xref: /openbmc/linux/drivers/nvme/host/core.c (revision fc772314)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int _nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 }
175 
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178 	struct nvme_ctrl *ctrl =
179 		container_of(work, struct nvme_ctrl, delete_work);
180 
181 	nvme_do_delete_ctrl(ctrl);
182 }
183 
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		return -EBUSY;
188 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189 		return -EBUSY;
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193 
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196 	/*
197 	 * Keep a reference until nvme_do_delete_ctrl() complete,
198 	 * since ->delete_ctrl can free the controller.
199 	 */
200 	nvme_get_ctrl(ctrl);
201 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 		nvme_do_delete_ctrl(ctrl);
203 	nvme_put_ctrl(ctrl);
204 }
205 
206 static blk_status_t nvme_error_status(u16 status)
207 {
208 	switch (status & 0x7ff) {
209 	case NVME_SC_SUCCESS:
210 		return BLK_STS_OK;
211 	case NVME_SC_CAP_EXCEEDED:
212 		return BLK_STS_NOSPC;
213 	case NVME_SC_LBA_RANGE:
214 	case NVME_SC_CMD_INTERRUPTED:
215 	case NVME_SC_NS_NOT_READY:
216 		return BLK_STS_TARGET;
217 	case NVME_SC_BAD_ATTRIBUTES:
218 	case NVME_SC_ONCS_NOT_SUPPORTED:
219 	case NVME_SC_INVALID_OPCODE:
220 	case NVME_SC_INVALID_FIELD:
221 	case NVME_SC_INVALID_NS:
222 		return BLK_STS_NOTSUPP;
223 	case NVME_SC_WRITE_FAULT:
224 	case NVME_SC_READ_ERROR:
225 	case NVME_SC_UNWRITTEN_BLOCK:
226 	case NVME_SC_ACCESS_DENIED:
227 	case NVME_SC_READ_ONLY:
228 	case NVME_SC_COMPARE_FAILED:
229 		return BLK_STS_MEDIUM;
230 	case NVME_SC_GUARD_CHECK:
231 	case NVME_SC_APPTAG_CHECK:
232 	case NVME_SC_REFTAG_CHECK:
233 	case NVME_SC_INVALID_PI:
234 		return BLK_STS_PROTECTION;
235 	case NVME_SC_RESERVATION_CONFLICT:
236 		return BLK_STS_NEXUS;
237 	case NVME_SC_HOST_PATH_ERROR:
238 		return BLK_STS_TRANSPORT;
239 	default:
240 		return BLK_STS_IOERR;
241 	}
242 }
243 
244 static void nvme_retry_req(struct request *req)
245 {
246 	struct nvme_ns *ns = req->q->queuedata;
247 	unsigned long delay = 0;
248 	u16 crd;
249 
250 	/* The mask and shift result must be <= 3 */
251 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
252 	if (ns && crd)
253 		delay = ns->ctrl->crdt[crd - 1] * 100;
254 
255 	nvme_req(req)->retries++;
256 	blk_mq_requeue_request(req, false);
257 	blk_mq_delay_kick_requeue_list(req->q, delay);
258 }
259 
260 enum nvme_disposition {
261 	COMPLETE,
262 	RETRY,
263 	FAILOVER,
264 };
265 
266 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
267 {
268 	if (likely(nvme_req(req)->status == 0))
269 		return COMPLETE;
270 
271 	if (blk_noretry_request(req) ||
272 	    (nvme_req(req)->status & NVME_SC_DNR) ||
273 	    nvme_req(req)->retries >= nvme_max_retries)
274 		return COMPLETE;
275 
276 	if (req->cmd_flags & REQ_NVME_MPATH) {
277 		if (nvme_is_path_error(nvme_req(req)->status) ||
278 		    blk_queue_dying(req->q))
279 			return FAILOVER;
280 	} else {
281 		if (blk_queue_dying(req->q))
282 			return COMPLETE;
283 	}
284 
285 	return RETRY;
286 }
287 
288 static inline void nvme_end_req(struct request *req)
289 {
290 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
291 
292 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
293 	    req_op(req) == REQ_OP_ZONE_APPEND)
294 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
295 			le64_to_cpu(nvme_req(req)->result.u64));
296 
297 	nvme_trace_bio_complete(req, status);
298 	blk_mq_end_request(req, status);
299 }
300 
301 void nvme_complete_rq(struct request *req)
302 {
303 	trace_nvme_complete_rq(req);
304 	nvme_cleanup_cmd(req);
305 
306 	if (nvme_req(req)->ctrl->kas)
307 		nvme_req(req)->ctrl->comp_seen = true;
308 
309 	switch (nvme_decide_disposition(req)) {
310 	case COMPLETE:
311 		nvme_end_req(req);
312 		return;
313 	case RETRY:
314 		nvme_retry_req(req);
315 		return;
316 	case FAILOVER:
317 		nvme_failover_req(req);
318 		return;
319 	}
320 }
321 EXPORT_SYMBOL_GPL(nvme_complete_rq);
322 
323 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
324 {
325 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
326 				"Cancelling I/O %d", req->tag);
327 
328 	/* don't abort one completed request */
329 	if (blk_mq_request_completed(req))
330 		return true;
331 
332 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
333 	blk_mq_complete_request(req);
334 	return true;
335 }
336 EXPORT_SYMBOL_GPL(nvme_cancel_request);
337 
338 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
339 		enum nvme_ctrl_state new_state)
340 {
341 	enum nvme_ctrl_state old_state;
342 	unsigned long flags;
343 	bool changed = false;
344 
345 	spin_lock_irqsave(&ctrl->lock, flags);
346 
347 	old_state = ctrl->state;
348 	switch (new_state) {
349 	case NVME_CTRL_LIVE:
350 		switch (old_state) {
351 		case NVME_CTRL_NEW:
352 		case NVME_CTRL_RESETTING:
353 		case NVME_CTRL_CONNECTING:
354 			changed = true;
355 			fallthrough;
356 		default:
357 			break;
358 		}
359 		break;
360 	case NVME_CTRL_RESETTING:
361 		switch (old_state) {
362 		case NVME_CTRL_NEW:
363 		case NVME_CTRL_LIVE:
364 			changed = true;
365 			fallthrough;
366 		default:
367 			break;
368 		}
369 		break;
370 	case NVME_CTRL_CONNECTING:
371 		switch (old_state) {
372 		case NVME_CTRL_NEW:
373 		case NVME_CTRL_RESETTING:
374 			changed = true;
375 			fallthrough;
376 		default:
377 			break;
378 		}
379 		break;
380 	case NVME_CTRL_DELETING:
381 		switch (old_state) {
382 		case NVME_CTRL_LIVE:
383 		case NVME_CTRL_RESETTING:
384 		case NVME_CTRL_CONNECTING:
385 			changed = true;
386 			fallthrough;
387 		default:
388 			break;
389 		}
390 		break;
391 	case NVME_CTRL_DELETING_NOIO:
392 		switch (old_state) {
393 		case NVME_CTRL_DELETING:
394 		case NVME_CTRL_DEAD:
395 			changed = true;
396 			fallthrough;
397 		default:
398 			break;
399 		}
400 		break;
401 	case NVME_CTRL_DEAD:
402 		switch (old_state) {
403 		case NVME_CTRL_DELETING:
404 			changed = true;
405 			fallthrough;
406 		default:
407 			break;
408 		}
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	if (changed) {
415 		ctrl->state = new_state;
416 		wake_up_all(&ctrl->state_wq);
417 	}
418 
419 	spin_unlock_irqrestore(&ctrl->lock, flags);
420 	if (changed && ctrl->state == NVME_CTRL_LIVE)
421 		nvme_kick_requeue_lists(ctrl);
422 	return changed;
423 }
424 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
425 
426 /*
427  * Returns true for sink states that can't ever transition back to live.
428  */
429 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
430 {
431 	switch (ctrl->state) {
432 	case NVME_CTRL_NEW:
433 	case NVME_CTRL_LIVE:
434 	case NVME_CTRL_RESETTING:
435 	case NVME_CTRL_CONNECTING:
436 		return false;
437 	case NVME_CTRL_DELETING:
438 	case NVME_CTRL_DELETING_NOIO:
439 	case NVME_CTRL_DEAD:
440 		return true;
441 	default:
442 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
443 		return true;
444 	}
445 }
446 
447 /*
448  * Waits for the controller state to be resetting, or returns false if it is
449  * not possible to ever transition to that state.
450  */
451 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
452 {
453 	wait_event(ctrl->state_wq,
454 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
455 		   nvme_state_terminal(ctrl));
456 	return ctrl->state == NVME_CTRL_RESETTING;
457 }
458 EXPORT_SYMBOL_GPL(nvme_wait_reset);
459 
460 static void nvme_free_ns_head(struct kref *ref)
461 {
462 	struct nvme_ns_head *head =
463 		container_of(ref, struct nvme_ns_head, ref);
464 
465 	nvme_mpath_remove_disk(head);
466 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
467 	cleanup_srcu_struct(&head->srcu);
468 	nvme_put_subsystem(head->subsys);
469 	kfree(head);
470 }
471 
472 static void nvme_put_ns_head(struct nvme_ns_head *head)
473 {
474 	kref_put(&head->ref, nvme_free_ns_head);
475 }
476 
477 static void nvme_free_ns(struct kref *kref)
478 {
479 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
480 
481 	if (ns->ndev)
482 		nvme_nvm_unregister(ns);
483 
484 	put_disk(ns->disk);
485 	nvme_put_ns_head(ns->head);
486 	nvme_put_ctrl(ns->ctrl);
487 	kfree(ns);
488 }
489 
490 void nvme_put_ns(struct nvme_ns *ns)
491 {
492 	kref_put(&ns->kref, nvme_free_ns);
493 }
494 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
495 
496 static inline void nvme_clear_nvme_request(struct request *req)
497 {
498 	if (!(req->rq_flags & RQF_DONTPREP)) {
499 		nvme_req(req)->retries = 0;
500 		nvme_req(req)->flags = 0;
501 		req->rq_flags |= RQF_DONTPREP;
502 	}
503 }
504 
505 struct request *nvme_alloc_request(struct request_queue *q,
506 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
507 {
508 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
509 	struct request *req;
510 
511 	if (qid == NVME_QID_ANY) {
512 		req = blk_mq_alloc_request(q, op, flags);
513 	} else {
514 		req = blk_mq_alloc_request_hctx(q, op, flags,
515 				qid ? qid - 1 : 0);
516 	}
517 	if (IS_ERR(req))
518 		return req;
519 
520 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
521 	nvme_clear_nvme_request(req);
522 	nvme_req(req)->cmd = cmd;
523 
524 	return req;
525 }
526 EXPORT_SYMBOL_GPL(nvme_alloc_request);
527 
528 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
529 {
530 	struct nvme_command c;
531 
532 	memset(&c, 0, sizeof(c));
533 
534 	c.directive.opcode = nvme_admin_directive_send;
535 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
536 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
537 	c.directive.dtype = NVME_DIR_IDENTIFY;
538 	c.directive.tdtype = NVME_DIR_STREAMS;
539 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
540 
541 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
542 }
543 
544 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
545 {
546 	return nvme_toggle_streams(ctrl, false);
547 }
548 
549 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
550 {
551 	return nvme_toggle_streams(ctrl, true);
552 }
553 
554 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
555 				  struct streams_directive_params *s, u32 nsid)
556 {
557 	struct nvme_command c;
558 
559 	memset(&c, 0, sizeof(c));
560 	memset(s, 0, sizeof(*s));
561 
562 	c.directive.opcode = nvme_admin_directive_recv;
563 	c.directive.nsid = cpu_to_le32(nsid);
564 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
565 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
566 	c.directive.dtype = NVME_DIR_STREAMS;
567 
568 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
569 }
570 
571 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
572 {
573 	struct streams_directive_params s;
574 	int ret;
575 
576 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
577 		return 0;
578 	if (!streams)
579 		return 0;
580 
581 	ret = nvme_enable_streams(ctrl);
582 	if (ret)
583 		return ret;
584 
585 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
586 	if (ret)
587 		goto out_disable_stream;
588 
589 	ctrl->nssa = le16_to_cpu(s.nssa);
590 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
591 		dev_info(ctrl->device, "too few streams (%u) available\n",
592 					ctrl->nssa);
593 		goto out_disable_stream;
594 	}
595 
596 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
597 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
598 	return 0;
599 
600 out_disable_stream:
601 	nvme_disable_streams(ctrl);
602 	return ret;
603 }
604 
605 /*
606  * Check if 'req' has a write hint associated with it. If it does, assign
607  * a valid namespace stream to the write.
608  */
609 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
610 				     struct request *req, u16 *control,
611 				     u32 *dsmgmt)
612 {
613 	enum rw_hint streamid = req->write_hint;
614 
615 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
616 		streamid = 0;
617 	else {
618 		streamid--;
619 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
620 			return;
621 
622 		*control |= NVME_RW_DTYPE_STREAMS;
623 		*dsmgmt |= streamid << 16;
624 	}
625 
626 	if (streamid < ARRAY_SIZE(req->q->write_hints))
627 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
628 }
629 
630 static void nvme_setup_passthrough(struct request *req,
631 		struct nvme_command *cmd)
632 {
633 	memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
634 	/* passthru commands should let the driver set the SGL flags */
635 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
636 }
637 
638 static inline void nvme_setup_flush(struct nvme_ns *ns,
639 		struct nvme_command *cmnd)
640 {
641 	cmnd->common.opcode = nvme_cmd_flush;
642 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
643 }
644 
645 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
646 		struct nvme_command *cmnd)
647 {
648 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
649 	struct nvme_dsm_range *range;
650 	struct bio *bio;
651 
652 	/*
653 	 * Some devices do not consider the DSM 'Number of Ranges' field when
654 	 * determining how much data to DMA. Always allocate memory for maximum
655 	 * number of segments to prevent device reading beyond end of buffer.
656 	 */
657 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
658 
659 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
660 	if (!range) {
661 		/*
662 		 * If we fail allocation our range, fallback to the controller
663 		 * discard page. If that's also busy, it's safe to return
664 		 * busy, as we know we can make progress once that's freed.
665 		 */
666 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
667 			return BLK_STS_RESOURCE;
668 
669 		range = page_address(ns->ctrl->discard_page);
670 	}
671 
672 	__rq_for_each_bio(bio, req) {
673 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
674 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
675 
676 		if (n < segments) {
677 			range[n].cattr = cpu_to_le32(0);
678 			range[n].nlb = cpu_to_le32(nlb);
679 			range[n].slba = cpu_to_le64(slba);
680 		}
681 		n++;
682 	}
683 
684 	if (WARN_ON_ONCE(n != segments)) {
685 		if (virt_to_page(range) == ns->ctrl->discard_page)
686 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
687 		else
688 			kfree(range);
689 		return BLK_STS_IOERR;
690 	}
691 
692 	cmnd->dsm.opcode = nvme_cmd_dsm;
693 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
694 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
695 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
696 
697 	req->special_vec.bv_page = virt_to_page(range);
698 	req->special_vec.bv_offset = offset_in_page(range);
699 	req->special_vec.bv_len = alloc_size;
700 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
701 
702 	return BLK_STS_OK;
703 }
704 
705 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
706 		struct request *req, struct nvme_command *cmnd)
707 {
708 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
709 		return nvme_setup_discard(ns, req, cmnd);
710 
711 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
712 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
713 	cmnd->write_zeroes.slba =
714 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
715 	cmnd->write_zeroes.length =
716 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
717 	cmnd->write_zeroes.control = 0;
718 	return BLK_STS_OK;
719 }
720 
721 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
722 		struct request *req, struct nvme_command *cmnd,
723 		enum nvme_opcode op)
724 {
725 	struct nvme_ctrl *ctrl = ns->ctrl;
726 	u16 control = 0;
727 	u32 dsmgmt = 0;
728 
729 	if (req->cmd_flags & REQ_FUA)
730 		control |= NVME_RW_FUA;
731 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
732 		control |= NVME_RW_LR;
733 
734 	if (req->cmd_flags & REQ_RAHEAD)
735 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
736 
737 	cmnd->rw.opcode = op;
738 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
739 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
740 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
741 
742 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
743 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
744 
745 	if (ns->ms) {
746 		/*
747 		 * If formated with metadata, the block layer always provides a
748 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
749 		 * we enable the PRACT bit for protection information or set the
750 		 * namespace capacity to zero to prevent any I/O.
751 		 */
752 		if (!blk_integrity_rq(req)) {
753 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
754 				return BLK_STS_NOTSUPP;
755 			control |= NVME_RW_PRINFO_PRACT;
756 		}
757 
758 		switch (ns->pi_type) {
759 		case NVME_NS_DPS_PI_TYPE3:
760 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
761 			break;
762 		case NVME_NS_DPS_PI_TYPE1:
763 		case NVME_NS_DPS_PI_TYPE2:
764 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
765 					NVME_RW_PRINFO_PRCHK_REF;
766 			if (op == nvme_cmd_zone_append)
767 				control |= NVME_RW_APPEND_PIREMAP;
768 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
769 			break;
770 		}
771 	}
772 
773 	cmnd->rw.control = cpu_to_le16(control);
774 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
775 	return 0;
776 }
777 
778 void nvme_cleanup_cmd(struct request *req)
779 {
780 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
781 		struct nvme_ns *ns = req->rq_disk->private_data;
782 		struct page *page = req->special_vec.bv_page;
783 
784 		if (page == ns->ctrl->discard_page)
785 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
786 		else
787 			kfree(page_address(page) + req->special_vec.bv_offset);
788 	}
789 }
790 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
791 
792 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
793 		struct nvme_command *cmd)
794 {
795 	blk_status_t ret = BLK_STS_OK;
796 
797 	nvme_clear_nvme_request(req);
798 
799 	memset(cmd, 0, sizeof(*cmd));
800 	switch (req_op(req)) {
801 	case REQ_OP_DRV_IN:
802 	case REQ_OP_DRV_OUT:
803 		nvme_setup_passthrough(req, cmd);
804 		break;
805 	case REQ_OP_FLUSH:
806 		nvme_setup_flush(ns, cmd);
807 		break;
808 	case REQ_OP_ZONE_RESET_ALL:
809 	case REQ_OP_ZONE_RESET:
810 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
811 		break;
812 	case REQ_OP_ZONE_OPEN:
813 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
814 		break;
815 	case REQ_OP_ZONE_CLOSE:
816 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
817 		break;
818 	case REQ_OP_ZONE_FINISH:
819 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
820 		break;
821 	case REQ_OP_WRITE_ZEROES:
822 		ret = nvme_setup_write_zeroes(ns, req, cmd);
823 		break;
824 	case REQ_OP_DISCARD:
825 		ret = nvme_setup_discard(ns, req, cmd);
826 		break;
827 	case REQ_OP_READ:
828 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
829 		break;
830 	case REQ_OP_WRITE:
831 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
832 		break;
833 	case REQ_OP_ZONE_APPEND:
834 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
835 		break;
836 	default:
837 		WARN_ON_ONCE(1);
838 		return BLK_STS_IOERR;
839 	}
840 
841 	cmd->common.command_id = req->tag;
842 	trace_nvme_setup_cmd(req, cmd);
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
846 
847 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
848 {
849 	struct completion *waiting = rq->end_io_data;
850 
851 	rq->end_io_data = NULL;
852 	complete(waiting);
853 }
854 
855 static void nvme_execute_rq_polled(struct request_queue *q,
856 		struct gendisk *bd_disk, struct request *rq, int at_head)
857 {
858 	DECLARE_COMPLETION_ONSTACK(wait);
859 
860 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
861 
862 	rq->cmd_flags |= REQ_HIPRI;
863 	rq->end_io_data = &wait;
864 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
865 
866 	while (!completion_done(&wait)) {
867 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
868 		cond_resched();
869 	}
870 }
871 
872 /*
873  * Returns 0 on success.  If the result is negative, it's a Linux error code;
874  * if the result is positive, it's an NVM Express status code
875  */
876 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
877 		union nvme_result *result, void *buffer, unsigned bufflen,
878 		unsigned timeout, int qid, int at_head,
879 		blk_mq_req_flags_t flags, bool poll)
880 {
881 	struct request *req;
882 	int ret;
883 
884 	req = nvme_alloc_request(q, cmd, flags, qid);
885 	if (IS_ERR(req))
886 		return PTR_ERR(req);
887 
888 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
889 
890 	if (buffer && bufflen) {
891 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
892 		if (ret)
893 			goto out;
894 	}
895 
896 	if (poll)
897 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
898 	else
899 		blk_execute_rq(req->q, NULL, req, at_head);
900 	if (result)
901 		*result = nvme_req(req)->result;
902 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
903 		ret = -EINTR;
904 	else
905 		ret = nvme_req(req)->status;
906  out:
907 	blk_mq_free_request(req);
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
911 
912 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
913 		void *buffer, unsigned bufflen)
914 {
915 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
916 			NVME_QID_ANY, 0, 0, false);
917 }
918 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
919 
920 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
921 		unsigned len, u32 seed, bool write)
922 {
923 	struct bio_integrity_payload *bip;
924 	int ret = -ENOMEM;
925 	void *buf;
926 
927 	buf = kmalloc(len, GFP_KERNEL);
928 	if (!buf)
929 		goto out;
930 
931 	ret = -EFAULT;
932 	if (write && copy_from_user(buf, ubuf, len))
933 		goto out_free_meta;
934 
935 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
936 	if (IS_ERR(bip)) {
937 		ret = PTR_ERR(bip);
938 		goto out_free_meta;
939 	}
940 
941 	bip->bip_iter.bi_size = len;
942 	bip->bip_iter.bi_sector = seed;
943 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
944 			offset_in_page(buf));
945 	if (ret == len)
946 		return buf;
947 	ret = -ENOMEM;
948 out_free_meta:
949 	kfree(buf);
950 out:
951 	return ERR_PTR(ret);
952 }
953 
954 static u32 nvme_known_admin_effects(u8 opcode)
955 {
956 	switch (opcode) {
957 	case nvme_admin_format_nvm:
958 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
959 			NVME_CMD_EFFECTS_CSE_MASK;
960 	case nvme_admin_sanitize_nvm:
961 		return NVME_CMD_EFFECTS_CSE_MASK;
962 	default:
963 		break;
964 	}
965 	return 0;
966 }
967 
968 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
969 {
970 	u32 effects = 0;
971 
972 	if (ns) {
973 		if (ns->head->effects)
974 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
975 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
976 			dev_warn(ctrl->device,
977 				 "IO command:%02x has unhandled effects:%08x\n",
978 				 opcode, effects);
979 		return 0;
980 	}
981 
982 	if (ctrl->effects)
983 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
984 	effects |= nvme_known_admin_effects(opcode);
985 
986 	return effects;
987 }
988 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
989 
990 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
991 			       u8 opcode)
992 {
993 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
994 
995 	/*
996 	 * For simplicity, IO to all namespaces is quiesced even if the command
997 	 * effects say only one namespace is affected.
998 	 */
999 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1000 		mutex_lock(&ctrl->scan_lock);
1001 		mutex_lock(&ctrl->subsys->lock);
1002 		nvme_mpath_start_freeze(ctrl->subsys);
1003 		nvme_mpath_wait_freeze(ctrl->subsys);
1004 		nvme_start_freeze(ctrl);
1005 		nvme_wait_freeze(ctrl);
1006 	}
1007 	return effects;
1008 }
1009 
1010 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects)
1011 {
1012 	struct nvme_ns *ns;
1013 
1014 	down_read(&ctrl->namespaces_rwsem);
1015 	list_for_each_entry(ns, &ctrl->namespaces, list)
1016 		if (_nvme_revalidate_disk(ns->disk))
1017 			nvme_set_queue_dying(ns);
1018 		else if (blk_queue_is_zoned(ns->disk->queue)) {
1019 			/*
1020 			 * IO commands are required to fully revalidate a zoned
1021 			 * device. Force the command effects to trigger rescan
1022 			 * work so report zones can run in a context with
1023 			 * unfrozen IO queues.
1024 			 */
1025 			*effects |= NVME_CMD_EFFECTS_NCC;
1026 		}
1027 	up_read(&ctrl->namespaces_rwsem);
1028 }
1029 
1030 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1031 {
1032 	/*
1033 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1034 	 * prevent memory corruption if a logical block size was changed by
1035 	 * this command.
1036 	 */
1037 	if (effects & NVME_CMD_EFFECTS_LBCC)
1038 		nvme_update_formats(ctrl, &effects);
1039 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1040 		nvme_unfreeze(ctrl);
1041 		nvme_mpath_unfreeze(ctrl->subsys);
1042 		mutex_unlock(&ctrl->subsys->lock);
1043 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1044 		mutex_unlock(&ctrl->scan_lock);
1045 	}
1046 	if (effects & NVME_CMD_EFFECTS_CCC)
1047 		nvme_init_identify(ctrl);
1048 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1049 		nvme_queue_scan(ctrl);
1050 		flush_work(&ctrl->scan_work);
1051 	}
1052 }
1053 
1054 void nvme_execute_passthru_rq(struct request *rq)
1055 {
1056 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1057 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1058 	struct nvme_ns *ns = rq->q->queuedata;
1059 	struct gendisk *disk = ns ? ns->disk : NULL;
1060 	u32 effects;
1061 
1062 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1063 	blk_execute_rq(rq->q, disk, rq, 0);
1064 	nvme_passthru_end(ctrl, effects);
1065 }
1066 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1067 
1068 static int nvme_submit_user_cmd(struct request_queue *q,
1069 		struct nvme_command *cmd, void __user *ubuffer,
1070 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1071 		u32 meta_seed, u64 *result, unsigned timeout)
1072 {
1073 	bool write = nvme_is_write(cmd);
1074 	struct nvme_ns *ns = q->queuedata;
1075 	struct gendisk *disk = ns ? ns->disk : NULL;
1076 	struct request *req;
1077 	struct bio *bio = NULL;
1078 	void *meta = NULL;
1079 	int ret;
1080 
1081 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1082 	if (IS_ERR(req))
1083 		return PTR_ERR(req);
1084 
1085 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1086 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
1087 
1088 	if (ubuffer && bufflen) {
1089 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1090 				GFP_KERNEL);
1091 		if (ret)
1092 			goto out;
1093 		bio = req->bio;
1094 		bio->bi_disk = disk;
1095 		if (disk && meta_buffer && meta_len) {
1096 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1097 					meta_seed, write);
1098 			if (IS_ERR(meta)) {
1099 				ret = PTR_ERR(meta);
1100 				goto out_unmap;
1101 			}
1102 			req->cmd_flags |= REQ_INTEGRITY;
1103 		}
1104 	}
1105 
1106 	nvme_execute_passthru_rq(req);
1107 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1108 		ret = -EINTR;
1109 	else
1110 		ret = nvme_req(req)->status;
1111 	if (result)
1112 		*result = le64_to_cpu(nvme_req(req)->result.u64);
1113 	if (meta && !ret && !write) {
1114 		if (copy_to_user(meta_buffer, meta, meta_len))
1115 			ret = -EFAULT;
1116 	}
1117 	kfree(meta);
1118  out_unmap:
1119 	if (bio)
1120 		blk_rq_unmap_user(bio);
1121  out:
1122 	blk_mq_free_request(req);
1123 	return ret;
1124 }
1125 
1126 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1127 {
1128 	struct nvme_ctrl *ctrl = rq->end_io_data;
1129 	unsigned long flags;
1130 	bool startka = false;
1131 
1132 	blk_mq_free_request(rq);
1133 
1134 	if (status) {
1135 		dev_err(ctrl->device,
1136 			"failed nvme_keep_alive_end_io error=%d\n",
1137 				status);
1138 		return;
1139 	}
1140 
1141 	ctrl->comp_seen = false;
1142 	spin_lock_irqsave(&ctrl->lock, flags);
1143 	if (ctrl->state == NVME_CTRL_LIVE ||
1144 	    ctrl->state == NVME_CTRL_CONNECTING)
1145 		startka = true;
1146 	spin_unlock_irqrestore(&ctrl->lock, flags);
1147 	if (startka)
1148 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1149 }
1150 
1151 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1152 {
1153 	struct request *rq;
1154 
1155 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1156 			NVME_QID_ANY);
1157 	if (IS_ERR(rq))
1158 		return PTR_ERR(rq);
1159 
1160 	rq->timeout = ctrl->kato * HZ;
1161 	rq->end_io_data = ctrl;
1162 
1163 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1164 
1165 	return 0;
1166 }
1167 
1168 static void nvme_keep_alive_work(struct work_struct *work)
1169 {
1170 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1171 			struct nvme_ctrl, ka_work);
1172 	bool comp_seen = ctrl->comp_seen;
1173 
1174 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1175 		dev_dbg(ctrl->device,
1176 			"reschedule traffic based keep-alive timer\n");
1177 		ctrl->comp_seen = false;
1178 		queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1179 		return;
1180 	}
1181 
1182 	if (nvme_keep_alive(ctrl)) {
1183 		/* allocation failure, reset the controller */
1184 		dev_err(ctrl->device, "keep-alive failed\n");
1185 		nvme_reset_ctrl(ctrl);
1186 		return;
1187 	}
1188 }
1189 
1190 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1191 {
1192 	if (unlikely(ctrl->kato == 0))
1193 		return;
1194 
1195 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1196 }
1197 
1198 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1199 {
1200 	if (unlikely(ctrl->kato == 0))
1201 		return;
1202 
1203 	cancel_delayed_work_sync(&ctrl->ka_work);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1206 
1207 /*
1208  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1209  * flag, thus sending any new CNS opcodes has a big chance of not working.
1210  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1211  * (but not for any later version).
1212  */
1213 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1214 {
1215 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1216 		return ctrl->vs < NVME_VS(1, 2, 0);
1217 	return ctrl->vs < NVME_VS(1, 1, 0);
1218 }
1219 
1220 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1221 {
1222 	struct nvme_command c = { };
1223 	int error;
1224 
1225 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1226 	c.identify.opcode = nvme_admin_identify;
1227 	c.identify.cns = NVME_ID_CNS_CTRL;
1228 
1229 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1230 	if (!*id)
1231 		return -ENOMEM;
1232 
1233 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1234 			sizeof(struct nvme_id_ctrl));
1235 	if (error)
1236 		kfree(*id);
1237 	return error;
1238 }
1239 
1240 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1241 {
1242 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1243 }
1244 
1245 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1246 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1247 {
1248 	const char *warn_str = "ctrl returned bogus length:";
1249 	void *data = cur;
1250 
1251 	switch (cur->nidt) {
1252 	case NVME_NIDT_EUI64:
1253 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1254 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1255 				 warn_str, cur->nidl);
1256 			return -1;
1257 		}
1258 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1259 		return NVME_NIDT_EUI64_LEN;
1260 	case NVME_NIDT_NGUID:
1261 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1262 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1263 				 warn_str, cur->nidl);
1264 			return -1;
1265 		}
1266 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1267 		return NVME_NIDT_NGUID_LEN;
1268 	case NVME_NIDT_UUID:
1269 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1270 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1271 				 warn_str, cur->nidl);
1272 			return -1;
1273 		}
1274 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1275 		return NVME_NIDT_UUID_LEN;
1276 	case NVME_NIDT_CSI:
1277 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1278 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1279 				 warn_str, cur->nidl);
1280 			return -1;
1281 		}
1282 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1283 		*csi_seen = true;
1284 		return NVME_NIDT_CSI_LEN;
1285 	default:
1286 		/* Skip unknown types */
1287 		return cur->nidl;
1288 	}
1289 }
1290 
1291 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1292 		struct nvme_ns_ids *ids)
1293 {
1294 	struct nvme_command c = { };
1295 	bool csi_seen = false;
1296 	int status, pos, len;
1297 	void *data;
1298 
1299 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1300 		return 0;
1301 
1302 	c.identify.opcode = nvme_admin_identify;
1303 	c.identify.nsid = cpu_to_le32(nsid);
1304 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1305 
1306 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1307 	if (!data)
1308 		return -ENOMEM;
1309 
1310 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1311 				      NVME_IDENTIFY_DATA_SIZE);
1312 	if (status) {
1313 		dev_warn(ctrl->device,
1314 			"Identify Descriptors failed (%d)\n", status);
1315 		goto free_data;
1316 	}
1317 
1318 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1319 		struct nvme_ns_id_desc *cur = data + pos;
1320 
1321 		if (cur->nidl == 0)
1322 			break;
1323 
1324 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1325 		if (len < 0)
1326 			break;
1327 
1328 		len += sizeof(*cur);
1329 	}
1330 
1331 	if (nvme_multi_css(ctrl) && !csi_seen) {
1332 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1333 			 nsid);
1334 		status = -EINVAL;
1335 	}
1336 
1337 free_data:
1338 	kfree(data);
1339 	return status;
1340 }
1341 
1342 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1343 {
1344 	struct nvme_command c = { };
1345 
1346 	c.identify.opcode = nvme_admin_identify;
1347 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1348 	c.identify.nsid = cpu_to_le32(nsid);
1349 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1350 				    NVME_IDENTIFY_DATA_SIZE);
1351 }
1352 
1353 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1354 		unsigned nsid, struct nvme_id_ns **id)
1355 {
1356 	struct nvme_command c = { };
1357 	int error;
1358 
1359 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1360 	c.identify.opcode = nvme_admin_identify;
1361 	c.identify.nsid = cpu_to_le32(nsid);
1362 	c.identify.cns = NVME_ID_CNS_NS;
1363 
1364 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1365 	if (!*id)
1366 		return -ENOMEM;
1367 
1368 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1369 	if (error) {
1370 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1371 		kfree(*id);
1372 	}
1373 
1374 	return error;
1375 }
1376 
1377 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1378 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1379 {
1380 	union nvme_result res = { 0 };
1381 	struct nvme_command c;
1382 	int ret;
1383 
1384 	memset(&c, 0, sizeof(c));
1385 	c.features.opcode = op;
1386 	c.features.fid = cpu_to_le32(fid);
1387 	c.features.dword11 = cpu_to_le32(dword11);
1388 
1389 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1390 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1391 	if (ret >= 0 && result)
1392 		*result = le32_to_cpu(res.u32);
1393 	return ret;
1394 }
1395 
1396 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1397 		      unsigned int dword11, void *buffer, size_t buflen,
1398 		      u32 *result)
1399 {
1400 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1401 			     buflen, result);
1402 }
1403 EXPORT_SYMBOL_GPL(nvme_set_features);
1404 
1405 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1406 		      unsigned int dword11, void *buffer, size_t buflen,
1407 		      u32 *result)
1408 {
1409 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1410 			     buflen, result);
1411 }
1412 EXPORT_SYMBOL_GPL(nvme_get_features);
1413 
1414 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1415 {
1416 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1417 	u32 result;
1418 	int status, nr_io_queues;
1419 
1420 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1421 			&result);
1422 	if (status < 0)
1423 		return status;
1424 
1425 	/*
1426 	 * Degraded controllers might return an error when setting the queue
1427 	 * count.  We still want to be able to bring them online and offer
1428 	 * access to the admin queue, as that might be only way to fix them up.
1429 	 */
1430 	if (status > 0) {
1431 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1432 		*count = 0;
1433 	} else {
1434 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1435 		*count = min(*count, nr_io_queues);
1436 	}
1437 
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1441 
1442 #define NVME_AEN_SUPPORTED \
1443 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1444 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1445 
1446 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1447 {
1448 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1449 	int status;
1450 
1451 	if (!supported_aens)
1452 		return;
1453 
1454 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1455 			NULL, 0, &result);
1456 	if (status)
1457 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1458 			 supported_aens);
1459 
1460 	queue_work(nvme_wq, &ctrl->async_event_work);
1461 }
1462 
1463 /*
1464  * Convert integer values from ioctl structures to user pointers, silently
1465  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1466  * kernels.
1467  */
1468 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1469 {
1470 	if (in_compat_syscall())
1471 		ptrval = (compat_uptr_t)ptrval;
1472 	return (void __user *)ptrval;
1473 }
1474 
1475 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1476 {
1477 	struct nvme_user_io io;
1478 	struct nvme_command c;
1479 	unsigned length, meta_len;
1480 	void __user *metadata;
1481 
1482 	if (copy_from_user(&io, uio, sizeof(io)))
1483 		return -EFAULT;
1484 	if (io.flags)
1485 		return -EINVAL;
1486 
1487 	switch (io.opcode) {
1488 	case nvme_cmd_write:
1489 	case nvme_cmd_read:
1490 	case nvme_cmd_compare:
1491 		break;
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 
1496 	length = (io.nblocks + 1) << ns->lba_shift;
1497 	meta_len = (io.nblocks + 1) * ns->ms;
1498 	metadata = nvme_to_user_ptr(io.metadata);
1499 
1500 	if (ns->features & NVME_NS_EXT_LBAS) {
1501 		length += meta_len;
1502 		meta_len = 0;
1503 	} else if (meta_len) {
1504 		if ((io.metadata & 3) || !io.metadata)
1505 			return -EINVAL;
1506 	}
1507 
1508 	memset(&c, 0, sizeof(c));
1509 	c.rw.opcode = io.opcode;
1510 	c.rw.flags = io.flags;
1511 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1512 	c.rw.slba = cpu_to_le64(io.slba);
1513 	c.rw.length = cpu_to_le16(io.nblocks);
1514 	c.rw.control = cpu_to_le16(io.control);
1515 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1516 	c.rw.reftag = cpu_to_le32(io.reftag);
1517 	c.rw.apptag = cpu_to_le16(io.apptag);
1518 	c.rw.appmask = cpu_to_le16(io.appmask);
1519 
1520 	return nvme_submit_user_cmd(ns->queue, &c,
1521 			nvme_to_user_ptr(io.addr), length,
1522 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1523 }
1524 
1525 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1526 			struct nvme_passthru_cmd __user *ucmd)
1527 {
1528 	struct nvme_passthru_cmd cmd;
1529 	struct nvme_command c;
1530 	unsigned timeout = 0;
1531 	u64 result;
1532 	int status;
1533 
1534 	if (!capable(CAP_SYS_ADMIN))
1535 		return -EACCES;
1536 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1537 		return -EFAULT;
1538 	if (cmd.flags)
1539 		return -EINVAL;
1540 
1541 	memset(&c, 0, sizeof(c));
1542 	c.common.opcode = cmd.opcode;
1543 	c.common.flags = cmd.flags;
1544 	c.common.nsid = cpu_to_le32(cmd.nsid);
1545 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1546 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1547 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1548 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1549 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1550 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1551 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1552 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1553 
1554 	if (cmd.timeout_ms)
1555 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1556 
1557 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1558 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1559 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1560 			0, &result, timeout);
1561 
1562 	if (status >= 0) {
1563 		if (put_user(result, &ucmd->result))
1564 			return -EFAULT;
1565 	}
1566 
1567 	return status;
1568 }
1569 
1570 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1571 			struct nvme_passthru_cmd64 __user *ucmd)
1572 {
1573 	struct nvme_passthru_cmd64 cmd;
1574 	struct nvme_command c;
1575 	unsigned timeout = 0;
1576 	int status;
1577 
1578 	if (!capable(CAP_SYS_ADMIN))
1579 		return -EACCES;
1580 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1581 		return -EFAULT;
1582 	if (cmd.flags)
1583 		return -EINVAL;
1584 
1585 	memset(&c, 0, sizeof(c));
1586 	c.common.opcode = cmd.opcode;
1587 	c.common.flags = cmd.flags;
1588 	c.common.nsid = cpu_to_le32(cmd.nsid);
1589 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1590 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1591 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1592 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1593 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1594 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1595 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1596 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1597 
1598 	if (cmd.timeout_ms)
1599 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1600 
1601 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1602 			nvme_to_user_ptr(cmd.addr), cmd.data_len,
1603 			nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1604 			0, &cmd.result, timeout);
1605 
1606 	if (status >= 0) {
1607 		if (put_user(cmd.result, &ucmd->result))
1608 			return -EFAULT;
1609 	}
1610 
1611 	return status;
1612 }
1613 
1614 /*
1615  * Issue ioctl requests on the first available path.  Note that unlike normal
1616  * block layer requests we will not retry failed request on another controller.
1617  */
1618 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1619 		struct nvme_ns_head **head, int *srcu_idx)
1620 {
1621 #ifdef CONFIG_NVME_MULTIPATH
1622 	if (disk->fops == &nvme_ns_head_ops) {
1623 		struct nvme_ns *ns;
1624 
1625 		*head = disk->private_data;
1626 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1627 		ns = nvme_find_path(*head);
1628 		if (!ns)
1629 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1630 		return ns;
1631 	}
1632 #endif
1633 	*head = NULL;
1634 	*srcu_idx = -1;
1635 	return disk->private_data;
1636 }
1637 
1638 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1639 {
1640 	if (head)
1641 		srcu_read_unlock(&head->srcu, idx);
1642 }
1643 
1644 static bool is_ctrl_ioctl(unsigned int cmd)
1645 {
1646 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1647 		return true;
1648 	if (is_sed_ioctl(cmd))
1649 		return true;
1650 	return false;
1651 }
1652 
1653 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1654 				  void __user *argp,
1655 				  struct nvme_ns_head *head,
1656 				  int srcu_idx)
1657 {
1658 	struct nvme_ctrl *ctrl = ns->ctrl;
1659 	int ret;
1660 
1661 	nvme_get_ctrl(ns->ctrl);
1662 	nvme_put_ns_from_disk(head, srcu_idx);
1663 
1664 	switch (cmd) {
1665 	case NVME_IOCTL_ADMIN_CMD:
1666 		ret = nvme_user_cmd(ctrl, NULL, argp);
1667 		break;
1668 	case NVME_IOCTL_ADMIN64_CMD:
1669 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1670 		break;
1671 	default:
1672 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1673 		break;
1674 	}
1675 	nvme_put_ctrl(ctrl);
1676 	return ret;
1677 }
1678 
1679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1680 		unsigned int cmd, unsigned long arg)
1681 {
1682 	struct nvme_ns_head *head = NULL;
1683 	void __user *argp = (void __user *)arg;
1684 	struct nvme_ns *ns;
1685 	int srcu_idx, ret;
1686 
1687 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1688 	if (unlikely(!ns))
1689 		return -EWOULDBLOCK;
1690 
1691 	/*
1692 	 * Handle ioctls that apply to the controller instead of the namespace
1693 	 * seperately and drop the ns SRCU reference early.  This avoids a
1694 	 * deadlock when deleting namespaces using the passthrough interface.
1695 	 */
1696 	if (is_ctrl_ioctl(cmd))
1697 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1698 
1699 	switch (cmd) {
1700 	case NVME_IOCTL_ID:
1701 		force_successful_syscall_return();
1702 		ret = ns->head->ns_id;
1703 		break;
1704 	case NVME_IOCTL_IO_CMD:
1705 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1706 		break;
1707 	case NVME_IOCTL_SUBMIT_IO:
1708 		ret = nvme_submit_io(ns, argp);
1709 		break;
1710 	case NVME_IOCTL_IO64_CMD:
1711 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1712 		break;
1713 	default:
1714 		if (ns->ndev)
1715 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1716 		else
1717 			ret = -ENOTTY;
1718 	}
1719 
1720 	nvme_put_ns_from_disk(head, srcu_idx);
1721 	return ret;
1722 }
1723 
1724 #ifdef CONFIG_COMPAT
1725 struct nvme_user_io32 {
1726 	__u8	opcode;
1727 	__u8	flags;
1728 	__u16	control;
1729 	__u16	nblocks;
1730 	__u16	rsvd;
1731 	__u64	metadata;
1732 	__u64	addr;
1733 	__u64	slba;
1734 	__u32	dsmgmt;
1735 	__u32	reftag;
1736 	__u16	apptag;
1737 	__u16	appmask;
1738 } __attribute__((__packed__));
1739 
1740 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
1741 
1742 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1743 		unsigned int cmd, unsigned long arg)
1744 {
1745 	/*
1746 	 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1747 	 * between 32 bit programs and 64 bit kernel.
1748 	 * The cause is that the results of sizeof(struct nvme_user_io),
1749 	 * which is used to define NVME_IOCTL_SUBMIT_IO,
1750 	 * are not same between 32 bit compiler and 64 bit compiler.
1751 	 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1752 	 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1753 	 * Other IOCTL numbers are same between 32 bit and 64 bit.
1754 	 * So there is nothing to do regarding to other IOCTL numbers.
1755 	 */
1756 	if (cmd == NVME_IOCTL_SUBMIT_IO32)
1757 		return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1758 
1759 	return nvme_ioctl(bdev, mode, cmd, arg);
1760 }
1761 #else
1762 #define nvme_compat_ioctl	NULL
1763 #endif /* CONFIG_COMPAT */
1764 
1765 static int nvme_open(struct block_device *bdev, fmode_t mode)
1766 {
1767 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1768 
1769 #ifdef CONFIG_NVME_MULTIPATH
1770 	/* should never be called due to GENHD_FL_HIDDEN */
1771 	if (WARN_ON_ONCE(ns->head->disk))
1772 		goto fail;
1773 #endif
1774 	if (!kref_get_unless_zero(&ns->kref))
1775 		goto fail;
1776 	if (!try_module_get(ns->ctrl->ops->module))
1777 		goto fail_put_ns;
1778 
1779 	return 0;
1780 
1781 fail_put_ns:
1782 	nvme_put_ns(ns);
1783 fail:
1784 	return -ENXIO;
1785 }
1786 
1787 static void nvme_release(struct gendisk *disk, fmode_t mode)
1788 {
1789 	struct nvme_ns *ns = disk->private_data;
1790 
1791 	module_put(ns->ctrl->ops->module);
1792 	nvme_put_ns(ns);
1793 }
1794 
1795 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1796 {
1797 	/* some standard values */
1798 	geo->heads = 1 << 6;
1799 	geo->sectors = 1 << 5;
1800 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1801 	return 0;
1802 }
1803 
1804 #ifdef CONFIG_BLK_DEV_INTEGRITY
1805 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1806 				u32 max_integrity_segments)
1807 {
1808 	struct blk_integrity integrity;
1809 
1810 	memset(&integrity, 0, sizeof(integrity));
1811 	switch (pi_type) {
1812 	case NVME_NS_DPS_PI_TYPE3:
1813 		integrity.profile = &t10_pi_type3_crc;
1814 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1815 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1816 		break;
1817 	case NVME_NS_DPS_PI_TYPE1:
1818 	case NVME_NS_DPS_PI_TYPE2:
1819 		integrity.profile = &t10_pi_type1_crc;
1820 		integrity.tag_size = sizeof(u16);
1821 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1822 		break;
1823 	default:
1824 		integrity.profile = NULL;
1825 		break;
1826 	}
1827 	integrity.tuple_size = ms;
1828 	blk_integrity_register(disk, &integrity);
1829 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1830 }
1831 #else
1832 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1833 				u32 max_integrity_segments)
1834 {
1835 }
1836 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1837 
1838 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1839 {
1840 	struct nvme_ctrl *ctrl = ns->ctrl;
1841 	struct request_queue *queue = disk->queue;
1842 	u32 size = queue_logical_block_size(queue);
1843 
1844 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1845 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1846 		return;
1847 	}
1848 
1849 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1850 		size *= ns->sws * ns->sgs;
1851 
1852 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1853 			NVME_DSM_MAX_RANGES);
1854 
1855 	queue->limits.discard_alignment = 0;
1856 	queue->limits.discard_granularity = size;
1857 
1858 	/* If discard is already enabled, don't reset queue limits */
1859 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1860 		return;
1861 
1862 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1863 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1864 
1865 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1866 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1867 }
1868 
1869 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1870 {
1871 	u64 max_blocks;
1872 
1873 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1874 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1875 		return;
1876 	/*
1877 	 * Even though NVMe spec explicitly states that MDTS is not
1878 	 * applicable to the write-zeroes:- "The restriction does not apply to
1879 	 * commands that do not transfer data between the host and the
1880 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1881 	 * In order to be more cautious use controller's max_hw_sectors value
1882 	 * to configure the maximum sectors for the write-zeroes which is
1883 	 * configured based on the controller's MDTS field in the
1884 	 * nvme_init_identify() if available.
1885 	 */
1886 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1887 		max_blocks = (u64)USHRT_MAX + 1;
1888 	else
1889 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1890 
1891 	blk_queue_max_write_zeroes_sectors(disk->queue,
1892 					   nvme_lba_to_sect(ns, max_blocks));
1893 }
1894 
1895 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1896 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1897 {
1898 	memset(ids, 0, sizeof(*ids));
1899 
1900 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1901 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1902 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1903 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1904 	if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl))
1905 		return nvme_identify_ns_descs(ctrl, nsid, ids);
1906 	return 0;
1907 }
1908 
1909 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1910 {
1911 	return !uuid_is_null(&ids->uuid) ||
1912 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1913 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1914 }
1915 
1916 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1917 {
1918 	return uuid_equal(&a->uuid, &b->uuid) &&
1919 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1920 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1921 		a->csi == b->csi;
1922 }
1923 
1924 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1925 				 u32 *phys_bs, u32 *io_opt)
1926 {
1927 	struct streams_directive_params s;
1928 	int ret;
1929 
1930 	if (!ctrl->nr_streams)
1931 		return 0;
1932 
1933 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1934 	if (ret)
1935 		return ret;
1936 
1937 	ns->sws = le32_to_cpu(s.sws);
1938 	ns->sgs = le16_to_cpu(s.sgs);
1939 
1940 	if (ns->sws) {
1941 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1942 		if (ns->sgs)
1943 			*io_opt = *phys_bs * ns->sgs;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static void nvme_update_disk_info(struct gendisk *disk,
1950 		struct nvme_ns *ns, struct nvme_id_ns *id)
1951 {
1952 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1953 	unsigned short bs = 1 << ns->lba_shift;
1954 	u32 atomic_bs, phys_bs, io_opt = 0;
1955 
1956 	if (ns->lba_shift > PAGE_SHIFT) {
1957 		/* unsupported block size, set capacity to 0 later */
1958 		bs = (1 << 9);
1959 	}
1960 	blk_mq_freeze_queue(disk->queue);
1961 	blk_integrity_unregister(disk);
1962 
1963 	atomic_bs = phys_bs = bs;
1964 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1965 	if (id->nabo == 0) {
1966 		/*
1967 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1968 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1969 		 * 0 then AWUPF must be used instead.
1970 		 */
1971 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1972 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1973 		else
1974 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1975 	}
1976 
1977 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1978 		/* NPWG = Namespace Preferred Write Granularity */
1979 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1980 		/* NOWS = Namespace Optimal Write Size */
1981 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1982 	}
1983 
1984 	blk_queue_logical_block_size(disk->queue, bs);
1985 	/*
1986 	 * Linux filesystems assume writing a single physical block is
1987 	 * an atomic operation. Hence limit the physical block size to the
1988 	 * value of the Atomic Write Unit Power Fail parameter.
1989 	 */
1990 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1991 	blk_queue_io_min(disk->queue, phys_bs);
1992 	blk_queue_io_opt(disk->queue, io_opt);
1993 
1994 	/*
1995 	 * The block layer can't support LBA sizes larger than the page size
1996 	 * yet, so catch this early and don't allow block I/O.
1997 	 */
1998 	if (ns->lba_shift > PAGE_SHIFT)
1999 		capacity = 0;
2000 
2001 	/*
2002 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2003 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2004 	 * I/O to namespaces with metadata except when the namespace supports
2005 	 * PI, as it can strip/insert in that case.
2006 	 */
2007 	if (ns->ms) {
2008 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2009 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
2010 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
2011 					    ns->ctrl->max_integrity_segments);
2012 		else if (!nvme_ns_has_pi(ns))
2013 			capacity = 0;
2014 	}
2015 
2016 	set_capacity_revalidate_and_notify(disk, capacity, false);
2017 
2018 	nvme_config_discard(disk, ns);
2019 	nvme_config_write_zeroes(disk, ns);
2020 
2021 	if (id->nsattr & NVME_NS_ATTR_RO)
2022 		set_disk_ro(disk, true);
2023 	else
2024 		set_disk_ro(disk, false);
2025 
2026 	blk_mq_unfreeze_queue(disk->queue);
2027 }
2028 
2029 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
2030 {
2031 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2032 	struct nvme_ns *ns = disk->private_data;
2033 	struct nvme_ctrl *ctrl = ns->ctrl;
2034 	int ret;
2035 	u32 iob;
2036 
2037 	/*
2038 	 * If identify namespace failed, use default 512 byte block size so
2039 	 * block layer can use before failing read/write for 0 capacity.
2040 	 */
2041 	ns->lba_shift = id->lbaf[lbaf].ds;
2042 	if (ns->lba_shift == 0)
2043 		ns->lba_shift = 9;
2044 
2045 	switch (ns->head->ids.csi) {
2046 	case NVME_CSI_NVM:
2047 		break;
2048 	case NVME_CSI_ZNS:
2049 		ret = nvme_update_zone_info(disk, ns, lbaf);
2050 		if (ret) {
2051 			dev_warn(ctrl->device,
2052 				"failed to add zoned namespace:%u ret:%d\n",
2053 				ns->head->ns_id, ret);
2054 			return ret;
2055 		}
2056 		break;
2057 	default:
2058 		dev_warn(ctrl->device, "unknown csi:%u ns:%u\n",
2059 			ns->head->ids.csi, ns->head->ns_id);
2060 		return -ENODEV;
2061 	}
2062 
2063 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2064 	    is_power_of_2(ctrl->max_hw_sectors))
2065 		iob = ctrl->max_hw_sectors;
2066 	else
2067 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2068 
2069 	ns->features = 0;
2070 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2071 	/* the PI implementation requires metadata equal t10 pi tuple size */
2072 	if (ns->ms == sizeof(struct t10_pi_tuple))
2073 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2074 	else
2075 		ns->pi_type = 0;
2076 
2077 	if (ns->ms) {
2078 		/*
2079 		 * For PCIe only the separate metadata pointer is supported,
2080 		 * as the block layer supplies metadata in a separate bio_vec
2081 		 * chain. For Fabrics, only metadata as part of extended data
2082 		 * LBA is supported on the wire per the Fabrics specification,
2083 		 * but the HBA/HCA will do the remapping from the separate
2084 		 * metadata buffers for us.
2085 		 */
2086 		if (id->flbas & NVME_NS_FLBAS_META_EXT) {
2087 			ns->features |= NVME_NS_EXT_LBAS;
2088 			if ((ctrl->ops->flags & NVME_F_FABRICS) &&
2089 			    (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
2090 			    ctrl->max_integrity_segments)
2091 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2092 		} else {
2093 			if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
2094 				return -EINVAL;
2095 			if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
2096 				ns->features |= NVME_NS_METADATA_SUPPORTED;
2097 		}
2098 	}
2099 
2100 	if (iob && !blk_queue_is_zoned(ns->queue))
2101 		blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
2102 	nvme_update_disk_info(disk, ns, id);
2103 #ifdef CONFIG_NVME_MULTIPATH
2104 	if (ns->head->disk) {
2105 		nvme_update_disk_info(ns->head->disk, ns, id);
2106 		blk_stack_limits(&ns->head->disk->queue->limits,
2107 				 &ns->queue->limits, 0);
2108 		nvme_mpath_update_disk_size(ns->head->disk);
2109 	}
2110 #endif
2111 	return 0;
2112 }
2113 
2114 static int _nvme_revalidate_disk(struct gendisk *disk)
2115 {
2116 	struct nvme_ns *ns = disk->private_data;
2117 	struct nvme_ctrl *ctrl = ns->ctrl;
2118 	struct nvme_id_ns *id;
2119 	struct nvme_ns_ids ids;
2120 	int ret = 0;
2121 
2122 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
2123 		set_capacity(disk, 0);
2124 		return -ENODEV;
2125 	}
2126 
2127 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
2128 	if (ret)
2129 		goto out;
2130 
2131 	if (id->ncap == 0) {
2132 		ret = -ENODEV;
2133 		goto free_id;
2134 	}
2135 
2136 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2137 	if (ret)
2138 		goto free_id;
2139 
2140 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2141 		dev_err(ctrl->device,
2142 			"identifiers changed for nsid %d\n", ns->head->ns_id);
2143 		ret = -ENODEV;
2144 		goto free_id;
2145 	}
2146 
2147 	ret = __nvme_revalidate_disk(disk, id);
2148 free_id:
2149 	kfree(id);
2150 out:
2151 	/*
2152 	 * Only fail the function if we got a fatal error back from the
2153 	 * device, otherwise ignore the error and just move on.
2154 	 */
2155 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2156 		ret = 0;
2157 	else if (ret > 0)
2158 		ret = blk_status_to_errno(nvme_error_status(ret));
2159 	return ret;
2160 }
2161 
2162 static int nvme_revalidate_disk(struct gendisk *disk)
2163 {
2164 	int ret;
2165 
2166 	ret = _nvme_revalidate_disk(disk);
2167 	if (ret)
2168 		return ret;
2169 
2170 #ifdef CONFIG_BLK_DEV_ZONED
2171 	if (blk_queue_is_zoned(disk->queue)) {
2172 		struct nvme_ns *ns = disk->private_data;
2173 		struct nvme_ctrl *ctrl = ns->ctrl;
2174 
2175 		ret = blk_revalidate_disk_zones(disk, NULL);
2176 		if (!ret)
2177 			blk_queue_max_zone_append_sectors(disk->queue,
2178 							  ctrl->max_zone_append);
2179 	}
2180 #endif
2181 	return ret;
2182 }
2183 
2184 static char nvme_pr_type(enum pr_type type)
2185 {
2186 	switch (type) {
2187 	case PR_WRITE_EXCLUSIVE:
2188 		return 1;
2189 	case PR_EXCLUSIVE_ACCESS:
2190 		return 2;
2191 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2192 		return 3;
2193 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2194 		return 4;
2195 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2196 		return 5;
2197 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2198 		return 6;
2199 	default:
2200 		return 0;
2201 	}
2202 };
2203 
2204 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2205 				u64 key, u64 sa_key, u8 op)
2206 {
2207 	struct nvme_ns_head *head = NULL;
2208 	struct nvme_ns *ns;
2209 	struct nvme_command c;
2210 	int srcu_idx, ret;
2211 	u8 data[16] = { 0, };
2212 
2213 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2214 	if (unlikely(!ns))
2215 		return -EWOULDBLOCK;
2216 
2217 	put_unaligned_le64(key, &data[0]);
2218 	put_unaligned_le64(sa_key, &data[8]);
2219 
2220 	memset(&c, 0, sizeof(c));
2221 	c.common.opcode = op;
2222 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
2223 	c.common.cdw10 = cpu_to_le32(cdw10);
2224 
2225 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2226 	nvme_put_ns_from_disk(head, srcu_idx);
2227 	return ret;
2228 }
2229 
2230 static int nvme_pr_register(struct block_device *bdev, u64 old,
2231 		u64 new, unsigned flags)
2232 {
2233 	u32 cdw10;
2234 
2235 	if (flags & ~PR_FL_IGNORE_KEY)
2236 		return -EOPNOTSUPP;
2237 
2238 	cdw10 = old ? 2 : 0;
2239 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2240 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2241 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2242 }
2243 
2244 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2245 		enum pr_type type, unsigned flags)
2246 {
2247 	u32 cdw10;
2248 
2249 	if (flags & ~PR_FL_IGNORE_KEY)
2250 		return -EOPNOTSUPP;
2251 
2252 	cdw10 = nvme_pr_type(type) << 8;
2253 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2254 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2255 }
2256 
2257 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2258 		enum pr_type type, bool abort)
2259 {
2260 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2261 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2262 }
2263 
2264 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2265 {
2266 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2267 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2268 }
2269 
2270 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2271 {
2272 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2273 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2274 }
2275 
2276 static const struct pr_ops nvme_pr_ops = {
2277 	.pr_register	= nvme_pr_register,
2278 	.pr_reserve	= nvme_pr_reserve,
2279 	.pr_release	= nvme_pr_release,
2280 	.pr_preempt	= nvme_pr_preempt,
2281 	.pr_clear	= nvme_pr_clear,
2282 };
2283 
2284 #ifdef CONFIG_BLK_SED_OPAL
2285 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2286 		bool send)
2287 {
2288 	struct nvme_ctrl *ctrl = data;
2289 	struct nvme_command cmd;
2290 
2291 	memset(&cmd, 0, sizeof(cmd));
2292 	if (send)
2293 		cmd.common.opcode = nvme_admin_security_send;
2294 	else
2295 		cmd.common.opcode = nvme_admin_security_recv;
2296 	cmd.common.nsid = 0;
2297 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2298 	cmd.common.cdw11 = cpu_to_le32(len);
2299 
2300 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2301 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2302 }
2303 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2304 #endif /* CONFIG_BLK_SED_OPAL */
2305 
2306 static const struct block_device_operations nvme_fops = {
2307 	.owner		= THIS_MODULE,
2308 	.ioctl		= nvme_ioctl,
2309 	.compat_ioctl	= nvme_compat_ioctl,
2310 	.open		= nvme_open,
2311 	.release	= nvme_release,
2312 	.getgeo		= nvme_getgeo,
2313 	.revalidate_disk= nvme_revalidate_disk,
2314 	.report_zones	= nvme_report_zones,
2315 	.pr_ops		= &nvme_pr_ops,
2316 };
2317 
2318 #ifdef CONFIG_NVME_MULTIPATH
2319 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2320 {
2321 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2322 
2323 	if (!kref_get_unless_zero(&head->ref))
2324 		return -ENXIO;
2325 	return 0;
2326 }
2327 
2328 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2329 {
2330 	nvme_put_ns_head(disk->private_data);
2331 }
2332 
2333 const struct block_device_operations nvme_ns_head_ops = {
2334 	.owner		= THIS_MODULE,
2335 	.submit_bio	= nvme_ns_head_submit_bio,
2336 	.open		= nvme_ns_head_open,
2337 	.release	= nvme_ns_head_release,
2338 	.ioctl		= nvme_ioctl,
2339 	.compat_ioctl	= nvme_compat_ioctl,
2340 	.getgeo		= nvme_getgeo,
2341 	.report_zones	= nvme_report_zones,
2342 	.pr_ops		= &nvme_pr_ops,
2343 };
2344 #endif /* CONFIG_NVME_MULTIPATH */
2345 
2346 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2347 {
2348 	unsigned long timeout =
2349 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2350 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2351 	int ret;
2352 
2353 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2354 		if (csts == ~0)
2355 			return -ENODEV;
2356 		if ((csts & NVME_CSTS_RDY) == bit)
2357 			break;
2358 
2359 		usleep_range(1000, 2000);
2360 		if (fatal_signal_pending(current))
2361 			return -EINTR;
2362 		if (time_after(jiffies, timeout)) {
2363 			dev_err(ctrl->device,
2364 				"Device not ready; aborting %s, CSTS=0x%x\n",
2365 				enabled ? "initialisation" : "reset", csts);
2366 			return -ENODEV;
2367 		}
2368 	}
2369 
2370 	return ret;
2371 }
2372 
2373 /*
2374  * If the device has been passed off to us in an enabled state, just clear
2375  * the enabled bit.  The spec says we should set the 'shutdown notification
2376  * bits', but doing so may cause the device to complete commands to the
2377  * admin queue ... and we don't know what memory that might be pointing at!
2378  */
2379 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2380 {
2381 	int ret;
2382 
2383 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2384 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2385 
2386 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2387 	if (ret)
2388 		return ret;
2389 
2390 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2391 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2392 
2393 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2394 }
2395 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2396 
2397 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2398 {
2399 	unsigned dev_page_min;
2400 	int ret;
2401 
2402 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2403 	if (ret) {
2404 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2405 		return ret;
2406 	}
2407 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2408 
2409 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2410 		dev_err(ctrl->device,
2411 			"Minimum device page size %u too large for host (%u)\n",
2412 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2413 		return -ENODEV;
2414 	}
2415 
2416 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2417 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2418 	else
2419 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2420 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2421 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2422 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2423 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2424 
2425 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2426 	if (ret)
2427 		return ret;
2428 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2429 }
2430 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2431 
2432 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2433 {
2434 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2435 	u32 csts;
2436 	int ret;
2437 
2438 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2439 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2440 
2441 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2442 	if (ret)
2443 		return ret;
2444 
2445 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2446 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2447 			break;
2448 
2449 		msleep(100);
2450 		if (fatal_signal_pending(current))
2451 			return -EINTR;
2452 		if (time_after(jiffies, timeout)) {
2453 			dev_err(ctrl->device,
2454 				"Device shutdown incomplete; abort shutdown\n");
2455 			return -ENODEV;
2456 		}
2457 	}
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2462 
2463 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2464 		struct request_queue *q)
2465 {
2466 	bool vwc = false;
2467 
2468 	if (ctrl->max_hw_sectors) {
2469 		u32 max_segments =
2470 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2471 
2472 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2473 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2474 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2475 	}
2476 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2477 	blk_queue_dma_alignment(q, 7);
2478 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2479 		vwc = true;
2480 	blk_queue_write_cache(q, vwc, vwc);
2481 }
2482 
2483 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2484 {
2485 	__le64 ts;
2486 	int ret;
2487 
2488 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2489 		return 0;
2490 
2491 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2492 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2493 			NULL);
2494 	if (ret)
2495 		dev_warn_once(ctrl->device,
2496 			"could not set timestamp (%d)\n", ret);
2497 	return ret;
2498 }
2499 
2500 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2501 {
2502 	struct nvme_feat_host_behavior *host;
2503 	int ret;
2504 
2505 	/* Don't bother enabling the feature if retry delay is not reported */
2506 	if (!ctrl->crdt[0])
2507 		return 0;
2508 
2509 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2510 	if (!host)
2511 		return 0;
2512 
2513 	host->acre = NVME_ENABLE_ACRE;
2514 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2515 				host, sizeof(*host), NULL);
2516 	kfree(host);
2517 	return ret;
2518 }
2519 
2520 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2521 {
2522 	/*
2523 	 * APST (Autonomous Power State Transition) lets us program a
2524 	 * table of power state transitions that the controller will
2525 	 * perform automatically.  We configure it with a simple
2526 	 * heuristic: we are willing to spend at most 2% of the time
2527 	 * transitioning between power states.  Therefore, when running
2528 	 * in any given state, we will enter the next lower-power
2529 	 * non-operational state after waiting 50 * (enlat + exlat)
2530 	 * microseconds, as long as that state's exit latency is under
2531 	 * the requested maximum latency.
2532 	 *
2533 	 * We will not autonomously enter any non-operational state for
2534 	 * which the total latency exceeds ps_max_latency_us.  Users
2535 	 * can set ps_max_latency_us to zero to turn off APST.
2536 	 */
2537 
2538 	unsigned apste;
2539 	struct nvme_feat_auto_pst *table;
2540 	u64 max_lat_us = 0;
2541 	int max_ps = -1;
2542 	int ret;
2543 
2544 	/*
2545 	 * If APST isn't supported or if we haven't been initialized yet,
2546 	 * then don't do anything.
2547 	 */
2548 	if (!ctrl->apsta)
2549 		return 0;
2550 
2551 	if (ctrl->npss > 31) {
2552 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2553 		return 0;
2554 	}
2555 
2556 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2557 	if (!table)
2558 		return 0;
2559 
2560 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2561 		/* Turn off APST. */
2562 		apste = 0;
2563 		dev_dbg(ctrl->device, "APST disabled\n");
2564 	} else {
2565 		__le64 target = cpu_to_le64(0);
2566 		int state;
2567 
2568 		/*
2569 		 * Walk through all states from lowest- to highest-power.
2570 		 * According to the spec, lower-numbered states use more
2571 		 * power.  NPSS, despite the name, is the index of the
2572 		 * lowest-power state, not the number of states.
2573 		 */
2574 		for (state = (int)ctrl->npss; state >= 0; state--) {
2575 			u64 total_latency_us, exit_latency_us, transition_ms;
2576 
2577 			if (target)
2578 				table->entries[state] = target;
2579 
2580 			/*
2581 			 * Don't allow transitions to the deepest state
2582 			 * if it's quirked off.
2583 			 */
2584 			if (state == ctrl->npss &&
2585 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2586 				continue;
2587 
2588 			/*
2589 			 * Is this state a useful non-operational state for
2590 			 * higher-power states to autonomously transition to?
2591 			 */
2592 			if (!(ctrl->psd[state].flags &
2593 			      NVME_PS_FLAGS_NON_OP_STATE))
2594 				continue;
2595 
2596 			exit_latency_us =
2597 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2598 			if (exit_latency_us > ctrl->ps_max_latency_us)
2599 				continue;
2600 
2601 			total_latency_us =
2602 				exit_latency_us +
2603 				le32_to_cpu(ctrl->psd[state].entry_lat);
2604 
2605 			/*
2606 			 * This state is good.  Use it as the APST idle
2607 			 * target for higher power states.
2608 			 */
2609 			transition_ms = total_latency_us + 19;
2610 			do_div(transition_ms, 20);
2611 			if (transition_ms > (1 << 24) - 1)
2612 				transition_ms = (1 << 24) - 1;
2613 
2614 			target = cpu_to_le64((state << 3) |
2615 					     (transition_ms << 8));
2616 
2617 			if (max_ps == -1)
2618 				max_ps = state;
2619 
2620 			if (total_latency_us > max_lat_us)
2621 				max_lat_us = total_latency_us;
2622 		}
2623 
2624 		apste = 1;
2625 
2626 		if (max_ps == -1) {
2627 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2628 		} else {
2629 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2630 				max_ps, max_lat_us, (int)sizeof(*table), table);
2631 		}
2632 	}
2633 
2634 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2635 				table, sizeof(*table), NULL);
2636 	if (ret)
2637 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2638 
2639 	kfree(table);
2640 	return ret;
2641 }
2642 
2643 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2644 {
2645 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2646 	u64 latency;
2647 
2648 	switch (val) {
2649 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2650 	case PM_QOS_LATENCY_ANY:
2651 		latency = U64_MAX;
2652 		break;
2653 
2654 	default:
2655 		latency = val;
2656 	}
2657 
2658 	if (ctrl->ps_max_latency_us != latency) {
2659 		ctrl->ps_max_latency_us = latency;
2660 		nvme_configure_apst(ctrl);
2661 	}
2662 }
2663 
2664 struct nvme_core_quirk_entry {
2665 	/*
2666 	 * NVMe model and firmware strings are padded with spaces.  For
2667 	 * simplicity, strings in the quirk table are padded with NULLs
2668 	 * instead.
2669 	 */
2670 	u16 vid;
2671 	const char *mn;
2672 	const char *fr;
2673 	unsigned long quirks;
2674 };
2675 
2676 static const struct nvme_core_quirk_entry core_quirks[] = {
2677 	{
2678 		/*
2679 		 * This Toshiba device seems to die using any APST states.  See:
2680 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2681 		 */
2682 		.vid = 0x1179,
2683 		.mn = "THNSF5256GPUK TOSHIBA",
2684 		.quirks = NVME_QUIRK_NO_APST,
2685 	},
2686 	{
2687 		/*
2688 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2689 		 * condition associated with actions related to suspend to idle
2690 		 * LiteON has resolved the problem in future firmware
2691 		 */
2692 		.vid = 0x14a4,
2693 		.fr = "22301111",
2694 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2695 	}
2696 };
2697 
2698 /* match is null-terminated but idstr is space-padded. */
2699 static bool string_matches(const char *idstr, const char *match, size_t len)
2700 {
2701 	size_t matchlen;
2702 
2703 	if (!match)
2704 		return true;
2705 
2706 	matchlen = strlen(match);
2707 	WARN_ON_ONCE(matchlen > len);
2708 
2709 	if (memcmp(idstr, match, matchlen))
2710 		return false;
2711 
2712 	for (; matchlen < len; matchlen++)
2713 		if (idstr[matchlen] != ' ')
2714 			return false;
2715 
2716 	return true;
2717 }
2718 
2719 static bool quirk_matches(const struct nvme_id_ctrl *id,
2720 			  const struct nvme_core_quirk_entry *q)
2721 {
2722 	return q->vid == le16_to_cpu(id->vid) &&
2723 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2724 		string_matches(id->fr, q->fr, sizeof(id->fr));
2725 }
2726 
2727 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2728 		struct nvme_id_ctrl *id)
2729 {
2730 	size_t nqnlen;
2731 	int off;
2732 
2733 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2734 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2735 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2736 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2737 			return;
2738 		}
2739 
2740 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2741 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2742 	}
2743 
2744 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2745 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2746 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2747 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2748 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2749 	off += sizeof(id->sn);
2750 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2751 	off += sizeof(id->mn);
2752 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2753 }
2754 
2755 static void nvme_release_subsystem(struct device *dev)
2756 {
2757 	struct nvme_subsystem *subsys =
2758 		container_of(dev, struct nvme_subsystem, dev);
2759 
2760 	if (subsys->instance >= 0)
2761 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2762 	kfree(subsys);
2763 }
2764 
2765 static void nvme_destroy_subsystem(struct kref *ref)
2766 {
2767 	struct nvme_subsystem *subsys =
2768 			container_of(ref, struct nvme_subsystem, ref);
2769 
2770 	mutex_lock(&nvme_subsystems_lock);
2771 	list_del(&subsys->entry);
2772 	mutex_unlock(&nvme_subsystems_lock);
2773 
2774 	ida_destroy(&subsys->ns_ida);
2775 	device_del(&subsys->dev);
2776 	put_device(&subsys->dev);
2777 }
2778 
2779 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2780 {
2781 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2782 }
2783 
2784 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2785 {
2786 	struct nvme_subsystem *subsys;
2787 
2788 	lockdep_assert_held(&nvme_subsystems_lock);
2789 
2790 	/*
2791 	 * Fail matches for discovery subsystems. This results
2792 	 * in each discovery controller bound to a unique subsystem.
2793 	 * This avoids issues with validating controller values
2794 	 * that can only be true when there is a single unique subsystem.
2795 	 * There may be multiple and completely independent entities
2796 	 * that provide discovery controllers.
2797 	 */
2798 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2799 		return NULL;
2800 
2801 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2802 		if (strcmp(subsys->subnqn, subsysnqn))
2803 			continue;
2804 		if (!kref_get_unless_zero(&subsys->ref))
2805 			continue;
2806 		return subsys;
2807 	}
2808 
2809 	return NULL;
2810 }
2811 
2812 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2813 	struct device_attribute subsys_attr_##_name = \
2814 		__ATTR(_name, _mode, _show, NULL)
2815 
2816 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2817 				    struct device_attribute *attr,
2818 				    char *buf)
2819 {
2820 	struct nvme_subsystem *subsys =
2821 		container_of(dev, struct nvme_subsystem, dev);
2822 
2823 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2824 }
2825 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2826 
2827 #define nvme_subsys_show_str_function(field)				\
2828 static ssize_t subsys_##field##_show(struct device *dev,		\
2829 			    struct device_attribute *attr, char *buf)	\
2830 {									\
2831 	struct nvme_subsystem *subsys =					\
2832 		container_of(dev, struct nvme_subsystem, dev);		\
2833 	return sprintf(buf, "%.*s\n",					\
2834 		       (int)sizeof(subsys->field), subsys->field);	\
2835 }									\
2836 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2837 
2838 nvme_subsys_show_str_function(model);
2839 nvme_subsys_show_str_function(serial);
2840 nvme_subsys_show_str_function(firmware_rev);
2841 
2842 static struct attribute *nvme_subsys_attrs[] = {
2843 	&subsys_attr_model.attr,
2844 	&subsys_attr_serial.attr,
2845 	&subsys_attr_firmware_rev.attr,
2846 	&subsys_attr_subsysnqn.attr,
2847 #ifdef CONFIG_NVME_MULTIPATH
2848 	&subsys_attr_iopolicy.attr,
2849 #endif
2850 	NULL,
2851 };
2852 
2853 static struct attribute_group nvme_subsys_attrs_group = {
2854 	.attrs = nvme_subsys_attrs,
2855 };
2856 
2857 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2858 	&nvme_subsys_attrs_group,
2859 	NULL,
2860 };
2861 
2862 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2863 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2864 {
2865 	struct nvme_ctrl *tmp;
2866 
2867 	lockdep_assert_held(&nvme_subsystems_lock);
2868 
2869 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2870 		if (nvme_state_terminal(tmp))
2871 			continue;
2872 
2873 		if (tmp->cntlid == ctrl->cntlid) {
2874 			dev_err(ctrl->device,
2875 				"Duplicate cntlid %u with %s, rejecting\n",
2876 				ctrl->cntlid, dev_name(tmp->device));
2877 			return false;
2878 		}
2879 
2880 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2881 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2882 			continue;
2883 
2884 		dev_err(ctrl->device,
2885 			"Subsystem does not support multiple controllers\n");
2886 		return false;
2887 	}
2888 
2889 	return true;
2890 }
2891 
2892 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2893 {
2894 	struct nvme_subsystem *subsys, *found;
2895 	int ret;
2896 
2897 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2898 	if (!subsys)
2899 		return -ENOMEM;
2900 
2901 	subsys->instance = -1;
2902 	mutex_init(&subsys->lock);
2903 	kref_init(&subsys->ref);
2904 	INIT_LIST_HEAD(&subsys->ctrls);
2905 	INIT_LIST_HEAD(&subsys->nsheads);
2906 	nvme_init_subnqn(subsys, ctrl, id);
2907 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2908 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2909 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2910 	subsys->vendor_id = le16_to_cpu(id->vid);
2911 	subsys->cmic = id->cmic;
2912 	subsys->awupf = le16_to_cpu(id->awupf);
2913 #ifdef CONFIG_NVME_MULTIPATH
2914 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2915 #endif
2916 
2917 	subsys->dev.class = nvme_subsys_class;
2918 	subsys->dev.release = nvme_release_subsystem;
2919 	subsys->dev.groups = nvme_subsys_attrs_groups;
2920 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2921 	device_initialize(&subsys->dev);
2922 
2923 	mutex_lock(&nvme_subsystems_lock);
2924 	found = __nvme_find_get_subsystem(subsys->subnqn);
2925 	if (found) {
2926 		put_device(&subsys->dev);
2927 		subsys = found;
2928 
2929 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2930 			ret = -EINVAL;
2931 			goto out_put_subsystem;
2932 		}
2933 	} else {
2934 		ret = device_add(&subsys->dev);
2935 		if (ret) {
2936 			dev_err(ctrl->device,
2937 				"failed to register subsystem device.\n");
2938 			put_device(&subsys->dev);
2939 			goto out_unlock;
2940 		}
2941 		ida_init(&subsys->ns_ida);
2942 		list_add_tail(&subsys->entry, &nvme_subsystems);
2943 	}
2944 
2945 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2946 				dev_name(ctrl->device));
2947 	if (ret) {
2948 		dev_err(ctrl->device,
2949 			"failed to create sysfs link from subsystem.\n");
2950 		goto out_put_subsystem;
2951 	}
2952 
2953 	if (!found)
2954 		subsys->instance = ctrl->instance;
2955 	ctrl->subsys = subsys;
2956 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2957 	mutex_unlock(&nvme_subsystems_lock);
2958 	return 0;
2959 
2960 out_put_subsystem:
2961 	nvme_put_subsystem(subsys);
2962 out_unlock:
2963 	mutex_unlock(&nvme_subsystems_lock);
2964 	return ret;
2965 }
2966 
2967 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2968 		void *log, size_t size, u64 offset)
2969 {
2970 	struct nvme_command c = { };
2971 	u32 dwlen = nvme_bytes_to_numd(size);
2972 
2973 	c.get_log_page.opcode = nvme_admin_get_log_page;
2974 	c.get_log_page.nsid = cpu_to_le32(nsid);
2975 	c.get_log_page.lid = log_page;
2976 	c.get_log_page.lsp = lsp;
2977 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2978 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2979 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2980 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2981 	c.get_log_page.csi = csi;
2982 
2983 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2984 }
2985 
2986 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi)
2987 {
2988 	struct nvme_cel *cel, *ret = NULL;
2989 
2990 	spin_lock_irq(&ctrl->lock);
2991 	list_for_each_entry(cel, &ctrl->cels, entry) {
2992 		if (cel->csi == csi) {
2993 			ret = cel;
2994 			break;
2995 		}
2996 	}
2997 	spin_unlock_irq(&ctrl->lock);
2998 
2999 	return ret;
3000 }
3001 
3002 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3003 				struct nvme_effects_log **log)
3004 {
3005 	struct nvme_cel *cel = nvme_find_cel(ctrl, csi);
3006 	int ret;
3007 
3008 	if (cel)
3009 		goto out;
3010 
3011 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3012 	if (!cel)
3013 		return -ENOMEM;
3014 
3015 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi,
3016 			&cel->log, sizeof(cel->log), 0);
3017 	if (ret) {
3018 		kfree(cel);
3019 		return ret;
3020 	}
3021 
3022 	cel->csi = csi;
3023 
3024 	spin_lock_irq(&ctrl->lock);
3025 	list_add_tail(&cel->entry, &ctrl->cels);
3026 	spin_unlock_irq(&ctrl->lock);
3027 out:
3028 	*log = &cel->log;
3029 	return 0;
3030 }
3031 
3032 /*
3033  * Initialize the cached copies of the Identify data and various controller
3034  * register in our nvme_ctrl structure.  This should be called as soon as
3035  * the admin queue is fully up and running.
3036  */
3037 int nvme_init_identify(struct nvme_ctrl *ctrl)
3038 {
3039 	struct nvme_id_ctrl *id;
3040 	int ret, page_shift;
3041 	u32 max_hw_sectors;
3042 	bool prev_apst_enabled;
3043 
3044 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3045 	if (ret) {
3046 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3047 		return ret;
3048 	}
3049 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3050 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3051 
3052 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3053 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3054 
3055 	ret = nvme_identify_ctrl(ctrl, &id);
3056 	if (ret) {
3057 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3058 		return -EIO;
3059 	}
3060 
3061 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3062 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3063 		if (ret < 0)
3064 			goto out_free;
3065 	}
3066 
3067 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3068 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3069 
3070 	if (!ctrl->identified) {
3071 		int i;
3072 
3073 		ret = nvme_init_subsystem(ctrl, id);
3074 		if (ret)
3075 			goto out_free;
3076 
3077 		/*
3078 		 * Check for quirks.  Quirk can depend on firmware version,
3079 		 * so, in principle, the set of quirks present can change
3080 		 * across a reset.  As a possible future enhancement, we
3081 		 * could re-scan for quirks every time we reinitialize
3082 		 * the device, but we'd have to make sure that the driver
3083 		 * behaves intelligently if the quirks change.
3084 		 */
3085 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3086 			if (quirk_matches(id, &core_quirks[i]))
3087 				ctrl->quirks |= core_quirks[i].quirks;
3088 		}
3089 	}
3090 
3091 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3092 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3093 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3094 	}
3095 
3096 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3097 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3098 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3099 
3100 	ctrl->oacs = le16_to_cpu(id->oacs);
3101 	ctrl->oncs = le16_to_cpu(id->oncs);
3102 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3103 	ctrl->oaes = le32_to_cpu(id->oaes);
3104 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3105 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3106 
3107 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3108 	ctrl->vwc = id->vwc;
3109 	if (id->mdts)
3110 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3111 	else
3112 		max_hw_sectors = UINT_MAX;
3113 	ctrl->max_hw_sectors =
3114 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3115 
3116 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3117 	ctrl->sgls = le32_to_cpu(id->sgls);
3118 	ctrl->kas = le16_to_cpu(id->kas);
3119 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3120 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3121 
3122 	if (id->rtd3e) {
3123 		/* us -> s */
3124 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3125 
3126 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3127 						 shutdown_timeout, 60);
3128 
3129 		if (ctrl->shutdown_timeout != shutdown_timeout)
3130 			dev_info(ctrl->device,
3131 				 "Shutdown timeout set to %u seconds\n",
3132 				 ctrl->shutdown_timeout);
3133 	} else
3134 		ctrl->shutdown_timeout = shutdown_timeout;
3135 
3136 	ctrl->npss = id->npss;
3137 	ctrl->apsta = id->apsta;
3138 	prev_apst_enabled = ctrl->apst_enabled;
3139 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3140 		if (force_apst && id->apsta) {
3141 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3142 			ctrl->apst_enabled = true;
3143 		} else {
3144 			ctrl->apst_enabled = false;
3145 		}
3146 	} else {
3147 		ctrl->apst_enabled = id->apsta;
3148 	}
3149 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3150 
3151 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3152 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3153 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3154 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3155 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3156 
3157 		/*
3158 		 * In fabrics we need to verify the cntlid matches the
3159 		 * admin connect
3160 		 */
3161 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3162 			dev_err(ctrl->device,
3163 				"Mismatching cntlid: Connect %u vs Identify "
3164 				"%u, rejecting\n",
3165 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3166 			ret = -EINVAL;
3167 			goto out_free;
3168 		}
3169 
3170 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3171 			dev_err(ctrl->device,
3172 				"keep-alive support is mandatory for fabrics\n");
3173 			ret = -EINVAL;
3174 			goto out_free;
3175 		}
3176 	} else {
3177 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3178 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3179 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3180 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3181 	}
3182 
3183 	ret = nvme_mpath_init(ctrl, id);
3184 	kfree(id);
3185 
3186 	if (ret < 0)
3187 		return ret;
3188 
3189 	if (ctrl->apst_enabled && !prev_apst_enabled)
3190 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3191 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3192 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3193 
3194 	ret = nvme_configure_apst(ctrl);
3195 	if (ret < 0)
3196 		return ret;
3197 
3198 	ret = nvme_configure_timestamp(ctrl);
3199 	if (ret < 0)
3200 		return ret;
3201 
3202 	ret = nvme_configure_directives(ctrl);
3203 	if (ret < 0)
3204 		return ret;
3205 
3206 	ret = nvme_configure_acre(ctrl);
3207 	if (ret < 0)
3208 		return ret;
3209 
3210 	if (!ctrl->identified)
3211 		nvme_hwmon_init(ctrl);
3212 
3213 	ctrl->identified = true;
3214 
3215 	return 0;
3216 
3217 out_free:
3218 	kfree(id);
3219 	return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(nvme_init_identify);
3222 
3223 static int nvme_dev_open(struct inode *inode, struct file *file)
3224 {
3225 	struct nvme_ctrl *ctrl =
3226 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3227 
3228 	switch (ctrl->state) {
3229 	case NVME_CTRL_LIVE:
3230 		break;
3231 	default:
3232 		return -EWOULDBLOCK;
3233 	}
3234 
3235 	file->private_data = ctrl;
3236 	return 0;
3237 }
3238 
3239 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3240 {
3241 	struct nvme_ns *ns;
3242 	int ret;
3243 
3244 	down_read(&ctrl->namespaces_rwsem);
3245 	if (list_empty(&ctrl->namespaces)) {
3246 		ret = -ENOTTY;
3247 		goto out_unlock;
3248 	}
3249 
3250 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3251 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3252 		dev_warn(ctrl->device,
3253 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3254 		ret = -EINVAL;
3255 		goto out_unlock;
3256 	}
3257 
3258 	dev_warn(ctrl->device,
3259 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3260 	kref_get(&ns->kref);
3261 	up_read(&ctrl->namespaces_rwsem);
3262 
3263 	ret = nvme_user_cmd(ctrl, ns, argp);
3264 	nvme_put_ns(ns);
3265 	return ret;
3266 
3267 out_unlock:
3268 	up_read(&ctrl->namespaces_rwsem);
3269 	return ret;
3270 }
3271 
3272 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3273 		unsigned long arg)
3274 {
3275 	struct nvme_ctrl *ctrl = file->private_data;
3276 	void __user *argp = (void __user *)arg;
3277 
3278 	switch (cmd) {
3279 	case NVME_IOCTL_ADMIN_CMD:
3280 		return nvme_user_cmd(ctrl, NULL, argp);
3281 	case NVME_IOCTL_ADMIN64_CMD:
3282 		return nvme_user_cmd64(ctrl, NULL, argp);
3283 	case NVME_IOCTL_IO_CMD:
3284 		return nvme_dev_user_cmd(ctrl, argp);
3285 	case NVME_IOCTL_RESET:
3286 		dev_warn(ctrl->device, "resetting controller\n");
3287 		return nvme_reset_ctrl_sync(ctrl);
3288 	case NVME_IOCTL_SUBSYS_RESET:
3289 		return nvme_reset_subsystem(ctrl);
3290 	case NVME_IOCTL_RESCAN:
3291 		nvme_queue_scan(ctrl);
3292 		return 0;
3293 	default:
3294 		return -ENOTTY;
3295 	}
3296 }
3297 
3298 static const struct file_operations nvme_dev_fops = {
3299 	.owner		= THIS_MODULE,
3300 	.open		= nvme_dev_open,
3301 	.unlocked_ioctl	= nvme_dev_ioctl,
3302 	.compat_ioctl	= compat_ptr_ioctl,
3303 };
3304 
3305 static ssize_t nvme_sysfs_reset(struct device *dev,
3306 				struct device_attribute *attr, const char *buf,
3307 				size_t count)
3308 {
3309 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3310 	int ret;
3311 
3312 	ret = nvme_reset_ctrl_sync(ctrl);
3313 	if (ret < 0)
3314 		return ret;
3315 	return count;
3316 }
3317 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3318 
3319 static ssize_t nvme_sysfs_rescan(struct device *dev,
3320 				struct device_attribute *attr, const char *buf,
3321 				size_t count)
3322 {
3323 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3324 
3325 	nvme_queue_scan(ctrl);
3326 	return count;
3327 }
3328 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3329 
3330 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3331 {
3332 	struct gendisk *disk = dev_to_disk(dev);
3333 
3334 	if (disk->fops == &nvme_fops)
3335 		return nvme_get_ns_from_dev(dev)->head;
3336 	else
3337 		return disk->private_data;
3338 }
3339 
3340 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3341 		char *buf)
3342 {
3343 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3344 	struct nvme_ns_ids *ids = &head->ids;
3345 	struct nvme_subsystem *subsys = head->subsys;
3346 	int serial_len = sizeof(subsys->serial);
3347 	int model_len = sizeof(subsys->model);
3348 
3349 	if (!uuid_is_null(&ids->uuid))
3350 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3351 
3352 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3353 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3354 
3355 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3356 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3357 
3358 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3359 				  subsys->serial[serial_len - 1] == '\0'))
3360 		serial_len--;
3361 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3362 				 subsys->model[model_len - 1] == '\0'))
3363 		model_len--;
3364 
3365 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3366 		serial_len, subsys->serial, model_len, subsys->model,
3367 		head->ns_id);
3368 }
3369 static DEVICE_ATTR_RO(wwid);
3370 
3371 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3372 		char *buf)
3373 {
3374 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3375 }
3376 static DEVICE_ATTR_RO(nguid);
3377 
3378 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3379 		char *buf)
3380 {
3381 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3382 
3383 	/* For backward compatibility expose the NGUID to userspace if
3384 	 * we have no UUID set
3385 	 */
3386 	if (uuid_is_null(&ids->uuid)) {
3387 		printk_ratelimited(KERN_WARNING
3388 				   "No UUID available providing old NGUID\n");
3389 		return sprintf(buf, "%pU\n", ids->nguid);
3390 	}
3391 	return sprintf(buf, "%pU\n", &ids->uuid);
3392 }
3393 static DEVICE_ATTR_RO(uuid);
3394 
3395 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3396 		char *buf)
3397 {
3398 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3399 }
3400 static DEVICE_ATTR_RO(eui);
3401 
3402 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3403 		char *buf)
3404 {
3405 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3406 }
3407 static DEVICE_ATTR_RO(nsid);
3408 
3409 static struct attribute *nvme_ns_id_attrs[] = {
3410 	&dev_attr_wwid.attr,
3411 	&dev_attr_uuid.attr,
3412 	&dev_attr_nguid.attr,
3413 	&dev_attr_eui.attr,
3414 	&dev_attr_nsid.attr,
3415 #ifdef CONFIG_NVME_MULTIPATH
3416 	&dev_attr_ana_grpid.attr,
3417 	&dev_attr_ana_state.attr,
3418 #endif
3419 	NULL,
3420 };
3421 
3422 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3423 		struct attribute *a, int n)
3424 {
3425 	struct device *dev = container_of(kobj, struct device, kobj);
3426 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3427 
3428 	if (a == &dev_attr_uuid.attr) {
3429 		if (uuid_is_null(&ids->uuid) &&
3430 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3431 			return 0;
3432 	}
3433 	if (a == &dev_attr_nguid.attr) {
3434 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3435 			return 0;
3436 	}
3437 	if (a == &dev_attr_eui.attr) {
3438 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3439 			return 0;
3440 	}
3441 #ifdef CONFIG_NVME_MULTIPATH
3442 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3443 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3444 			return 0;
3445 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3446 			return 0;
3447 	}
3448 #endif
3449 	return a->mode;
3450 }
3451 
3452 static const struct attribute_group nvme_ns_id_attr_group = {
3453 	.attrs		= nvme_ns_id_attrs,
3454 	.is_visible	= nvme_ns_id_attrs_are_visible,
3455 };
3456 
3457 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3458 	&nvme_ns_id_attr_group,
3459 #ifdef CONFIG_NVM
3460 	&nvme_nvm_attr_group,
3461 #endif
3462 	NULL,
3463 };
3464 
3465 #define nvme_show_str_function(field)						\
3466 static ssize_t  field##_show(struct device *dev,				\
3467 			    struct device_attribute *attr, char *buf)		\
3468 {										\
3469         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3470         return sprintf(buf, "%.*s\n",						\
3471 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3472 }										\
3473 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3474 
3475 nvme_show_str_function(model);
3476 nvme_show_str_function(serial);
3477 nvme_show_str_function(firmware_rev);
3478 
3479 #define nvme_show_int_function(field)						\
3480 static ssize_t  field##_show(struct device *dev,				\
3481 			    struct device_attribute *attr, char *buf)		\
3482 {										\
3483         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3484         return sprintf(buf, "%d\n", ctrl->field);	\
3485 }										\
3486 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3487 
3488 nvme_show_int_function(cntlid);
3489 nvme_show_int_function(numa_node);
3490 nvme_show_int_function(queue_count);
3491 nvme_show_int_function(sqsize);
3492 
3493 static ssize_t nvme_sysfs_delete(struct device *dev,
3494 				struct device_attribute *attr, const char *buf,
3495 				size_t count)
3496 {
3497 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3498 
3499 	/* Can't delete non-created controllers */
3500 	if (!ctrl->created)
3501 		return -EBUSY;
3502 
3503 	if (device_remove_file_self(dev, attr))
3504 		nvme_delete_ctrl_sync(ctrl);
3505 	return count;
3506 }
3507 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3508 
3509 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3510 					 struct device_attribute *attr,
3511 					 char *buf)
3512 {
3513 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3514 
3515 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3516 }
3517 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3518 
3519 static ssize_t nvme_sysfs_show_state(struct device *dev,
3520 				     struct device_attribute *attr,
3521 				     char *buf)
3522 {
3523 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3524 	static const char *const state_name[] = {
3525 		[NVME_CTRL_NEW]		= "new",
3526 		[NVME_CTRL_LIVE]	= "live",
3527 		[NVME_CTRL_RESETTING]	= "resetting",
3528 		[NVME_CTRL_CONNECTING]	= "connecting",
3529 		[NVME_CTRL_DELETING]	= "deleting",
3530 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3531 		[NVME_CTRL_DEAD]	= "dead",
3532 	};
3533 
3534 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3535 	    state_name[ctrl->state])
3536 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3537 
3538 	return sprintf(buf, "unknown state\n");
3539 }
3540 
3541 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3542 
3543 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3544 					 struct device_attribute *attr,
3545 					 char *buf)
3546 {
3547 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3548 
3549 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3550 }
3551 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3552 
3553 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3554 					struct device_attribute *attr,
3555 					char *buf)
3556 {
3557 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3558 
3559 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3560 }
3561 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3562 
3563 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3564 					struct device_attribute *attr,
3565 					char *buf)
3566 {
3567 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3568 
3569 	return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3570 }
3571 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3572 
3573 static ssize_t nvme_sysfs_show_address(struct device *dev,
3574 					 struct device_attribute *attr,
3575 					 char *buf)
3576 {
3577 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3578 
3579 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3580 }
3581 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3582 
3583 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3584 		struct device_attribute *attr, char *buf)
3585 {
3586 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3587 	struct nvmf_ctrl_options *opts = ctrl->opts;
3588 
3589 	if (ctrl->opts->max_reconnects == -1)
3590 		return sprintf(buf, "off\n");
3591 	return sprintf(buf, "%d\n",
3592 			opts->max_reconnects * opts->reconnect_delay);
3593 }
3594 
3595 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3596 		struct device_attribute *attr, const char *buf, size_t count)
3597 {
3598 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3599 	struct nvmf_ctrl_options *opts = ctrl->opts;
3600 	int ctrl_loss_tmo, err;
3601 
3602 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3603 	if (err)
3604 		return -EINVAL;
3605 
3606 	else if (ctrl_loss_tmo < 0)
3607 		opts->max_reconnects = -1;
3608 	else
3609 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3610 						opts->reconnect_delay);
3611 	return count;
3612 }
3613 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3614 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3615 
3616 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3617 		struct device_attribute *attr, char *buf)
3618 {
3619 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3620 
3621 	if (ctrl->opts->reconnect_delay == -1)
3622 		return sprintf(buf, "off\n");
3623 	return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3624 }
3625 
3626 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3627 		struct device_attribute *attr, const char *buf, size_t count)
3628 {
3629 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3630 	unsigned int v;
3631 	int err;
3632 
3633 	err = kstrtou32(buf, 10, &v);
3634 	if (err)
3635 		return err;
3636 
3637 	ctrl->opts->reconnect_delay = v;
3638 	return count;
3639 }
3640 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3641 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3642 
3643 static struct attribute *nvme_dev_attrs[] = {
3644 	&dev_attr_reset_controller.attr,
3645 	&dev_attr_rescan_controller.attr,
3646 	&dev_attr_model.attr,
3647 	&dev_attr_serial.attr,
3648 	&dev_attr_firmware_rev.attr,
3649 	&dev_attr_cntlid.attr,
3650 	&dev_attr_delete_controller.attr,
3651 	&dev_attr_transport.attr,
3652 	&dev_attr_subsysnqn.attr,
3653 	&dev_attr_address.attr,
3654 	&dev_attr_state.attr,
3655 	&dev_attr_numa_node.attr,
3656 	&dev_attr_queue_count.attr,
3657 	&dev_attr_sqsize.attr,
3658 	&dev_attr_hostnqn.attr,
3659 	&dev_attr_hostid.attr,
3660 	&dev_attr_ctrl_loss_tmo.attr,
3661 	&dev_attr_reconnect_delay.attr,
3662 	NULL
3663 };
3664 
3665 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3666 		struct attribute *a, int n)
3667 {
3668 	struct device *dev = container_of(kobj, struct device, kobj);
3669 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3670 
3671 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3672 		return 0;
3673 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3674 		return 0;
3675 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3676 		return 0;
3677 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3678 		return 0;
3679 
3680 	return a->mode;
3681 }
3682 
3683 static struct attribute_group nvme_dev_attrs_group = {
3684 	.attrs		= nvme_dev_attrs,
3685 	.is_visible	= nvme_dev_attrs_are_visible,
3686 };
3687 
3688 static const struct attribute_group *nvme_dev_attr_groups[] = {
3689 	&nvme_dev_attrs_group,
3690 	NULL,
3691 };
3692 
3693 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3694 		unsigned nsid)
3695 {
3696 	struct nvme_ns_head *h;
3697 
3698 	lockdep_assert_held(&subsys->lock);
3699 
3700 	list_for_each_entry(h, &subsys->nsheads, entry) {
3701 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3702 			return h;
3703 	}
3704 
3705 	return NULL;
3706 }
3707 
3708 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3709 		struct nvme_ns_head *new)
3710 {
3711 	struct nvme_ns_head *h;
3712 
3713 	lockdep_assert_held(&subsys->lock);
3714 
3715 	list_for_each_entry(h, &subsys->nsheads, entry) {
3716 		if (nvme_ns_ids_valid(&new->ids) &&
3717 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3718 			return -EINVAL;
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3725 		unsigned nsid, struct nvme_ns_ids *ids)
3726 {
3727 	struct nvme_ns_head *head;
3728 	size_t size = sizeof(*head);
3729 	int ret = -ENOMEM;
3730 
3731 #ifdef CONFIG_NVME_MULTIPATH
3732 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3733 #endif
3734 
3735 	head = kzalloc(size, GFP_KERNEL);
3736 	if (!head)
3737 		goto out;
3738 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3739 	if (ret < 0)
3740 		goto out_free_head;
3741 	head->instance = ret;
3742 	INIT_LIST_HEAD(&head->list);
3743 	ret = init_srcu_struct(&head->srcu);
3744 	if (ret)
3745 		goto out_ida_remove;
3746 	head->subsys = ctrl->subsys;
3747 	head->ns_id = nsid;
3748 	head->ids = *ids;
3749 	kref_init(&head->ref);
3750 
3751 	ret = __nvme_check_ids(ctrl->subsys, head);
3752 	if (ret) {
3753 		dev_err(ctrl->device,
3754 			"duplicate IDs for nsid %d\n", nsid);
3755 		goto out_cleanup_srcu;
3756 	}
3757 
3758 	if (head->ids.csi) {
3759 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3760 		if (ret)
3761 			goto out_cleanup_srcu;
3762 	} else
3763 		head->effects = ctrl->effects;
3764 
3765 	ret = nvme_mpath_alloc_disk(ctrl, head);
3766 	if (ret)
3767 		goto out_cleanup_srcu;
3768 
3769 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3770 
3771 	kref_get(&ctrl->subsys->ref);
3772 
3773 	return head;
3774 out_cleanup_srcu:
3775 	cleanup_srcu_struct(&head->srcu);
3776 out_ida_remove:
3777 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3778 out_free_head:
3779 	kfree(head);
3780 out:
3781 	if (ret > 0)
3782 		ret = blk_status_to_errno(nvme_error_status(ret));
3783 	return ERR_PTR(ret);
3784 }
3785 
3786 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3787 		struct nvme_id_ns *id)
3788 {
3789 	struct nvme_ctrl *ctrl = ns->ctrl;
3790 	bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3791 	struct nvme_ns_head *head = NULL;
3792 	struct nvme_ns_ids ids;
3793 	int ret = 0;
3794 
3795 	ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3796 	if (ret) {
3797 		if (ret < 0)
3798 			return ret;
3799 		return blk_status_to_errno(nvme_error_status(ret));
3800 	}
3801 
3802 	mutex_lock(&ctrl->subsys->lock);
3803 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3804 	if (!head) {
3805 		head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3806 		if (IS_ERR(head)) {
3807 			ret = PTR_ERR(head);
3808 			goto out_unlock;
3809 		}
3810 		head->shared = is_shared;
3811 	} else {
3812 		ret = -EINVAL;
3813 		if (!is_shared || !head->shared) {
3814 			dev_err(ctrl->device,
3815 				"Duplicate unshared namespace %d\n", nsid);
3816 			goto out_put_ns_head;
3817 		}
3818 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3819 			dev_err(ctrl->device,
3820 				"IDs don't match for shared namespace %d\n",
3821 					nsid);
3822 			goto out_put_ns_head;
3823 		}
3824 	}
3825 
3826 	list_add_tail(&ns->siblings, &head->list);
3827 	ns->head = head;
3828 	mutex_unlock(&ctrl->subsys->lock);
3829 	return 0;
3830 
3831 out_put_ns_head:
3832 	nvme_put_ns_head(head);
3833 out_unlock:
3834 	mutex_unlock(&ctrl->subsys->lock);
3835 	return ret;
3836 }
3837 
3838 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3839 {
3840 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3841 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3842 
3843 	return nsa->head->ns_id - nsb->head->ns_id;
3844 }
3845 
3846 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3847 {
3848 	struct nvme_ns *ns, *ret = NULL;
3849 
3850 	down_read(&ctrl->namespaces_rwsem);
3851 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3852 		if (ns->head->ns_id == nsid) {
3853 			if (!kref_get_unless_zero(&ns->kref))
3854 				continue;
3855 			ret = ns;
3856 			break;
3857 		}
3858 		if (ns->head->ns_id > nsid)
3859 			break;
3860 	}
3861 	up_read(&ctrl->namespaces_rwsem);
3862 	return ret;
3863 }
3864 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3865 
3866 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3867 {
3868 	struct nvme_ns *ns;
3869 	struct gendisk *disk;
3870 	struct nvme_id_ns *id;
3871 	char disk_name[DISK_NAME_LEN];
3872 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3873 
3874 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3875 	if (!ns)
3876 		return;
3877 
3878 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3879 	if (IS_ERR(ns->queue))
3880 		goto out_free_ns;
3881 
3882 	if (ctrl->opts && ctrl->opts->data_digest)
3883 		ns->queue->backing_dev_info->capabilities
3884 			|= BDI_CAP_STABLE_WRITES;
3885 
3886 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3887 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3888 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3889 
3890 	ns->queue->queuedata = ns;
3891 	ns->ctrl = ctrl;
3892 
3893 	kref_init(&ns->kref);
3894 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3895 
3896 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3897 	nvme_set_queue_limits(ctrl, ns->queue);
3898 
3899 	ret = nvme_identify_ns(ctrl, nsid, &id);
3900 	if (ret)
3901 		goto out_free_queue;
3902 
3903 	if (id->ncap == 0)	/* no namespace (legacy quirk) */
3904 		goto out_free_id;
3905 
3906 	ret = nvme_init_ns_head(ns, nsid, id);
3907 	if (ret)
3908 		goto out_free_id;
3909 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3910 
3911 	disk = alloc_disk_node(0, node);
3912 	if (!disk)
3913 		goto out_unlink_ns;
3914 
3915 	disk->fops = &nvme_fops;
3916 	disk->private_data = ns;
3917 	disk->queue = ns->queue;
3918 	disk->flags = flags;
3919 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3920 	ns->disk = disk;
3921 
3922 	if (__nvme_revalidate_disk(disk, id))
3923 		goto out_put_disk;
3924 
3925 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3926 		ret = nvme_nvm_register(ns, disk_name, node);
3927 		if (ret) {
3928 			dev_warn(ctrl->device, "LightNVM init failure\n");
3929 			goto out_put_disk;
3930 		}
3931 	}
3932 
3933 	down_write(&ctrl->namespaces_rwsem);
3934 	list_add_tail(&ns->list, &ctrl->namespaces);
3935 	up_write(&ctrl->namespaces_rwsem);
3936 
3937 	nvme_get_ctrl(ctrl);
3938 
3939 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3940 
3941 	nvme_mpath_add_disk(ns, id);
3942 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3943 	kfree(id);
3944 
3945 	return;
3946  out_put_disk:
3947 	/* prevent double queue cleanup */
3948 	ns->disk->queue = NULL;
3949 	put_disk(ns->disk);
3950  out_unlink_ns:
3951 	mutex_lock(&ctrl->subsys->lock);
3952 	list_del_rcu(&ns->siblings);
3953 	if (list_empty(&ns->head->list))
3954 		list_del_init(&ns->head->entry);
3955 	mutex_unlock(&ctrl->subsys->lock);
3956 	nvme_put_ns_head(ns->head);
3957  out_free_id:
3958 	kfree(id);
3959  out_free_queue:
3960 	blk_cleanup_queue(ns->queue);
3961  out_free_ns:
3962 	kfree(ns);
3963 }
3964 
3965 static void nvme_ns_remove(struct nvme_ns *ns)
3966 {
3967 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3968 		return;
3969 
3970 	nvme_fault_inject_fini(&ns->fault_inject);
3971 
3972 	mutex_lock(&ns->ctrl->subsys->lock);
3973 	list_del_rcu(&ns->siblings);
3974 	if (list_empty(&ns->head->list))
3975 		list_del_init(&ns->head->entry);
3976 	mutex_unlock(&ns->ctrl->subsys->lock);
3977 
3978 	synchronize_rcu(); /* guarantee not available in head->list */
3979 	nvme_mpath_clear_current_path(ns);
3980 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3981 
3982 	if (ns->disk->flags & GENHD_FL_UP) {
3983 		del_gendisk(ns->disk);
3984 		blk_cleanup_queue(ns->queue);
3985 		if (blk_get_integrity(ns->disk))
3986 			blk_integrity_unregister(ns->disk);
3987 	}
3988 
3989 	down_write(&ns->ctrl->namespaces_rwsem);
3990 	list_del_init(&ns->list);
3991 	up_write(&ns->ctrl->namespaces_rwsem);
3992 
3993 	nvme_mpath_check_last_path(ns);
3994 	nvme_put_ns(ns);
3995 }
3996 
3997 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3998 {
3999 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4000 
4001 	if (ns) {
4002 		nvme_ns_remove(ns);
4003 		nvme_put_ns(ns);
4004 	}
4005 }
4006 
4007 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4008 {
4009 	struct nvme_ns *ns;
4010 
4011 	ns = nvme_find_get_ns(ctrl, nsid);
4012 	if (ns) {
4013 		if (revalidate_disk(ns->disk))
4014 			nvme_ns_remove(ns);
4015 		nvme_put_ns(ns);
4016 	} else
4017 		nvme_alloc_ns(ctrl, nsid);
4018 }
4019 
4020 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4021 					unsigned nsid)
4022 {
4023 	struct nvme_ns *ns, *next;
4024 	LIST_HEAD(rm_list);
4025 
4026 	down_write(&ctrl->namespaces_rwsem);
4027 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4028 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4029 			list_move_tail(&ns->list, &rm_list);
4030 	}
4031 	up_write(&ctrl->namespaces_rwsem);
4032 
4033 	list_for_each_entry_safe(ns, next, &rm_list, list)
4034 		nvme_ns_remove(ns);
4035 
4036 }
4037 
4038 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4039 {
4040 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4041 	__le32 *ns_list;
4042 	u32 prev = 0;
4043 	int ret = 0, i;
4044 
4045 	if (nvme_ctrl_limited_cns(ctrl))
4046 		return -EOPNOTSUPP;
4047 
4048 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4049 	if (!ns_list)
4050 		return -ENOMEM;
4051 
4052 	for (;;) {
4053 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
4054 		if (ret)
4055 			goto free;
4056 
4057 		for (i = 0; i < nr_entries; i++) {
4058 			u32 nsid = le32_to_cpu(ns_list[i]);
4059 
4060 			if (!nsid)	/* end of the list? */
4061 				goto out;
4062 			nvme_validate_ns(ctrl, nsid);
4063 			while (++prev < nsid)
4064 				nvme_ns_remove_by_nsid(ctrl, prev);
4065 		}
4066 	}
4067  out:
4068 	nvme_remove_invalid_namespaces(ctrl, prev);
4069  free:
4070 	kfree(ns_list);
4071 	return ret;
4072 }
4073 
4074 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4075 {
4076 	struct nvme_id_ctrl *id;
4077 	u32 nn, i;
4078 
4079 	if (nvme_identify_ctrl(ctrl, &id))
4080 		return;
4081 	nn = le32_to_cpu(id->nn);
4082 	kfree(id);
4083 
4084 	for (i = 1; i <= nn; i++)
4085 		nvme_validate_ns(ctrl, i);
4086 
4087 	nvme_remove_invalid_namespaces(ctrl, nn);
4088 }
4089 
4090 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4091 {
4092 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4093 	__le32 *log;
4094 	int error;
4095 
4096 	log = kzalloc(log_size, GFP_KERNEL);
4097 	if (!log)
4098 		return;
4099 
4100 	/*
4101 	 * We need to read the log to clear the AEN, but we don't want to rely
4102 	 * on it for the changed namespace information as userspace could have
4103 	 * raced with us in reading the log page, which could cause us to miss
4104 	 * updates.
4105 	 */
4106 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4107 			NVME_CSI_NVM, log, log_size, 0);
4108 	if (error)
4109 		dev_warn(ctrl->device,
4110 			"reading changed ns log failed: %d\n", error);
4111 
4112 	kfree(log);
4113 }
4114 
4115 static void nvme_scan_work(struct work_struct *work)
4116 {
4117 	struct nvme_ctrl *ctrl =
4118 		container_of(work, struct nvme_ctrl, scan_work);
4119 
4120 	/* No tagset on a live ctrl means IO queues could not created */
4121 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4122 		return;
4123 
4124 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4125 		dev_info(ctrl->device, "rescanning namespaces.\n");
4126 		nvme_clear_changed_ns_log(ctrl);
4127 	}
4128 
4129 	mutex_lock(&ctrl->scan_lock);
4130 	if (nvme_scan_ns_list(ctrl) != 0)
4131 		nvme_scan_ns_sequential(ctrl);
4132 	mutex_unlock(&ctrl->scan_lock);
4133 
4134 	down_write(&ctrl->namespaces_rwsem);
4135 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4136 	up_write(&ctrl->namespaces_rwsem);
4137 }
4138 
4139 /*
4140  * This function iterates the namespace list unlocked to allow recovery from
4141  * controller failure. It is up to the caller to ensure the namespace list is
4142  * not modified by scan work while this function is executing.
4143  */
4144 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4145 {
4146 	struct nvme_ns *ns, *next;
4147 	LIST_HEAD(ns_list);
4148 
4149 	/*
4150 	 * make sure to requeue I/O to all namespaces as these
4151 	 * might result from the scan itself and must complete
4152 	 * for the scan_work to make progress
4153 	 */
4154 	nvme_mpath_clear_ctrl_paths(ctrl);
4155 
4156 	/* prevent racing with ns scanning */
4157 	flush_work(&ctrl->scan_work);
4158 
4159 	/*
4160 	 * The dead states indicates the controller was not gracefully
4161 	 * disconnected. In that case, we won't be able to flush any data while
4162 	 * removing the namespaces' disks; fail all the queues now to avoid
4163 	 * potentially having to clean up the failed sync later.
4164 	 */
4165 	if (ctrl->state == NVME_CTRL_DEAD)
4166 		nvme_kill_queues(ctrl);
4167 
4168 	/* this is a no-op when called from the controller reset handler */
4169 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4170 
4171 	down_write(&ctrl->namespaces_rwsem);
4172 	list_splice_init(&ctrl->namespaces, &ns_list);
4173 	up_write(&ctrl->namespaces_rwsem);
4174 
4175 	list_for_each_entry_safe(ns, next, &ns_list, list)
4176 		nvme_ns_remove(ns);
4177 }
4178 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4179 
4180 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4181 {
4182 	struct nvme_ctrl *ctrl =
4183 		container_of(dev, struct nvme_ctrl, ctrl_device);
4184 	struct nvmf_ctrl_options *opts = ctrl->opts;
4185 	int ret;
4186 
4187 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4188 	if (ret)
4189 		return ret;
4190 
4191 	if (opts) {
4192 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4193 		if (ret)
4194 			return ret;
4195 
4196 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4197 				opts->trsvcid ?: "none");
4198 		if (ret)
4199 			return ret;
4200 
4201 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4202 				opts->host_traddr ?: "none");
4203 	}
4204 	return ret;
4205 }
4206 
4207 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4208 {
4209 	char *envp[2] = { NULL, NULL };
4210 	u32 aen_result = ctrl->aen_result;
4211 
4212 	ctrl->aen_result = 0;
4213 	if (!aen_result)
4214 		return;
4215 
4216 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4217 	if (!envp[0])
4218 		return;
4219 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4220 	kfree(envp[0]);
4221 }
4222 
4223 static void nvme_async_event_work(struct work_struct *work)
4224 {
4225 	struct nvme_ctrl *ctrl =
4226 		container_of(work, struct nvme_ctrl, async_event_work);
4227 
4228 	nvme_aen_uevent(ctrl);
4229 	ctrl->ops->submit_async_event(ctrl);
4230 }
4231 
4232 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4233 {
4234 
4235 	u32 csts;
4236 
4237 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4238 		return false;
4239 
4240 	if (csts == ~0)
4241 		return false;
4242 
4243 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4244 }
4245 
4246 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4247 {
4248 	struct nvme_fw_slot_info_log *log;
4249 
4250 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4251 	if (!log)
4252 		return;
4253 
4254 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4255 			log, sizeof(*log), 0))
4256 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4257 	kfree(log);
4258 }
4259 
4260 static void nvme_fw_act_work(struct work_struct *work)
4261 {
4262 	struct nvme_ctrl *ctrl = container_of(work,
4263 				struct nvme_ctrl, fw_act_work);
4264 	unsigned long fw_act_timeout;
4265 
4266 	if (ctrl->mtfa)
4267 		fw_act_timeout = jiffies +
4268 				msecs_to_jiffies(ctrl->mtfa * 100);
4269 	else
4270 		fw_act_timeout = jiffies +
4271 				msecs_to_jiffies(admin_timeout * 1000);
4272 
4273 	nvme_stop_queues(ctrl);
4274 	while (nvme_ctrl_pp_status(ctrl)) {
4275 		if (time_after(jiffies, fw_act_timeout)) {
4276 			dev_warn(ctrl->device,
4277 				"Fw activation timeout, reset controller\n");
4278 			nvme_try_sched_reset(ctrl);
4279 			return;
4280 		}
4281 		msleep(100);
4282 	}
4283 
4284 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4285 		return;
4286 
4287 	nvme_start_queues(ctrl);
4288 	/* read FW slot information to clear the AER */
4289 	nvme_get_fw_slot_info(ctrl);
4290 }
4291 
4292 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4293 {
4294 	u32 aer_notice_type = (result & 0xff00) >> 8;
4295 
4296 	trace_nvme_async_event(ctrl, aer_notice_type);
4297 
4298 	switch (aer_notice_type) {
4299 	case NVME_AER_NOTICE_NS_CHANGED:
4300 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4301 		nvme_queue_scan(ctrl);
4302 		break;
4303 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4304 		/*
4305 		 * We are (ab)using the RESETTING state to prevent subsequent
4306 		 * recovery actions from interfering with the controller's
4307 		 * firmware activation.
4308 		 */
4309 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4310 			queue_work(nvme_wq, &ctrl->fw_act_work);
4311 		break;
4312 #ifdef CONFIG_NVME_MULTIPATH
4313 	case NVME_AER_NOTICE_ANA:
4314 		if (!ctrl->ana_log_buf)
4315 			break;
4316 		queue_work(nvme_wq, &ctrl->ana_work);
4317 		break;
4318 #endif
4319 	case NVME_AER_NOTICE_DISC_CHANGED:
4320 		ctrl->aen_result = result;
4321 		break;
4322 	default:
4323 		dev_warn(ctrl->device, "async event result %08x\n", result);
4324 	}
4325 }
4326 
4327 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4328 		volatile union nvme_result *res)
4329 {
4330 	u32 result = le32_to_cpu(res->u32);
4331 	u32 aer_type = result & 0x07;
4332 
4333 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4334 		return;
4335 
4336 	switch (aer_type) {
4337 	case NVME_AER_NOTICE:
4338 		nvme_handle_aen_notice(ctrl, result);
4339 		break;
4340 	case NVME_AER_ERROR:
4341 	case NVME_AER_SMART:
4342 	case NVME_AER_CSS:
4343 	case NVME_AER_VS:
4344 		trace_nvme_async_event(ctrl, aer_type);
4345 		ctrl->aen_result = result;
4346 		break;
4347 	default:
4348 		break;
4349 	}
4350 	queue_work(nvme_wq, &ctrl->async_event_work);
4351 }
4352 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4353 
4354 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4355 {
4356 	nvme_mpath_stop(ctrl);
4357 	nvme_stop_keep_alive(ctrl);
4358 	flush_work(&ctrl->async_event_work);
4359 	cancel_work_sync(&ctrl->fw_act_work);
4360 }
4361 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4362 
4363 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4364 {
4365 	nvme_start_keep_alive(ctrl);
4366 
4367 	nvme_enable_aen(ctrl);
4368 
4369 	if (ctrl->queue_count > 1) {
4370 		nvme_queue_scan(ctrl);
4371 		nvme_start_queues(ctrl);
4372 	}
4373 	ctrl->created = true;
4374 }
4375 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4376 
4377 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4378 {
4379 	nvme_fault_inject_fini(&ctrl->fault_inject);
4380 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4381 	cdev_device_del(&ctrl->cdev, ctrl->device);
4382 	nvme_put_ctrl(ctrl);
4383 }
4384 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4385 
4386 static void nvme_free_ctrl(struct device *dev)
4387 {
4388 	struct nvme_ctrl *ctrl =
4389 		container_of(dev, struct nvme_ctrl, ctrl_device);
4390 	struct nvme_subsystem *subsys = ctrl->subsys;
4391 	struct nvme_cel *cel, *next;
4392 
4393 	if (subsys && ctrl->instance != subsys->instance)
4394 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4395 
4396 	list_for_each_entry_safe(cel, next, &ctrl->cels, entry) {
4397 		list_del(&cel->entry);
4398 		kfree(cel);
4399 	}
4400 
4401 	nvme_mpath_uninit(ctrl);
4402 	__free_page(ctrl->discard_page);
4403 
4404 	if (subsys) {
4405 		mutex_lock(&nvme_subsystems_lock);
4406 		list_del(&ctrl->subsys_entry);
4407 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4408 		mutex_unlock(&nvme_subsystems_lock);
4409 	}
4410 
4411 	ctrl->ops->free_ctrl(ctrl);
4412 
4413 	if (subsys)
4414 		nvme_put_subsystem(subsys);
4415 }
4416 
4417 /*
4418  * Initialize a NVMe controller structures.  This needs to be called during
4419  * earliest initialization so that we have the initialized structured around
4420  * during probing.
4421  */
4422 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4423 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4424 {
4425 	int ret;
4426 
4427 	ctrl->state = NVME_CTRL_NEW;
4428 	spin_lock_init(&ctrl->lock);
4429 	mutex_init(&ctrl->scan_lock);
4430 	INIT_LIST_HEAD(&ctrl->namespaces);
4431 	INIT_LIST_HEAD(&ctrl->cels);
4432 	init_rwsem(&ctrl->namespaces_rwsem);
4433 	ctrl->dev = dev;
4434 	ctrl->ops = ops;
4435 	ctrl->quirks = quirks;
4436 	ctrl->numa_node = NUMA_NO_NODE;
4437 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4438 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4439 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4440 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4441 	init_waitqueue_head(&ctrl->state_wq);
4442 
4443 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4444 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4445 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4446 
4447 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4448 			PAGE_SIZE);
4449 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4450 	if (!ctrl->discard_page) {
4451 		ret = -ENOMEM;
4452 		goto out;
4453 	}
4454 
4455 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4456 	if (ret < 0)
4457 		goto out;
4458 	ctrl->instance = ret;
4459 
4460 	device_initialize(&ctrl->ctrl_device);
4461 	ctrl->device = &ctrl->ctrl_device;
4462 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4463 	ctrl->device->class = nvme_class;
4464 	ctrl->device->parent = ctrl->dev;
4465 	ctrl->device->groups = nvme_dev_attr_groups;
4466 	ctrl->device->release = nvme_free_ctrl;
4467 	dev_set_drvdata(ctrl->device, ctrl);
4468 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4469 	if (ret)
4470 		goto out_release_instance;
4471 
4472 	nvme_get_ctrl(ctrl);
4473 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4474 	ctrl->cdev.owner = ops->module;
4475 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4476 	if (ret)
4477 		goto out_free_name;
4478 
4479 	/*
4480 	 * Initialize latency tolerance controls.  The sysfs files won't
4481 	 * be visible to userspace unless the device actually supports APST.
4482 	 */
4483 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4484 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4485 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4486 
4487 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4488 
4489 	return 0;
4490 out_free_name:
4491 	nvme_put_ctrl(ctrl);
4492 	kfree_const(ctrl->device->kobj.name);
4493 out_release_instance:
4494 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4495 out:
4496 	if (ctrl->discard_page)
4497 		__free_page(ctrl->discard_page);
4498 	return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4501 
4502 /**
4503  * nvme_kill_queues(): Ends all namespace queues
4504  * @ctrl: the dead controller that needs to end
4505  *
4506  * Call this function when the driver determines it is unable to get the
4507  * controller in a state capable of servicing IO.
4508  */
4509 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4510 {
4511 	struct nvme_ns *ns;
4512 
4513 	down_read(&ctrl->namespaces_rwsem);
4514 
4515 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4516 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4517 		blk_mq_unquiesce_queue(ctrl->admin_q);
4518 
4519 	list_for_each_entry(ns, &ctrl->namespaces, list)
4520 		nvme_set_queue_dying(ns);
4521 
4522 	up_read(&ctrl->namespaces_rwsem);
4523 }
4524 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4525 
4526 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4527 {
4528 	struct nvme_ns *ns;
4529 
4530 	down_read(&ctrl->namespaces_rwsem);
4531 	list_for_each_entry(ns, &ctrl->namespaces, list)
4532 		blk_mq_unfreeze_queue(ns->queue);
4533 	up_read(&ctrl->namespaces_rwsem);
4534 }
4535 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4536 
4537 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4538 {
4539 	struct nvme_ns *ns;
4540 
4541 	down_read(&ctrl->namespaces_rwsem);
4542 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4543 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4544 		if (timeout <= 0)
4545 			break;
4546 	}
4547 	up_read(&ctrl->namespaces_rwsem);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4550 
4551 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4552 {
4553 	struct nvme_ns *ns;
4554 
4555 	down_read(&ctrl->namespaces_rwsem);
4556 	list_for_each_entry(ns, &ctrl->namespaces, list)
4557 		blk_mq_freeze_queue_wait(ns->queue);
4558 	up_read(&ctrl->namespaces_rwsem);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4561 
4562 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4563 {
4564 	struct nvme_ns *ns;
4565 
4566 	down_read(&ctrl->namespaces_rwsem);
4567 	list_for_each_entry(ns, &ctrl->namespaces, list)
4568 		blk_freeze_queue_start(ns->queue);
4569 	up_read(&ctrl->namespaces_rwsem);
4570 }
4571 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4572 
4573 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4574 {
4575 	struct nvme_ns *ns;
4576 
4577 	down_read(&ctrl->namespaces_rwsem);
4578 	list_for_each_entry(ns, &ctrl->namespaces, list)
4579 		blk_mq_quiesce_queue(ns->queue);
4580 	up_read(&ctrl->namespaces_rwsem);
4581 }
4582 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4583 
4584 void nvme_start_queues(struct nvme_ctrl *ctrl)
4585 {
4586 	struct nvme_ns *ns;
4587 
4588 	down_read(&ctrl->namespaces_rwsem);
4589 	list_for_each_entry(ns, &ctrl->namespaces, list)
4590 		blk_mq_unquiesce_queue(ns->queue);
4591 	up_read(&ctrl->namespaces_rwsem);
4592 }
4593 EXPORT_SYMBOL_GPL(nvme_start_queues);
4594 
4595 
4596 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4597 {
4598 	struct nvme_ns *ns;
4599 
4600 	down_read(&ctrl->namespaces_rwsem);
4601 	list_for_each_entry(ns, &ctrl->namespaces, list)
4602 		blk_sync_queue(ns->queue);
4603 	up_read(&ctrl->namespaces_rwsem);
4604 
4605 	if (ctrl->admin_q)
4606 		blk_sync_queue(ctrl->admin_q);
4607 }
4608 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4609 
4610 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path)
4611 {
4612 	struct nvme_ctrl *ctrl;
4613 	struct file *f;
4614 
4615 	f = filp_open(path, O_RDWR, 0);
4616 	if (IS_ERR(f))
4617 		return ERR_CAST(f);
4618 
4619 	if (f->f_op != &nvme_dev_fops) {
4620 		ctrl = ERR_PTR(-EINVAL);
4621 		goto out_close;
4622 	}
4623 
4624 	ctrl = f->private_data;
4625 	nvme_get_ctrl(ctrl);
4626 
4627 out_close:
4628 	filp_close(f, NULL);
4629 	return ctrl;
4630 }
4631 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU);
4632 
4633 /*
4634  * Check we didn't inadvertently grow the command structure sizes:
4635  */
4636 static inline void _nvme_check_size(void)
4637 {
4638 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4639 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4640 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4641 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4642 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4643 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4644 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4645 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4646 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4647 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4648 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4649 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4650 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4651 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4652 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4653 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4654 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4655 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4656 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4657 }
4658 
4659 
4660 static int __init nvme_core_init(void)
4661 {
4662 	int result = -ENOMEM;
4663 
4664 	_nvme_check_size();
4665 
4666 	nvme_wq = alloc_workqueue("nvme-wq",
4667 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4668 	if (!nvme_wq)
4669 		goto out;
4670 
4671 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4672 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4673 	if (!nvme_reset_wq)
4674 		goto destroy_wq;
4675 
4676 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4677 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4678 	if (!nvme_delete_wq)
4679 		goto destroy_reset_wq;
4680 
4681 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4682 	if (result < 0)
4683 		goto destroy_delete_wq;
4684 
4685 	nvme_class = class_create(THIS_MODULE, "nvme");
4686 	if (IS_ERR(nvme_class)) {
4687 		result = PTR_ERR(nvme_class);
4688 		goto unregister_chrdev;
4689 	}
4690 	nvme_class->dev_uevent = nvme_class_uevent;
4691 
4692 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4693 	if (IS_ERR(nvme_subsys_class)) {
4694 		result = PTR_ERR(nvme_subsys_class);
4695 		goto destroy_class;
4696 	}
4697 	return 0;
4698 
4699 destroy_class:
4700 	class_destroy(nvme_class);
4701 unregister_chrdev:
4702 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4703 destroy_delete_wq:
4704 	destroy_workqueue(nvme_delete_wq);
4705 destroy_reset_wq:
4706 	destroy_workqueue(nvme_reset_wq);
4707 destroy_wq:
4708 	destroy_workqueue(nvme_wq);
4709 out:
4710 	return result;
4711 }
4712 
4713 static void __exit nvme_core_exit(void)
4714 {
4715 	class_destroy(nvme_subsys_class);
4716 	class_destroy(nvme_class);
4717 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4718 	destroy_workqueue(nvme_delete_wq);
4719 	destroy_workqueue(nvme_reset_wq);
4720 	destroy_workqueue(nvme_wq);
4721 	ida_destroy(&nvme_instance_ida);
4722 }
4723 
4724 MODULE_LICENSE("GPL");
4725 MODULE_VERSION("1.0");
4726 module_init(nvme_core_init);
4727 module_exit(nvme_core_exit);
4728