos.h> 22 #include <asm/unaligned.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace.h" 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 #define NVME_MINORS (1U << MINORBITS) 31 32 unsigned int admin_timeout = 60; 33 module_param(admin_timeout, uint, 0644); 34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 35 EXPORT_SYMBOL_GPL(admin_timeout); 36 37 unsigned int nvme_io_timeout = 30; 38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 40 EXPORT_SYMBOL_GPL(nvme_io_timeout); 41 42 static unsigned char shutdown_timeout = 5; 43 module_param(shutdown_timeout, byte, 0644); 44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 45 46 static u8 nvme_max_retries = 5; 47 module_param_named(max_retries, nvme_max_retries, byte, 0644); 48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 49 50 static unsigned long default_ps_max_latency_us = 100000; 51 module_param(default_ps_max_latency_us, ulong, 0644); 52 MODULE_PARM_DESC(default_ps_max_latency_us, 53 "max power saving latency for new devices; use PM QOS to change per device"); 54 55 static bool force_apst; 56 module_param(force_apst, bool, 0644); 57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 58 59 static bool streams; 60 module_param(streams, bool, 0644); 61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 62 63 /* 64 * nvme_wq - hosts nvme related works that are not reset or delete 65 * nvme_reset_wq - hosts nvme reset works 66 * nvme_delete_wq - hosts nvme delete works 67 * 68 * nvme_wq will host works such are scan, aen handling, fw activation, 69 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 70 * runs reset works which also flush works hosted on nvme_wq for 71 * serialization purposes. nvme_delete_wq host controller deletion 72 * works which flush reset works for serialization. 73 */ 74 struct workqueue_struct *nvme_wq; 75 EXPORT_SYMBOL_GPL(nvme_wq); 76 77 struct workqueue_struct *nvme_reset_wq; 78 EXPORT_SYMBOL_GPL(nvme_reset_wq); 79 80 struct workqueue_struct *nvme_delete_wq; 81 EXPORT_SYMBOL_GPL(nvme_delete_wq); 82 83 static DEFINE_IDA(nvme_subsystems_ida); 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 revalidate_disk(ns->disk); 106 blk_set_queue_dying(ns->queue); 107 /* Forcibly unquiesce queues to avoid blocking dispatch */ 108 blk_mq_unquiesce_queue(ns->queue); 109 } 110 111 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 112 { 113 /* 114 * Only new queue scan work when admin and IO queues are both alive 115 */ 116 if (ctrl->state == NVME_CTRL_LIVE) 117 queue_work(nvme_wq, &ctrl->scan_work); 118 } 119 120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 121 { 122 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 123 return -EBUSY; 124 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 125 return -EBUSY; 126 return 0; 127 } 128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 129 130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 131 { 132 int ret; 133 134 ret = nvme_reset_ctrl(ctrl); 135 if (!ret) { 136 flush_work(&ctrl->reset_work); 137 if (ctrl->state != NVME_CTRL_LIVE && 138 ctrl->state != NVME_CTRL_ADMIN_ONLY) 139 ret = -ENETRESET; 140 } 141 142 return ret; 143 } 144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 145 146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 147 { 148 dev_info(ctrl->device, 149 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 150 151 flush_work(&ctrl->reset_work); 152 nvme_stop_ctrl(ctrl); 153 nvme_remove_namespaces(ctrl); 154 ctrl->ops->delete_ctrl(ctrl); 155 nvme_uninit_ctrl(ctrl); 156 nvme_put_ctrl(ctrl); 157 } 158 159 static void nvme_delete_ctrl_work(struct work_struct *work) 160 { 161 struct nvme_ctrl *ctrl = 162 container_of(work, struct nvme_ctrl, delete_work); 163 164 nvme_do_delete_ctrl(ctrl); 165 } 166 167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 168 { 169 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 170 return -EBUSY; 171 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 172 return -EBUSY; 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 176 177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 178 { 179 int ret = 0; 180 181 /* 182 * Keep a reference until nvme_do_delete_ctrl() complete, 183 * since ->delete_ctrl can free the controller. 184 */ 185 nvme_get_ctrl(ctrl); 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 ret = -EBUSY; 188 if (!ret) 189 nvme_do_delete_ctrl(ctrl); 190 nvme_put_ctrl(ctrl); 191 return ret; 192 } 193 194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 195 { 196 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 197 } 198 199 static blk_status_t nvme_error_status(struct request *req) 200 { 201 switch (nvme_req(req)->status & 0x7ff) { 202 case NVME_SC_SUCCESS: 203 return BLK_STS_OK; 204 case NVME_SC_CAP_EXCEEDED: 205 return BLK_STS_NOSPC; 206 case NVME_SC_LBA_RANGE: 207 return BLK_STS_TARGET; 208 case NVME_SC_BAD_ATTRIBUTES: 209 case NVME_SC_ONCS_NOT_SUPPORTED: 210 case NVME_SC_INVALID_OPCODE: 211 case NVME_SC_INVALID_FIELD: 212 case NVME_SC_INVALID_NS: 213 return BLK_STS_NOTSUPP; 214 case NVME_SC_WRITE_FAULT: 215 case NVME_SC_READ_ERROR: 216 case NVME_SC_UNWRITTEN_BLOCK: 217 case NVME_SC_ACCESS_DENIED: 218 case NVME_SC_READ_ONLY: 219 case NVME_SC_COMPARE_FAILED: 220 return BLK_STS_MEDIUM; 221 case NVME_SC_GUARD_CHECK: 222 case NVME_SC_APPTAG_CHECK: 223 case NVME_SC_REFTAG_CHECK: 224 case NVME_SC_INVALID_PI: 225 return BLK_STS_PROTECTION; 226 case NVME_SC_RESERVATION_CONFLICT: 227 return BLK_STS_NEXUS; 228 default: 229 return BLK_STS_IOERR; 230 } 231 } 232 233 static inline bool nvme_req_needs_retry(struct request *req) 234 { 235 if (blk_noretry_request(req)) 236 return false; 237 if (nvme_req(req)->status & NVME_SC_DNR) 238 return false; 239 if (nvme_req(req)->retries >= nvme_max_retries) 240 return false; 241 return true; 242 } 243 244 static void nvme_retry_req(struct request *req) 245 { 246 struct nvme_ns *ns = req->q->queuedata; 247 unsigned long delay = 0; 248 u16 crd; 249 250 /* The mask and shift result must be <= 3 */ 251 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 252 if (ns && crd) 253 delay = ns->ctrl->crdt[crd - 1] * 100; 254 255 nvme_req(req)->retries++; 256 blk_mq_requeue_request(req, false); 257 blk_mq_delay_kick_requeue_list(req->q, delay); 258 } 259 260 void nvme_complete_rq(struct request *req) 261 { 262 blk_status_t status = nvme_error_status(req); 263 264 trace_nvme_complete_rq(req); 265 266 if (nvme_req(req)->ctrl->kas) 267 nvme_req(req)->ctrl->comp_seen = true; 268 269 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 270 if ((req->cmd_flags & REQ_NVME_MPATH) && 271 blk_path_error(status)) { 272 nvme_failover_req(req); 273 return; 274 } 275 276 if (!blk_queue_dying(req->q)) { 277 nvme_retry_req(req); 278 return; 279 } 280 } 281 blk_mq_end_request(req, status); 282 } 283 EXPORT_SYMBOL_GPL(nvme_complete_rq); 284 285 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 286 { 287 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 288 "Cancelling I/O %d", req->tag); 289 290 nvme_req(req)->status = NVME_SC_ABORT_REQ; 291 blk_mq_complete_request_sync(req); 292 return true; 293 } 294 EXPORT_SYMBOL_GPL(nvme_cancel_request); 295 296 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 297 enum nvme_ctrl_state new_state) 298 { 299 enum nvme_ctrl_state old_state; 300 unsigned long flags; 301 bool changed = false; 302 303 spin_lock_irqsave(&ctrl->lock, flags); 304 305 old_state = ctrl->state; 306 switch (new_state) { 307 case NVME_CTRL_ADMIN_ONLY: 308 switch (old_state) { 309 case NVME_CTRL_CONNECTING: 310 changed = true; 311 /* FALLTHRU */ 312 default: 313 break; 314 } 315 break; 316 case NVME_CTRL_LIVE: 317 switch (old_state) { 318 case NVME_CTRL_NEW: 319 case NVME_CTRL_RESETTING: 320 case NVME_CTRL_CONNECTING: 321 changed = true; 322 /* FALLTHRU */ 323 default: 324 break; 325 } 326 break; 327 case NVME_CTRL_RESETTING: 328 switch (old_state) { 329 case NVME_CTRL_NEW: 330 case NVME_CTRL_LIVE: 331 case NVME_CTRL_ADMIN_ONLY: 332 changed = true; 333 /* FALLTHRU */ 334 default: 335 break; 336 } 337 break; 338 case NVME_CTRL_CONNECTING: 339 switch (old_state) { 340 case NVME_CTRL_NEW: 341 case NVME_CTRL_RESETTING: 342 changed = true; 343 /* FALLTHRU */ 344 default: 345 break; 346 } 347 break; 348 case NVME_CTRL_DELETING: 349 switch (old_state) { 350 case NVME_CTRL_LIVE: 351 case NVME_CTRL_ADMIN_ONLY: 352 case NVME_CTRL_RESETTING: 353 case NVME_CTRL_CONNECTING: 354 changed = true; 355 /* FALLTHRU */ 356 default: 357 break; 358 } 359 break; 360 case NVME_CTRL_DEAD: 361 switch (old_state) { 362 case NVME_CTRL_DELETING: 363 changed = true; 364 /* FALLTHRU */ 365 default: 366 break; 367 } 368 break; 369 default: 370 break; 371 } 372 373 if (changed) 374 ctrl->state = new_state; 375 376 spin_unlock_irqrestore(&ctrl->lock, flags); 377 if (changed && ctrl->state == NVME_CTRL_LIVE) 378 nvme_kick_requeue_lists(ctrl); 379 return changed; 380 } 381 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 382 383 static void nvme_free_ns_head(struct kref *ref) 384 { 385 struct nvme_ns_head *head = 386 container_of(ref, struct nvme_ns_head, ref); 387 388 nvme_mpath_remove_disk(head); 389 ida_simple_remove(&head->subsys->ns_ida, head->instance); 390 list_del_init(&head->entry); 391 cleanup_srcu_struct(&head->srcu); 392 nvme_put_subsystem(head->subsys); 393 kfree(head); 394 } 395 396 static void nvme_put_ns_head(struct nvme_ns_head *head) 397 { 398 kref_put(&head->ref, nvme_free_ns_head); 399 } 400 401 static void nvme_free_ns(struct kref *kref) 402 { 403 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 404 405 if (ns->ndev) 406 nvme_nvm_unregister(ns); 407 408 put_disk(ns->disk); 409 nvme_put_ns_head(ns->head); 410 nvme_put_ctrl(ns->ctrl); 411 kfree(ns); 412 } 413 414 static void nvme_put_ns(struct nvme_ns *ns) 415 { 416 kref_put(&ns->kref, nvme_free_ns); 417 } 418 419 static inline void nvme_clear_nvme_request(struct request *req) 420 { 421 if (!(req->rq_flags & RQF_DONTPREP)) { 422 nvme_req(req)->retries = 0; 423 nvme_req(req)->flags = 0; 424 req->rq_flags |= RQF_DONTPREP; 425 } 426 } 427 428 struct request *nvme_alloc_request(struct request_queue *q, 429 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 430 { 431 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 432 struct request *req; 433 434 if (qid == NVME_QID_ANY) { 435 req = blk_mq_alloc_request(q, op, flags); 436 } else { 437 req = blk_mq_alloc_request_hctx(q, op, flags, 438 qid ? qid - 1 : 0); 439 } 440 if (IS_ERR(req)) 441 return req; 442 443 req->cmd_flags |= REQ_FAILFAST_DRIVER; 444 nvme_clear_nvme_request(req); 445 nvme_req(req)->cmd = cmd; 446 447 return req; 448 } 449 EXPORT_SYMBOL_GPL(nvme_alloc_request); 450 451 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 452 { 453 struct nvme_command c; 454 455 memset(&c, 0, sizeof(c)); 456 457 c.directive.opcode = nvme_admin_directive_send; 458 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 459 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 460 c.directive.dtype = NVME_DIR_IDENTIFY; 461 c.directive.tdtype = NVME_DIR_STREAMS; 462 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 463 464 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 465 } 466 467 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 468 { 469 return nvme_toggle_streams(ctrl, false); 470 } 471 472 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 473 { 474 return nvme_toggle_streams(ctrl, true); 475 } 476 477 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 478 struct streams_directive_params *s, u32 nsid) 479 { 480 struct nvme_command c; 481 482 memset(&c, 0, sizeof(c)); 483 memset(s, 0, sizeof(*s)); 484 485 c.directive.opcode = nvme_admin_directive_recv; 486 c.directive.nsid = cpu_to_le32(nsid); 487 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 488 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 489 c.directive.dtype = NVME_DIR_STREAMS; 490 491 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 492 } 493 494 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 495 { 496 struct streams_directive_params s; 497 int ret; 498 499 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 500 return 0; 501 if (!streams) 502 return 0; 503 504 ret = nvme_enable_streams(ctrl); 505 if (ret) 506 return ret; 507 508 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 509 if (ret) 510 return ret; 511 512 ctrl->nssa = le16_to_cpu(s.nssa); 513 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 514 dev_info(ctrl->device, "too few streams (%u) available\n", 515 ctrl->nssa); 516 nvme_disable_streams(ctrl); 517 return 0; 518 } 519 520 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 521 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 522 return 0; 523 } 524 525 /* 526 * Check if 'req' has a write hint associated with it. If it does, assign 527 * a valid namespace stream to the write. 528 */ 529 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 530 struct request *req, u16 *control, 531 u32 *dsmgmt) 532 { 533 enum rw_hint streamid = req->write_hint; 534 535 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 536 streamid = 0; 537 else { 538 streamid--; 539 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 540 return; 541 542 *control |= NVME_RW_DTYPE_STREAMS; 543 *dsmgmt |= streamid << 16; 544 } 545 546 if (streamid < ARRAY_SIZE(req->q->write_hints)) 547 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 548 } 549 550 static inline void nvme_setup_flush(struct nvme_ns *ns, 551 struct nvme_command *cmnd) 552 { 553 cmnd->common.opcode = nvme_cmd_flush; 554 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 555 } 556 557 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 558 struct nvme_command *cmnd) 559 { 560 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 561 struct nvme_dsm_range *range; 562 struct bio *bio; 563 564 range = kmalloc_array(segments, sizeof(*range), 565 GFP_ATOMIC | __GFP_NOWARN); 566 if (!range) { 567 /* 568 * If we fail allocation our range, fallback to the controller 569 * discard page. If that's also busy, it's safe to return 570 * busy, as we know we can make progress once that's freed. 571 */ 572 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 573 return BLK_STS_RESOURCE; 574 575 range = page_address(ns->ctrl->discard_page); 576 } 577 578 __rq_for_each_bio(bio, req) { 579 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 580 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 581 582 if (n < segments) { 583 range[n].cattr = cpu_to_le32(0); 584 range[n].nlb = cpu_to_le32(nlb); 585 range[n].slba = cpu_to_le64(slba); 586 } 587 n++; 588 } 589 590 if (WARN_ON_ONCE(n != segments)) { 591 if (virt_to_page(range) == ns->ctrl->discard_page) 592 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 593 else 594 kfree(range); 595 return BLK_STS_IOERR; 596 } 597 598 cmnd->dsm.opcode = nvme_cmd_dsm; 599 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 600 cmnd->dsm.nr = cpu_to_le32(segments - 1); 601 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 602 603 req->special_vec.bv_page = virt_to_page(range); 604 req->special_vec.bv_offset = offset_in_page(range); 605 req->special_vec.bv_len = sizeof(*range) * segments; 606 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 607 608 return BLK_STS_OK; 609 } 610 611 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 612 struct request *req, struct nvme_command *cmnd) 613 { 614 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 615 return nvme_setup_discard(ns, req, cmnd); 616 617 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 618 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 619 cmnd->write_zeroes.slba = 620 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 621 cmnd->write_zeroes.length = 622 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 623 cmnd->write_zeroes.control = 0; 624 return BLK_STS_OK; 625 } 626 627 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 628 struct request *req, struct nvme_command *cmnd) 629 { 630 struct nvme_ctrl *ctrl = ns->ctrl; 631 u16 control = 0; 632 u32 dsmgmt = 0; 633 634 if (req->cmd_flags & REQ_FUA) 635 control |= NVME_RW_FUA; 636 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 637 control |= NVME_RW_LR; 638 639 if (req->cmd_flags & REQ_RAHEAD) 640 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 641 642 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 643 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 644 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 645 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 646 647 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 648 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 649 650 if (ns->ms) { 651 /* 652 * If formated with metadata, the block layer always provides a 653 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 654 * we enable the PRACT bit for protection information or set the 655 * namespace capacity to zero to prevent any I/O. 656 */ 657 if (!blk_integrity_rq(req)) { 658 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 659 return BLK_STS_NOTSUPP; 660 control |= NVME_RW_PRINFO_PRACT; 661 } else if (req_op(req) == REQ_OP_WRITE) { 662 t10_pi_prepare(req, ns->pi_type); 663 } 664 665 switch (ns->pi_type) { 666 case NVME_NS_DPS_PI_TYPE3: 667 control |= NVME_RW_PRINFO_PRCHK_GUARD; 668 break; 669 case NVME_NS_DPS_PI_TYPE1: 670 case NVME_NS_DPS_PI_TYPE2: 671 control |= NVME_RW_PRINFO_PRCHK_GUARD | 672 NVME_RW_PRINFO_PRCHK_REF; 673 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 674 break; 675 } 676 } 677 678 cmnd->rw.control = cpu_to_le16(control); 679 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 680 return 0; 681 } 682 683 void nvme_cleanup_cmd(struct request *req) 684 { 685 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 686 nvme_req(req)->status == 0) { 687 struct nvme_ns *ns = req->rq_disk->private_data; 688 689 t10_pi_complete(req, ns->pi_type, 690 blk_rq_bytes(req) >> ns->lba_shift); 691 } 692 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 693 struct nvme_ns *ns = req->rq_disk->private_data; 694 struct page *page = req->special_vec.bv_page; 695 696 if (page == ns->ctrl->discard_page) 697 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 698 else 699 kfree(page_address(page) + req->special_vec.bv_offset); 700 } 701 } 702 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 703 704 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 705 struct nvme_command *cmd) 706 { 707 blk_status_t ret = BLK_STS_OK; 708 709 nvme_clear_nvme_request(req); 710 711 memset(cmd, 0, sizeof(*cmd)); 712 switch (req_op(req)) { 713 case REQ_OP_DRV_IN: 714 case REQ_OP_DRV_OUT: 715 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 716 break; 717 case REQ_OP_FLUSH: 718 nvme_setup_flush(ns, cmd); 719 break; 720 case REQ_OP_WRITE_ZEROES: 721 ret = nvme_setup_write_zeroes(ns, req, cmd); 722 break; 723 case REQ_OP_DISCARD: 724 ret = nvme_setup_discard(ns, req, cmd); 725 break; 726 case REQ_OP_READ: 727 case REQ_OP_WRITE: 728 ret = nvme_setup_rw(ns, req, cmd); 729 break; 730 default: 731 WARN_ON_ONCE(1); 732 return BLK_STS_IOERR; 733 } 734 735 cmd->common.command_id = req->tag; 736 trace_nvme_setup_cmd(req, cmd); 737 return ret; 738 } 739 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 740 741 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 742 { 743 struct completion *waiting = rq->end_io_data; 744 745 rq->end_io_data = NULL; 746 complete(waiting); 747 } 748 749 static void nvme_execute_rq_polled(struct request_queue *q, 750 struct gendisk *bd_disk, struct request *rq, int at_head) 751 { 752 DECLARE_COMPLETION_ONSTACK(wait); 753 754 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 755 756 rq->cmd_flags |= REQ_HIPRI; 757 rq->end_io_data = &wait; 758 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 759 760 while (!completion_done(&wait)) { 761 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 762 cond_resched(); 763 } 764 } 765 766 /* 767 * Returns 0 on success. If the result is negative, it's a Linux error code; 768 * if the result is positive, it's an NVM Express status code 769 */ 770 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 771 union nvme_result *result, void *buffer, unsigned bufflen, 772 unsigned timeout, int qid, int at_head, 773 blk_mq_req_flags_t flags, bool poll) 774 { 775 struct request *req; 776 int ret; 777 778 req = nvme_alloc_request(q, cmd, flags, qid); 779 if (IS_ERR(req)) 780 return PTR_ERR(req); 781 782 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 783 784 if (buffer && bufflen) { 785 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 786 if (ret) 787 goto out; 788 } 789 790 if (poll) 791 nvme_execute_rq_polled(req->q, NULL, req, at_head); 792 else 793 blk_execute_rq(req->q, NULL, req, at_head); 794 if (result) 795 *result = nvme_req(req)->result; 796 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 797 ret = -EINTR; 798 else 799 ret = nvme_req(req)->status; 800 out: 801 blk_mq_free_request(req); 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 805 806 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 807 void *buffer, unsigned bufflen) 808 { 809 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 810 NVME_QID_ANY, 0, 0, false); 811 } 812 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 813 814 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 815 unsigned len, u32 seed, bool write) 816 { 817 struct bio_integrity_payload *bip; 818 int ret = -ENOMEM; 819 void *buf; 820 821 buf = kmalloc(len, GFP_KERNEL); 822 if (!buf) 823 goto out; 824 825 ret = -EFAULT; 826 if (write && copy_from_user(buf, ubuf, len)) 827 goto out_free_meta; 828 829 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 830 if (IS_ERR(bip)) { 831 ret = PTR_ERR(bip); 832 goto out_free_meta; 833 } 834 835 bip->bip_iter.bi_size = len; 836 bip->bip_iter.bi_sector = seed; 837 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 838 offset_in_page(buf)); 839 if (ret == len) 840 return buf; 841 ret = -ENOMEM; 842 out_free_meta: 843 kfree(buf); 844 out: 845 return ERR_PTR(ret); 846 } 847 848 static int nvme_submit_user_cmd(struct request_queue *q, 849 struct nvme_command *cmd, void __user *ubuffer, 850 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 851 u32 meta_seed, u32 *result, unsigned timeout) 852 { 853 bool write = nvme_is_write(cmd); 854 struct nvme_ns *ns = q->queuedata; 855 struct gendisk *disk = ns ? ns->disk : NULL; 856 struct request *req; 857 struct bio *bio = NULL; 858 void *meta = NULL; 859 int ret; 860 861 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 862 if (IS_ERR(req)) 863 return PTR_ERR(req); 864 865 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 866 nvme_req(req)->flags |= NVME_REQ_USERCMD; 867 868 if (ubuffer && bufflen) { 869 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 870 GFP_KERNEL); 871 if (ret) 872 goto out; 873 bio = req->bio; 874 bio->bi_disk = disk; 875 if (disk && meta_buffer && meta_len) { 876 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 877 meta_seed, write); 878 if (IS_ERR(meta)) { 879 ret = PTR_ERR(meta); 880 goto out_unmap; 881 } 882 req->cmd_flags |= REQ_INTEGRITY; 883 } 884 } 885 886 blk_execute_rq(req->q, disk, req, 0); 887 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 888 ret = -EINTR; 889 else 890 ret = nvme_req(req)->status; 891 if (result) 892 *result = le32_to_cpu(nvme_req(req)->result.u32); 893 if (meta && !ret && !write) { 894 if (copy_to_user(meta_buffer, meta, meta_len)) 895 ret = -EFAULT; 896 } 897 kfree(meta); 898 out_unmap: 899 if (bio) 900 blk_rq_unmap_user(bio); 901 out: 902 blk_mq_free_request(req); 903 return ret; 904 } 905 906 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 907 { 908 struct nvme_ctrl *ctrl = rq->end_io_data; 909 unsigned long flags; 910 bool startka = false; 911 912 blk_mq_free_request(rq); 913 914 if (status) { 915 dev_err(ctrl->device, 916 "failed nvme_keep_alive_end_io error=%d\n", 917 status); 918 return; 919 } 920 921 ctrl->comp_seen = false; 922 spin_lock_irqsave(&ctrl->lock, flags); 923 if (ctrl->state == NVME_CTRL_LIVE || 924 ctrl->state == NVME_CTRL_CONNECTING) 925 startka = true; 926 spin_unlock_irqrestore(&ctrl->lock, flags); 927 if (startka) 928 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 929 } 930 931 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 932 { 933 struct request *rq; 934 935 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 936 NVME_QID_ANY); 937 if (IS_ERR(rq)) 938 return PTR_ERR(rq); 939 940 rq->timeout = ctrl->kato * HZ; 941 rq->end_io_data = ctrl; 942 943 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 944 945 return 0; 946 } 947 948 static void nvme_keep_alive_work(struct work_struct *work) 949 { 950 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 951 struct nvme_ctrl, ka_work); 952 bool comp_seen = ctrl->comp_seen; 953 954 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 955 dev_dbg(ctrl->device, 956 "reschedule traffic based keep-alive timer\n"); 957 ctrl->comp_seen = false; 958 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 959 return; 960 } 961 962 if (nvme_keep_alive(ctrl)) { 963 /* allocation failure, reset the controller */ 964 dev_err(ctrl->device, "keep-alive failed\n"); 965 nvme_reset_ctrl(ctrl); 966 return; 967 } 968 } 969 970 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 971 { 972 if (unlikely(ctrl->kato == 0)) 973 return; 974 975 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 976 } 977 978 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 979 { 980 if (unlikely(ctrl->kato == 0)) 981 return; 982 983 cancel_delayed_work_sync(&ctrl->ka_work); 984 } 985 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 986 987 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 988 { 989 struct nvme_command c = { }; 990 int error; 991 992 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 993 c.identify.opcode = nvme_admin_identify; 994 c.identify.cns = NVME_ID_CNS_CTRL; 995 996 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 997 if (!*id) 998 return -ENOMEM; 999 1000 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1001 sizeof(struct nvme_id_ctrl)); 1002 if (error) 1003 kfree(*id); 1004 return error; 1005 } 1006 1007 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1008 struct nvme_ns_ids *ids) 1009 { 1010 struct nvme_command c = { }; 1011 int status; 1012 void *data; 1013 int pos; 1014 int len; 1015 1016 c.identify.opcode = nvme_admin_identify; 1017 c.identify.nsid = cpu_to_le32(nsid); 1018 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1019 1020 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1021 if (!data) 1022 return -ENOMEM; 1023 1024 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1025 NVME_IDENTIFY_DATA_SIZE); 1026 if (status) 1027 goto free_data; 1028 1029 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1030 struct nvme_ns_id_desc *cur = data + pos; 1031 1032 if (cur->nidl == 0) 1033 break; 1034 1035 switch (cur->nidt) { 1036 case NVME_NIDT_EUI64: 1037 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1038 dev_warn(ctrl->device, 1039 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1040 cur->nidl); 1041 goto free_data; 1042 } 1043 len = NVME_NIDT_EUI64_LEN; 1044 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1045 break; 1046 case NVME_NIDT_NGUID: 1047 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1048 dev_warn(ctrl->device, 1049 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1050 cur->nidl); 1051 goto free_data; 1052 } 1053 len = NVME_NIDT_NGUID_LEN; 1054 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1055 break; 1056 case NVME_NIDT_UUID: 1057 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1058 dev_warn(ctrl->device, 1059 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1060 cur->nidl); 1061 goto free_data; 1062 } 1063 len = NVME_NIDT_UUID_LEN; 1064 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1065 break; 1066 default: 1067 /* Skip unknown types */ 1068 len = cur->nidl; 1069 break; 1070 } 1071 1072 len += sizeof(*cur); 1073 } 1074 free_data: 1075 kfree(data); 1076 return status; 1077 } 1078 1079 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1080 { 1081 struct nvme_command c = { }; 1082 1083 c.identify.opcode = nvme_admin_identify; 1084 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1085 c.identify.nsid = cpu_to_le32(nsid); 1086 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1087 NVME_IDENTIFY_DATA_SIZE); 1088 } 1089 1090 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1091 unsigned nsid) 1092 { 1093 struct nvme_id_ns *id; 1094 struct nvme_command c = { }; 1095 int error; 1096 1097 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1098 c.identify.opcode = nvme_admin_identify; 1099 c.identify.nsid = cpu_to_le32(nsid); 1100 c.identify.cns = NVME_ID_CNS_NS; 1101 1102 id = kmalloc(sizeof(*id), GFP_KERNEL); 1103 if (!id) 1104 return NULL; 1105 1106 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1107 if (error) { 1108 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1109 kfree(id); 1110 return NULL; 1111 } 1112 1113 return id; 1114 } 1115 1116 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 1117 void *buffer, size_t buflen, u32 *result) 1118 { 1119 struct nvme_command c; 1120 union nvme_result res; 1121 int ret; 1122 1123 memset(&c, 0, sizeof(c)); 1124 c.features.opcode = nvme_admin_set_features; 1125 c.features.fid = cpu_to_le32(fid); 1126 c.features.dword11 = cpu_to_le32(dword11); 1127 1128 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1129 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1130 if (ret >= 0 && result) 1131 *result = le32_to_cpu(res.u32); 1132 return ret; 1133 } 1134 1135 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1136 { 1137 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1138 u32 result; 1139 int status, nr_io_queues; 1140 1141 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1142 &result); 1143 if (status < 0) 1144 return status; 1145 1146 /* 1147 * Degraded controllers might return an error when setting the queue 1148 * count. We still want to be able to bring them online and offer 1149 * access to the admin queue, as that might be only way to fix them up. 1150 */ 1151 if (status > 0) { 1152 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1153 *count = 0; 1154 } else { 1155 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1156 *count = min(*count, nr_io_queues); 1157 } 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1162 1163 #define NVME_AEN_SUPPORTED \ 1164 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1165 1166 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1167 { 1168 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1169 int status; 1170 1171 if (!supported_aens) 1172 return; 1173 1174 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1175 NULL, 0, &result); 1176 if (status) 1177 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1178 supported_aens); 1179 } 1180 1181 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1182 { 1183 struct nvme_user_io io; 1184 struct nvme_command c; 1185 unsigned length, meta_len; 1186 void __user *metadata; 1187 1188 if (copy_from_user(&io, uio, sizeof(io))) 1189 return -EFAULT; 1190 if (io.flags) 1191 return -EINVAL; 1192 1193 switch (io.opcode) { 1194 case nvme_cmd_write: 1195 case nvme_cmd_read: 1196 case nvme_cmd_compare: 1197 break; 1198 default: 1199 return -EINVAL; 1200 } 1201 1202 length = (io.nblocks + 1) << ns->lba_shift; 1203 meta_len = (io.nblocks + 1) * ns->ms; 1204 metadata = (void __user *)(uintptr_t)io.metadata; 1205 1206 if (ns->ext) { 1207 length += meta_len; 1208 meta_len = 0; 1209 } else if (meta_len) { 1210 if ((io.metadata & 3) || !io.metadata) 1211 return -EINVAL; 1212 } 1213 1214 memset(&c, 0, sizeof(c)); 1215 c.rw.opcode = io.opcode; 1216 c.rw.flags = io.flags; 1217 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1218 c.rw.slba = cpu_to_le64(io.slba); 1219 c.rw.length = cpu_to_le16(io.nblocks); 1220 c.rw.control = cpu_to_le16(io.control); 1221 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1222 c.rw.reftag = cpu_to_le32(io.reftag); 1223 c.rw.apptag = cpu_to_le16(io.apptag); 1224 c.rw.appmask = cpu_to_le16(io.appmask); 1225 1226 return nvme_submit_user_cmd(ns->queue, &c, 1227 (void __user *)(uintptr_t)io.addr, length, 1228 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1229 } 1230 1231 static u32 nvme_known_admin_effects(u8 opcode) 1232 { 1233 switch (opcode) { 1234 case nvme_admin_format_nvm: 1235 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1236 NVME_CMD_EFFECTS_CSE_MASK; 1237 case nvme_admin_sanitize_nvm: 1238 return NVME_CMD_EFFECTS_CSE_MASK; 1239 default: 1240 break; 1241 } 1242 return 0; 1243 } 1244 1245 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1246 u8 opcode) 1247 { 1248 u32 effects = 0; 1249 1250 if (ns) { 1251 if (ctrl->effects) 1252 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1253 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1254 dev_warn(ctrl->device, 1255 "IO command:%02x has unhandled effects:%08x\n", 1256 opcode, effects); 1257 return 0; 1258 } 1259 1260 effects |= nvme_known_admin_effects(opcode); 1261 if (ctrl->effects) 1262 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1263 1264 /* 1265 * For simplicity, IO to all namespaces is quiesced even if the command 1266 * effects say only one namespace is affected. 1267 */ 1268 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1269 mutex_lock(&ctrl->scan_lock); 1270 nvme_start_freeze(ctrl); 1271 nvme_wait_freeze(ctrl); 1272 } 1273 return effects; 1274 } 1275 1276 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1277 { 1278 struct nvme_ns *ns; 1279 1280 down_read(&ctrl->namespaces_rwsem); 1281 list_for_each_entry(ns, &ctrl->namespaces, list) 1282 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1283 nvme_set_queue_dying(ns); 1284 up_read(&ctrl->namespaces_rwsem); 1285 1286 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1287 } 1288 1289 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1290 { 1291 /* 1292 * Revalidate LBA changes prior to unfreezing. This is necessary to 1293 * prevent memory corruption if a logical block size was changed by 1294 * this command. 1295 */ 1296 if (effects & NVME_CMD_EFFECTS_LBCC) 1297 nvme_update_formats(ctrl); 1298 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1299 nvme_unfreeze(ctrl); 1300 mutex_unlock(&ctrl->scan_lock); 1301 } 1302 if (effects & NVME_CMD_EFFECTS_CCC) 1303 nvme_init_identify(ctrl); 1304 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1305 nvme_queue_scan(ctrl); 1306 } 1307 1308 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1309 struct nvme_passthru_cmd __user *ucmd) 1310 { 1311 struct nvme_passthru_cmd cmd; 1312 struct nvme_command c; 1313 unsigned timeout = 0; 1314 u32 effects; 1315 int status; 1316 1317 if (!capable(CAP_SYS_ADMIN)) 1318 return -EACCES; 1319 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1320 return -EFAULT; 1321 if (cmd.flags) 1322 return -EINVAL; 1323 1324 memset(&c, 0, sizeof(c)); 1325 c.common.opcode = cmd.opcode; 1326 c.common.flags = cmd.flags; 1327 c.common.nsid = cpu_to_le32(cmd.nsid); 1328 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1329 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1330 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1331 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1332 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1333 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1334 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1335 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1336 1337 if (cmd.timeout_ms) 1338 timeout = msecs_to_jiffies(cmd.timeout_ms); 1339 1340 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1341 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1342 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1343 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1344 0, &cmd.result, timeout); 1345 nvme_passthru_end(ctrl, effects); 1346 1347 if (status >= 0) { 1348 if (put_user(cmd.result, &ucmd->result)) 1349 return -EFAULT; 1350 } 1351 1352 return status; 1353 } 1354 1355 /* 1356 * Issue ioctl requests on the first available path. Note that unlike normal 1357 * block layer requests we will not retry failed request on another controller. 1358 */ 1359 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1360 struct nvme_ns_head **head, int *srcu_idx) 1361 { 1362 #ifdef CONFIG_NVME_MULTIPATH 1363 if (disk->fops == &nvme_ns_head_ops) { 1364 *head = disk->private_data; 1365 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1366 return nvme_find_path(*head); 1367 } 1368 #endif 1369 *head = NULL; 1370 *srcu_idx = -1; 1371 return disk->private_data; 1372 } 1373 1374 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1375 { 1376 if (head) 1377 srcu_read_unlock(&head->srcu, idx); 1378 } 1379 1380 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1381 { 1382 switch (cmd) { 1383 case NVME_IOCTL_ID: 1384 force_successful_syscall_return(); 1385 return ns->head->ns_id; 1386 case NVME_IOCTL_ADMIN_CMD: 1387 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1388 case NVME_IOCTL_IO_CMD: 1389 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1390 case NVME_IOCTL_SUBMIT_IO: 1391 return nvme_submit_io(ns, (void __user *)arg); 1392 default: 1393 #ifdef CONFIG_NVM 1394 if (ns->ndev) 1395 return nvme_nvm_ioctl(ns, cmd, arg); 1396 #endif 1397 if (is_sed_ioctl(cmd)) 1398 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1399 (void __user *) arg); 1400 return -ENOTTY; 1401 } 1402 } 1403 1404 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1405 unsigned int cmd, unsigned long arg) 1406 { 1407 struct nvme_ns_head *head = NULL; 1408 struct nvme_ns *ns; 1409 int srcu_idx, ret; 1410 1411 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1412 if (unlikely(!ns)) 1413 ret = -EWOULDBLOCK; 1414 else 1415 ret = nvme_ns_ioctl(ns, cmd, arg); 1416 nvme_put_ns_from_disk(head, srcu_idx); 1417 return ret; 1418 } 1419 1420 static int nvme_open(struct block_device *bdev, fmode_t mode) 1421 { 1422 struct nvme_ns *ns = bdev->bd_disk->private_data; 1423 1424 #ifdef CONFIG_NVME_MULTIPATH 1425 /* should never be called due to GENHD_FL_HIDDEN */ 1426 if (WARN_ON_ONCE(ns->head->disk)) 1427 goto fail; 1428 #endif 1429 if (!kref_get_unless_zero(&ns->kref)) 1430 goto fail; 1431 if (!try_module_get(ns->ctrl->ops->module)) 1432 goto fail_put_ns; 1433 1434 return 0; 1435 1436 fail_put_ns: 1437 nvme_put_ns(ns); 1438 fail: 1439 return -ENXIO; 1440 } 1441 1442 static void nvme_release(struct gendisk *disk, fmode_t mode) 1443 { 1444 struct nvme_ns *ns = disk->private_data; 1445 1446 module_put(ns->ctrl->ops->module); 1447 nvme_put_ns(ns); 1448 } 1449 1450 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1451 { 1452 /* some standard values */ 1453 geo->heads = 1 << 6; 1454 geo->sectors = 1 << 5; 1455 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1456 return 0; 1457 } 1458 1459 #ifdef CONFIG_BLK_DEV_INTEGRITY 1460 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1461 { 1462 struct blk_integrity integrity; 1463 1464 memset(&integrity, 0, sizeof(integrity)); 1465 switch (pi_type) { 1466 case NVME_NS_DPS_PI_TYPE3: 1467 integrity.profile = &t10_pi_type3_crc; 1468 integrity.tag_size = sizeof(u16) + sizeof(u32); 1469 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1470 break; 1471 case NVME_NS_DPS_PI_TYPE1: 1472 case NVME_NS_DPS_PI_TYPE2: 1473 integrity.profile = &t10_pi_type1_crc; 1474 integrity.tag_size = sizeof(u16); 1475 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1476 break; 1477 default: 1478 integrity.profile = NULL; 1479 break; 1480 } 1481 integrity.tuple_size = ms; 1482 blk_integrity_register(disk, &integrity); 1483 blk_queue_max_integrity_segments(disk->queue, 1); 1484 } 1485 #else 1486 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1487 { 1488 } 1489 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1490 1491 static void nvme_set_chunk_size(struct nvme_ns *ns) 1492 { 1493 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1494 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1495 } 1496 1497 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1498 { 1499 struct nvme_ctrl *ctrl = ns->ctrl; 1500 struct request_queue *queue = disk->queue; 1501 u32 size = queue_logical_block_size(queue); 1502 1503 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1504 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1505 return; 1506 } 1507 1508 if (ctrl->nr_streams && ns->sws && ns->sgs) 1509 size *= ns->sws * ns->sgs; 1510 1511 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1512 NVME_DSM_MAX_RANGES); 1513 1514 queue->limits.discard_alignment = 0; 1515 queue->limits.discard_granularity = size; 1516 1517 /* If discard is already enabled, don't reset queue limits */ 1518 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1519 return; 1520 1521 blk_queue_max_discard_sectors(queue, UINT_MAX); 1522 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1523 1524 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1525 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1526 } 1527 1528 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1529 { 1530 u32 max_sectors; 1531 unsigned short bs = 1 << ns->lba_shift; 1532 1533 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1534 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1535 return; 1536 /* 1537 * Even though NVMe spec explicitly states that MDTS is not 1538 * applicable to the write-zeroes:- "The restriction does not apply to 1539 * commands that do not transfer data between the host and the 1540 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1541 * In order to be more cautious use controller's max_hw_sectors value 1542 * to configure the maximum sectors for the write-zeroes which is 1543 * configured based on the controller's MDTS field in the 1544 * nvme_init_identify() if available. 1545 */ 1546 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1547 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9; 1548 else 1549 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9; 1550 1551 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors); 1552 } 1553 1554 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1555 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1556 { 1557 memset(ids, 0, sizeof(*ids)); 1558 1559 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1560 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1561 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1562 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1563 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1564 /* Don't treat error as fatal we potentially 1565 * already have a NGUID or EUI-64 1566 */ 1567 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1568 dev_warn(ctrl->device, 1569 "%s: Identify Descriptors failed\n", __func__); 1570 } 1571 } 1572 1573 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1574 { 1575 return !uuid_is_null(&ids->uuid) || 1576 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1577 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1578 } 1579 1580 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1581 { 1582 return uuid_equal(&a->uuid, &b->uuid) && 1583 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1584 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1585 } 1586 1587 static void nvme_update_disk_info(struct gendisk *disk, 1588 struct nvme_ns *ns, struct nvme_id_ns *id) 1589 { 1590 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9); 1591 unsigned short bs = 1 << ns->lba_shift; 1592 1593 if (ns->lba_shift > PAGE_SHIFT) { 1594 /* unsupported block size, set capacity to 0 later */ 1595 bs = (1 << 9); 1596 } 1597 blk_mq_freeze_queue(disk->queue); 1598 blk_integrity_unregister(disk); 1599 1600 blk_queue_logical_block_size(disk->queue, bs); 1601 blk_queue_physical_block_size(disk->queue, bs); 1602 blk_queue_io_min(disk->queue, bs); 1603 1604 if (ns->ms && !ns->ext && 1605 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1606 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1607 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1608 ns->lba_shift > PAGE_SHIFT) 1609 capacity = 0; 1610 1611 set_capacity(disk, capacity); 1612 1613 nvme_config_discard(disk, ns); 1614 nvme_config_write_zeroes(disk, ns); 1615 1616 if (id->nsattr & (1 << 0)) 1617 set_disk_ro(disk, true); 1618 else 1619 set_disk_ro(disk, false); 1620 1621 blk_mq_unfreeze_queue(disk->queue); 1622 } 1623 1624 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1625 { 1626 struct nvme_ns *ns = disk->private_data; 1627 1628 /* 1629 * If identify namespace failed, use default 512 byte block size so 1630 * block layer can use before failing read/write for 0 capacity. 1631 */ 1632 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1633 if (ns->lba_shift == 0) 1634 ns->lba_shift = 9; 1635 ns->noiob = le16_to_cpu(id->noiob); 1636 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1637 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1638 /* the PI implementation requires metadata equal t10 pi tuple size */ 1639 if (ns->ms == sizeof(struct t10_pi_tuple)) 1640 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1641 else 1642 ns->pi_type = 0; 1643 1644 if (ns->noiob) 1645 nvme_set_chunk_size(ns); 1646 nvme_update_disk_info(disk, ns, id); 1647 #ifdef CONFIG_NVME_MULTIPATH 1648 if (ns->head->disk) { 1649 nvme_update_disk_info(ns->head->disk, ns, id); 1650 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1651 } 1652 #endif 1653 } 1654 1655 static int nvme_revalidate_disk(struct gendisk *disk) 1656 { 1657 struct nvme_ns *ns = disk->private_data; 1658 struct nvme_ctrl *ctrl = ns->ctrl; 1659 struct nvme_id_ns *id; 1660 struct nvme_ns_ids ids; 1661 int ret = 0; 1662 1663 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1664 set_capacity(disk, 0); 1665 return -ENODEV; 1666 } 1667 1668 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1669 if (!id) 1670 return -ENODEV; 1671 1672 if (id->ncap == 0) { 1673 ret = -ENODEV; 1674 goto out; 1675 } 1676 1677 __nvme_revalidate_disk(disk, id); 1678 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1679 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1680 dev_err(ctrl->device, 1681 "identifiers changed for nsid %d\n", ns->head->ns_id); 1682 ret = -ENODEV; 1683 } 1684 1685 out: 1686 kfree(id); 1687 return ret; 1688 } 1689 1690 static char nvme_pr_type(enum pr_type type) 1691 { 1692 switch (type) { 1693 case PR_WRITE_EXCLUSIVE: 1694 return 1; 1695 case PR_EXCLUSIVE_ACCESS: 1696 return 2; 1697 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1698 return 3; 1699 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1700 return 4; 1701 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1702 return 5; 1703 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1704 return 6; 1705 default: 1706 return 0; 1707 } 1708 }; 1709 1710 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1711 u64 key, u64 sa_key, u8 op) 1712 { 1713 struct nvme_ns_head *head = NULL; 1714 struct nvme_ns *ns; 1715 struct nvme_command c; 1716 int srcu_idx, ret; 1717 u8 data[16] = { 0, }; 1718 1719 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1720 if (unlikely(!ns)) 1721 return -EWOULDBLOCK; 1722 1723 put_unaligned_le64(key, &data[0]); 1724 put_unaligned_le64(sa_key, &data[8]); 1725 1726 memset(&c, 0, sizeof(c)); 1727 c.common.opcode = op; 1728 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1729 c.common.cdw10 = cpu_to_le32(cdw10); 1730 1731 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1732 nvme_put_ns_from_disk(head, srcu_idx); 1733 return ret; 1734 } 1735 1736 static int nvme_pr_register(struct block_device *bdev, u64 old, 1737 u64 new, unsigned flags) 1738 { 1739 u32 cdw10; 1740 1741 if (flags & ~PR_FL_IGNORE_KEY) 1742 return -EOPNOTSUPP; 1743 1744 cdw10 = old ? 2 : 0; 1745 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1746 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1747 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1748 } 1749 1750 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1751 enum pr_type type, unsigned flags) 1752 { 1753 u32 cdw10; 1754 1755 if (flags & ~PR_FL_IGNORE_KEY) 1756 return -EOPNOTSUPP; 1757 1758 cdw10 = nvme_pr_type(type) << 8; 1759 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1760 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1761 } 1762 1763 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1764 enum pr_type type, bool abort) 1765 { 1766 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1767 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1768 } 1769 1770 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1771 { 1772 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1773 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1774 } 1775 1776 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1777 { 1778 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1779 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1780 } 1781 1782 static const struct pr_ops nvme_pr_ops = { 1783 .pr_register = nvme_pr_register, 1784 .pr_reserve = nvme_pr_reserve, 1785 .pr_release = nvme_pr_release, 1786 .pr_preempt = nvme_pr_preempt, 1787 .pr_clear = nvme_pr_clear, 1788 }; 1789 1790 #ifdef CONFIG_BLK_SED_OPAL 1791 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1792 bool send) 1793 { 1794 struct nvme_ctrl *ctrl = data; 1795 struct nvme_command cmd; 1796 1797 memset(&cmd, 0, sizeof(cmd)); 1798 if (send) 1799 cmd.common.opcode = nvme_admin_security_send; 1800 else 1801 cmd.common.opcode = nvme_admin_security_recv; 1802 cmd.common.nsid = 0; 1803 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1804 cmd.common.cdw11 = cpu_to_le32(len); 1805 1806 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1807 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 1808 } 1809 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1810 #endif /* CONFIG_BLK_SED_OPAL */ 1811 1812 static const struct block_device_operations nvme_fops = { 1813 .owner = THIS_MODULE, 1814 .ioctl = nvme_ioctl, 1815 .compat_ioctl = nvme_ioctl, 1816 .open = nvme_open, 1817 .release = nvme_release, 1818 .getgeo = nvme_getgeo, 1819 .revalidate_disk= nvme_revalidate_disk, 1820 .pr_ops = &nvme_pr_ops, 1821 }; 1822 1823 #ifdef CONFIG_NVME_MULTIPATH 1824 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1825 { 1826 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1827 1828 if (!kref_get_unless_zero(&head->ref)) 1829 return -ENXIO; 1830 return 0; 1831 } 1832 1833 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1834 { 1835 nvme_put_ns_head(disk->private_data); 1836 } 1837 1838 const struct block_device_operations nvme_ns_head_ops = { 1839 .owner = THIS_MODULE, 1840 .open = nvme_ns_head_open, 1841 .release = nvme_ns_head_release, 1842 .ioctl = nvme_ioctl, 1843 .compat_ioctl = nvme_ioctl, 1844 .getgeo = nvme_getgeo, 1845 .pr_ops = &nvme_pr_ops, 1846 }; 1847 #endif /* CONFIG_NVME_MULTIPATH */ 1848 1849 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1850 { 1851 unsigned long timeout = 1852 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1853 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1854 int ret; 1855 1856 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1857 if (csts == ~0) 1858 return -ENODEV; 1859 if ((csts & NVME_CSTS_RDY) == bit) 1860 break; 1861 1862 msleep(100); 1863 if (fatal_signal_pending(current)) 1864 return -EINTR; 1865 if (time_after(jiffies, timeout)) { 1866 dev_err(ctrl->device, 1867 "Device not ready; aborting %s\n", enabled ? 1868 "initialisation" : "reset"); 1869 return -ENODEV; 1870 } 1871 } 1872 1873 return ret; 1874 } 1875 1876 /* 1877 * If the device has been passed off to us in an enabled state, just clear 1878 * the enabled bit. The spec says we should set the 'shutdown notification 1879 * bits', but doing so may cause the device to complete commands to the 1880 * admin queue ... and we don't know what memory that might be pointing at! 1881 */ 1882 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1883 { 1884 int ret; 1885 1886 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1887 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1888 1889 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1890 if (ret) 1891 return ret; 1892 1893 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1894 msleep(NVME_QUIRK_DELAY_AMOUNT); 1895 1896 return nvme_wait_ready(ctrl, cap, false); 1897 } 1898 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1899 1900 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1901 { 1902 /* 1903 * Default to a 4K page size, with the intention to update this 1904 * path in the future to accomodate architectures with differing 1905 * kernel and IO page sizes. 1906 */ 1907 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1908 int ret; 1909 1910 if (page_shift < dev_page_min) { 1911 dev_err(ctrl->device, 1912 "Minimum device page size %u too large for host (%u)\n", 1913 1 << dev_page_min, 1 << page_shift); 1914 return -ENODEV; 1915 } 1916 1917 ctrl->page_size = 1 << page_shift; 1918 1919 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1920 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1921 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1922 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1923 ctrl->ctrl_config |= NVME_CC_ENABLE; 1924 1925 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1926 if (ret) 1927 return ret; 1928 return nvme_wait_ready(ctrl, cap, true); 1929 } 1930 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1931 1932 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1933 { 1934 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1935 u32 csts; 1936 int ret; 1937 1938 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1939 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1940 1941 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1942 if (ret) 1943 return ret; 1944 1945 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1946 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1947 break; 1948 1949 msleep(100); 1950 if (fatal_signal_pending(current)) 1951 return -EINTR; 1952 if (time_after(jiffies, timeout)) { 1953 dev_err(ctrl->device, 1954 "Device shutdown incomplete; abort shutdown\n"); 1955 return -ENODEV; 1956 } 1957 } 1958 1959 return ret; 1960 } 1961 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1962 1963 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1964 struct request_queue *q) 1965 { 1966 bool vwc = false; 1967 1968 if (ctrl->max_hw_sectors) { 1969 u32 max_segments = 1970 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1971 1972 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1973 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1974 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1975 } 1976 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1977 is_power_of_2(ctrl->max_hw_sectors)) 1978 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1979 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1980 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1981 vwc = true; 1982 blk_queue_write_cache(q, vwc, vwc); 1983 } 1984 1985 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1986 { 1987 __le64 ts; 1988 int ret; 1989 1990 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1991 return 0; 1992 1993 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1994 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1995 NULL); 1996 if (ret) 1997 dev_warn_once(ctrl->device, 1998 "could not set timestamp (%d)\n", ret); 1999 return ret; 2000 } 2001 2002 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2003 { 2004 struct nvme_feat_host_behavior *host; 2005 int ret; 2006 2007 /* Don't bother enabling the feature if retry delay is not reported */ 2008 if (!ctrl->crdt[0]) 2009 return 0; 2010 2011 host = kzalloc(sizeof(*host), GFP_KERNEL); 2012 if (!host) 2013 return 0; 2014 2015 host->acre = NVME_ENABLE_ACRE; 2016 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2017 host, sizeof(*host), NULL); 2018 kfree(host); 2019 return ret; 2020 } 2021 2022 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2023 { 2024 /* 2025 * APST (Autonomous Power State Transition) lets us program a 2026 * table of power state transitions that the controller will 2027 * perform automatically. We configure it with a simple 2028 * heuristic: we are willing to spend at most 2% of the time 2029 * transitioning between power states. Therefore, when running 2030 * in any given state, we will enter the next lower-power 2031 * non-operational state after waiting 50 * (enlat + exlat) 2032 * microseconds, as long as that state's exit latency is under 2033 * the requested maximum latency. 2034 * 2035 * We will not autonomously enter any non-operational state for 2036 * which the total latency exceeds ps_max_latency_us. Users 2037 * can set ps_max_latency_us to zero to turn off APST. 2038 */ 2039 2040 unsigned apste; 2041 struct nvme_feat_auto_pst *table; 2042 u64 max_lat_us = 0; 2043 int max_ps = -1; 2044 int ret; 2045 2046 /* 2047 * If APST isn't supported or if we haven't been initialized yet, 2048 * then don't do anything. 2049 */ 2050 if (!ctrl->apsta) 2051 return 0; 2052 2053 if (ctrl->npss > 31) { 2054 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2055 return 0; 2056 } 2057 2058 table = kzalloc(sizeof(*table), GFP_KERNEL); 2059 if (!table) 2060 return 0; 2061 2062 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2063 /* Turn off APST. */ 2064 apste = 0; 2065 dev_dbg(ctrl->device, "APST disabled\n"); 2066 } else { 2067 __le64 target = cpu_to_le64(0); 2068 int state; 2069 2070 /* 2071 * Walk through all states from lowest- to highest-power. 2072 * According to the spec, lower-numbered states use more 2073 * power. NPSS, despite the name, is the index of the 2074 * lowest-power state, not the number of states. 2075 */ 2076 for (state = (int)ctrl->npss; state >= 0; state--) { 2077 u64 total_latency_us, exit_latency_us, transition_ms; 2078 2079 if (target) 2080 table->entries[state] = target; 2081 2082 /* 2083 * Don't allow transitions to the deepest state 2084 * if it's quirked off. 2085 */ 2086 if (state == ctrl->npss && 2087 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2088 continue; 2089 2090 /* 2091 * Is this state a useful non-operational state for 2092 * higher-power states to autonomously transition to? 2093 */ 2094 if (!(ctrl->psd[state].flags & 2095 NVME_PS_FLAGS_NON_OP_STATE)) 2096 continue; 2097 2098 exit_latency_us = 2099 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2100 if (exit_latency_us > ctrl->ps_max_latency_us) 2101 continue; 2102 2103 total_latency_us = 2104 exit_latency_us + 2105 le32_to_cpu(ctrl->psd[state].entry_lat); 2106 2107 /* 2108 * This state is good. Use it as the APST idle 2109 * target for higher power states. 2110 */ 2111 transition_ms = total_latency_us + 19; 2112 do_div(transition_ms, 20); 2113 if (transition_ms > (1 << 24) - 1) 2114 transition_ms = (1 << 24) - 1; 2115 2116 target = cpu_to_le64((state << 3) | 2117 (transition_ms << 8)); 2118 2119 if (max_ps == -1) 2120 max_ps = state; 2121 2122 if (total_latency_us > max_lat_us) 2123 max_lat_us = total_latency_us; 2124 } 2125 2126 apste = 1; 2127 2128 if (max_ps == -1) { 2129 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2130 } else { 2131 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2132 max_ps, max_lat_us, (int)sizeof(*table), table); 2133 } 2134 } 2135 2136 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2137 table, sizeof(*table), NULL); 2138 if (ret) 2139 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2140 2141 kfree(table); 2142 return ret; 2143 } 2144 2145 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2146 { 2147 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2148 u64 latency; 2149 2150 switch (val) { 2151 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2152 case PM_QOS_LATENCY_ANY: 2153 latency = U64_MAX; 2154 break; 2155 2156 default: 2157 latency = val; 2158 } 2159 2160 if (ctrl->ps_max_latency_us != latency) { 2161 ctrl->ps_max_latency_us = latency; 2162 nvme_configure_apst(ctrl); 2163 } 2164 } 2165 2166 struct nvme_core_quirk_entry { 2167 /* 2168 * NVMe model and firmware strings are padded with spaces. For 2169 * simplicity, strings in the quirk table are padded with NULLs 2170 * instead. 2171 */ 2172 u16 vid; 2173 const char *mn; 2174 const char *fr; 2175 unsigned long quirks; 2176 }; 2177 2178 static const struct nvme_core_quirk_entry core_quirks[] = { 2179 { 2180 /* 2181 * This Toshiba device seems to die using any APST states. See: 2182 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2183 */ 2184 .vid = 0x1179, 2185 .mn = "THNSF5256GPUK TOSHIBA", 2186 .quirks = NVME_QUIRK_NO_APST, 2187 } 2188 }; 2189 2190 /* match is null-terminated but idstr is space-padded. */ 2191 static bool string_matches(const char *idstr, const char *match, size_t len) 2192 { 2193 size_t matchlen; 2194 2195 if (!match) 2196 return true; 2197 2198 matchlen = strlen(match); 2199 WARN_ON_ONCE(matchlen > len); 2200 2201 if (memcmp(idstr, match, matchlen)) 2202 return false; 2203 2204 for (; matchlen < len; matchlen++) 2205 if (idstr[matchlen] != ' ') 2206 return false; 2207 2208 return true; 2209 } 2210 2211 static bool quirk_matches(const struct nvme_id_ctrl *id, 2212 const struct nvme_core_quirk_entry *q) 2213 { 2214 return q->vid == le16_to_cpu(id->vid) && 2215 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2216 string_matches(id->fr, q->fr, sizeof(id->fr)); 2217 } 2218 2219 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2220 struct nvme_id_ctrl *id) 2221 { 2222 size_t nqnlen; 2223 int off; 2224 2225 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2226 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2227 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2228 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2229 return; 2230 } 2231 2232 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2233 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2234 } 2235 2236 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2237 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2238 "nqn.2014.08.org.nvmexpress:%04x%04x", 2239 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2240 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2241 off += sizeof(id->sn); 2242 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2243 off += sizeof(id->mn); 2244 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2245 } 2246 2247 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2248 { 2249 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2250 kfree(subsys); 2251 } 2252 2253 static void nvme_release_subsystem(struct device *dev) 2254 { 2255 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2256 } 2257 2258 static void nvme_destroy_subsystem(struct kref *ref) 2259 { 2260 struct nvme_subsystem *subsys = 2261 container_of(ref, struct nvme_subsystem, ref); 2262 2263 mutex_lock(&nvme_subsystems_lock); 2264 list_del(&subsys->entry); 2265 mutex_unlock(&nvme_subsystems_lock); 2266 2267 ida_destroy(&subsys->ns_ida); 2268 device_del(&subsys->dev); 2269 put_device(&subsys->dev); 2270 } 2271 2272 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2273 { 2274 kref_put(&subsys->ref, nvme_destroy_subsystem); 2275 } 2276 2277 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2278 { 2279 struct nvme_subsystem *subsys; 2280 2281 lockdep_assert_held(&nvme_subsystems_lock); 2282 2283 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2284 if (strcmp(subsys->subnqn, subsysnqn)) 2285 continue; 2286 if (!kref_get_unless_zero(&subsys->ref)) 2287 continue; 2288 return subsys; 2289 } 2290 2291 return NULL; 2292 } 2293 2294 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2295 struct device_attribute subsys_attr_##_name = \ 2296 __ATTR(_name, _mode, _show, NULL) 2297 2298 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2299 struct device_attribute *attr, 2300 char *buf) 2301 { 2302 struct nvme_subsystem *subsys = 2303 container_of(dev, struct nvme_subsystem, dev); 2304 2305 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2306 } 2307 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2308 2309 #define nvme_subsys_show_str_function(field) \ 2310 static ssize_t subsys_##field##_show(struct device *dev, \ 2311 struct device_attribute *attr, char *buf) \ 2312 { \ 2313 struct nvme_subsystem *subsys = \ 2314 container_of(dev, struct nvme_subsystem, dev); \ 2315 return sprintf(buf, "%.*s\n", \ 2316 (int)sizeof(subsys->field), subsys->field); \ 2317 } \ 2318 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2319 2320 nvme_subsys_show_str_function(model); 2321 nvme_subsys_show_str_function(serial); 2322 nvme_subsys_show_str_function(firmware_rev); 2323 2324 static struct attribute *nvme_subsys_attrs[] = { 2325 &subsys_attr_model.attr, 2326 &subsys_attr_serial.attr, 2327 &subsys_attr_firmware_rev.attr, 2328 &subsys_attr_subsysnqn.attr, 2329 #ifdef CONFIG_NVME_MULTIPATH 2330 &subsys_attr_iopolicy.attr, 2331 #endif 2332 NULL, 2333 }; 2334 2335 static struct attribute_group nvme_subsys_attrs_group = { 2336 .attrs = nvme_subsys_attrs, 2337 }; 2338 2339 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2340 &nvme_subsys_attrs_group, 2341 NULL, 2342 }; 2343 2344 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2345 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2346 { 2347 struct nvme_ctrl *tmp; 2348 2349 lockdep_assert_held(&nvme_subsystems_lock); 2350 2351 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2352 if (ctrl->state == NVME_CTRL_DELETING || 2353 ctrl->state == NVME_CTRL_DEAD) 2354 continue; 2355 2356 if (tmp->cntlid == ctrl->cntlid) { 2357 dev_err(ctrl->device, 2358 "Duplicate cntlid %u with %s, rejecting\n", 2359 ctrl->cntlid, dev_name(tmp->device)); 2360 return false; 2361 } 2362 2363 if ((id->cmic & (1 << 1)) || 2364 (ctrl->opts && ctrl->opts->discovery_nqn)) 2365 continue; 2366 2367 dev_err(ctrl->device, 2368 "Subsystem does not support multiple controllers\n"); 2369 return false; 2370 } 2371 2372 return true; 2373 } 2374 2375 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2376 { 2377 struct nvme_subsystem *subsys, *found; 2378 int ret; 2379 2380 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2381 if (!subsys) 2382 return -ENOMEM; 2383 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2384 if (ret < 0) { 2385 kfree(subsys); 2386 return ret; 2387 } 2388 subsys->instance = ret; 2389 mutex_init(&subsys->lock); 2390 kref_init(&subsys->ref); 2391 INIT_LIST_HEAD(&subsys->ctrls); 2392 INIT_LIST_HEAD(&subsys->nsheads); 2393 nvme_init_subnqn(subsys, ctrl, id); 2394 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2395 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2396 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2397 subsys->vendor_id = le16_to_cpu(id->vid); 2398 subsys->cmic = id->cmic; 2399 #ifdef CONFIG_NVME_MULTIPATH 2400 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2401 #endif 2402 2403 subsys->dev.class = nvme_subsys_class; 2404 subsys->dev.release = nvme_release_subsystem; 2405 subsys->dev.groups = nvme_subsys_attrs_groups; 2406 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2407 device_initialize(&subsys->dev); 2408 2409 mutex_lock(&nvme_subsystems_lock); 2410 found = __nvme_find_get_subsystem(subsys->subnqn); 2411 if (found) { 2412 __nvme_release_subsystem(subsys); 2413 subsys = found; 2414 2415 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2416 ret = -EINVAL; 2417 goto out_put_subsystem; 2418 } 2419 } else { 2420 ret = device_add(&subsys->dev); 2421 if (ret) { 2422 dev_err(ctrl->device, 2423 "failed to register subsystem device.\n"); 2424 goto out_unlock; 2425 } 2426 ida_init(&subsys->ns_ida); 2427 list_add_tail(&subsys->entry, &nvme_subsystems); 2428 } 2429 2430 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2431 dev_name(ctrl->device))) { 2432 dev_err(ctrl->device, 2433 "failed to create sysfs link from subsystem.\n"); 2434 goto out_put_subsystem; 2435 } 2436 2437 ctrl->subsys = subsys; 2438 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2439 mutex_unlock(&nvme_subsystems_lock); 2440 return 0; 2441 2442 out_put_subsystem: 2443 nvme_put_subsystem(subsys); 2444 out_unlock: 2445 mutex_unlock(&nvme_subsystems_lock); 2446 put_device(&subsys->dev); 2447 return ret; 2448 } 2449 2450 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2451 void *log, size_t size, u64 offset) 2452 { 2453 struct nvme_command c = { }; 2454 unsigned long dwlen = size / 4 - 1; 2455 2456 c.get_log_page.opcode = nvme_admin_get_log_page; 2457 c.get_log_page.nsid = cpu_to_le32(nsid); 2458 c.get_log_page.lid = log_page; 2459 c.get_log_page.lsp = lsp; 2460 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2461 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2462 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2463 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2464 2465 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2466 } 2467 2468 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2469 { 2470 int ret; 2471 2472 if (!ctrl->effects) 2473 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2474 2475 if (!ctrl->effects) 2476 return 0; 2477 2478 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2479 ctrl->effects, sizeof(*ctrl->effects), 0); 2480 if (ret) { 2481 kfree(ctrl->effects); 2482 ctrl->effects = NULL; 2483 } 2484 return ret; 2485 } 2486 2487 /* 2488 * Initialize the cached copies of the Identify data and various controller 2489 * register in our nvme_ctrl structure. This should be called as soon as 2490 * the admin queue is fully up and running. 2491 */ 2492 int nvme_init_identify(struct nvme_ctrl *ctrl) 2493 { 2494 struct nvme_id_ctrl *id; 2495 u64 cap; 2496 int ret, page_shift; 2497 u32 max_hw_sectors; 2498 bool prev_apst_enabled; 2499 2500 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2501 if (ret) { 2502 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2503 return ret; 2504 } 2505 2506 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2507 if (ret) { 2508 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2509 return ret; 2510 } 2511 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2512 2513 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2514 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2515 2516 ret = nvme_identify_ctrl(ctrl, &id); 2517 if (ret) { 2518 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2519 return -EIO; 2520 } 2521 2522 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2523 ret = nvme_get_effects_log(ctrl); 2524 if (ret < 0) 2525 goto out_free; 2526 } 2527 2528 if (!ctrl->identified) { 2529 int i; 2530 2531 ret = nvme_init_subsystem(ctrl, id); 2532 if (ret) 2533 goto out_free; 2534 2535 /* 2536 * Check for quirks. Quirk can depend on firmware version, 2537 * so, in principle, the set of quirks present can change 2538 * across a reset. As a possible future enhancement, we 2539 * could re-scan for quirks every time we reinitialize 2540 * the device, but we'd have to make sure that the driver 2541 * behaves intelligently if the quirks change. 2542 */ 2543 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2544 if (quirk_matches(id, &core_quirks[i])) 2545 ctrl->quirks |= core_quirks[i].quirks; 2546 } 2547 } 2548 2549 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2550 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2551 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2552 } 2553 2554 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2555 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2556 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2557 2558 ctrl->oacs = le16_to_cpu(id->oacs); 2559 ctrl->oncs = le16_to_cpu(id->oncs); 2560 ctrl->oaes = le32_to_cpu(id->oaes); 2561 atomic_set(&ctrl->abort_limit, id->acl + 1); 2562 ctrl->vwc = id->vwc; 2563 if (id->mdts) 2564 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2565 else 2566 max_hw_sectors = UINT_MAX; 2567 ctrl->max_hw_sectors = 2568 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2569 2570 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2571 ctrl->sgls = le32_to_cpu(id->sgls); 2572 ctrl->kas = le16_to_cpu(id->kas); 2573 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2574 ctrl->ctratt = le32_to_cpu(id->ctratt); 2575 2576 if (id->rtd3e) { 2577 /* us -> s */ 2578 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2579 2580 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2581 shutdown_timeout, 60); 2582 2583 if (ctrl->shutdown_timeout != shutdown_timeout) 2584 dev_info(ctrl->device, 2585 "Shutdown timeout set to %u seconds\n", 2586 ctrl->shutdown_timeout); 2587 } else 2588 ctrl->shutdown_timeout = shutdown_timeout; 2589 2590 ctrl->npss = id->npss; 2591 ctrl->apsta = id->apsta; 2592 prev_apst_enabled = ctrl->apst_enabled; 2593 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2594 if (force_apst && id->apsta) { 2595 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2596 ctrl->apst_enabled = true; 2597 } else { 2598 ctrl->apst_enabled = false; 2599 } 2600 } else { 2601 ctrl->apst_enabled = id->apsta; 2602 } 2603 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2604 2605 if (ctrl->ops->flags & NVME_F_FABRICS) { 2606 ctrl->icdoff = le16_to_cpu(id->icdoff); 2607 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2608 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2609 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2610 2611 /* 2612 * In fabrics we need to verify the cntlid matches the 2613 * admin connect 2614 */ 2615 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2616 ret = -EINVAL; 2617 goto out_free; 2618 } 2619 2620 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2621 dev_err(ctrl->device, 2622 "keep-alive support is mandatory for fabrics\n"); 2623 ret = -EINVAL; 2624 goto out_free; 2625 } 2626 } else { 2627 ctrl->cntlid = le16_to_cpu(id->cntlid); 2628 ctrl->hmpre = le32_to_cpu(id->hmpre); 2629 ctrl->hmmin = le32_to_cpu(id->hmmin); 2630 ctrl->hmminds = le32_to_cpu(id->hmminds); 2631 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2632 } 2633 2634 ret = nvme_mpath_init(ctrl, id); 2635 kfree(id); 2636 2637 if (ret < 0) 2638 return ret; 2639 2640 if (ctrl->apst_enabled && !prev_apst_enabled) 2641 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2642 else if (!ctrl->apst_enabled && prev_apst_enabled) 2643 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2644 2645 ret = nvme_configure_apst(ctrl); 2646 if (ret < 0) 2647 return ret; 2648 2649 ret = nvme_configure_timestamp(ctrl); 2650 if (ret < 0) 2651 return ret; 2652 2653 ret = nvme_configure_directives(ctrl); 2654 if (ret < 0) 2655 return ret; 2656 2657 ret = nvme_configure_acre(ctrl); 2658 if (ret < 0) 2659 return ret; 2660 2661 ctrl->identified = true; 2662 2663 return 0; 2664 2665 out_free: 2666 kfree(id); 2667 return ret; 2668 } 2669 EXPORT_SYMBOL_GPL(nvme_init_identify); 2670 2671 static int nvme_dev_open(struct inode *inode, struct file *file) 2672 { 2673 struct nvme_ctrl *ctrl = 2674 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2675 2676 switch (ctrl->state) { 2677 case NVME_CTRL_LIVE: 2678 case NVME_CTRL_ADMIN_ONLY: 2679 break; 2680 default: 2681 return -EWOULDBLOCK; 2682 } 2683 2684 file->private_data = ctrl; 2685 return 0; 2686 } 2687 2688 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2689 { 2690 struct nvme_ns *ns; 2691 int ret; 2692 2693 down_read(&ctrl->namespaces_rwsem); 2694 if (list_empty(&ctrl->namespaces)) { 2695 ret = -ENOTTY; 2696 goto out_unlock; 2697 } 2698 2699 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2700 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2701 dev_warn(ctrl->device, 2702 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2703 ret = -EINVAL; 2704 goto out_unlock; 2705 } 2706 2707 dev_warn(ctrl->device, 2708 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2709 kref_get(&ns->kref); 2710 up_read(&ctrl->namespaces_rwsem); 2711 2712 ret = nvme_user_cmd(ctrl, ns, argp); 2713 nvme_put_ns(ns); 2714 return ret; 2715 2716 out_unlock: 2717 up_read(&ctrl->namespaces_rwsem); 2718 return ret; 2719 } 2720 2721 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2722 unsigned long arg) 2723 { 2724 struct nvme_ctrl *ctrl = file->private_data; 2725 void __user *argp = (void __user *)arg; 2726 2727 switch (cmd) { 2728 case NVME_IOCTL_ADMIN_CMD: 2729 return nvme_user_cmd(ctrl, NULL, argp); 2730 case NVME_IOCTL_IO_CMD: 2731 return nvme_dev_user_cmd(ctrl, argp); 2732 case NVME_IOCTL_RESET: 2733 dev_warn(ctrl->device, "resetting controller\n"); 2734 return nvme_reset_ctrl_sync(ctrl); 2735 case NVME_IOCTL_SUBSYS_RESET: 2736 return nvme_reset_subsystem(ctrl); 2737 case NVME_IOCTL_RESCAN: 2738 nvme_queue_scan(ctrl); 2739 return 0; 2740 default: 2741 return -ENOTTY; 2742 } 2743 } 2744 2745 static const struct file_operations nvme_dev_fops = { 2746 .owner = THIS_MODULE, 2747 .open = nvme_dev_open, 2748 .unlocked_ioctl = nvme_dev_ioctl, 2749 .compat_ioctl = nvme_dev_ioctl, 2750 }; 2751 2752 static ssize_t nvme_sysfs_reset(struct device *dev, 2753 struct device_attribute *attr, const char *buf, 2754 size_t count) 2755 { 2756 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2757 int ret; 2758 2759 ret = nvme_reset_ctrl_sync(ctrl); 2760 if (ret < 0) 2761 return ret; 2762 return count; 2763 } 2764 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2765 2766 static ssize_t nvme_sysfs_rescan(struct device *dev, 2767 struct device_attribute *attr, const char *buf, 2768 size_t count) 2769 { 2770 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2771 2772 nvme_queue_scan(ctrl); 2773 return count; 2774 } 2775 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2776 2777 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2778 { 2779 struct gendisk *disk = dev_to_disk(dev); 2780 2781 if (disk->fops == &nvme_fops) 2782 return nvme_get_ns_from_dev(dev)->head; 2783 else 2784 return disk->private_data; 2785 } 2786 2787 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2788 char *buf) 2789 { 2790 struct nvme_ns_head *head = dev_to_ns_head(dev); 2791 struct nvme_ns_ids *ids = &head->ids; 2792 struct nvme_subsystem *subsys = head->subsys; 2793 int serial_len = sizeof(subsys->serial); 2794 int model_len = sizeof(subsys->model); 2795 2796 if (!uuid_is_null(&ids->uuid)) 2797 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2798 2799 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2800 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2801 2802 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2803 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2804 2805 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2806 subsys->serial[serial_len - 1] == '\0')) 2807 serial_len--; 2808 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2809 subsys->model[model_len - 1] == '\0')) 2810 model_len--; 2811 2812 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2813 serial_len, subsys->serial, model_len, subsys->model, 2814 head->ns_id); 2815 } 2816 static DEVICE_ATTR_RO(wwid); 2817 2818 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2819 char *buf) 2820 { 2821 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2822 } 2823 static DEVICE_ATTR_RO(nguid); 2824 2825 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2826 char *buf) 2827 { 2828 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2829 2830 /* For backward compatibility expose the NGUID to userspace if 2831 * we have no UUID set 2832 */ 2833 if (uuid_is_null(&ids->uuid)) { 2834 printk_ratelimited(KERN_WARNING 2835 "No UUID available providing old NGUID\n"); 2836 return sprintf(buf, "%pU\n", ids->nguid); 2837 } 2838 return sprintf(buf, "%pU\n", &ids->uuid); 2839 } 2840 static DEVICE_ATTR_RO(uuid); 2841 2842 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2843 char *buf) 2844 { 2845 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2846 } 2847 static DEVICE_ATTR_RO(eui); 2848 2849 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2850 char *buf) 2851 { 2852 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2853 } 2854 static DEVICE_ATTR_RO(nsid); 2855 2856 static struct attribute *nvme_ns_id_attrs[] = { 2857 &dev_attr_wwid.attr, 2858 &dev_attr_uuid.attr, 2859 &dev_attr_nguid.attr, 2860 &dev_attr_eui.attr, 2861 &dev_attr_nsid.attr, 2862 #ifdef CONFIG_NVME_MULTIPATH 2863 &dev_attr_ana_grpid.attr, 2864 &dev_attr_ana_state.attr, 2865 #endif 2866 NULL, 2867 }; 2868 2869 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2870 struct attribute *a, int n) 2871 { 2872 struct device *dev = container_of(kobj, struct device, kobj); 2873 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2874 2875 if (a == &dev_attr_uuid.attr) { 2876 if (uuid_is_null(&ids->uuid) && 2877 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2878 return 0; 2879 } 2880 if (a == &dev_attr_nguid.attr) { 2881 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2882 return 0; 2883 } 2884 if (a == &dev_attr_eui.attr) { 2885 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2886 return 0; 2887 } 2888 #ifdef CONFIG_NVME_MULTIPATH 2889 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2890 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2891 return 0; 2892 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2893 return 0; 2894 } 2895 #endif 2896 return a->mode; 2897 } 2898 2899 static const struct attribute_group nvme_ns_id_attr_group = { 2900 .attrs = nvme_ns_id_attrs, 2901 .is_visible = nvme_ns_id_attrs_are_visible, 2902 }; 2903 2904 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2905 &nvme_ns_id_attr_group, 2906 #ifdef CONFIG_NVM 2907 &nvme_nvm_attr_group, 2908 #endif 2909 NULL, 2910 }; 2911 2912 #define nvme_show_str_function(field) \ 2913 static ssize_t field##_show(struct device *dev, \ 2914 struct device_attribute *attr, char *buf) \ 2915 { \ 2916 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2917 return sprintf(buf, "%.*s\n", \ 2918 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2919 } \ 2920 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2921 2922 nvme_show_str_function(model); 2923 nvme_show_str_function(serial); 2924 nvme_show_str_function(firmware_rev); 2925 2926 #define nvme_show_int_function(field) \ 2927 static ssize_t field##_show(struct device *dev, \ 2928 struct device_attribute *attr, char *buf) \ 2929 { \ 2930 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2931 return sprintf(buf, "%d\n", ctrl->field); \ 2932 } \ 2933 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2934 2935 nvme_show_int_function(cntlid); 2936 nvme_show_int_function(numa_node); 2937 2938 static ssize_t nvme_sysfs_delete(struct device *dev, 2939 struct device_attribute *attr, const char *buf, 2940 size_t count) 2941 { 2942 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2943 2944 if (device_remove_file_self(dev, attr)) 2945 nvme_delete_ctrl_sync(ctrl); 2946 return count; 2947 } 2948 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2949 2950 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2951 struct device_attribute *attr, 2952 char *buf) 2953 { 2954 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2955 2956 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2957 } 2958 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2959 2960 static ssize_t nvme_sysfs_show_state(struct device *dev, 2961 struct device_attribute *attr, 2962 char *buf) 2963 { 2964 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2965 static const char *const state_name[] = { 2966 [NVME_CTRL_NEW] = "new", 2967 [NVME_CTRL_LIVE] = "live", 2968 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2969 [NVME_CTRL_RESETTING] = "resetting", 2970 [NVME_CTRL_CONNECTING] = "connecting", 2971 [NVME_CTRL_DELETING] = "deleting", 2972 [NVME_CTRL_DEAD] = "dead", 2973 }; 2974 2975 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2976 state_name[ctrl->state]) 2977 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2978 2979 return sprintf(buf, "unknown state\n"); 2980 } 2981 2982 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2983 2984 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2985 struct device_attribute *attr, 2986 char *buf) 2987 { 2988 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2989 2990 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2991 } 2992 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2993 2994 static ssize_t nvme_sysfs_show_address(struct device *dev, 2995 struct device_attribute *attr, 2996 char *buf) 2997 { 2998 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2999 3000 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3001 } 3002 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3003 3004 static struct attribute *nvme_dev_attrs[] = { 3005 &dev_attr_reset_controller.attr, 3006 &dev_attr_rescan_controller.attr, 3007 &dev_attr_model.attr, 3008 &dev_attr_serial.attr, 3009 &dev_attr_firmware_rev.attr, 3010 &dev_attr_cntlid.attr, 3011 &dev_attr_delete_controller.attr, 3012 &dev_attr_transport.attr, 3013 &dev_attr_subsysnqn.attr, 3014 &dev_attr_address.attr, 3015 &dev_attr_state.attr, 3016 &dev_attr_numa_node.attr, 3017 NULL 3018 }; 3019 3020 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3021 struct attribute *a, int n) 3022 { 3023 struct device *dev = container_of(kobj, struct device, kobj); 3024 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3025 3026 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3027 return 0; 3028 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3029 return 0; 3030 3031 return a->mode; 3032 } 3033 3034 static struct attribute_group nvme_dev_attrs_group = { 3035 .attrs = nvme_dev_attrs, 3036 .is_visible = nvme_dev_attrs_are_visible, 3037 }; 3038 3039 static const struct attribute_group *nvme_dev_attr_groups[] = { 3040 &nvme_dev_attrs_group, 3041 NULL, 3042 }; 3043 3044 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3045 unsigned nsid) 3046 { 3047 struct nvme_ns_head *h; 3048 3049 lockdep_assert_held(&subsys->lock); 3050 3051 list_for_each_entry(h, &subsys->nsheads, entry) { 3052 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3053 return h; 3054 } 3055 3056 return NULL; 3057 } 3058 3059 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3060 struct nvme_ns_head *new) 3061 { 3062 struct nvme_ns_head *h; 3063 3064 lockdep_assert_held(&subsys->lock); 3065 3066 list_for_each_entry(h, &subsys->nsheads, entry) { 3067 if (nvme_ns_ids_valid(&new->ids) && 3068 !list_empty(&h->list) && 3069 nvme_ns_ids_equal(&new->ids, &h->ids)) 3070 return -EINVAL; 3071 } 3072 3073 return 0; 3074 } 3075 3076 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3077 unsigned nsid, struct nvme_id_ns *id) 3078 { 3079 struct nvme_ns_head *head; 3080 size_t size = sizeof(*head); 3081 int ret = -ENOMEM; 3082 3083 #ifdef CONFIG_NVME_MULTIPATH 3084 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3085 #endif 3086 3087 head = kzalloc(size, GFP_KERNEL); 3088 if (!head) 3089 goto out; 3090 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3091 if (ret < 0) 3092 goto out_free_head; 3093 head->instance = ret; 3094 INIT_LIST_HEAD(&head->list); 3095 ret = init_srcu_struct(&head->srcu); 3096 if (ret) 3097 goto out_ida_remove; 3098 head->subsys = ctrl->subsys; 3099 head->ns_id = nsid; 3100 kref_init(&head->ref); 3101 3102 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3103 3104 ret = __nvme_check_ids(ctrl->subsys, head); 3105 if (ret) { 3106 dev_err(ctrl->device, 3107 "duplicate IDs for nsid %d\n", nsid); 3108 goto out_cleanup_srcu; 3109 } 3110 3111 ret = nvme_mpath_alloc_disk(ctrl, head); 3112 if (ret) 3113 goto out_cleanup_srcu; 3114 3115 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3116 3117 kref_get(&ctrl->subsys->ref); 3118 3119 return head; 3120 out_cleanup_srcu: 3121 cleanup_srcu_struct(&head->srcu); 3122 out_ida_remove: 3123 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3124 out_free_head: 3125 kfree(head); 3126 out: 3127 return ERR_PTR(ret); 3128 } 3129 3130 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3131 struct nvme_id_ns *id) 3132 { 3133 struct nvme_ctrl *ctrl = ns->ctrl; 3134 bool is_shared = id->nmic & (1 << 0); 3135 struct nvme_ns_head *head = NULL; 3136 int ret = 0; 3137 3138 mutex_lock(&ctrl->subsys->lock); 3139 if (is_shared) 3140 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3141 if (!head) { 3142 head = nvme_alloc_ns_head(ctrl, nsid, id); 3143 if (IS_ERR(head)) { 3144 ret = PTR_ERR(head); 3145 goto out_unlock; 3146 } 3147 } else { 3148 struct nvme_ns_ids ids; 3149 3150 nvme_report_ns_ids(ctrl, nsid, id, &ids); 3151 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3152 dev_err(ctrl->device, 3153 "IDs don't match for shared namespace %d\n", 3154 nsid); 3155 ret = -EINVAL; 3156 goto out_unlock; 3157 } 3158 } 3159 3160 list_add_tail(&ns->siblings, &head->list); 3161 ns->head = head; 3162 3163 out_unlock: 3164 mutex_unlock(&ctrl->subsys->lock); 3165 return ret; 3166 } 3167 3168 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3169 { 3170 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3171 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3172 3173 return nsa->head->ns_id - nsb->head->ns_id; 3174 } 3175 3176 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3177 { 3178 struct nvme_ns *ns, *ret = NULL; 3179 3180 down_read(&ctrl->namespaces_rwsem); 3181 list_for_each_entry(ns, &ctrl->namespaces, list) { 3182 if (ns->head->ns_id == nsid) { 3183 if (!kref_get_unless_zero(&ns->kref)) 3184 continue; 3185 ret = ns; 3186 break; 3187 } 3188 if (ns->head->ns_id > nsid) 3189 break; 3190 } 3191 up_read(&ctrl->namespaces_rwsem); 3192 return ret; 3193 } 3194 3195 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3196 { 3197 struct streams_directive_params s; 3198 int ret; 3199 3200 if (!ctrl->nr_streams) 3201 return 0; 3202 3203 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3204 if (ret) 3205 return ret; 3206 3207 ns->sws = le32_to_cpu(s.sws); 3208 ns->sgs = le16_to_cpu(s.sgs); 3209 3210 if (ns->sws) { 3211 unsigned int bs = 1 << ns->lba_shift; 3212 3213 blk_queue_io_min(ns->queue, bs * ns->sws); 3214 if (ns->sgs) 3215 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3216 } 3217 3218 return 0; 3219 } 3220 3221 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3222 { 3223 struct nvme_ns *ns; 3224 struct gendisk *disk; 3225 struct nvme_id_ns *id; 3226 char disk_name[DISK_NAME_LEN]; 3227 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3228 3229 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3230 if (!ns) 3231 return -ENOMEM; 3232 3233 ns->queue = blk_mq_init_queue(ctrl->tagset); 3234 if (IS_ERR(ns->queue)) { 3235 ret = PTR_ERR(ns->queue); 3236 goto out_free_ns; 3237 } 3238 3239 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3240 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3241 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3242 3243 ns->queue->queuedata = ns; 3244 ns->ctrl = ctrl; 3245 3246 kref_init(&ns->kref); 3247 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3248 3249 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3250 nvme_set_queue_limits(ctrl, ns->queue); 3251 3252 id = nvme_identify_ns(ctrl, nsid); 3253 if (!id) { 3254 ret = -EIO; 3255 goto out_free_queue; 3256 } 3257 3258 if (id->ncap == 0) { 3259 ret = -EINVAL; 3260 goto out_free_id; 3261 } 3262 3263 ret = nvme_init_ns_head(ns, nsid, id); 3264 if (ret) 3265 goto out_free_id; 3266 nvme_setup_streams_ns(ctrl, ns); 3267 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3268 3269 disk = alloc_disk_node(0, node); 3270 if (!disk) { 3271 ret = -ENOMEM; 3272 goto out_unlink_ns; 3273 } 3274 3275 disk->fops = &nvme_fops; 3276 disk->private_data = ns; 3277 disk->queue = ns->queue; 3278 disk->flags = flags; 3279 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3280 ns->disk = disk; 3281 3282 __nvme_revalidate_disk(disk, id); 3283 3284 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3285 ret = nvme_nvm_register(ns, disk_name, node); 3286 if (ret) { 3287 dev_warn(ctrl->device, "LightNVM init failure\n"); 3288 goto out_put_disk; 3289 } 3290 } 3291 3292 down_write(&ctrl->namespaces_rwsem); 3293 list_add_tail(&ns->list, &ctrl->namespaces); 3294 up_write(&ctrl->namespaces_rwsem); 3295 3296 nvme_get_ctrl(ctrl); 3297 3298 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3299 3300 nvme_mpath_add_disk(ns, id); 3301 nvme_fault_inject_init(ns); 3302 kfree(id); 3303 3304 return 0; 3305 out_put_disk: 3306 put_disk(ns->disk); 3307 out_unlink_ns: 3308 mutex_lock(&ctrl->subsys->lock); 3309 list_del_rcu(&ns->siblings); 3310 mutex_unlock(&ctrl->subsys->lock); 3311 nvme_put_ns_head(ns->head); 3312 out_free_id: 3313 kfree(id); 3314 out_free_queue: 3315 blk_cleanup_queue(ns->queue); 3316 out_free_ns: 3317 kfree(ns); 3318 return ret; 3319 } 3320 3321 static void nvme_ns_remove(struct nvme_ns *ns) 3322 { 3323 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3324 return; 3325 3326 nvme_fault_inject_fini(ns); 3327 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3328 del_gendisk(ns->disk); 3329 blk_cleanup_queue(ns->queue); 3330 if (blk_get_integrity(ns->disk)) 3331 blk_integrity_unregister(ns->disk); 3332 } 3333 3334 mutex_lock(&ns->ctrl->subsys->lock); 3335 list_del_rcu(&ns->siblings); 3336 nvme_mpath_clear_current_path(ns); 3337 mutex_unlock(&ns->ctrl->subsys->lock); 3338 3339 down_write(&ns->ctrl->namespaces_rwsem); 3340 list_del_init(&ns->list); 3341 up_write(&ns->ctrl->namespaces_rwsem); 3342 3343 synchronize_srcu(&ns->head->srcu); 3344 nvme_mpath_check_last_path(ns); 3345 nvme_put_ns(ns); 3346 } 3347 3348 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3349 { 3350 struct nvme_ns *ns; 3351 3352 ns = nvme_find_get_ns(ctrl, nsid); 3353 if (ns) { 3354 if (ns->disk && revalidate_disk(ns->disk)) 3355 nvme_ns_remove(ns); 3356 nvme_put_ns(ns); 3357 } else 3358 nvme_alloc_ns(ctrl, nsid); 3359 } 3360 3361 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3362 unsigned nsid) 3363 { 3364 struct nvme_ns *ns, *next; 3365 LIST_HEAD(rm_list); 3366 3367 down_write(&ctrl->namespaces_rwsem); 3368 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3369 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3370 list_move_tail(&ns->list, &rm_list); 3371 } 3372 up_write(&ctrl->namespaces_rwsem); 3373 3374 list_for_each_entry_safe(ns, next, &rm_list, list) 3375 nvme_ns_remove(ns); 3376 3377 } 3378 3379 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3380 { 3381 struct nvme_ns *ns; 3382 __le32 *ns_list; 3383 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3384 int ret = 0; 3385 3386 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3387 if (!ns_list) 3388 return -ENOMEM; 3389 3390 for (i = 0; i < num_lists; i++) { 3391 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3392 if (ret) 3393 goto free; 3394 3395 for (j = 0; j < min(nn, 1024U); j++) { 3396 nsid = le32_to_cpu(ns_list[j]); 3397 if (!nsid) 3398 goto out; 3399 3400 nvme_validate_ns(ctrl, nsid); 3401 3402 while (++prev < nsid) { 3403 ns = nvme_find_get_ns(ctrl, prev); 3404 if (ns) { 3405 nvme_ns_remove(ns); 3406 nvme_put_ns(ns); 3407 } 3408 } 3409 } 3410 nn -= j; 3411 } 3412 out: 3413 nvme_remove_invalid_namespaces(ctrl, prev); 3414 free: 3415 kfree(ns_list); 3416 return ret; 3417 } 3418 3419 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3420 { 3421 unsigned i; 3422 3423 for (i = 1; i <= nn; i++) 3424 nvme_validate_ns(ctrl, i); 3425 3426 nvme_remove_invalid_namespaces(ctrl, nn); 3427 } 3428 3429 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3430 { 3431 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3432 __le32 *log; 3433 int error; 3434 3435 log = kzalloc(log_size, GFP_KERNEL); 3436 if (!log) 3437 return; 3438 3439 /* 3440 * We need to read the log to clear the AEN, but we don't want to rely 3441 * on it for the changed namespace information as userspace could have 3442 * raced with us in reading the log page, which could cause us to miss 3443 * updates. 3444 */ 3445 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3446 log_size, 0); 3447 if (error) 3448 dev_warn(ctrl->device, 3449 "reading changed ns log failed: %d\n", error); 3450 3451 kfree(log); 3452 } 3453 3454 static void nvme_scan_work(struct work_struct *work) 3455 { 3456 struct nvme_ctrl *ctrl = 3457 container_of(work, struct nvme_ctrl, scan_work); 3458 struct nvme_id_ctrl *id; 3459 unsigned nn; 3460 3461 if (ctrl->state != NVME_CTRL_LIVE) 3462 return; 3463 3464 WARN_ON_ONCE(!ctrl->tagset); 3465 3466 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3467 dev_info(ctrl->device, "rescanning namespaces.\n"); 3468 nvme_clear_changed_ns_log(ctrl); 3469 } 3470 3471 if (nvme_identify_ctrl(ctrl, &id)) 3472 return; 3473 3474 mutex_lock(&ctrl->scan_lock); 3475 nn = le32_to_cpu(id->nn); 3476 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3477 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3478 if (!nvme_scan_ns_list(ctrl, nn)) 3479 goto out_free_id; 3480 } 3481 nvme_scan_ns_sequential(ctrl, nn); 3482 out_free_id: 3483 mutex_unlock(&ctrl->scan_lock); 3484 kfree(id); 3485 down_write(&ctrl->namespaces_rwsem); 3486 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3487 up_write(&ctrl->namespaces_rwsem); 3488 } 3489 3490 /* 3491 * This function iterates the namespace list unlocked to allow recovery from 3492 * controller failure. It is up to the caller to ensure the namespace list is 3493 * not modified by scan work while this function is executing. 3494 */ 3495 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3496 { 3497 struct nvme_ns *ns, *next; 3498 LIST_HEAD(ns_list); 3499 3500 /* prevent racing with ns scanning */ 3501 flush_work(&ctrl->scan_work); 3502 3503 /* 3504 * The dead states indicates the controller was not gracefully 3505 * disconnected. In that case, we won't be able to flush any data while 3506 * removing the namespaces' disks; fail all the queues now to avoid 3507 * potentially having to clean up the failed sync later. 3508 */ 3509 if (ctrl->state == NVME_CTRL_DEAD) 3510 nvme_kill_queues(ctrl); 3511 3512 down_write(&ctrl->namespaces_rwsem); 3513 list_splice_init(&ctrl->namespaces, &ns_list); 3514 up_write(&ctrl->namespaces_rwsem); 3515 3516 list_for_each_entry_safe(ns, next, &ns_list, list) 3517 nvme_ns_remove(ns); 3518 } 3519 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3520 3521 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3522 { 3523 char *envp[2] = { NULL, NULL }; 3524 u32 aen_result = ctrl->aen_result; 3525 3526 ctrl->aen_result = 0; 3527 if (!aen_result) 3528 return; 3529 3530 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3531 if (!envp[0]) 3532 return; 3533 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3534 kfree(envp[0]); 3535 } 3536 3537 static void nvme_async_event_work(struct work_struct *work) 3538 { 3539 struct nvme_ctrl *ctrl = 3540 container_of(work, struct nvme_ctrl, async_event_work); 3541 3542 nvme_aen_uevent(ctrl); 3543 ctrl->ops->submit_async_event(ctrl); 3544 } 3545 3546 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3547 { 3548 3549 u32 csts; 3550 3551 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3552 return false; 3553 3554 if (csts == ~0) 3555 return false; 3556 3557 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3558 } 3559 3560 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3561 { 3562 struct nvme_fw_slot_info_log *log; 3563 3564 log = kmalloc(sizeof(*log), GFP_KERNEL); 3565 if (!log) 3566 return; 3567 3568 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3569 sizeof(*log), 0)) 3570 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3571 kfree(log); 3572 } 3573 3574 static void nvme_fw_act_work(struct work_struct *work) 3575 { 3576 struct nvme_ctrl *ctrl = container_of(work, 3577 struct nvme_ctrl, fw_act_work); 3578 unsigned long fw_act_timeout; 3579 3580 if (ctrl->mtfa) 3581 fw_act_timeout = jiffies + 3582 msecs_to_jiffies(ctrl->mtfa * 100); 3583 else 3584 fw_act_timeout = jiffies + 3585 msecs_to_jiffies(admin_timeout * 1000); 3586 3587 nvme_stop_queues(ctrl); 3588 while (nvme_ctrl_pp_status(ctrl)) { 3589 if (time_after(jiffies, fw_act_timeout)) { 3590 dev_warn(ctrl->device, 3591 "Fw activation timeout, reset controller\n"); 3592 nvme_reset_ctrl(ctrl); 3593 break; 3594 } 3595 msleep(100); 3596 } 3597 3598 if (ctrl->state != NVME_CTRL_LIVE) 3599 return; 3600 3601 nvme_start_queues(ctrl); 3602 /* read FW slot information to clear the AER */ 3603 nvme_get_fw_slot_info(ctrl); 3604 } 3605 3606 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3607 { 3608 u32 aer_notice_type = (result & 0xff00) >> 8; 3609 3610 trace_nvme_async_event(ctrl, aer_notice_type); 3611 3612 switch (aer_notice_type) { 3613 case NVME_AER_NOTICE_NS_CHANGED: 3614 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3615 nvme_queue_scan(ctrl); 3616 break; 3617 case NVME_AER_NOTICE_FW_ACT_STARTING: 3618 queue_work(nvme_wq, &ctrl->fw_act_work); 3619 break; 3620 #ifdef CONFIG_NVME_MULTIPATH 3621 case NVME_AER_NOTICE_ANA: 3622 if (!ctrl->ana_log_buf) 3623 break; 3624 queue_work(nvme_wq, &ctrl->ana_work); 3625 break; 3626 #endif 3627 default: 3628 dev_warn(ctrl->device, "async event result %08x\n", result); 3629 } 3630 } 3631 3632 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3633 volatile union nvme_result *res) 3634 { 3635 u32 result = le32_to_cpu(res->u32); 3636 u32 aer_type = result & 0x07; 3637 3638 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3639 return; 3640 3641 switch (aer_type) { 3642 case NVME_AER_NOTICE: 3643 nvme_handle_aen_notice(ctrl, result); 3644 break; 3645 case NVME_AER_ERROR: 3646 case NVME_AER_SMART: 3647 case NVME_AER_CSS: 3648 case NVME_AER_VS: 3649 trace_nvme_async_event(ctrl, aer_type); 3650 ctrl->aen_result = result; 3651 break; 3652 default: 3653 break; 3654 } 3655 queue_work(nvme_wq, &ctrl->async_event_work); 3656 } 3657 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3658 3659 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3660 { 3661 nvme_mpath_stop(ctrl); 3662 nvme_stop_keep_alive(ctrl); 3663 flush_work(&ctrl->async_event_work); 3664 cancel_work_sync(&ctrl->fw_act_work); 3665 } 3666 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3667 3668 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3669 { 3670 if (ctrl->kato) 3671 nvme_start_keep_alive(ctrl); 3672 3673 if (ctrl->queue_count > 1) { 3674 nvme_queue_scan(ctrl); 3675 nvme_enable_aen(ctrl); 3676 queue_work(nvme_wq, &ctrl->async_event_work); 3677 nvme_start_queues(ctrl); 3678 } 3679 } 3680 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3681 3682 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3683 { 3684 cdev_device_del(&ctrl->cdev, ctrl->device); 3685 } 3686 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3687 3688 static void nvme_free_ctrl(struct device *dev) 3689 { 3690 struct nvme_ctrl *ctrl = 3691 container_of(dev, struct nvme_ctrl, ctrl_device); 3692 struct nvme_subsystem *subsys = ctrl->subsys; 3693 3694 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3695 kfree(ctrl->effects); 3696 nvme_mpath_uninit(ctrl); 3697 __free_page(ctrl->discard_page); 3698 3699 if (subsys) { 3700 mutex_lock(&nvme_subsystems_lock); 3701 list_del(&ctrl->subsys_entry); 3702 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3703 mutex_unlock(&nvme_subsystems_lock); 3704 } 3705 3706 ctrl->ops->free_ctrl(ctrl); 3707 3708 if (subsys) 3709 nvme_put_subsystem(subsys); 3710 } 3711 3712 /* 3713 * Initialize a NVMe controller structures. This needs to be called during 3714 * earliest initialization so that we have the initialized structured around 3715 * during probing. 3716 */ 3717 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3718 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3719 { 3720 int ret; 3721 3722 ctrl->state = NVME_CTRL_NEW; 3723 spin_lock_init(&ctrl->lock); 3724 mutex_init(&ctrl->scan_lock); 3725 INIT_LIST_HEAD(&ctrl->namespaces); 3726 init_rwsem(&ctrl->namespaces_rwsem); 3727 ctrl->dev = dev; 3728 ctrl->ops = ops; 3729 ctrl->quirks = quirks; 3730 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3731 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3732 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3733 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3734 3735 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3736 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3737 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3738 3739 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 3740 PAGE_SIZE); 3741 ctrl->discard_page = alloc_page(GFP_KERNEL); 3742 if (!ctrl->discard_page) { 3743 ret = -ENOMEM; 3744 goto out; 3745 } 3746 3747 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3748 if (ret < 0) 3749 goto out; 3750 ctrl->instance = ret; 3751 3752 device_initialize(&ctrl->ctrl_device); 3753 ctrl->device = &ctrl->ctrl_device; 3754 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3755 ctrl->device->class = nvme_class; 3756 ctrl->device->parent = ctrl->dev; 3757 ctrl->device->groups = nvme_dev_attr_groups; 3758 ctrl->device->release = nvme_free_ctrl; 3759 dev_set_drvdata(ctrl->device, ctrl); 3760 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3761 if (ret) 3762 goto out_release_instance; 3763 3764 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3765 ctrl->cdev.owner = ops->module; 3766 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3767 if (ret) 3768 goto out_free_name; 3769 3770 /* 3771 * Initialize latency tolerance controls. The sysfs files won't 3772 * be visible to userspace unless the device actually supports APST. 3773 */ 3774 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3775 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3776 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3777 3778 return 0; 3779 out_free_name: 3780 kfree_const(ctrl->device->kobj.name); 3781 out_release_instance: 3782 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3783 out: 3784 if (ctrl->discard_page) 3785 __free_page(ctrl->discard_page); 3786 return ret; 3787 } 3788 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3789 3790 /** 3791 * nvme_kill_queues(): Ends all namespace queues 3792 * @ctrl: the dead controller that needs to end 3793 * 3794 * Call this function when the driver determines it is unable to get the 3795 * controller in a state capable of servicing IO. 3796 */ 3797 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3798 { 3799 struct nvme_ns *ns; 3800 3801 down_read(&ctrl->namespaces_rwsem); 3802 3803 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3804 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3805 blk_mq_unquiesce_queue(ctrl->admin_q); 3806 3807 list_for_each_entry(ns, &ctrl->namespaces, list) 3808 nvme_set_queue_dying(ns); 3809 3810 up_read(&ctrl->namespaces_rwsem); 3811 } 3812 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3813 3814 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3815 { 3816 struct nvme_ns *ns; 3817 3818 down_read(&ctrl->namespaces_rwsem); 3819 list_for_each_entry(ns, &ctrl->namespaces, list) 3820 blk_mq_unfreeze_queue(ns->queue); 3821 up_read(&ctrl->namespaces_rwsem); 3822 } 3823 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3824 3825 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3826 { 3827 struct nvme_ns *ns; 3828 3829 down_read(&ctrl->namespaces_rwsem); 3830 list_for_each_entry(ns, &ctrl->namespaces, list) { 3831 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3832 if (timeout <= 0) 3833 break; 3834 } 3835 up_read(&ctrl->namespaces_rwsem); 3836 } 3837 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3838 3839 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3840 { 3841 struct nvme_ns *ns; 3842 3843 down_read(&ctrl->namespaces_rwsem); 3844 list_for_each_entry(ns, &ctrl->namespaces, list) 3845 blk_mq_freeze_queue_wait(ns->queue); 3846 up_read(&ctrl->namespaces_rwsem); 3847 } 3848 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3849 3850 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3851 { 3852 struct nvme_ns *ns; 3853 3854 down_read(&ctrl->namespaces_rwsem); 3855 list_for_each_entry(ns, &ctrl->namespaces, list) 3856 blk_freeze_queue_start(ns->queue); 3857 up_read(&ctrl->namespaces_rwsem); 3858 } 3859 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3860 3861 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3862 { 3863 struct nvme_ns *ns; 3864 3865 down_read(&ctrl->namespaces_rwsem); 3866 list_for_each_entry(ns, &ctrl->namespaces, list) 3867 blk_mq_quiesce_queue(ns->queue); 3868 up_read(&ctrl->namespaces_rwsem); 3869 } 3870 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3871 3872 void nvme_start_queues(struct nvme_ctrl *ctrl) 3873 { 3874 struct nvme_ns *ns; 3875 3876 down_read(&ctrl->namespaces_rwsem); 3877 list_for_each_entry(ns, &ctrl->namespaces, list) 3878 blk_mq_unquiesce_queue(ns->queue); 3879 up_read(&ctrl->namespaces_rwsem); 3880 } 3881 EXPORT_SYMBOL_GPL(nvme_start_queues); 3882 3883 /* 3884 * Check we didn't inadvertently grow the command structure sizes: 3885 */ 3886 static inline void _nvme_check_size(void) 3887 { 3888 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 3889 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 3890 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 3891 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 3892 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 3893 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 3894 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 3895 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 3896 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 3897 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 3898 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 3899 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 3900 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 3901 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 3902 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 3903 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 3904 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 3905 } 3906 3907 3908 static int __init nvme_core_init(void) 3909 { 3910 int result = -ENOMEM; 3911 3912 _nvme_check_size(); 3913 3914 nvme_wq = alloc_workqueue("nvme-wq", 3915 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3916 if (!nvme_wq) 3917 goto out; 3918 3919 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3920 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3921 if (!nvme_reset_wq) 3922 goto destroy_wq; 3923 3924 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3925 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3926 if (!nvme_delete_wq) 3927 goto destroy_reset_wq; 3928 3929 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3930 if (result < 0) 3931 goto destroy_delete_wq; 3932 3933 nvme_class = class_create(THIS_MODULE, "nvme"); 3934 if (IS_ERR(nvme_class)) { 3935 result = PTR_ERR(nvme_class); 3936 goto unregister_chrdev; 3937 } 3938 3939 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3940 if (IS_ERR(nvme_subsys_class)) { 3941 result = PTR_ERR(nvme_subsys_class); 3942 goto destroy_class; 3943 } 3944 return 0; 3945 3946 destroy_class: 3947 class_destroy(nvme_class); 3948 unregister_chrdev: 3949 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3950 destroy_delete_wq: 3951 destroy_workqueue(nvme_delete_wq); 3952 destroy_reset_wq: 3953 destroy_workqueue(nvme_reset_wq); 3954 destroy_wq: 3955 destroy_workqueue(nvme_wq); 3956 out: 3957 return result; 3958 } 3959 3960 static void __exit nvme_core_exit(void) 3961 { 3962 ida_destroy(&nvme_subsystems_ida); 3963 class_destroy(nvme_subsys_class); 3964 class_destroy(nvme_class); 3965 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3966 destroy_workqueue(nvme_delete_wq); 3967 destroy_workqueue(nvme_reset_wq); 3968 destroy_workqueue(nvme_wq); 3969 } 3970 3971 MODULE_LICENSE("GPL"); 3972 MODULE_VERSION("1.0"); 3973 module_init(nvme_core_init); 3974 module_exit(nvme_core_exit); 3975