1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int _nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 } 175 176 static void nvme_delete_ctrl_work(struct work_struct *work) 177 { 178 struct nvme_ctrl *ctrl = 179 container_of(work, struct nvme_ctrl, delete_work); 180 181 nvme_do_delete_ctrl(ctrl); 182 } 183 184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 185 { 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 return -EBUSY; 188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 189 return -EBUSY; 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 193 194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 195 { 196 /* 197 * Keep a reference until nvme_do_delete_ctrl() complete, 198 * since ->delete_ctrl can free the controller. 199 */ 200 nvme_get_ctrl(ctrl); 201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 202 nvme_do_delete_ctrl(ctrl); 203 nvme_put_ctrl(ctrl); 204 } 205 206 static blk_status_t nvme_error_status(u16 status) 207 { 208 switch (status & 0x7ff) { 209 case NVME_SC_SUCCESS: 210 return BLK_STS_OK; 211 case NVME_SC_CAP_EXCEEDED: 212 return BLK_STS_NOSPC; 213 case NVME_SC_LBA_RANGE: 214 case NVME_SC_CMD_INTERRUPTED: 215 case NVME_SC_NS_NOT_READY: 216 return BLK_STS_TARGET; 217 case NVME_SC_BAD_ATTRIBUTES: 218 case NVME_SC_ONCS_NOT_SUPPORTED: 219 case NVME_SC_INVALID_OPCODE: 220 case NVME_SC_INVALID_FIELD: 221 case NVME_SC_INVALID_NS: 222 return BLK_STS_NOTSUPP; 223 case NVME_SC_WRITE_FAULT: 224 case NVME_SC_READ_ERROR: 225 case NVME_SC_UNWRITTEN_BLOCK: 226 case NVME_SC_ACCESS_DENIED: 227 case NVME_SC_READ_ONLY: 228 case NVME_SC_COMPARE_FAILED: 229 return BLK_STS_MEDIUM; 230 case NVME_SC_GUARD_CHECK: 231 case NVME_SC_APPTAG_CHECK: 232 case NVME_SC_REFTAG_CHECK: 233 case NVME_SC_INVALID_PI: 234 return BLK_STS_PROTECTION; 235 case NVME_SC_RESERVATION_CONFLICT: 236 return BLK_STS_NEXUS; 237 case NVME_SC_HOST_PATH_ERROR: 238 return BLK_STS_TRANSPORT; 239 default: 240 return BLK_STS_IOERR; 241 } 242 } 243 244 static void nvme_retry_req(struct request *req) 245 { 246 struct nvme_ns *ns = req->q->queuedata; 247 unsigned long delay = 0; 248 u16 crd; 249 250 /* The mask and shift result must be <= 3 */ 251 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 252 if (ns && crd) 253 delay = ns->ctrl->crdt[crd - 1] * 100; 254 255 nvme_req(req)->retries++; 256 blk_mq_requeue_request(req, false); 257 blk_mq_delay_kick_requeue_list(req->q, delay); 258 } 259 260 enum nvme_disposition { 261 COMPLETE, 262 RETRY, 263 FAILOVER, 264 }; 265 266 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 267 { 268 if (likely(nvme_req(req)->status == 0)) 269 return COMPLETE; 270 271 if (blk_noretry_request(req) || 272 (nvme_req(req)->status & NVME_SC_DNR) || 273 nvme_req(req)->retries >= nvme_max_retries) 274 return COMPLETE; 275 276 if (req->cmd_flags & REQ_NVME_MPATH) { 277 if (nvme_is_path_error(nvme_req(req)->status) || 278 blk_queue_dying(req->q)) 279 return FAILOVER; 280 } else { 281 if (blk_queue_dying(req->q)) 282 return COMPLETE; 283 } 284 285 return RETRY; 286 } 287 288 static inline void nvme_end_req(struct request *req) 289 { 290 blk_status_t status = nvme_error_status(nvme_req(req)->status); 291 292 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 293 req_op(req) == REQ_OP_ZONE_APPEND) 294 req->__sector = nvme_lba_to_sect(req->q->queuedata, 295 le64_to_cpu(nvme_req(req)->result.u64)); 296 297 nvme_trace_bio_complete(req, status); 298 blk_mq_end_request(req, status); 299 } 300 301 void nvme_complete_rq(struct request *req) 302 { 303 trace_nvme_complete_rq(req); 304 nvme_cleanup_cmd(req); 305 306 if (nvme_req(req)->ctrl->kas) 307 nvme_req(req)->ctrl->comp_seen = true; 308 309 switch (nvme_decide_disposition(req)) { 310 case COMPLETE: 311 nvme_end_req(req); 312 return; 313 case RETRY: 314 nvme_retry_req(req); 315 return; 316 case FAILOVER: 317 nvme_failover_req(req); 318 return; 319 } 320 } 321 EXPORT_SYMBOL_GPL(nvme_complete_rq); 322 323 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 324 { 325 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 326 "Cancelling I/O %d", req->tag); 327 328 /* don't abort one completed request */ 329 if (blk_mq_request_completed(req)) 330 return true; 331 332 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 333 blk_mq_complete_request(req); 334 return true; 335 } 336 EXPORT_SYMBOL_GPL(nvme_cancel_request); 337 338 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 339 enum nvme_ctrl_state new_state) 340 { 341 enum nvme_ctrl_state old_state; 342 unsigned long flags; 343 bool changed = false; 344 345 spin_lock_irqsave(&ctrl->lock, flags); 346 347 old_state = ctrl->state; 348 switch (new_state) { 349 case NVME_CTRL_LIVE: 350 switch (old_state) { 351 case NVME_CTRL_NEW: 352 case NVME_CTRL_RESETTING: 353 case NVME_CTRL_CONNECTING: 354 changed = true; 355 fallthrough; 356 default: 357 break; 358 } 359 break; 360 case NVME_CTRL_RESETTING: 361 switch (old_state) { 362 case NVME_CTRL_NEW: 363 case NVME_CTRL_LIVE: 364 changed = true; 365 fallthrough; 366 default: 367 break; 368 } 369 break; 370 case NVME_CTRL_CONNECTING: 371 switch (old_state) { 372 case NVME_CTRL_NEW: 373 case NVME_CTRL_RESETTING: 374 changed = true; 375 fallthrough; 376 default: 377 break; 378 } 379 break; 380 case NVME_CTRL_DELETING: 381 switch (old_state) { 382 case NVME_CTRL_LIVE: 383 case NVME_CTRL_RESETTING: 384 case NVME_CTRL_CONNECTING: 385 changed = true; 386 fallthrough; 387 default: 388 break; 389 } 390 break; 391 case NVME_CTRL_DELETING_NOIO: 392 switch (old_state) { 393 case NVME_CTRL_DELETING: 394 case NVME_CTRL_DEAD: 395 changed = true; 396 fallthrough; 397 default: 398 break; 399 } 400 break; 401 case NVME_CTRL_DEAD: 402 switch (old_state) { 403 case NVME_CTRL_DELETING: 404 changed = true; 405 fallthrough; 406 default: 407 break; 408 } 409 break; 410 default: 411 break; 412 } 413 414 if (changed) { 415 ctrl->state = new_state; 416 wake_up_all(&ctrl->state_wq); 417 } 418 419 spin_unlock_irqrestore(&ctrl->lock, flags); 420 if (changed && ctrl->state == NVME_CTRL_LIVE) 421 nvme_kick_requeue_lists(ctrl); 422 return changed; 423 } 424 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 425 426 /* 427 * Returns true for sink states that can't ever transition back to live. 428 */ 429 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 430 { 431 switch (ctrl->state) { 432 case NVME_CTRL_NEW: 433 case NVME_CTRL_LIVE: 434 case NVME_CTRL_RESETTING: 435 case NVME_CTRL_CONNECTING: 436 return false; 437 case NVME_CTRL_DELETING: 438 case NVME_CTRL_DELETING_NOIO: 439 case NVME_CTRL_DEAD: 440 return true; 441 default: 442 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 443 return true; 444 } 445 } 446 447 /* 448 * Waits for the controller state to be resetting, or returns false if it is 449 * not possible to ever transition to that state. 450 */ 451 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 452 { 453 wait_event(ctrl->state_wq, 454 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 455 nvme_state_terminal(ctrl)); 456 return ctrl->state == NVME_CTRL_RESETTING; 457 } 458 EXPORT_SYMBOL_GPL(nvme_wait_reset); 459 460 static void nvme_free_ns_head(struct kref *ref) 461 { 462 struct nvme_ns_head *head = 463 container_of(ref, struct nvme_ns_head, ref); 464 465 nvme_mpath_remove_disk(head); 466 ida_simple_remove(&head->subsys->ns_ida, head->instance); 467 cleanup_srcu_struct(&head->srcu); 468 nvme_put_subsystem(head->subsys); 469 kfree(head); 470 } 471 472 static void nvme_put_ns_head(struct nvme_ns_head *head) 473 { 474 kref_put(&head->ref, nvme_free_ns_head); 475 } 476 477 static void nvme_free_ns(struct kref *kref) 478 { 479 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 480 481 if (ns->ndev) 482 nvme_nvm_unregister(ns); 483 484 put_disk(ns->disk); 485 nvme_put_ns_head(ns->head); 486 nvme_put_ctrl(ns->ctrl); 487 kfree(ns); 488 } 489 490 void nvme_put_ns(struct nvme_ns *ns) 491 { 492 kref_put(&ns->kref, nvme_free_ns); 493 } 494 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 495 496 static inline void nvme_clear_nvme_request(struct request *req) 497 { 498 if (!(req->rq_flags & RQF_DONTPREP)) { 499 nvme_req(req)->retries = 0; 500 nvme_req(req)->flags = 0; 501 req->rq_flags |= RQF_DONTPREP; 502 } 503 } 504 505 struct request *nvme_alloc_request(struct request_queue *q, 506 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 507 { 508 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 509 struct request *req; 510 511 if (qid == NVME_QID_ANY) { 512 req = blk_mq_alloc_request(q, op, flags); 513 } else { 514 req = blk_mq_alloc_request_hctx(q, op, flags, 515 qid ? qid - 1 : 0); 516 } 517 if (IS_ERR(req)) 518 return req; 519 520 req->cmd_flags |= REQ_FAILFAST_DRIVER; 521 nvme_clear_nvme_request(req); 522 nvme_req(req)->cmd = cmd; 523 524 return req; 525 } 526 EXPORT_SYMBOL_GPL(nvme_alloc_request); 527 528 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 529 { 530 struct nvme_command c; 531 532 memset(&c, 0, sizeof(c)); 533 534 c.directive.opcode = nvme_admin_directive_send; 535 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 536 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 537 c.directive.dtype = NVME_DIR_IDENTIFY; 538 c.directive.tdtype = NVME_DIR_STREAMS; 539 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 540 541 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 542 } 543 544 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 545 { 546 return nvme_toggle_streams(ctrl, false); 547 } 548 549 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 550 { 551 return nvme_toggle_streams(ctrl, true); 552 } 553 554 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 555 struct streams_directive_params *s, u32 nsid) 556 { 557 struct nvme_command c; 558 559 memset(&c, 0, sizeof(c)); 560 memset(s, 0, sizeof(*s)); 561 562 c.directive.opcode = nvme_admin_directive_recv; 563 c.directive.nsid = cpu_to_le32(nsid); 564 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 565 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 566 c.directive.dtype = NVME_DIR_STREAMS; 567 568 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 569 } 570 571 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 572 { 573 struct streams_directive_params s; 574 int ret; 575 576 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 577 return 0; 578 if (!streams) 579 return 0; 580 581 ret = nvme_enable_streams(ctrl); 582 if (ret) 583 return ret; 584 585 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 586 if (ret) 587 goto out_disable_stream; 588 589 ctrl->nssa = le16_to_cpu(s.nssa); 590 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 591 dev_info(ctrl->device, "too few streams (%u) available\n", 592 ctrl->nssa); 593 goto out_disable_stream; 594 } 595 596 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 597 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 598 return 0; 599 600 out_disable_stream: 601 nvme_disable_streams(ctrl); 602 return ret; 603 } 604 605 /* 606 * Check if 'req' has a write hint associated with it. If it does, assign 607 * a valid namespace stream to the write. 608 */ 609 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 610 struct request *req, u16 *control, 611 u32 *dsmgmt) 612 { 613 enum rw_hint streamid = req->write_hint; 614 615 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 616 streamid = 0; 617 else { 618 streamid--; 619 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 620 return; 621 622 *control |= NVME_RW_DTYPE_STREAMS; 623 *dsmgmt |= streamid << 16; 624 } 625 626 if (streamid < ARRAY_SIZE(req->q->write_hints)) 627 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 628 } 629 630 static void nvme_setup_passthrough(struct request *req, 631 struct nvme_command *cmd) 632 { 633 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 634 /* passthru commands should let the driver set the SGL flags */ 635 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 636 } 637 638 static inline void nvme_setup_flush(struct nvme_ns *ns, 639 struct nvme_command *cmnd) 640 { 641 cmnd->common.opcode = nvme_cmd_flush; 642 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 643 } 644 645 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 646 struct nvme_command *cmnd) 647 { 648 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 649 struct nvme_dsm_range *range; 650 struct bio *bio; 651 652 /* 653 * Some devices do not consider the DSM 'Number of Ranges' field when 654 * determining how much data to DMA. Always allocate memory for maximum 655 * number of segments to prevent device reading beyond end of buffer. 656 */ 657 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 658 659 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 660 if (!range) { 661 /* 662 * If we fail allocation our range, fallback to the controller 663 * discard page. If that's also busy, it's safe to return 664 * busy, as we know we can make progress once that's freed. 665 */ 666 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 667 return BLK_STS_RESOURCE; 668 669 range = page_address(ns->ctrl->discard_page); 670 } 671 672 __rq_for_each_bio(bio, req) { 673 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 674 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 675 676 if (n < segments) { 677 range[n].cattr = cpu_to_le32(0); 678 range[n].nlb = cpu_to_le32(nlb); 679 range[n].slba = cpu_to_le64(slba); 680 } 681 n++; 682 } 683 684 if (WARN_ON_ONCE(n != segments)) { 685 if (virt_to_page(range) == ns->ctrl->discard_page) 686 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 687 else 688 kfree(range); 689 return BLK_STS_IOERR; 690 } 691 692 cmnd->dsm.opcode = nvme_cmd_dsm; 693 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 694 cmnd->dsm.nr = cpu_to_le32(segments - 1); 695 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 696 697 req->special_vec.bv_page = virt_to_page(range); 698 req->special_vec.bv_offset = offset_in_page(range); 699 req->special_vec.bv_len = alloc_size; 700 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 701 702 return BLK_STS_OK; 703 } 704 705 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 706 struct request *req, struct nvme_command *cmnd) 707 { 708 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 709 return nvme_setup_discard(ns, req, cmnd); 710 711 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 712 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 713 cmnd->write_zeroes.slba = 714 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 715 cmnd->write_zeroes.length = 716 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 717 cmnd->write_zeroes.control = 0; 718 return BLK_STS_OK; 719 } 720 721 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 722 struct request *req, struct nvme_command *cmnd, 723 enum nvme_opcode op) 724 { 725 struct nvme_ctrl *ctrl = ns->ctrl; 726 u16 control = 0; 727 u32 dsmgmt = 0; 728 729 if (req->cmd_flags & REQ_FUA) 730 control |= NVME_RW_FUA; 731 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 732 control |= NVME_RW_LR; 733 734 if (req->cmd_flags & REQ_RAHEAD) 735 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 736 737 cmnd->rw.opcode = op; 738 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 739 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 740 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 741 742 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 743 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 744 745 if (ns->ms) { 746 /* 747 * If formated with metadata, the block layer always provides a 748 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 749 * we enable the PRACT bit for protection information or set the 750 * namespace capacity to zero to prevent any I/O. 751 */ 752 if (!blk_integrity_rq(req)) { 753 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 754 return BLK_STS_NOTSUPP; 755 control |= NVME_RW_PRINFO_PRACT; 756 } 757 758 switch (ns->pi_type) { 759 case NVME_NS_DPS_PI_TYPE3: 760 control |= NVME_RW_PRINFO_PRCHK_GUARD; 761 break; 762 case NVME_NS_DPS_PI_TYPE1: 763 case NVME_NS_DPS_PI_TYPE2: 764 control |= NVME_RW_PRINFO_PRCHK_GUARD | 765 NVME_RW_PRINFO_PRCHK_REF; 766 if (op == nvme_cmd_zone_append) 767 control |= NVME_RW_APPEND_PIREMAP; 768 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 769 break; 770 } 771 } 772 773 cmnd->rw.control = cpu_to_le16(control); 774 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 775 return 0; 776 } 777 778 void nvme_cleanup_cmd(struct request *req) 779 { 780 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 781 struct nvme_ns *ns = req->rq_disk->private_data; 782 struct page *page = req->special_vec.bv_page; 783 784 if (page == ns->ctrl->discard_page) 785 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 786 else 787 kfree(page_address(page) + req->special_vec.bv_offset); 788 } 789 } 790 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 791 792 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 793 struct nvme_command *cmd) 794 { 795 blk_status_t ret = BLK_STS_OK; 796 797 nvme_clear_nvme_request(req); 798 799 memset(cmd, 0, sizeof(*cmd)); 800 switch (req_op(req)) { 801 case REQ_OP_DRV_IN: 802 case REQ_OP_DRV_OUT: 803 nvme_setup_passthrough(req, cmd); 804 break; 805 case REQ_OP_FLUSH: 806 nvme_setup_flush(ns, cmd); 807 break; 808 case REQ_OP_ZONE_RESET_ALL: 809 case REQ_OP_ZONE_RESET: 810 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 811 break; 812 case REQ_OP_ZONE_OPEN: 813 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 814 break; 815 case REQ_OP_ZONE_CLOSE: 816 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 817 break; 818 case REQ_OP_ZONE_FINISH: 819 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 820 break; 821 case REQ_OP_WRITE_ZEROES: 822 ret = nvme_setup_write_zeroes(ns, req, cmd); 823 break; 824 case REQ_OP_DISCARD: 825 ret = nvme_setup_discard(ns, req, cmd); 826 break; 827 case REQ_OP_READ: 828 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 829 break; 830 case REQ_OP_WRITE: 831 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 832 break; 833 case REQ_OP_ZONE_APPEND: 834 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 835 break; 836 default: 837 WARN_ON_ONCE(1); 838 return BLK_STS_IOERR; 839 } 840 841 cmd->common.command_id = req->tag; 842 trace_nvme_setup_cmd(req, cmd); 843 return ret; 844 } 845 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 846 847 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 848 { 849 struct completion *waiting = rq->end_io_data; 850 851 rq->end_io_data = NULL; 852 complete(waiting); 853 } 854 855 static void nvme_execute_rq_polled(struct request_queue *q, 856 struct gendisk *bd_disk, struct request *rq, int at_head) 857 { 858 DECLARE_COMPLETION_ONSTACK(wait); 859 860 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 861 862 rq->cmd_flags |= REQ_HIPRI; 863 rq->end_io_data = &wait; 864 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 865 866 while (!completion_done(&wait)) { 867 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 868 cond_resched(); 869 } 870 } 871 872 /* 873 * Returns 0 on success. If the result is negative, it's a Linux error code; 874 * if the result is positive, it's an NVM Express status code 875 */ 876 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 877 union nvme_result *result, void *buffer, unsigned bufflen, 878 unsigned timeout, int qid, int at_head, 879 blk_mq_req_flags_t flags, bool poll) 880 { 881 struct request *req; 882 int ret; 883 884 req = nvme_alloc_request(q, cmd, flags, qid); 885 if (IS_ERR(req)) 886 return PTR_ERR(req); 887 888 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 889 890 if (buffer && bufflen) { 891 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 892 if (ret) 893 goto out; 894 } 895 896 if (poll) 897 nvme_execute_rq_polled(req->q, NULL, req, at_head); 898 else 899 blk_execute_rq(req->q, NULL, req, at_head); 900 if (result) 901 *result = nvme_req(req)->result; 902 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 903 ret = -EINTR; 904 else 905 ret = nvme_req(req)->status; 906 out: 907 blk_mq_free_request(req); 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 911 912 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 913 void *buffer, unsigned bufflen) 914 { 915 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 916 NVME_QID_ANY, 0, 0, false); 917 } 918 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 919 920 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 921 unsigned len, u32 seed, bool write) 922 { 923 struct bio_integrity_payload *bip; 924 int ret = -ENOMEM; 925 void *buf; 926 927 buf = kmalloc(len, GFP_KERNEL); 928 if (!buf) 929 goto out; 930 931 ret = -EFAULT; 932 if (write && copy_from_user(buf, ubuf, len)) 933 goto out_free_meta; 934 935 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 936 if (IS_ERR(bip)) { 937 ret = PTR_ERR(bip); 938 goto out_free_meta; 939 } 940 941 bip->bip_iter.bi_size = len; 942 bip->bip_iter.bi_sector = seed; 943 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 944 offset_in_page(buf)); 945 if (ret == len) 946 return buf; 947 ret = -ENOMEM; 948 out_free_meta: 949 kfree(buf); 950 out: 951 return ERR_PTR(ret); 952 } 953 954 static u32 nvme_known_admin_effects(u8 opcode) 955 { 956 switch (opcode) { 957 case nvme_admin_format_nvm: 958 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 959 NVME_CMD_EFFECTS_CSE_MASK; 960 case nvme_admin_sanitize_nvm: 961 return NVME_CMD_EFFECTS_CSE_MASK; 962 default: 963 break; 964 } 965 return 0; 966 } 967 968 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 969 { 970 u32 effects = 0; 971 972 if (ns) { 973 if (ns->head->effects) 974 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 975 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 976 dev_warn(ctrl->device, 977 "IO command:%02x has unhandled effects:%08x\n", 978 opcode, effects); 979 return 0; 980 } 981 982 if (ctrl->effects) 983 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 984 effects |= nvme_known_admin_effects(opcode); 985 986 return effects; 987 } 988 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 989 990 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 991 u8 opcode) 992 { 993 u32 effects = nvme_command_effects(ctrl, ns, opcode); 994 995 /* 996 * For simplicity, IO to all namespaces is quiesced even if the command 997 * effects say only one namespace is affected. 998 */ 999 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1000 mutex_lock(&ctrl->scan_lock); 1001 mutex_lock(&ctrl->subsys->lock); 1002 nvme_mpath_start_freeze(ctrl->subsys); 1003 nvme_mpath_wait_freeze(ctrl->subsys); 1004 nvme_start_freeze(ctrl); 1005 nvme_wait_freeze(ctrl); 1006 } 1007 return effects; 1008 } 1009 1010 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects) 1011 { 1012 struct nvme_ns *ns; 1013 1014 down_read(&ctrl->namespaces_rwsem); 1015 list_for_each_entry(ns, &ctrl->namespaces, list) 1016 if (_nvme_revalidate_disk(ns->disk)) 1017 nvme_set_queue_dying(ns); 1018 else if (blk_queue_is_zoned(ns->disk->queue)) { 1019 /* 1020 * IO commands are required to fully revalidate a zoned 1021 * device. Force the command effects to trigger rescan 1022 * work so report zones can run in a context with 1023 * unfrozen IO queues. 1024 */ 1025 *effects |= NVME_CMD_EFFECTS_NCC; 1026 } 1027 up_read(&ctrl->namespaces_rwsem); 1028 } 1029 1030 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1031 { 1032 /* 1033 * Revalidate LBA changes prior to unfreezing. This is necessary to 1034 * prevent memory corruption if a logical block size was changed by 1035 * this command. 1036 */ 1037 if (effects & NVME_CMD_EFFECTS_LBCC) 1038 nvme_update_formats(ctrl, &effects); 1039 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1040 nvme_unfreeze(ctrl); 1041 nvme_mpath_unfreeze(ctrl->subsys); 1042 mutex_unlock(&ctrl->subsys->lock); 1043 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1044 mutex_unlock(&ctrl->scan_lock); 1045 } 1046 if (effects & NVME_CMD_EFFECTS_CCC) 1047 nvme_init_identify(ctrl); 1048 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1049 nvme_queue_scan(ctrl); 1050 flush_work(&ctrl->scan_work); 1051 } 1052 } 1053 1054 void nvme_execute_passthru_rq(struct request *rq) 1055 { 1056 struct nvme_command *cmd = nvme_req(rq)->cmd; 1057 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1058 struct nvme_ns *ns = rq->q->queuedata; 1059 struct gendisk *disk = ns ? ns->disk : NULL; 1060 u32 effects; 1061 1062 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1063 blk_execute_rq(rq->q, disk, rq, 0); 1064 nvme_passthru_end(ctrl, effects); 1065 } 1066 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1067 1068 static int nvme_submit_user_cmd(struct request_queue *q, 1069 struct nvme_command *cmd, void __user *ubuffer, 1070 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 1071 u32 meta_seed, u64 *result, unsigned timeout) 1072 { 1073 bool write = nvme_is_write(cmd); 1074 struct nvme_ns *ns = q->queuedata; 1075 struct gendisk *disk = ns ? ns->disk : NULL; 1076 struct request *req; 1077 struct bio *bio = NULL; 1078 void *meta = NULL; 1079 int ret; 1080 1081 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 1082 if (IS_ERR(req)) 1083 return PTR_ERR(req); 1084 1085 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 1086 nvme_req(req)->flags |= NVME_REQ_USERCMD; 1087 1088 if (ubuffer && bufflen) { 1089 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 1090 GFP_KERNEL); 1091 if (ret) 1092 goto out; 1093 bio = req->bio; 1094 bio->bi_disk = disk; 1095 if (disk && meta_buffer && meta_len) { 1096 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 1097 meta_seed, write); 1098 if (IS_ERR(meta)) { 1099 ret = PTR_ERR(meta); 1100 goto out_unmap; 1101 } 1102 req->cmd_flags |= REQ_INTEGRITY; 1103 } 1104 } 1105 1106 nvme_execute_passthru_rq(req); 1107 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 1108 ret = -EINTR; 1109 else 1110 ret = nvme_req(req)->status; 1111 if (result) 1112 *result = le64_to_cpu(nvme_req(req)->result.u64); 1113 if (meta && !ret && !write) { 1114 if (copy_to_user(meta_buffer, meta, meta_len)) 1115 ret = -EFAULT; 1116 } 1117 kfree(meta); 1118 out_unmap: 1119 if (bio) 1120 blk_rq_unmap_user(bio); 1121 out: 1122 blk_mq_free_request(req); 1123 return ret; 1124 } 1125 1126 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1127 { 1128 struct nvme_ctrl *ctrl = rq->end_io_data; 1129 unsigned long flags; 1130 bool startka = false; 1131 1132 blk_mq_free_request(rq); 1133 1134 if (status) { 1135 dev_err(ctrl->device, 1136 "failed nvme_keep_alive_end_io error=%d\n", 1137 status); 1138 return; 1139 } 1140 1141 ctrl->comp_seen = false; 1142 spin_lock_irqsave(&ctrl->lock, flags); 1143 if (ctrl->state == NVME_CTRL_LIVE || 1144 ctrl->state == NVME_CTRL_CONNECTING) 1145 startka = true; 1146 spin_unlock_irqrestore(&ctrl->lock, flags); 1147 if (startka) 1148 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1149 } 1150 1151 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 1152 { 1153 struct request *rq; 1154 1155 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 1156 NVME_QID_ANY); 1157 if (IS_ERR(rq)) 1158 return PTR_ERR(rq); 1159 1160 rq->timeout = ctrl->kato * HZ; 1161 rq->end_io_data = ctrl; 1162 1163 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 1164 1165 return 0; 1166 } 1167 1168 static void nvme_keep_alive_work(struct work_struct *work) 1169 { 1170 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1171 struct nvme_ctrl, ka_work); 1172 bool comp_seen = ctrl->comp_seen; 1173 1174 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1175 dev_dbg(ctrl->device, 1176 "reschedule traffic based keep-alive timer\n"); 1177 ctrl->comp_seen = false; 1178 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1179 return; 1180 } 1181 1182 if (nvme_keep_alive(ctrl)) { 1183 /* allocation failure, reset the controller */ 1184 dev_err(ctrl->device, "keep-alive failed\n"); 1185 nvme_reset_ctrl(ctrl); 1186 return; 1187 } 1188 } 1189 1190 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1191 { 1192 if (unlikely(ctrl->kato == 0)) 1193 return; 1194 1195 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1196 } 1197 1198 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1199 { 1200 if (unlikely(ctrl->kato == 0)) 1201 return; 1202 1203 cancel_delayed_work_sync(&ctrl->ka_work); 1204 } 1205 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1206 1207 /* 1208 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1209 * flag, thus sending any new CNS opcodes has a big chance of not working. 1210 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1211 * (but not for any later version). 1212 */ 1213 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1214 { 1215 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1216 return ctrl->vs < NVME_VS(1, 2, 0); 1217 return ctrl->vs < NVME_VS(1, 1, 0); 1218 } 1219 1220 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1221 { 1222 struct nvme_command c = { }; 1223 int error; 1224 1225 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1226 c.identify.opcode = nvme_admin_identify; 1227 c.identify.cns = NVME_ID_CNS_CTRL; 1228 1229 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1230 if (!*id) 1231 return -ENOMEM; 1232 1233 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1234 sizeof(struct nvme_id_ctrl)); 1235 if (error) 1236 kfree(*id); 1237 return error; 1238 } 1239 1240 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1241 { 1242 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1243 } 1244 1245 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1246 struct nvme_ns_id_desc *cur, bool *csi_seen) 1247 { 1248 const char *warn_str = "ctrl returned bogus length:"; 1249 void *data = cur; 1250 1251 switch (cur->nidt) { 1252 case NVME_NIDT_EUI64: 1253 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1254 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1255 warn_str, cur->nidl); 1256 return -1; 1257 } 1258 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1259 return NVME_NIDT_EUI64_LEN; 1260 case NVME_NIDT_NGUID: 1261 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1262 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1263 warn_str, cur->nidl); 1264 return -1; 1265 } 1266 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1267 return NVME_NIDT_NGUID_LEN; 1268 case NVME_NIDT_UUID: 1269 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1270 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1271 warn_str, cur->nidl); 1272 return -1; 1273 } 1274 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1275 return NVME_NIDT_UUID_LEN; 1276 case NVME_NIDT_CSI: 1277 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1278 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1279 warn_str, cur->nidl); 1280 return -1; 1281 } 1282 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1283 *csi_seen = true; 1284 return NVME_NIDT_CSI_LEN; 1285 default: 1286 /* Skip unknown types */ 1287 return cur->nidl; 1288 } 1289 } 1290 1291 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1292 struct nvme_ns_ids *ids) 1293 { 1294 struct nvme_command c = { }; 1295 bool csi_seen = false; 1296 int status, pos, len; 1297 void *data; 1298 1299 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1300 return 0; 1301 1302 c.identify.opcode = nvme_admin_identify; 1303 c.identify.nsid = cpu_to_le32(nsid); 1304 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1305 1306 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1307 if (!data) 1308 return -ENOMEM; 1309 1310 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1311 NVME_IDENTIFY_DATA_SIZE); 1312 if (status) { 1313 dev_warn(ctrl->device, 1314 "Identify Descriptors failed (%d)\n", status); 1315 goto free_data; 1316 } 1317 1318 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1319 struct nvme_ns_id_desc *cur = data + pos; 1320 1321 if (cur->nidl == 0) 1322 break; 1323 1324 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1325 if (len < 0) 1326 break; 1327 1328 len += sizeof(*cur); 1329 } 1330 1331 if (nvme_multi_css(ctrl) && !csi_seen) { 1332 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1333 nsid); 1334 status = -EINVAL; 1335 } 1336 1337 free_data: 1338 kfree(data); 1339 return status; 1340 } 1341 1342 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1343 { 1344 struct nvme_command c = { }; 1345 1346 c.identify.opcode = nvme_admin_identify; 1347 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1348 c.identify.nsid = cpu_to_le32(nsid); 1349 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1350 NVME_IDENTIFY_DATA_SIZE); 1351 } 1352 1353 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1354 unsigned nsid, struct nvme_id_ns **id) 1355 { 1356 struct nvme_command c = { }; 1357 int error; 1358 1359 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1360 c.identify.opcode = nvme_admin_identify; 1361 c.identify.nsid = cpu_to_le32(nsid); 1362 c.identify.cns = NVME_ID_CNS_NS; 1363 1364 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1365 if (!*id) 1366 return -ENOMEM; 1367 1368 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1369 if (error) { 1370 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1371 kfree(*id); 1372 } 1373 1374 return error; 1375 } 1376 1377 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1378 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1379 { 1380 union nvme_result res = { 0 }; 1381 struct nvme_command c; 1382 int ret; 1383 1384 memset(&c, 0, sizeof(c)); 1385 c.features.opcode = op; 1386 c.features.fid = cpu_to_le32(fid); 1387 c.features.dword11 = cpu_to_le32(dword11); 1388 1389 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1390 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1391 if (ret >= 0 && result) 1392 *result = le32_to_cpu(res.u32); 1393 return ret; 1394 } 1395 1396 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1397 unsigned int dword11, void *buffer, size_t buflen, 1398 u32 *result) 1399 { 1400 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1401 buflen, result); 1402 } 1403 EXPORT_SYMBOL_GPL(nvme_set_features); 1404 1405 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1406 unsigned int dword11, void *buffer, size_t buflen, 1407 u32 *result) 1408 { 1409 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1410 buflen, result); 1411 } 1412 EXPORT_SYMBOL_GPL(nvme_get_features); 1413 1414 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1415 { 1416 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1417 u32 result; 1418 int status, nr_io_queues; 1419 1420 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1421 &result); 1422 if (status < 0) 1423 return status; 1424 1425 /* 1426 * Degraded controllers might return an error when setting the queue 1427 * count. We still want to be able to bring them online and offer 1428 * access to the admin queue, as that might be only way to fix them up. 1429 */ 1430 if (status > 0) { 1431 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1432 *count = 0; 1433 } else { 1434 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1435 *count = min(*count, nr_io_queues); 1436 } 1437 1438 return 0; 1439 } 1440 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1441 1442 #define NVME_AEN_SUPPORTED \ 1443 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1444 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1445 1446 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1447 { 1448 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1449 int status; 1450 1451 if (!supported_aens) 1452 return; 1453 1454 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1455 NULL, 0, &result); 1456 if (status) 1457 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1458 supported_aens); 1459 1460 queue_work(nvme_wq, &ctrl->async_event_work); 1461 } 1462 1463 /* 1464 * Convert integer values from ioctl structures to user pointers, silently 1465 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1466 * kernels. 1467 */ 1468 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1469 { 1470 if (in_compat_syscall()) 1471 ptrval = (compat_uptr_t)ptrval; 1472 return (void __user *)ptrval; 1473 } 1474 1475 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1476 { 1477 struct nvme_user_io io; 1478 struct nvme_command c; 1479 unsigned length, meta_len; 1480 void __user *metadata; 1481 1482 if (copy_from_user(&io, uio, sizeof(io))) 1483 return -EFAULT; 1484 if (io.flags) 1485 return -EINVAL; 1486 1487 switch (io.opcode) { 1488 case nvme_cmd_write: 1489 case nvme_cmd_read: 1490 case nvme_cmd_compare: 1491 break; 1492 default: 1493 return -EINVAL; 1494 } 1495 1496 length = (io.nblocks + 1) << ns->lba_shift; 1497 meta_len = (io.nblocks + 1) * ns->ms; 1498 metadata = nvme_to_user_ptr(io.metadata); 1499 1500 if (ns->features & NVME_NS_EXT_LBAS) { 1501 length += meta_len; 1502 meta_len = 0; 1503 } else if (meta_len) { 1504 if ((io.metadata & 3) || !io.metadata) 1505 return -EINVAL; 1506 } 1507 1508 memset(&c, 0, sizeof(c)); 1509 c.rw.opcode = io.opcode; 1510 c.rw.flags = io.flags; 1511 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1512 c.rw.slba = cpu_to_le64(io.slba); 1513 c.rw.length = cpu_to_le16(io.nblocks); 1514 c.rw.control = cpu_to_le16(io.control); 1515 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1516 c.rw.reftag = cpu_to_le32(io.reftag); 1517 c.rw.apptag = cpu_to_le16(io.apptag); 1518 c.rw.appmask = cpu_to_le16(io.appmask); 1519 1520 return nvme_submit_user_cmd(ns->queue, &c, 1521 nvme_to_user_ptr(io.addr), length, 1522 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1523 } 1524 1525 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1526 struct nvme_passthru_cmd __user *ucmd) 1527 { 1528 struct nvme_passthru_cmd cmd; 1529 struct nvme_command c; 1530 unsigned timeout = 0; 1531 u64 result; 1532 int status; 1533 1534 if (!capable(CAP_SYS_ADMIN)) 1535 return -EACCES; 1536 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1537 return -EFAULT; 1538 if (cmd.flags) 1539 return -EINVAL; 1540 1541 memset(&c, 0, sizeof(c)); 1542 c.common.opcode = cmd.opcode; 1543 c.common.flags = cmd.flags; 1544 c.common.nsid = cpu_to_le32(cmd.nsid); 1545 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1546 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1547 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1548 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1549 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1550 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1551 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1552 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1553 1554 if (cmd.timeout_ms) 1555 timeout = msecs_to_jiffies(cmd.timeout_ms); 1556 1557 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1558 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1559 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1560 0, &result, timeout); 1561 1562 if (status >= 0) { 1563 if (put_user(result, &ucmd->result)) 1564 return -EFAULT; 1565 } 1566 1567 return status; 1568 } 1569 1570 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1571 struct nvme_passthru_cmd64 __user *ucmd) 1572 { 1573 struct nvme_passthru_cmd64 cmd; 1574 struct nvme_command c; 1575 unsigned timeout = 0; 1576 int status; 1577 1578 if (!capable(CAP_SYS_ADMIN)) 1579 return -EACCES; 1580 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1581 return -EFAULT; 1582 if (cmd.flags) 1583 return -EINVAL; 1584 1585 memset(&c, 0, sizeof(c)); 1586 c.common.opcode = cmd.opcode; 1587 c.common.flags = cmd.flags; 1588 c.common.nsid = cpu_to_le32(cmd.nsid); 1589 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1590 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1591 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1592 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1593 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1594 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1595 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1596 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1597 1598 if (cmd.timeout_ms) 1599 timeout = msecs_to_jiffies(cmd.timeout_ms); 1600 1601 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1602 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1603 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1604 0, &cmd.result, timeout); 1605 1606 if (status >= 0) { 1607 if (put_user(cmd.result, &ucmd->result)) 1608 return -EFAULT; 1609 } 1610 1611 return status; 1612 } 1613 1614 /* 1615 * Issue ioctl requests on the first available path. Note that unlike normal 1616 * block layer requests we will not retry failed request on another controller. 1617 */ 1618 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1619 struct nvme_ns_head **head, int *srcu_idx) 1620 { 1621 #ifdef CONFIG_NVME_MULTIPATH 1622 if (disk->fops == &nvme_ns_head_ops) { 1623 struct nvme_ns *ns; 1624 1625 *head = disk->private_data; 1626 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1627 ns = nvme_find_path(*head); 1628 if (!ns) 1629 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1630 return ns; 1631 } 1632 #endif 1633 *head = NULL; 1634 *srcu_idx = -1; 1635 return disk->private_data; 1636 } 1637 1638 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1639 { 1640 if (head) 1641 srcu_read_unlock(&head->srcu, idx); 1642 } 1643 1644 static bool is_ctrl_ioctl(unsigned int cmd) 1645 { 1646 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1647 return true; 1648 if (is_sed_ioctl(cmd)) 1649 return true; 1650 return false; 1651 } 1652 1653 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1654 void __user *argp, 1655 struct nvme_ns_head *head, 1656 int srcu_idx) 1657 { 1658 struct nvme_ctrl *ctrl = ns->ctrl; 1659 int ret; 1660 1661 nvme_get_ctrl(ns->ctrl); 1662 nvme_put_ns_from_disk(head, srcu_idx); 1663 1664 switch (cmd) { 1665 case NVME_IOCTL_ADMIN_CMD: 1666 ret = nvme_user_cmd(ctrl, NULL, argp); 1667 break; 1668 case NVME_IOCTL_ADMIN64_CMD: 1669 ret = nvme_user_cmd64(ctrl, NULL, argp); 1670 break; 1671 default: 1672 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1673 break; 1674 } 1675 nvme_put_ctrl(ctrl); 1676 return ret; 1677 } 1678 1679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1680 unsigned int cmd, unsigned long arg) 1681 { 1682 struct nvme_ns_head *head = NULL; 1683 void __user *argp = (void __user *)arg; 1684 struct nvme_ns *ns; 1685 int srcu_idx, ret; 1686 1687 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1688 if (unlikely(!ns)) 1689 return -EWOULDBLOCK; 1690 1691 /* 1692 * Handle ioctls that apply to the controller instead of the namespace 1693 * seperately and drop the ns SRCU reference early. This avoids a 1694 * deadlock when deleting namespaces using the passthrough interface. 1695 */ 1696 if (is_ctrl_ioctl(cmd)) 1697 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1698 1699 switch (cmd) { 1700 case NVME_IOCTL_ID: 1701 force_successful_syscall_return(); 1702 ret = ns->head->ns_id; 1703 break; 1704 case NVME_IOCTL_IO_CMD: 1705 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1706 break; 1707 case NVME_IOCTL_SUBMIT_IO: 1708 ret = nvme_submit_io(ns, argp); 1709 break; 1710 case NVME_IOCTL_IO64_CMD: 1711 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1712 break; 1713 default: 1714 if (ns->ndev) 1715 ret = nvme_nvm_ioctl(ns, cmd, arg); 1716 else 1717 ret = -ENOTTY; 1718 } 1719 1720 nvme_put_ns_from_disk(head, srcu_idx); 1721 return ret; 1722 } 1723 1724 #ifdef CONFIG_COMPAT 1725 struct nvme_user_io32 { 1726 __u8 opcode; 1727 __u8 flags; 1728 __u16 control; 1729 __u16 nblocks; 1730 __u16 rsvd; 1731 __u64 metadata; 1732 __u64 addr; 1733 __u64 slba; 1734 __u32 dsmgmt; 1735 __u32 reftag; 1736 __u16 apptag; 1737 __u16 appmask; 1738 } __attribute__((__packed__)); 1739 1740 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1741 1742 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1743 unsigned int cmd, unsigned long arg) 1744 { 1745 /* 1746 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1747 * between 32 bit programs and 64 bit kernel. 1748 * The cause is that the results of sizeof(struct nvme_user_io), 1749 * which is used to define NVME_IOCTL_SUBMIT_IO, 1750 * are not same between 32 bit compiler and 64 bit compiler. 1751 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1752 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1753 * Other IOCTL numbers are same between 32 bit and 64 bit. 1754 * So there is nothing to do regarding to other IOCTL numbers. 1755 */ 1756 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1757 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1758 1759 return nvme_ioctl(bdev, mode, cmd, arg); 1760 } 1761 #else 1762 #define nvme_compat_ioctl NULL 1763 #endif /* CONFIG_COMPAT */ 1764 1765 static int nvme_open(struct block_device *bdev, fmode_t mode) 1766 { 1767 struct nvme_ns *ns = bdev->bd_disk->private_data; 1768 1769 #ifdef CONFIG_NVME_MULTIPATH 1770 /* should never be called due to GENHD_FL_HIDDEN */ 1771 if (WARN_ON_ONCE(ns->head->disk)) 1772 goto fail; 1773 #endif 1774 if (!kref_get_unless_zero(&ns->kref)) 1775 goto fail; 1776 if (!try_module_get(ns->ctrl->ops->module)) 1777 goto fail_put_ns; 1778 1779 return 0; 1780 1781 fail_put_ns: 1782 nvme_put_ns(ns); 1783 fail: 1784 return -ENXIO; 1785 } 1786 1787 static void nvme_release(struct gendisk *disk, fmode_t mode) 1788 { 1789 struct nvme_ns *ns = disk->private_data; 1790 1791 module_put(ns->ctrl->ops->module); 1792 nvme_put_ns(ns); 1793 } 1794 1795 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1796 { 1797 /* some standard values */ 1798 geo->heads = 1 << 6; 1799 geo->sectors = 1 << 5; 1800 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1801 return 0; 1802 } 1803 1804 #ifdef CONFIG_BLK_DEV_INTEGRITY 1805 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1806 u32 max_integrity_segments) 1807 { 1808 struct blk_integrity integrity; 1809 1810 memset(&integrity, 0, sizeof(integrity)); 1811 switch (pi_type) { 1812 case NVME_NS_DPS_PI_TYPE3: 1813 integrity.profile = &t10_pi_type3_crc; 1814 integrity.tag_size = sizeof(u16) + sizeof(u32); 1815 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1816 break; 1817 case NVME_NS_DPS_PI_TYPE1: 1818 case NVME_NS_DPS_PI_TYPE2: 1819 integrity.profile = &t10_pi_type1_crc; 1820 integrity.tag_size = sizeof(u16); 1821 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1822 break; 1823 default: 1824 integrity.profile = NULL; 1825 break; 1826 } 1827 integrity.tuple_size = ms; 1828 blk_integrity_register(disk, &integrity); 1829 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1830 } 1831 #else 1832 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1833 u32 max_integrity_segments) 1834 { 1835 } 1836 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1837 1838 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1839 { 1840 struct nvme_ctrl *ctrl = ns->ctrl; 1841 struct request_queue *queue = disk->queue; 1842 u32 size = queue_logical_block_size(queue); 1843 1844 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1845 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1846 return; 1847 } 1848 1849 if (ctrl->nr_streams && ns->sws && ns->sgs) 1850 size *= ns->sws * ns->sgs; 1851 1852 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1853 NVME_DSM_MAX_RANGES); 1854 1855 queue->limits.discard_alignment = 0; 1856 queue->limits.discard_granularity = size; 1857 1858 /* If discard is already enabled, don't reset queue limits */ 1859 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1860 return; 1861 1862 blk_queue_max_discard_sectors(queue, UINT_MAX); 1863 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1864 1865 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1866 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1867 } 1868 1869 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1870 { 1871 u64 max_blocks; 1872 1873 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1874 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1875 return; 1876 /* 1877 * Even though NVMe spec explicitly states that MDTS is not 1878 * applicable to the write-zeroes:- "The restriction does not apply to 1879 * commands that do not transfer data between the host and the 1880 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1881 * In order to be more cautious use controller's max_hw_sectors value 1882 * to configure the maximum sectors for the write-zeroes which is 1883 * configured based on the controller's MDTS field in the 1884 * nvme_init_identify() if available. 1885 */ 1886 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1887 max_blocks = (u64)USHRT_MAX + 1; 1888 else 1889 max_blocks = ns->ctrl->max_hw_sectors + 1; 1890 1891 blk_queue_max_write_zeroes_sectors(disk->queue, 1892 nvme_lba_to_sect(ns, max_blocks)); 1893 } 1894 1895 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1896 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1897 { 1898 memset(ids, 0, sizeof(*ids)); 1899 1900 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1901 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1902 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1903 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1904 if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl)) 1905 return nvme_identify_ns_descs(ctrl, nsid, ids); 1906 return 0; 1907 } 1908 1909 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1910 { 1911 return !uuid_is_null(&ids->uuid) || 1912 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1913 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1914 } 1915 1916 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1917 { 1918 return uuid_equal(&a->uuid, &b->uuid) && 1919 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1920 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1921 a->csi == b->csi; 1922 } 1923 1924 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1925 u32 *phys_bs, u32 *io_opt) 1926 { 1927 struct streams_directive_params s; 1928 int ret; 1929 1930 if (!ctrl->nr_streams) 1931 return 0; 1932 1933 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1934 if (ret) 1935 return ret; 1936 1937 ns->sws = le32_to_cpu(s.sws); 1938 ns->sgs = le16_to_cpu(s.sgs); 1939 1940 if (ns->sws) { 1941 *phys_bs = ns->sws * (1 << ns->lba_shift); 1942 if (ns->sgs) 1943 *io_opt = *phys_bs * ns->sgs; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static void nvme_update_disk_info(struct gendisk *disk, 1950 struct nvme_ns *ns, struct nvme_id_ns *id) 1951 { 1952 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1953 unsigned short bs = 1 << ns->lba_shift; 1954 u32 atomic_bs, phys_bs, io_opt = 0; 1955 1956 if (ns->lba_shift > PAGE_SHIFT) { 1957 /* unsupported block size, set capacity to 0 later */ 1958 bs = (1 << 9); 1959 } 1960 blk_mq_freeze_queue(disk->queue); 1961 blk_integrity_unregister(disk); 1962 1963 atomic_bs = phys_bs = bs; 1964 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1965 if (id->nabo == 0) { 1966 /* 1967 * Bit 1 indicates whether NAWUPF is defined for this namespace 1968 * and whether it should be used instead of AWUPF. If NAWUPF == 1969 * 0 then AWUPF must be used instead. 1970 */ 1971 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1972 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1973 else 1974 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1975 } 1976 1977 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1978 /* NPWG = Namespace Preferred Write Granularity */ 1979 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1980 /* NOWS = Namespace Optimal Write Size */ 1981 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1982 } 1983 1984 blk_queue_logical_block_size(disk->queue, bs); 1985 /* 1986 * Linux filesystems assume writing a single physical block is 1987 * an atomic operation. Hence limit the physical block size to the 1988 * value of the Atomic Write Unit Power Fail parameter. 1989 */ 1990 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1991 blk_queue_io_min(disk->queue, phys_bs); 1992 blk_queue_io_opt(disk->queue, io_opt); 1993 1994 /* 1995 * The block layer can't support LBA sizes larger than the page size 1996 * yet, so catch this early and don't allow block I/O. 1997 */ 1998 if (ns->lba_shift > PAGE_SHIFT) 1999 capacity = 0; 2000 2001 /* 2002 * Register a metadata profile for PI, or the plain non-integrity NVMe 2003 * metadata masquerading as Type 0 if supported, otherwise reject block 2004 * I/O to namespaces with metadata except when the namespace supports 2005 * PI, as it can strip/insert in that case. 2006 */ 2007 if (ns->ms) { 2008 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2009 (ns->features & NVME_NS_METADATA_SUPPORTED)) 2010 nvme_init_integrity(disk, ns->ms, ns->pi_type, 2011 ns->ctrl->max_integrity_segments); 2012 else if (!nvme_ns_has_pi(ns)) 2013 capacity = 0; 2014 } 2015 2016 set_capacity_revalidate_and_notify(disk, capacity, false); 2017 2018 nvme_config_discard(disk, ns); 2019 nvme_config_write_zeroes(disk, ns); 2020 2021 if (id->nsattr & NVME_NS_ATTR_RO) 2022 set_disk_ro(disk, true); 2023 else 2024 set_disk_ro(disk, false); 2025 2026 blk_mq_unfreeze_queue(disk->queue); 2027 } 2028 2029 static inline bool nvme_first_scan(struct gendisk *disk) 2030 { 2031 /* nvme_alloc_ns() scans the disk prior to adding it */ 2032 return !(disk->flags & GENHD_FL_UP); 2033 } 2034 2035 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 2036 { 2037 struct nvme_ctrl *ctrl = ns->ctrl; 2038 u32 iob; 2039 2040 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2041 is_power_of_2(ctrl->max_hw_sectors)) 2042 iob = ctrl->max_hw_sectors; 2043 else 2044 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 2045 2046 if (!iob) 2047 return; 2048 2049 if (!is_power_of_2(iob)) { 2050 if (nvme_first_scan(ns->disk)) 2051 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2052 ns->disk->disk_name, iob); 2053 return; 2054 } 2055 2056 if (blk_queue_is_zoned(ns->disk->queue)) { 2057 if (nvme_first_scan(ns->disk)) 2058 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2059 ns->disk->disk_name); 2060 return; 2061 } 2062 2063 blk_queue_chunk_sectors(ns->queue, iob); 2064 } 2065 2066 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 2067 { 2068 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 2069 struct nvme_ns *ns = disk->private_data; 2070 struct nvme_ctrl *ctrl = ns->ctrl; 2071 int ret; 2072 2073 /* 2074 * If identify namespace failed, use default 512 byte block size so 2075 * block layer can use before failing read/write for 0 capacity. 2076 */ 2077 ns->lba_shift = id->lbaf[lbaf].ds; 2078 if (ns->lba_shift == 0) 2079 ns->lba_shift = 9; 2080 2081 switch (ns->head->ids.csi) { 2082 case NVME_CSI_NVM: 2083 break; 2084 case NVME_CSI_ZNS: 2085 ret = nvme_update_zone_info(disk, ns, lbaf); 2086 if (ret) { 2087 dev_warn(ctrl->device, 2088 "failed to add zoned namespace:%u ret:%d\n", 2089 ns->head->ns_id, ret); 2090 return ret; 2091 } 2092 break; 2093 default: 2094 dev_warn(ctrl->device, "unknown csi:%u ns:%u\n", 2095 ns->head->ids.csi, ns->head->ns_id); 2096 return -ENODEV; 2097 } 2098 2099 ns->features = 0; 2100 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 2101 /* the PI implementation requires metadata equal t10 pi tuple size */ 2102 if (ns->ms == sizeof(struct t10_pi_tuple)) 2103 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 2104 else 2105 ns->pi_type = 0; 2106 2107 if (ns->ms) { 2108 /* 2109 * For PCIe only the separate metadata pointer is supported, 2110 * as the block layer supplies metadata in a separate bio_vec 2111 * chain. For Fabrics, only metadata as part of extended data 2112 * LBA is supported on the wire per the Fabrics specification, 2113 * but the HBA/HCA will do the remapping from the separate 2114 * metadata buffers for us. 2115 */ 2116 if (id->flbas & NVME_NS_FLBAS_META_EXT) { 2117 ns->features |= NVME_NS_EXT_LBAS; 2118 if ((ctrl->ops->flags & NVME_F_FABRICS) && 2119 (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) && 2120 ctrl->max_integrity_segments) 2121 ns->features |= NVME_NS_METADATA_SUPPORTED; 2122 } else { 2123 if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS)) 2124 return -EINVAL; 2125 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 2126 ns->features |= NVME_NS_METADATA_SUPPORTED; 2127 } 2128 } 2129 2130 nvme_set_chunk_sectors(ns, id); 2131 nvme_update_disk_info(disk, ns, id); 2132 #ifdef CONFIG_NVME_MULTIPATH 2133 if (ns->head->disk) { 2134 nvme_update_disk_info(ns->head->disk, ns, id); 2135 blk_stack_limits(&ns->head->disk->queue->limits, 2136 &ns->queue->limits, 0); 2137 nvme_mpath_update_disk_size(ns->head->disk); 2138 } 2139 #endif 2140 return 0; 2141 } 2142 2143 static int _nvme_revalidate_disk(struct gendisk *disk) 2144 { 2145 struct nvme_ns *ns = disk->private_data; 2146 struct nvme_ctrl *ctrl = ns->ctrl; 2147 struct nvme_id_ns *id; 2148 struct nvme_ns_ids ids; 2149 int ret = 0; 2150 2151 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 2152 set_capacity(disk, 0); 2153 return -ENODEV; 2154 } 2155 2156 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 2157 if (ret) 2158 goto out; 2159 2160 if (id->ncap == 0) { 2161 ret = -ENODEV; 2162 goto free_id; 2163 } 2164 2165 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 2166 if (ret) 2167 goto free_id; 2168 2169 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 2170 dev_err(ctrl->device, 2171 "identifiers changed for nsid %d\n", ns->head->ns_id); 2172 ret = -ENODEV; 2173 goto free_id; 2174 } 2175 2176 ret = __nvme_revalidate_disk(disk, id); 2177 free_id: 2178 kfree(id); 2179 out: 2180 /* 2181 * Only fail the function if we got a fatal error back from the 2182 * device, otherwise ignore the error and just move on. 2183 */ 2184 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 2185 ret = 0; 2186 else if (ret > 0) 2187 ret = blk_status_to_errno(nvme_error_status(ret)); 2188 return ret; 2189 } 2190 2191 static int nvme_revalidate_disk(struct gendisk *disk) 2192 { 2193 int ret; 2194 2195 ret = _nvme_revalidate_disk(disk); 2196 if (ret) 2197 return ret; 2198 2199 #ifdef CONFIG_BLK_DEV_ZONED 2200 if (blk_queue_is_zoned(disk->queue)) { 2201 struct nvme_ns *ns = disk->private_data; 2202 struct nvme_ctrl *ctrl = ns->ctrl; 2203 2204 ret = blk_revalidate_disk_zones(disk, NULL); 2205 if (!ret) 2206 blk_queue_max_zone_append_sectors(disk->queue, 2207 ctrl->max_zone_append); 2208 } 2209 #endif 2210 return ret; 2211 } 2212 2213 static char nvme_pr_type(enum pr_type type) 2214 { 2215 switch (type) { 2216 case PR_WRITE_EXCLUSIVE: 2217 return 1; 2218 case PR_EXCLUSIVE_ACCESS: 2219 return 2; 2220 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2221 return 3; 2222 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2223 return 4; 2224 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2225 return 5; 2226 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2227 return 6; 2228 default: 2229 return 0; 2230 } 2231 }; 2232 2233 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2234 u64 key, u64 sa_key, u8 op) 2235 { 2236 struct nvme_ns_head *head = NULL; 2237 struct nvme_ns *ns; 2238 struct nvme_command c; 2239 int srcu_idx, ret; 2240 u8 data[16] = { 0, }; 2241 2242 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 2243 if (unlikely(!ns)) 2244 return -EWOULDBLOCK; 2245 2246 put_unaligned_le64(key, &data[0]); 2247 put_unaligned_le64(sa_key, &data[8]); 2248 2249 memset(&c, 0, sizeof(c)); 2250 c.common.opcode = op; 2251 c.common.nsid = cpu_to_le32(ns->head->ns_id); 2252 c.common.cdw10 = cpu_to_le32(cdw10); 2253 2254 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2255 nvme_put_ns_from_disk(head, srcu_idx); 2256 return ret; 2257 } 2258 2259 static int nvme_pr_register(struct block_device *bdev, u64 old, 2260 u64 new, unsigned flags) 2261 { 2262 u32 cdw10; 2263 2264 if (flags & ~PR_FL_IGNORE_KEY) 2265 return -EOPNOTSUPP; 2266 2267 cdw10 = old ? 2 : 0; 2268 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2269 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2270 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2271 } 2272 2273 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2274 enum pr_type type, unsigned flags) 2275 { 2276 u32 cdw10; 2277 2278 if (flags & ~PR_FL_IGNORE_KEY) 2279 return -EOPNOTSUPP; 2280 2281 cdw10 = nvme_pr_type(type) << 8; 2282 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2283 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2284 } 2285 2286 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2287 enum pr_type type, bool abort) 2288 { 2289 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2290 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2291 } 2292 2293 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2294 { 2295 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2296 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2297 } 2298 2299 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2300 { 2301 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2302 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2303 } 2304 2305 static const struct pr_ops nvme_pr_ops = { 2306 .pr_register = nvme_pr_register, 2307 .pr_reserve = nvme_pr_reserve, 2308 .pr_release = nvme_pr_release, 2309 .pr_preempt = nvme_pr_preempt, 2310 .pr_clear = nvme_pr_clear, 2311 }; 2312 2313 #ifdef CONFIG_BLK_SED_OPAL 2314 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2315 bool send) 2316 { 2317 struct nvme_ctrl *ctrl = data; 2318 struct nvme_command cmd; 2319 2320 memset(&cmd, 0, sizeof(cmd)); 2321 if (send) 2322 cmd.common.opcode = nvme_admin_security_send; 2323 else 2324 cmd.common.opcode = nvme_admin_security_recv; 2325 cmd.common.nsid = 0; 2326 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2327 cmd.common.cdw11 = cpu_to_le32(len); 2328 2329 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2330 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2331 } 2332 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2333 #endif /* CONFIG_BLK_SED_OPAL */ 2334 2335 static const struct block_device_operations nvme_fops = { 2336 .owner = THIS_MODULE, 2337 .ioctl = nvme_ioctl, 2338 .compat_ioctl = nvme_compat_ioctl, 2339 .open = nvme_open, 2340 .release = nvme_release, 2341 .getgeo = nvme_getgeo, 2342 .revalidate_disk= nvme_revalidate_disk, 2343 .report_zones = nvme_report_zones, 2344 .pr_ops = &nvme_pr_ops, 2345 }; 2346 2347 #ifdef CONFIG_NVME_MULTIPATH 2348 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2349 { 2350 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2351 2352 if (!kref_get_unless_zero(&head->ref)) 2353 return -ENXIO; 2354 return 0; 2355 } 2356 2357 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2358 { 2359 nvme_put_ns_head(disk->private_data); 2360 } 2361 2362 const struct block_device_operations nvme_ns_head_ops = { 2363 .owner = THIS_MODULE, 2364 .submit_bio = nvme_ns_head_submit_bio, 2365 .open = nvme_ns_head_open, 2366 .release = nvme_ns_head_release, 2367 .ioctl = nvme_ioctl, 2368 .compat_ioctl = nvme_compat_ioctl, 2369 .getgeo = nvme_getgeo, 2370 .report_zones = nvme_report_zones, 2371 .pr_ops = &nvme_pr_ops, 2372 }; 2373 #endif /* CONFIG_NVME_MULTIPATH */ 2374 2375 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2376 { 2377 unsigned long timeout = 2378 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2379 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2380 int ret; 2381 2382 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2383 if (csts == ~0) 2384 return -ENODEV; 2385 if ((csts & NVME_CSTS_RDY) == bit) 2386 break; 2387 2388 usleep_range(1000, 2000); 2389 if (fatal_signal_pending(current)) 2390 return -EINTR; 2391 if (time_after(jiffies, timeout)) { 2392 dev_err(ctrl->device, 2393 "Device not ready; aborting %s, CSTS=0x%x\n", 2394 enabled ? "initialisation" : "reset", csts); 2395 return -ENODEV; 2396 } 2397 } 2398 2399 return ret; 2400 } 2401 2402 /* 2403 * If the device has been passed off to us in an enabled state, just clear 2404 * the enabled bit. The spec says we should set the 'shutdown notification 2405 * bits', but doing so may cause the device to complete commands to the 2406 * admin queue ... and we don't know what memory that might be pointing at! 2407 */ 2408 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2409 { 2410 int ret; 2411 2412 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2413 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2414 2415 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2416 if (ret) 2417 return ret; 2418 2419 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2420 msleep(NVME_QUIRK_DELAY_AMOUNT); 2421 2422 return nvme_wait_ready(ctrl, ctrl->cap, false); 2423 } 2424 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2425 2426 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2427 { 2428 unsigned dev_page_min; 2429 int ret; 2430 2431 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2432 if (ret) { 2433 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2434 return ret; 2435 } 2436 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2437 2438 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2439 dev_err(ctrl->device, 2440 "Minimum device page size %u too large for host (%u)\n", 2441 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2442 return -ENODEV; 2443 } 2444 2445 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2446 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2447 else 2448 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2449 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2450 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2451 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2452 ctrl->ctrl_config |= NVME_CC_ENABLE; 2453 2454 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2455 if (ret) 2456 return ret; 2457 return nvme_wait_ready(ctrl, ctrl->cap, true); 2458 } 2459 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2460 2461 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2462 { 2463 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2464 u32 csts; 2465 int ret; 2466 2467 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2468 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2469 2470 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2471 if (ret) 2472 return ret; 2473 2474 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2475 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2476 break; 2477 2478 msleep(100); 2479 if (fatal_signal_pending(current)) 2480 return -EINTR; 2481 if (time_after(jiffies, timeout)) { 2482 dev_err(ctrl->device, 2483 "Device shutdown incomplete; abort shutdown\n"); 2484 return -ENODEV; 2485 } 2486 } 2487 2488 return ret; 2489 } 2490 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2491 2492 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2493 struct request_queue *q) 2494 { 2495 bool vwc = false; 2496 2497 if (ctrl->max_hw_sectors) { 2498 u32 max_segments = 2499 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 2500 2501 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2502 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2503 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2504 } 2505 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 2506 blk_queue_dma_alignment(q, 7); 2507 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2508 vwc = true; 2509 blk_queue_write_cache(q, vwc, vwc); 2510 } 2511 2512 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2513 { 2514 __le64 ts; 2515 int ret; 2516 2517 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2518 return 0; 2519 2520 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2521 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2522 NULL); 2523 if (ret) 2524 dev_warn_once(ctrl->device, 2525 "could not set timestamp (%d)\n", ret); 2526 return ret; 2527 } 2528 2529 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2530 { 2531 struct nvme_feat_host_behavior *host; 2532 int ret; 2533 2534 /* Don't bother enabling the feature if retry delay is not reported */ 2535 if (!ctrl->crdt[0]) 2536 return 0; 2537 2538 host = kzalloc(sizeof(*host), GFP_KERNEL); 2539 if (!host) 2540 return 0; 2541 2542 host->acre = NVME_ENABLE_ACRE; 2543 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2544 host, sizeof(*host), NULL); 2545 kfree(host); 2546 return ret; 2547 } 2548 2549 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2550 { 2551 /* 2552 * APST (Autonomous Power State Transition) lets us program a 2553 * table of power state transitions that the controller will 2554 * perform automatically. We configure it with a simple 2555 * heuristic: we are willing to spend at most 2% of the time 2556 * transitioning between power states. Therefore, when running 2557 * in any given state, we will enter the next lower-power 2558 * non-operational state after waiting 50 * (enlat + exlat) 2559 * microseconds, as long as that state's exit latency is under 2560 * the requested maximum latency. 2561 * 2562 * We will not autonomously enter any non-operational state for 2563 * which the total latency exceeds ps_max_latency_us. Users 2564 * can set ps_max_latency_us to zero to turn off APST. 2565 */ 2566 2567 unsigned apste; 2568 struct nvme_feat_auto_pst *table; 2569 u64 max_lat_us = 0; 2570 int max_ps = -1; 2571 int ret; 2572 2573 /* 2574 * If APST isn't supported or if we haven't been initialized yet, 2575 * then don't do anything. 2576 */ 2577 if (!ctrl->apsta) 2578 return 0; 2579 2580 if (ctrl->npss > 31) { 2581 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2582 return 0; 2583 } 2584 2585 table = kzalloc(sizeof(*table), GFP_KERNEL); 2586 if (!table) 2587 return 0; 2588 2589 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2590 /* Turn off APST. */ 2591 apste = 0; 2592 dev_dbg(ctrl->device, "APST disabled\n"); 2593 } else { 2594 __le64 target = cpu_to_le64(0); 2595 int state; 2596 2597 /* 2598 * Walk through all states from lowest- to highest-power. 2599 * According to the spec, lower-numbered states use more 2600 * power. NPSS, despite the name, is the index of the 2601 * lowest-power state, not the number of states. 2602 */ 2603 for (state = (int)ctrl->npss; state >= 0; state--) { 2604 u64 total_latency_us, exit_latency_us, transition_ms; 2605 2606 if (target) 2607 table->entries[state] = target; 2608 2609 /* 2610 * Don't allow transitions to the deepest state 2611 * if it's quirked off. 2612 */ 2613 if (state == ctrl->npss && 2614 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2615 continue; 2616 2617 /* 2618 * Is this state a useful non-operational state for 2619 * higher-power states to autonomously transition to? 2620 */ 2621 if (!(ctrl->psd[state].flags & 2622 NVME_PS_FLAGS_NON_OP_STATE)) 2623 continue; 2624 2625 exit_latency_us = 2626 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2627 if (exit_latency_us > ctrl->ps_max_latency_us) 2628 continue; 2629 2630 total_latency_us = 2631 exit_latency_us + 2632 le32_to_cpu(ctrl->psd[state].entry_lat); 2633 2634 /* 2635 * This state is good. Use it as the APST idle 2636 * target for higher power states. 2637 */ 2638 transition_ms = total_latency_us + 19; 2639 do_div(transition_ms, 20); 2640 if (transition_ms > (1 << 24) - 1) 2641 transition_ms = (1 << 24) - 1; 2642 2643 target = cpu_to_le64((state << 3) | 2644 (transition_ms << 8)); 2645 2646 if (max_ps == -1) 2647 max_ps = state; 2648 2649 if (total_latency_us > max_lat_us) 2650 max_lat_us = total_latency_us; 2651 } 2652 2653 apste = 1; 2654 2655 if (max_ps == -1) { 2656 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2657 } else { 2658 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2659 max_ps, max_lat_us, (int)sizeof(*table), table); 2660 } 2661 } 2662 2663 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2664 table, sizeof(*table), NULL); 2665 if (ret) 2666 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2667 2668 kfree(table); 2669 return ret; 2670 } 2671 2672 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2673 { 2674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2675 u64 latency; 2676 2677 switch (val) { 2678 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2679 case PM_QOS_LATENCY_ANY: 2680 latency = U64_MAX; 2681 break; 2682 2683 default: 2684 latency = val; 2685 } 2686 2687 if (ctrl->ps_max_latency_us != latency) { 2688 ctrl->ps_max_latency_us = latency; 2689 nvme_configure_apst(ctrl); 2690 } 2691 } 2692 2693 struct nvme_core_quirk_entry { 2694 /* 2695 * NVMe model and firmware strings are padded with spaces. For 2696 * simplicity, strings in the quirk table are padded with NULLs 2697 * instead. 2698 */ 2699 u16 vid; 2700 const char *mn; 2701 const char *fr; 2702 unsigned long quirks; 2703 }; 2704 2705 static const struct nvme_core_quirk_entry core_quirks[] = { 2706 { 2707 /* 2708 * This Toshiba device seems to die using any APST states. See: 2709 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2710 */ 2711 .vid = 0x1179, 2712 .mn = "THNSF5256GPUK TOSHIBA", 2713 .quirks = NVME_QUIRK_NO_APST, 2714 }, 2715 { 2716 /* 2717 * This LiteON CL1-3D*-Q11 firmware version has a race 2718 * condition associated with actions related to suspend to idle 2719 * LiteON has resolved the problem in future firmware 2720 */ 2721 .vid = 0x14a4, 2722 .fr = "22301111", 2723 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2724 } 2725 }; 2726 2727 /* match is null-terminated but idstr is space-padded. */ 2728 static bool string_matches(const char *idstr, const char *match, size_t len) 2729 { 2730 size_t matchlen; 2731 2732 if (!match) 2733 return true; 2734 2735 matchlen = strlen(match); 2736 WARN_ON_ONCE(matchlen > len); 2737 2738 if (memcmp(idstr, match, matchlen)) 2739 return false; 2740 2741 for (; matchlen < len; matchlen++) 2742 if (idstr[matchlen] != ' ') 2743 return false; 2744 2745 return true; 2746 } 2747 2748 static bool quirk_matches(const struct nvme_id_ctrl *id, 2749 const struct nvme_core_quirk_entry *q) 2750 { 2751 return q->vid == le16_to_cpu(id->vid) && 2752 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2753 string_matches(id->fr, q->fr, sizeof(id->fr)); 2754 } 2755 2756 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2757 struct nvme_id_ctrl *id) 2758 { 2759 size_t nqnlen; 2760 int off; 2761 2762 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2763 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2764 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2765 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2766 return; 2767 } 2768 2769 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2770 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2771 } 2772 2773 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2774 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2775 "nqn.2014.08.org.nvmexpress:%04x%04x", 2776 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2777 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2778 off += sizeof(id->sn); 2779 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2780 off += sizeof(id->mn); 2781 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2782 } 2783 2784 static void nvme_release_subsystem(struct device *dev) 2785 { 2786 struct nvme_subsystem *subsys = 2787 container_of(dev, struct nvme_subsystem, dev); 2788 2789 if (subsys->instance >= 0) 2790 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2791 kfree(subsys); 2792 } 2793 2794 static void nvme_destroy_subsystem(struct kref *ref) 2795 { 2796 struct nvme_subsystem *subsys = 2797 container_of(ref, struct nvme_subsystem, ref); 2798 2799 mutex_lock(&nvme_subsystems_lock); 2800 list_del(&subsys->entry); 2801 mutex_unlock(&nvme_subsystems_lock); 2802 2803 ida_destroy(&subsys->ns_ida); 2804 device_del(&subsys->dev); 2805 put_device(&subsys->dev); 2806 } 2807 2808 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2809 { 2810 kref_put(&subsys->ref, nvme_destroy_subsystem); 2811 } 2812 2813 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2814 { 2815 struct nvme_subsystem *subsys; 2816 2817 lockdep_assert_held(&nvme_subsystems_lock); 2818 2819 /* 2820 * Fail matches for discovery subsystems. This results 2821 * in each discovery controller bound to a unique subsystem. 2822 * This avoids issues with validating controller values 2823 * that can only be true when there is a single unique subsystem. 2824 * There may be multiple and completely independent entities 2825 * that provide discovery controllers. 2826 */ 2827 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2828 return NULL; 2829 2830 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2831 if (strcmp(subsys->subnqn, subsysnqn)) 2832 continue; 2833 if (!kref_get_unless_zero(&subsys->ref)) 2834 continue; 2835 return subsys; 2836 } 2837 2838 return NULL; 2839 } 2840 2841 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2842 struct device_attribute subsys_attr_##_name = \ 2843 __ATTR(_name, _mode, _show, NULL) 2844 2845 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2846 struct device_attribute *attr, 2847 char *buf) 2848 { 2849 struct nvme_subsystem *subsys = 2850 container_of(dev, struct nvme_subsystem, dev); 2851 2852 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2853 } 2854 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2855 2856 #define nvme_subsys_show_str_function(field) \ 2857 static ssize_t subsys_##field##_show(struct device *dev, \ 2858 struct device_attribute *attr, char *buf) \ 2859 { \ 2860 struct nvme_subsystem *subsys = \ 2861 container_of(dev, struct nvme_subsystem, dev); \ 2862 return sprintf(buf, "%.*s\n", \ 2863 (int)sizeof(subsys->field), subsys->field); \ 2864 } \ 2865 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2866 2867 nvme_subsys_show_str_function(model); 2868 nvme_subsys_show_str_function(serial); 2869 nvme_subsys_show_str_function(firmware_rev); 2870 2871 static struct attribute *nvme_subsys_attrs[] = { 2872 &subsys_attr_model.attr, 2873 &subsys_attr_serial.attr, 2874 &subsys_attr_firmware_rev.attr, 2875 &subsys_attr_subsysnqn.attr, 2876 #ifdef CONFIG_NVME_MULTIPATH 2877 &subsys_attr_iopolicy.attr, 2878 #endif 2879 NULL, 2880 }; 2881 2882 static struct attribute_group nvme_subsys_attrs_group = { 2883 .attrs = nvme_subsys_attrs, 2884 }; 2885 2886 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2887 &nvme_subsys_attrs_group, 2888 NULL, 2889 }; 2890 2891 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2892 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2893 { 2894 struct nvme_ctrl *tmp; 2895 2896 lockdep_assert_held(&nvme_subsystems_lock); 2897 2898 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2899 if (nvme_state_terminal(tmp)) 2900 continue; 2901 2902 if (tmp->cntlid == ctrl->cntlid) { 2903 dev_err(ctrl->device, 2904 "Duplicate cntlid %u with %s, rejecting\n", 2905 ctrl->cntlid, dev_name(tmp->device)); 2906 return false; 2907 } 2908 2909 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2910 (ctrl->opts && ctrl->opts->discovery_nqn)) 2911 continue; 2912 2913 dev_err(ctrl->device, 2914 "Subsystem does not support multiple controllers\n"); 2915 return false; 2916 } 2917 2918 return true; 2919 } 2920 2921 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2922 { 2923 struct nvme_subsystem *subsys, *found; 2924 int ret; 2925 2926 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2927 if (!subsys) 2928 return -ENOMEM; 2929 2930 subsys->instance = -1; 2931 mutex_init(&subsys->lock); 2932 kref_init(&subsys->ref); 2933 INIT_LIST_HEAD(&subsys->ctrls); 2934 INIT_LIST_HEAD(&subsys->nsheads); 2935 nvme_init_subnqn(subsys, ctrl, id); 2936 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2937 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2938 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2939 subsys->vendor_id = le16_to_cpu(id->vid); 2940 subsys->cmic = id->cmic; 2941 subsys->awupf = le16_to_cpu(id->awupf); 2942 #ifdef CONFIG_NVME_MULTIPATH 2943 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2944 #endif 2945 2946 subsys->dev.class = nvme_subsys_class; 2947 subsys->dev.release = nvme_release_subsystem; 2948 subsys->dev.groups = nvme_subsys_attrs_groups; 2949 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2950 device_initialize(&subsys->dev); 2951 2952 mutex_lock(&nvme_subsystems_lock); 2953 found = __nvme_find_get_subsystem(subsys->subnqn); 2954 if (found) { 2955 put_device(&subsys->dev); 2956 subsys = found; 2957 2958 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2959 ret = -EINVAL; 2960 goto out_put_subsystem; 2961 } 2962 } else { 2963 ret = device_add(&subsys->dev); 2964 if (ret) { 2965 dev_err(ctrl->device, 2966 "failed to register subsystem device.\n"); 2967 put_device(&subsys->dev); 2968 goto out_unlock; 2969 } 2970 ida_init(&subsys->ns_ida); 2971 list_add_tail(&subsys->entry, &nvme_subsystems); 2972 } 2973 2974 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2975 dev_name(ctrl->device)); 2976 if (ret) { 2977 dev_err(ctrl->device, 2978 "failed to create sysfs link from subsystem.\n"); 2979 goto out_put_subsystem; 2980 } 2981 2982 if (!found) 2983 subsys->instance = ctrl->instance; 2984 ctrl->subsys = subsys; 2985 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2986 mutex_unlock(&nvme_subsystems_lock); 2987 return 0; 2988 2989 out_put_subsystem: 2990 nvme_put_subsystem(subsys); 2991 out_unlock: 2992 mutex_unlock(&nvme_subsystems_lock); 2993 return ret; 2994 } 2995 2996 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2997 void *log, size_t size, u64 offset) 2998 { 2999 struct nvme_command c = { }; 3000 u32 dwlen = nvme_bytes_to_numd(size); 3001 3002 c.get_log_page.opcode = nvme_admin_get_log_page; 3003 c.get_log_page.nsid = cpu_to_le32(nsid); 3004 c.get_log_page.lid = log_page; 3005 c.get_log_page.lsp = lsp; 3006 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3007 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3008 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3009 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3010 c.get_log_page.csi = csi; 3011 3012 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3013 } 3014 3015 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi) 3016 { 3017 struct nvme_cel *cel, *ret = NULL; 3018 3019 spin_lock_irq(&ctrl->lock); 3020 list_for_each_entry(cel, &ctrl->cels, entry) { 3021 if (cel->csi == csi) { 3022 ret = cel; 3023 break; 3024 } 3025 } 3026 spin_unlock_irq(&ctrl->lock); 3027 3028 return ret; 3029 } 3030 3031 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3032 struct nvme_effects_log **log) 3033 { 3034 struct nvme_cel *cel = nvme_find_cel(ctrl, csi); 3035 int ret; 3036 3037 if (cel) 3038 goto out; 3039 3040 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3041 if (!cel) 3042 return -ENOMEM; 3043 3044 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3045 &cel->log, sizeof(cel->log), 0); 3046 if (ret) { 3047 kfree(cel); 3048 return ret; 3049 } 3050 3051 cel->csi = csi; 3052 3053 spin_lock_irq(&ctrl->lock); 3054 list_add_tail(&cel->entry, &ctrl->cels); 3055 spin_unlock_irq(&ctrl->lock); 3056 out: 3057 *log = &cel->log; 3058 return 0; 3059 } 3060 3061 /* 3062 * Initialize the cached copies of the Identify data and various controller 3063 * register in our nvme_ctrl structure. This should be called as soon as 3064 * the admin queue is fully up and running. 3065 */ 3066 int nvme_init_identify(struct nvme_ctrl *ctrl) 3067 { 3068 struct nvme_id_ctrl *id; 3069 int ret, page_shift; 3070 u32 max_hw_sectors; 3071 bool prev_apst_enabled; 3072 3073 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3074 if (ret) { 3075 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3076 return ret; 3077 } 3078 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 3079 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3080 3081 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3082 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3083 3084 ret = nvme_identify_ctrl(ctrl, &id); 3085 if (ret) { 3086 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3087 return -EIO; 3088 } 3089 3090 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3091 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3092 if (ret < 0) 3093 goto out_free; 3094 } 3095 3096 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3097 ctrl->cntlid = le16_to_cpu(id->cntlid); 3098 3099 if (!ctrl->identified) { 3100 int i; 3101 3102 ret = nvme_init_subsystem(ctrl, id); 3103 if (ret) 3104 goto out_free; 3105 3106 /* 3107 * Check for quirks. Quirk can depend on firmware version, 3108 * so, in principle, the set of quirks present can change 3109 * across a reset. As a possible future enhancement, we 3110 * could re-scan for quirks every time we reinitialize 3111 * the device, but we'd have to make sure that the driver 3112 * behaves intelligently if the quirks change. 3113 */ 3114 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3115 if (quirk_matches(id, &core_quirks[i])) 3116 ctrl->quirks |= core_quirks[i].quirks; 3117 } 3118 } 3119 3120 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3121 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3122 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3123 } 3124 3125 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3126 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3127 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3128 3129 ctrl->oacs = le16_to_cpu(id->oacs); 3130 ctrl->oncs = le16_to_cpu(id->oncs); 3131 ctrl->mtfa = le16_to_cpu(id->mtfa); 3132 ctrl->oaes = le32_to_cpu(id->oaes); 3133 ctrl->wctemp = le16_to_cpu(id->wctemp); 3134 ctrl->cctemp = le16_to_cpu(id->cctemp); 3135 3136 atomic_set(&ctrl->abort_limit, id->acl + 1); 3137 ctrl->vwc = id->vwc; 3138 if (id->mdts) 3139 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 3140 else 3141 max_hw_sectors = UINT_MAX; 3142 ctrl->max_hw_sectors = 3143 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3144 3145 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3146 ctrl->sgls = le32_to_cpu(id->sgls); 3147 ctrl->kas = le16_to_cpu(id->kas); 3148 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3149 ctrl->ctratt = le32_to_cpu(id->ctratt); 3150 3151 if (id->rtd3e) { 3152 /* us -> s */ 3153 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3154 3155 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3156 shutdown_timeout, 60); 3157 3158 if (ctrl->shutdown_timeout != shutdown_timeout) 3159 dev_info(ctrl->device, 3160 "Shutdown timeout set to %u seconds\n", 3161 ctrl->shutdown_timeout); 3162 } else 3163 ctrl->shutdown_timeout = shutdown_timeout; 3164 3165 ctrl->npss = id->npss; 3166 ctrl->apsta = id->apsta; 3167 prev_apst_enabled = ctrl->apst_enabled; 3168 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3169 if (force_apst && id->apsta) { 3170 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3171 ctrl->apst_enabled = true; 3172 } else { 3173 ctrl->apst_enabled = false; 3174 } 3175 } else { 3176 ctrl->apst_enabled = id->apsta; 3177 } 3178 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3179 3180 if (ctrl->ops->flags & NVME_F_FABRICS) { 3181 ctrl->icdoff = le16_to_cpu(id->icdoff); 3182 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3183 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3184 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3185 3186 /* 3187 * In fabrics we need to verify the cntlid matches the 3188 * admin connect 3189 */ 3190 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3191 dev_err(ctrl->device, 3192 "Mismatching cntlid: Connect %u vs Identify " 3193 "%u, rejecting\n", 3194 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3195 ret = -EINVAL; 3196 goto out_free; 3197 } 3198 3199 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 3200 dev_err(ctrl->device, 3201 "keep-alive support is mandatory for fabrics\n"); 3202 ret = -EINVAL; 3203 goto out_free; 3204 } 3205 } else { 3206 ctrl->hmpre = le32_to_cpu(id->hmpre); 3207 ctrl->hmmin = le32_to_cpu(id->hmmin); 3208 ctrl->hmminds = le32_to_cpu(id->hmminds); 3209 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3210 } 3211 3212 ret = nvme_mpath_init(ctrl, id); 3213 kfree(id); 3214 3215 if (ret < 0) 3216 return ret; 3217 3218 if (ctrl->apst_enabled && !prev_apst_enabled) 3219 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3220 else if (!ctrl->apst_enabled && prev_apst_enabled) 3221 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3222 3223 ret = nvme_configure_apst(ctrl); 3224 if (ret < 0) 3225 return ret; 3226 3227 ret = nvme_configure_timestamp(ctrl); 3228 if (ret < 0) 3229 return ret; 3230 3231 ret = nvme_configure_directives(ctrl); 3232 if (ret < 0) 3233 return ret; 3234 3235 ret = nvme_configure_acre(ctrl); 3236 if (ret < 0) 3237 return ret; 3238 3239 if (!ctrl->identified) { 3240 ret = nvme_hwmon_init(ctrl); 3241 if (ret < 0) 3242 return ret; 3243 } 3244 3245 ctrl->identified = true; 3246 3247 return 0; 3248 3249 out_free: 3250 kfree(id); 3251 return ret; 3252 } 3253 EXPORT_SYMBOL_GPL(nvme_init_identify); 3254 3255 static int nvme_dev_open(struct inode *inode, struct file *file) 3256 { 3257 struct nvme_ctrl *ctrl = 3258 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3259 3260 switch (ctrl->state) { 3261 case NVME_CTRL_LIVE: 3262 break; 3263 default: 3264 return -EWOULDBLOCK; 3265 } 3266 3267 nvme_get_ctrl(ctrl); 3268 if (!try_module_get(ctrl->ops->module)) 3269 return -EINVAL; 3270 3271 file->private_data = ctrl; 3272 return 0; 3273 } 3274 3275 static int nvme_dev_release(struct inode *inode, struct file *file) 3276 { 3277 struct nvme_ctrl *ctrl = 3278 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3279 3280 module_put(ctrl->ops->module); 3281 nvme_put_ctrl(ctrl); 3282 return 0; 3283 } 3284 3285 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 3286 { 3287 struct nvme_ns *ns; 3288 int ret; 3289 3290 down_read(&ctrl->namespaces_rwsem); 3291 if (list_empty(&ctrl->namespaces)) { 3292 ret = -ENOTTY; 3293 goto out_unlock; 3294 } 3295 3296 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3297 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3298 dev_warn(ctrl->device, 3299 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3300 ret = -EINVAL; 3301 goto out_unlock; 3302 } 3303 3304 dev_warn(ctrl->device, 3305 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3306 kref_get(&ns->kref); 3307 up_read(&ctrl->namespaces_rwsem); 3308 3309 ret = nvme_user_cmd(ctrl, ns, argp); 3310 nvme_put_ns(ns); 3311 return ret; 3312 3313 out_unlock: 3314 up_read(&ctrl->namespaces_rwsem); 3315 return ret; 3316 } 3317 3318 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3319 unsigned long arg) 3320 { 3321 struct nvme_ctrl *ctrl = file->private_data; 3322 void __user *argp = (void __user *)arg; 3323 3324 switch (cmd) { 3325 case NVME_IOCTL_ADMIN_CMD: 3326 return nvme_user_cmd(ctrl, NULL, argp); 3327 case NVME_IOCTL_ADMIN64_CMD: 3328 return nvme_user_cmd64(ctrl, NULL, argp); 3329 case NVME_IOCTL_IO_CMD: 3330 return nvme_dev_user_cmd(ctrl, argp); 3331 case NVME_IOCTL_RESET: 3332 dev_warn(ctrl->device, "resetting controller\n"); 3333 return nvme_reset_ctrl_sync(ctrl); 3334 case NVME_IOCTL_SUBSYS_RESET: 3335 return nvme_reset_subsystem(ctrl); 3336 case NVME_IOCTL_RESCAN: 3337 nvme_queue_scan(ctrl); 3338 return 0; 3339 default: 3340 return -ENOTTY; 3341 } 3342 } 3343 3344 static const struct file_operations nvme_dev_fops = { 3345 .owner = THIS_MODULE, 3346 .open = nvme_dev_open, 3347 .release = nvme_dev_release, 3348 .unlocked_ioctl = nvme_dev_ioctl, 3349 .compat_ioctl = compat_ptr_ioctl, 3350 }; 3351 3352 static ssize_t nvme_sysfs_reset(struct device *dev, 3353 struct device_attribute *attr, const char *buf, 3354 size_t count) 3355 { 3356 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3357 int ret; 3358 3359 ret = nvme_reset_ctrl_sync(ctrl); 3360 if (ret < 0) 3361 return ret; 3362 return count; 3363 } 3364 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3365 3366 static ssize_t nvme_sysfs_rescan(struct device *dev, 3367 struct device_attribute *attr, const char *buf, 3368 size_t count) 3369 { 3370 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3371 3372 nvme_queue_scan(ctrl); 3373 return count; 3374 } 3375 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3376 3377 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3378 { 3379 struct gendisk *disk = dev_to_disk(dev); 3380 3381 if (disk->fops == &nvme_fops) 3382 return nvme_get_ns_from_dev(dev)->head; 3383 else 3384 return disk->private_data; 3385 } 3386 3387 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3388 char *buf) 3389 { 3390 struct nvme_ns_head *head = dev_to_ns_head(dev); 3391 struct nvme_ns_ids *ids = &head->ids; 3392 struct nvme_subsystem *subsys = head->subsys; 3393 int serial_len = sizeof(subsys->serial); 3394 int model_len = sizeof(subsys->model); 3395 3396 if (!uuid_is_null(&ids->uuid)) 3397 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3398 3399 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3400 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3401 3402 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3403 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3404 3405 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3406 subsys->serial[serial_len - 1] == '\0')) 3407 serial_len--; 3408 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3409 subsys->model[model_len - 1] == '\0')) 3410 model_len--; 3411 3412 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3413 serial_len, subsys->serial, model_len, subsys->model, 3414 head->ns_id); 3415 } 3416 static DEVICE_ATTR_RO(wwid); 3417 3418 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3419 char *buf) 3420 { 3421 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3422 } 3423 static DEVICE_ATTR_RO(nguid); 3424 3425 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3426 char *buf) 3427 { 3428 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3429 3430 /* For backward compatibility expose the NGUID to userspace if 3431 * we have no UUID set 3432 */ 3433 if (uuid_is_null(&ids->uuid)) { 3434 printk_ratelimited(KERN_WARNING 3435 "No UUID available providing old NGUID\n"); 3436 return sprintf(buf, "%pU\n", ids->nguid); 3437 } 3438 return sprintf(buf, "%pU\n", &ids->uuid); 3439 } 3440 static DEVICE_ATTR_RO(uuid); 3441 3442 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3443 char *buf) 3444 { 3445 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3446 } 3447 static DEVICE_ATTR_RO(eui); 3448 3449 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3450 char *buf) 3451 { 3452 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3453 } 3454 static DEVICE_ATTR_RO(nsid); 3455 3456 static struct attribute *nvme_ns_id_attrs[] = { 3457 &dev_attr_wwid.attr, 3458 &dev_attr_uuid.attr, 3459 &dev_attr_nguid.attr, 3460 &dev_attr_eui.attr, 3461 &dev_attr_nsid.attr, 3462 #ifdef CONFIG_NVME_MULTIPATH 3463 &dev_attr_ana_grpid.attr, 3464 &dev_attr_ana_state.attr, 3465 #endif 3466 NULL, 3467 }; 3468 3469 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3470 struct attribute *a, int n) 3471 { 3472 struct device *dev = container_of(kobj, struct device, kobj); 3473 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3474 3475 if (a == &dev_attr_uuid.attr) { 3476 if (uuid_is_null(&ids->uuid) && 3477 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3478 return 0; 3479 } 3480 if (a == &dev_attr_nguid.attr) { 3481 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3482 return 0; 3483 } 3484 if (a == &dev_attr_eui.attr) { 3485 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3486 return 0; 3487 } 3488 #ifdef CONFIG_NVME_MULTIPATH 3489 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3490 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3491 return 0; 3492 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3493 return 0; 3494 } 3495 #endif 3496 return a->mode; 3497 } 3498 3499 static const struct attribute_group nvme_ns_id_attr_group = { 3500 .attrs = nvme_ns_id_attrs, 3501 .is_visible = nvme_ns_id_attrs_are_visible, 3502 }; 3503 3504 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3505 &nvme_ns_id_attr_group, 3506 #ifdef CONFIG_NVM 3507 &nvme_nvm_attr_group, 3508 #endif 3509 NULL, 3510 }; 3511 3512 #define nvme_show_str_function(field) \ 3513 static ssize_t field##_show(struct device *dev, \ 3514 struct device_attribute *attr, char *buf) \ 3515 { \ 3516 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3517 return sprintf(buf, "%.*s\n", \ 3518 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3519 } \ 3520 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3521 3522 nvme_show_str_function(model); 3523 nvme_show_str_function(serial); 3524 nvme_show_str_function(firmware_rev); 3525 3526 #define nvme_show_int_function(field) \ 3527 static ssize_t field##_show(struct device *dev, \ 3528 struct device_attribute *attr, char *buf) \ 3529 { \ 3530 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3531 return sprintf(buf, "%d\n", ctrl->field); \ 3532 } \ 3533 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3534 3535 nvme_show_int_function(cntlid); 3536 nvme_show_int_function(numa_node); 3537 nvme_show_int_function(queue_count); 3538 nvme_show_int_function(sqsize); 3539 3540 static ssize_t nvme_sysfs_delete(struct device *dev, 3541 struct device_attribute *attr, const char *buf, 3542 size_t count) 3543 { 3544 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3545 3546 if (device_remove_file_self(dev, attr)) 3547 nvme_delete_ctrl_sync(ctrl); 3548 return count; 3549 } 3550 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3551 3552 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3553 struct device_attribute *attr, 3554 char *buf) 3555 { 3556 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3557 3558 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3559 } 3560 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3561 3562 static ssize_t nvme_sysfs_show_state(struct device *dev, 3563 struct device_attribute *attr, 3564 char *buf) 3565 { 3566 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3567 static const char *const state_name[] = { 3568 [NVME_CTRL_NEW] = "new", 3569 [NVME_CTRL_LIVE] = "live", 3570 [NVME_CTRL_RESETTING] = "resetting", 3571 [NVME_CTRL_CONNECTING] = "connecting", 3572 [NVME_CTRL_DELETING] = "deleting", 3573 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3574 [NVME_CTRL_DEAD] = "dead", 3575 }; 3576 3577 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3578 state_name[ctrl->state]) 3579 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3580 3581 return sprintf(buf, "unknown state\n"); 3582 } 3583 3584 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3585 3586 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3587 struct device_attribute *attr, 3588 char *buf) 3589 { 3590 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3591 3592 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3593 } 3594 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3595 3596 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3597 struct device_attribute *attr, 3598 char *buf) 3599 { 3600 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3601 3602 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3603 } 3604 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3605 3606 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3607 struct device_attribute *attr, 3608 char *buf) 3609 { 3610 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3611 3612 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3613 } 3614 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3615 3616 static ssize_t nvme_sysfs_show_address(struct device *dev, 3617 struct device_attribute *attr, 3618 char *buf) 3619 { 3620 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3621 3622 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3623 } 3624 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3625 3626 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3627 struct device_attribute *attr, char *buf) 3628 { 3629 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3630 struct nvmf_ctrl_options *opts = ctrl->opts; 3631 3632 if (ctrl->opts->max_reconnects == -1) 3633 return sprintf(buf, "off\n"); 3634 return sprintf(buf, "%d\n", 3635 opts->max_reconnects * opts->reconnect_delay); 3636 } 3637 3638 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3639 struct device_attribute *attr, const char *buf, size_t count) 3640 { 3641 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3642 struct nvmf_ctrl_options *opts = ctrl->opts; 3643 int ctrl_loss_tmo, err; 3644 3645 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3646 if (err) 3647 return -EINVAL; 3648 3649 else if (ctrl_loss_tmo < 0) 3650 opts->max_reconnects = -1; 3651 else 3652 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3653 opts->reconnect_delay); 3654 return count; 3655 } 3656 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3657 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3658 3659 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3660 struct device_attribute *attr, char *buf) 3661 { 3662 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3663 3664 if (ctrl->opts->reconnect_delay == -1) 3665 return sprintf(buf, "off\n"); 3666 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay); 3667 } 3668 3669 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3670 struct device_attribute *attr, const char *buf, size_t count) 3671 { 3672 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3673 unsigned int v; 3674 int err; 3675 3676 err = kstrtou32(buf, 10, &v); 3677 if (err) 3678 return err; 3679 3680 ctrl->opts->reconnect_delay = v; 3681 return count; 3682 } 3683 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3684 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3685 3686 static struct attribute *nvme_dev_attrs[] = { 3687 &dev_attr_reset_controller.attr, 3688 &dev_attr_rescan_controller.attr, 3689 &dev_attr_model.attr, 3690 &dev_attr_serial.attr, 3691 &dev_attr_firmware_rev.attr, 3692 &dev_attr_cntlid.attr, 3693 &dev_attr_delete_controller.attr, 3694 &dev_attr_transport.attr, 3695 &dev_attr_subsysnqn.attr, 3696 &dev_attr_address.attr, 3697 &dev_attr_state.attr, 3698 &dev_attr_numa_node.attr, 3699 &dev_attr_queue_count.attr, 3700 &dev_attr_sqsize.attr, 3701 &dev_attr_hostnqn.attr, 3702 &dev_attr_hostid.attr, 3703 &dev_attr_ctrl_loss_tmo.attr, 3704 &dev_attr_reconnect_delay.attr, 3705 NULL 3706 }; 3707 3708 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3709 struct attribute *a, int n) 3710 { 3711 struct device *dev = container_of(kobj, struct device, kobj); 3712 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3713 3714 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3715 return 0; 3716 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3717 return 0; 3718 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3719 return 0; 3720 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3721 return 0; 3722 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3723 return 0; 3724 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3725 return 0; 3726 3727 return a->mode; 3728 } 3729 3730 static struct attribute_group nvme_dev_attrs_group = { 3731 .attrs = nvme_dev_attrs, 3732 .is_visible = nvme_dev_attrs_are_visible, 3733 }; 3734 3735 static const struct attribute_group *nvme_dev_attr_groups[] = { 3736 &nvme_dev_attrs_group, 3737 NULL, 3738 }; 3739 3740 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3741 unsigned nsid) 3742 { 3743 struct nvme_ns_head *h; 3744 3745 lockdep_assert_held(&subsys->lock); 3746 3747 list_for_each_entry(h, &subsys->nsheads, entry) { 3748 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3749 return h; 3750 } 3751 3752 return NULL; 3753 } 3754 3755 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3756 struct nvme_ns_head *new) 3757 { 3758 struct nvme_ns_head *h; 3759 3760 lockdep_assert_held(&subsys->lock); 3761 3762 list_for_each_entry(h, &subsys->nsheads, entry) { 3763 if (nvme_ns_ids_valid(&new->ids) && 3764 nvme_ns_ids_equal(&new->ids, &h->ids)) 3765 return -EINVAL; 3766 } 3767 3768 return 0; 3769 } 3770 3771 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3772 unsigned nsid, struct nvme_ns_ids *ids) 3773 { 3774 struct nvme_ns_head *head; 3775 size_t size = sizeof(*head); 3776 int ret = -ENOMEM; 3777 3778 #ifdef CONFIG_NVME_MULTIPATH 3779 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3780 #endif 3781 3782 head = kzalloc(size, GFP_KERNEL); 3783 if (!head) 3784 goto out; 3785 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3786 if (ret < 0) 3787 goto out_free_head; 3788 head->instance = ret; 3789 INIT_LIST_HEAD(&head->list); 3790 ret = init_srcu_struct(&head->srcu); 3791 if (ret) 3792 goto out_ida_remove; 3793 head->subsys = ctrl->subsys; 3794 head->ns_id = nsid; 3795 head->ids = *ids; 3796 kref_init(&head->ref); 3797 3798 ret = __nvme_check_ids(ctrl->subsys, head); 3799 if (ret) { 3800 dev_err(ctrl->device, 3801 "duplicate IDs for nsid %d\n", nsid); 3802 goto out_cleanup_srcu; 3803 } 3804 3805 if (head->ids.csi) { 3806 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3807 if (ret) 3808 goto out_cleanup_srcu; 3809 } else 3810 head->effects = ctrl->effects; 3811 3812 ret = nvme_mpath_alloc_disk(ctrl, head); 3813 if (ret) 3814 goto out_cleanup_srcu; 3815 3816 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3817 3818 kref_get(&ctrl->subsys->ref); 3819 3820 return head; 3821 out_cleanup_srcu: 3822 cleanup_srcu_struct(&head->srcu); 3823 out_ida_remove: 3824 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3825 out_free_head: 3826 kfree(head); 3827 out: 3828 if (ret > 0) 3829 ret = blk_status_to_errno(nvme_error_status(ret)); 3830 return ERR_PTR(ret); 3831 } 3832 3833 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3834 struct nvme_id_ns *id) 3835 { 3836 struct nvme_ctrl *ctrl = ns->ctrl; 3837 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED; 3838 struct nvme_ns_head *head = NULL; 3839 struct nvme_ns_ids ids; 3840 int ret = 0; 3841 3842 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3843 if (ret) { 3844 if (ret < 0) 3845 return ret; 3846 return blk_status_to_errno(nvme_error_status(ret)); 3847 } 3848 3849 mutex_lock(&ctrl->subsys->lock); 3850 head = nvme_find_ns_head(ctrl->subsys, nsid); 3851 if (!head) { 3852 head = nvme_alloc_ns_head(ctrl, nsid, &ids); 3853 if (IS_ERR(head)) { 3854 ret = PTR_ERR(head); 3855 goto out_unlock; 3856 } 3857 head->shared = is_shared; 3858 } else { 3859 ret = -EINVAL; 3860 if (!is_shared || !head->shared) { 3861 dev_err(ctrl->device, 3862 "Duplicate unshared namespace %d\n", nsid); 3863 goto out_put_ns_head; 3864 } 3865 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3866 dev_err(ctrl->device, 3867 "IDs don't match for shared namespace %d\n", 3868 nsid); 3869 goto out_put_ns_head; 3870 } 3871 } 3872 3873 list_add_tail(&ns->siblings, &head->list); 3874 ns->head = head; 3875 mutex_unlock(&ctrl->subsys->lock); 3876 return 0; 3877 3878 out_put_ns_head: 3879 nvme_put_ns_head(head); 3880 out_unlock: 3881 mutex_unlock(&ctrl->subsys->lock); 3882 return ret; 3883 } 3884 3885 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3886 { 3887 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3888 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3889 3890 return nsa->head->ns_id - nsb->head->ns_id; 3891 } 3892 3893 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3894 { 3895 struct nvme_ns *ns, *ret = NULL; 3896 3897 down_read(&ctrl->namespaces_rwsem); 3898 list_for_each_entry(ns, &ctrl->namespaces, list) { 3899 if (ns->head->ns_id == nsid) { 3900 if (!kref_get_unless_zero(&ns->kref)) 3901 continue; 3902 ret = ns; 3903 break; 3904 } 3905 if (ns->head->ns_id > nsid) 3906 break; 3907 } 3908 up_read(&ctrl->namespaces_rwsem); 3909 return ret; 3910 } 3911 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3912 3913 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3914 { 3915 struct nvme_ns *ns; 3916 struct gendisk *disk; 3917 struct nvme_id_ns *id; 3918 char disk_name[DISK_NAME_LEN]; 3919 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3920 3921 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3922 if (!ns) 3923 return; 3924 3925 ns->queue = blk_mq_init_queue(ctrl->tagset); 3926 if (IS_ERR(ns->queue)) 3927 goto out_free_ns; 3928 3929 if (ctrl->opts && ctrl->opts->data_digest) 3930 ns->queue->backing_dev_info->capabilities 3931 |= BDI_CAP_STABLE_WRITES; 3932 3933 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3934 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3935 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3936 3937 ns->queue->queuedata = ns; 3938 ns->ctrl = ctrl; 3939 3940 kref_init(&ns->kref); 3941 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3942 3943 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3944 nvme_set_queue_limits(ctrl, ns->queue); 3945 3946 ret = nvme_identify_ns(ctrl, nsid, &id); 3947 if (ret) 3948 goto out_free_queue; 3949 3950 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3951 goto out_free_id; 3952 3953 ret = nvme_init_ns_head(ns, nsid, id); 3954 if (ret) 3955 goto out_free_id; 3956 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3957 3958 disk = alloc_disk_node(0, node); 3959 if (!disk) 3960 goto out_unlink_ns; 3961 3962 disk->fops = &nvme_fops; 3963 disk->private_data = ns; 3964 disk->queue = ns->queue; 3965 disk->flags = flags; 3966 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3967 ns->disk = disk; 3968 3969 if (__nvme_revalidate_disk(disk, id)) 3970 goto out_put_disk; 3971 3972 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3973 ret = nvme_nvm_register(ns, disk_name, node); 3974 if (ret) { 3975 dev_warn(ctrl->device, "LightNVM init failure\n"); 3976 goto out_put_disk; 3977 } 3978 } 3979 3980 down_write(&ctrl->namespaces_rwsem); 3981 list_add_tail(&ns->list, &ctrl->namespaces); 3982 up_write(&ctrl->namespaces_rwsem); 3983 3984 nvme_get_ctrl(ctrl); 3985 3986 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3987 3988 nvme_mpath_add_disk(ns, id); 3989 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3990 kfree(id); 3991 3992 return; 3993 out_put_disk: 3994 /* prevent double queue cleanup */ 3995 ns->disk->queue = NULL; 3996 put_disk(ns->disk); 3997 out_unlink_ns: 3998 mutex_lock(&ctrl->subsys->lock); 3999 list_del_rcu(&ns->siblings); 4000 if (list_empty(&ns->head->list)) 4001 list_del_init(&ns->head->entry); 4002 mutex_unlock(&ctrl->subsys->lock); 4003 nvme_put_ns_head(ns->head); 4004 out_free_id: 4005 kfree(id); 4006 out_free_queue: 4007 blk_cleanup_queue(ns->queue); 4008 out_free_ns: 4009 kfree(ns); 4010 } 4011 4012 static void nvme_ns_remove(struct nvme_ns *ns) 4013 { 4014 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4015 return; 4016 4017 nvme_fault_inject_fini(&ns->fault_inject); 4018 4019 mutex_lock(&ns->ctrl->subsys->lock); 4020 list_del_rcu(&ns->siblings); 4021 if (list_empty(&ns->head->list)) 4022 list_del_init(&ns->head->entry); 4023 mutex_unlock(&ns->ctrl->subsys->lock); 4024 4025 synchronize_rcu(); /* guarantee not available in head->list */ 4026 nvme_mpath_clear_current_path(ns); 4027 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 4028 4029 if (ns->disk->flags & GENHD_FL_UP) { 4030 del_gendisk(ns->disk); 4031 blk_cleanup_queue(ns->queue); 4032 if (blk_get_integrity(ns->disk)) 4033 blk_integrity_unregister(ns->disk); 4034 } 4035 4036 down_write(&ns->ctrl->namespaces_rwsem); 4037 list_del_init(&ns->list); 4038 up_write(&ns->ctrl->namespaces_rwsem); 4039 4040 nvme_mpath_check_last_path(ns); 4041 nvme_put_ns(ns); 4042 } 4043 4044 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4045 { 4046 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4047 4048 if (ns) { 4049 nvme_ns_remove(ns); 4050 nvme_put_ns(ns); 4051 } 4052 } 4053 4054 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4055 { 4056 struct nvme_ns *ns; 4057 4058 ns = nvme_find_get_ns(ctrl, nsid); 4059 if (ns) { 4060 if (revalidate_disk(ns->disk)) 4061 nvme_ns_remove(ns); 4062 nvme_put_ns(ns); 4063 } else 4064 nvme_alloc_ns(ctrl, nsid); 4065 } 4066 4067 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4068 unsigned nsid) 4069 { 4070 struct nvme_ns *ns, *next; 4071 LIST_HEAD(rm_list); 4072 4073 down_write(&ctrl->namespaces_rwsem); 4074 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4075 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4076 list_move_tail(&ns->list, &rm_list); 4077 } 4078 up_write(&ctrl->namespaces_rwsem); 4079 4080 list_for_each_entry_safe(ns, next, &rm_list, list) 4081 nvme_ns_remove(ns); 4082 4083 } 4084 4085 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4086 { 4087 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4088 __le32 *ns_list; 4089 u32 prev = 0; 4090 int ret = 0, i; 4091 4092 if (nvme_ctrl_limited_cns(ctrl)) 4093 return -EOPNOTSUPP; 4094 4095 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4096 if (!ns_list) 4097 return -ENOMEM; 4098 4099 for (;;) { 4100 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 4101 if (ret) 4102 goto free; 4103 4104 for (i = 0; i < nr_entries; i++) { 4105 u32 nsid = le32_to_cpu(ns_list[i]); 4106 4107 if (!nsid) /* end of the list? */ 4108 goto out; 4109 nvme_validate_ns(ctrl, nsid); 4110 while (++prev < nsid) 4111 nvme_ns_remove_by_nsid(ctrl, prev); 4112 } 4113 } 4114 out: 4115 nvme_remove_invalid_namespaces(ctrl, prev); 4116 free: 4117 kfree(ns_list); 4118 return ret; 4119 } 4120 4121 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4122 { 4123 struct nvme_id_ctrl *id; 4124 u32 nn, i; 4125 4126 if (nvme_identify_ctrl(ctrl, &id)) 4127 return; 4128 nn = le32_to_cpu(id->nn); 4129 kfree(id); 4130 4131 for (i = 1; i <= nn; i++) 4132 nvme_validate_ns(ctrl, i); 4133 4134 nvme_remove_invalid_namespaces(ctrl, nn); 4135 } 4136 4137 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4138 { 4139 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4140 __le32 *log; 4141 int error; 4142 4143 log = kzalloc(log_size, GFP_KERNEL); 4144 if (!log) 4145 return; 4146 4147 /* 4148 * We need to read the log to clear the AEN, but we don't want to rely 4149 * on it for the changed namespace information as userspace could have 4150 * raced with us in reading the log page, which could cause us to miss 4151 * updates. 4152 */ 4153 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4154 NVME_CSI_NVM, log, log_size, 0); 4155 if (error) 4156 dev_warn(ctrl->device, 4157 "reading changed ns log failed: %d\n", error); 4158 4159 kfree(log); 4160 } 4161 4162 static void nvme_scan_work(struct work_struct *work) 4163 { 4164 struct nvme_ctrl *ctrl = 4165 container_of(work, struct nvme_ctrl, scan_work); 4166 4167 /* No tagset on a live ctrl means IO queues could not created */ 4168 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4169 return; 4170 4171 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4172 dev_info(ctrl->device, "rescanning namespaces.\n"); 4173 nvme_clear_changed_ns_log(ctrl); 4174 } 4175 4176 mutex_lock(&ctrl->scan_lock); 4177 if (nvme_scan_ns_list(ctrl) != 0) 4178 nvme_scan_ns_sequential(ctrl); 4179 mutex_unlock(&ctrl->scan_lock); 4180 4181 down_write(&ctrl->namespaces_rwsem); 4182 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4183 up_write(&ctrl->namespaces_rwsem); 4184 } 4185 4186 /* 4187 * This function iterates the namespace list unlocked to allow recovery from 4188 * controller failure. It is up to the caller to ensure the namespace list is 4189 * not modified by scan work while this function is executing. 4190 */ 4191 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4192 { 4193 struct nvme_ns *ns, *next; 4194 LIST_HEAD(ns_list); 4195 4196 /* 4197 * make sure to requeue I/O to all namespaces as these 4198 * might result from the scan itself and must complete 4199 * for the scan_work to make progress 4200 */ 4201 nvme_mpath_clear_ctrl_paths(ctrl); 4202 4203 /* prevent racing with ns scanning */ 4204 flush_work(&ctrl->scan_work); 4205 4206 /* 4207 * The dead states indicates the controller was not gracefully 4208 * disconnected. In that case, we won't be able to flush any data while 4209 * removing the namespaces' disks; fail all the queues now to avoid 4210 * potentially having to clean up the failed sync later. 4211 */ 4212 if (ctrl->state == NVME_CTRL_DEAD) 4213 nvme_kill_queues(ctrl); 4214 4215 /* this is a no-op when called from the controller reset handler */ 4216 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4217 4218 down_write(&ctrl->namespaces_rwsem); 4219 list_splice_init(&ctrl->namespaces, &ns_list); 4220 up_write(&ctrl->namespaces_rwsem); 4221 4222 list_for_each_entry_safe(ns, next, &ns_list, list) 4223 nvme_ns_remove(ns); 4224 } 4225 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4226 4227 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4228 { 4229 struct nvme_ctrl *ctrl = 4230 container_of(dev, struct nvme_ctrl, ctrl_device); 4231 struct nvmf_ctrl_options *opts = ctrl->opts; 4232 int ret; 4233 4234 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4235 if (ret) 4236 return ret; 4237 4238 if (opts) { 4239 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4240 if (ret) 4241 return ret; 4242 4243 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4244 opts->trsvcid ?: "none"); 4245 if (ret) 4246 return ret; 4247 4248 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4249 opts->host_traddr ?: "none"); 4250 } 4251 return ret; 4252 } 4253 4254 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4255 { 4256 char *envp[2] = { NULL, NULL }; 4257 u32 aen_result = ctrl->aen_result; 4258 4259 ctrl->aen_result = 0; 4260 if (!aen_result) 4261 return; 4262 4263 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4264 if (!envp[0]) 4265 return; 4266 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4267 kfree(envp[0]); 4268 } 4269 4270 static void nvme_async_event_work(struct work_struct *work) 4271 { 4272 struct nvme_ctrl *ctrl = 4273 container_of(work, struct nvme_ctrl, async_event_work); 4274 4275 nvme_aen_uevent(ctrl); 4276 ctrl->ops->submit_async_event(ctrl); 4277 } 4278 4279 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4280 { 4281 4282 u32 csts; 4283 4284 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4285 return false; 4286 4287 if (csts == ~0) 4288 return false; 4289 4290 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4291 } 4292 4293 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4294 { 4295 struct nvme_fw_slot_info_log *log; 4296 4297 log = kmalloc(sizeof(*log), GFP_KERNEL); 4298 if (!log) 4299 return; 4300 4301 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4302 log, sizeof(*log), 0)) 4303 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4304 kfree(log); 4305 } 4306 4307 static void nvme_fw_act_work(struct work_struct *work) 4308 { 4309 struct nvme_ctrl *ctrl = container_of(work, 4310 struct nvme_ctrl, fw_act_work); 4311 unsigned long fw_act_timeout; 4312 4313 if (ctrl->mtfa) 4314 fw_act_timeout = jiffies + 4315 msecs_to_jiffies(ctrl->mtfa * 100); 4316 else 4317 fw_act_timeout = jiffies + 4318 msecs_to_jiffies(admin_timeout * 1000); 4319 4320 nvme_stop_queues(ctrl); 4321 while (nvme_ctrl_pp_status(ctrl)) { 4322 if (time_after(jiffies, fw_act_timeout)) { 4323 dev_warn(ctrl->device, 4324 "Fw activation timeout, reset controller\n"); 4325 nvme_try_sched_reset(ctrl); 4326 return; 4327 } 4328 msleep(100); 4329 } 4330 4331 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4332 return; 4333 4334 nvme_start_queues(ctrl); 4335 /* read FW slot information to clear the AER */ 4336 nvme_get_fw_slot_info(ctrl); 4337 } 4338 4339 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4340 { 4341 u32 aer_notice_type = (result & 0xff00) >> 8; 4342 4343 trace_nvme_async_event(ctrl, aer_notice_type); 4344 4345 switch (aer_notice_type) { 4346 case NVME_AER_NOTICE_NS_CHANGED: 4347 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4348 nvme_queue_scan(ctrl); 4349 break; 4350 case NVME_AER_NOTICE_FW_ACT_STARTING: 4351 /* 4352 * We are (ab)using the RESETTING state to prevent subsequent 4353 * recovery actions from interfering with the controller's 4354 * firmware activation. 4355 */ 4356 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4357 queue_work(nvme_wq, &ctrl->fw_act_work); 4358 break; 4359 #ifdef CONFIG_NVME_MULTIPATH 4360 case NVME_AER_NOTICE_ANA: 4361 if (!ctrl->ana_log_buf) 4362 break; 4363 queue_work(nvme_wq, &ctrl->ana_work); 4364 break; 4365 #endif 4366 case NVME_AER_NOTICE_DISC_CHANGED: 4367 ctrl->aen_result = result; 4368 break; 4369 default: 4370 dev_warn(ctrl->device, "async event result %08x\n", result); 4371 } 4372 } 4373 4374 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4375 volatile union nvme_result *res) 4376 { 4377 u32 result = le32_to_cpu(res->u32); 4378 u32 aer_type = result & 0x07; 4379 4380 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4381 return; 4382 4383 switch (aer_type) { 4384 case NVME_AER_NOTICE: 4385 nvme_handle_aen_notice(ctrl, result); 4386 break; 4387 case NVME_AER_ERROR: 4388 case NVME_AER_SMART: 4389 case NVME_AER_CSS: 4390 case NVME_AER_VS: 4391 trace_nvme_async_event(ctrl, aer_type); 4392 ctrl->aen_result = result; 4393 break; 4394 default: 4395 break; 4396 } 4397 queue_work(nvme_wq, &ctrl->async_event_work); 4398 } 4399 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4400 4401 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4402 { 4403 nvme_mpath_stop(ctrl); 4404 nvme_stop_keep_alive(ctrl); 4405 flush_work(&ctrl->async_event_work); 4406 cancel_work_sync(&ctrl->fw_act_work); 4407 } 4408 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4409 4410 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4411 { 4412 nvme_start_keep_alive(ctrl); 4413 4414 nvme_enable_aen(ctrl); 4415 4416 if (ctrl->queue_count > 1) { 4417 nvme_queue_scan(ctrl); 4418 nvme_start_queues(ctrl); 4419 } 4420 } 4421 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4422 4423 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4424 { 4425 nvme_fault_inject_fini(&ctrl->fault_inject); 4426 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4427 cdev_device_del(&ctrl->cdev, ctrl->device); 4428 nvme_put_ctrl(ctrl); 4429 } 4430 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4431 4432 static void nvme_free_ctrl(struct device *dev) 4433 { 4434 struct nvme_ctrl *ctrl = 4435 container_of(dev, struct nvme_ctrl, ctrl_device); 4436 struct nvme_subsystem *subsys = ctrl->subsys; 4437 struct nvme_cel *cel, *next; 4438 4439 if (!subsys || ctrl->instance != subsys->instance) 4440 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4441 4442 list_for_each_entry_safe(cel, next, &ctrl->cels, entry) { 4443 list_del(&cel->entry); 4444 kfree(cel); 4445 } 4446 4447 nvme_mpath_uninit(ctrl); 4448 __free_page(ctrl->discard_page); 4449 4450 if (subsys) { 4451 mutex_lock(&nvme_subsystems_lock); 4452 list_del(&ctrl->subsys_entry); 4453 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4454 mutex_unlock(&nvme_subsystems_lock); 4455 } 4456 4457 ctrl->ops->free_ctrl(ctrl); 4458 4459 if (subsys) 4460 nvme_put_subsystem(subsys); 4461 } 4462 4463 /* 4464 * Initialize a NVMe controller structures. This needs to be called during 4465 * earliest initialization so that we have the initialized structured around 4466 * during probing. 4467 */ 4468 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4469 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4470 { 4471 int ret; 4472 4473 ctrl->state = NVME_CTRL_NEW; 4474 spin_lock_init(&ctrl->lock); 4475 mutex_init(&ctrl->scan_lock); 4476 INIT_LIST_HEAD(&ctrl->namespaces); 4477 INIT_LIST_HEAD(&ctrl->cels); 4478 init_rwsem(&ctrl->namespaces_rwsem); 4479 ctrl->dev = dev; 4480 ctrl->ops = ops; 4481 ctrl->quirks = quirks; 4482 ctrl->numa_node = NUMA_NO_NODE; 4483 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4484 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4485 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4486 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4487 init_waitqueue_head(&ctrl->state_wq); 4488 4489 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4490 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4491 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4492 4493 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4494 PAGE_SIZE); 4495 ctrl->discard_page = alloc_page(GFP_KERNEL); 4496 if (!ctrl->discard_page) { 4497 ret = -ENOMEM; 4498 goto out; 4499 } 4500 4501 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4502 if (ret < 0) 4503 goto out; 4504 ctrl->instance = ret; 4505 4506 device_initialize(&ctrl->ctrl_device); 4507 ctrl->device = &ctrl->ctrl_device; 4508 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4509 ctrl->device->class = nvme_class; 4510 ctrl->device->parent = ctrl->dev; 4511 ctrl->device->groups = nvme_dev_attr_groups; 4512 ctrl->device->release = nvme_free_ctrl; 4513 dev_set_drvdata(ctrl->device, ctrl); 4514 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4515 if (ret) 4516 goto out_release_instance; 4517 4518 nvme_get_ctrl(ctrl); 4519 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4520 ctrl->cdev.owner = ops->module; 4521 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4522 if (ret) 4523 goto out_free_name; 4524 4525 /* 4526 * Initialize latency tolerance controls. The sysfs files won't 4527 * be visible to userspace unless the device actually supports APST. 4528 */ 4529 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4530 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4531 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4532 4533 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4534 4535 return 0; 4536 out_free_name: 4537 nvme_put_ctrl(ctrl); 4538 kfree_const(ctrl->device->kobj.name); 4539 out_release_instance: 4540 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4541 out: 4542 if (ctrl->discard_page) 4543 __free_page(ctrl->discard_page); 4544 return ret; 4545 } 4546 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4547 4548 /** 4549 * nvme_kill_queues(): Ends all namespace queues 4550 * @ctrl: the dead controller that needs to end 4551 * 4552 * Call this function when the driver determines it is unable to get the 4553 * controller in a state capable of servicing IO. 4554 */ 4555 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4556 { 4557 struct nvme_ns *ns; 4558 4559 down_read(&ctrl->namespaces_rwsem); 4560 4561 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4562 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4563 blk_mq_unquiesce_queue(ctrl->admin_q); 4564 4565 list_for_each_entry(ns, &ctrl->namespaces, list) 4566 nvme_set_queue_dying(ns); 4567 4568 up_read(&ctrl->namespaces_rwsem); 4569 } 4570 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4571 4572 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4573 { 4574 struct nvme_ns *ns; 4575 4576 down_read(&ctrl->namespaces_rwsem); 4577 list_for_each_entry(ns, &ctrl->namespaces, list) 4578 blk_mq_unfreeze_queue(ns->queue); 4579 up_read(&ctrl->namespaces_rwsem); 4580 } 4581 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4582 4583 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4584 { 4585 struct nvme_ns *ns; 4586 4587 down_read(&ctrl->namespaces_rwsem); 4588 list_for_each_entry(ns, &ctrl->namespaces, list) { 4589 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4590 if (timeout <= 0) 4591 break; 4592 } 4593 up_read(&ctrl->namespaces_rwsem); 4594 return timeout; 4595 } 4596 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4597 4598 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4599 { 4600 struct nvme_ns *ns; 4601 4602 down_read(&ctrl->namespaces_rwsem); 4603 list_for_each_entry(ns, &ctrl->namespaces, list) 4604 blk_mq_freeze_queue_wait(ns->queue); 4605 up_read(&ctrl->namespaces_rwsem); 4606 } 4607 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4608 4609 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4610 { 4611 struct nvme_ns *ns; 4612 4613 down_read(&ctrl->namespaces_rwsem); 4614 list_for_each_entry(ns, &ctrl->namespaces, list) 4615 blk_freeze_queue_start(ns->queue); 4616 up_read(&ctrl->namespaces_rwsem); 4617 } 4618 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4619 4620 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4621 { 4622 struct nvme_ns *ns; 4623 4624 down_read(&ctrl->namespaces_rwsem); 4625 list_for_each_entry(ns, &ctrl->namespaces, list) 4626 blk_mq_quiesce_queue(ns->queue); 4627 up_read(&ctrl->namespaces_rwsem); 4628 } 4629 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4630 4631 void nvme_start_queues(struct nvme_ctrl *ctrl) 4632 { 4633 struct nvme_ns *ns; 4634 4635 down_read(&ctrl->namespaces_rwsem); 4636 list_for_each_entry(ns, &ctrl->namespaces, list) 4637 blk_mq_unquiesce_queue(ns->queue); 4638 up_read(&ctrl->namespaces_rwsem); 4639 } 4640 EXPORT_SYMBOL_GPL(nvme_start_queues); 4641 4642 4643 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4644 { 4645 struct nvme_ns *ns; 4646 4647 down_read(&ctrl->namespaces_rwsem); 4648 list_for_each_entry(ns, &ctrl->namespaces, list) 4649 blk_sync_queue(ns->queue); 4650 up_read(&ctrl->namespaces_rwsem); 4651 4652 if (ctrl->admin_q) 4653 blk_sync_queue(ctrl->admin_q); 4654 } 4655 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4656 4657 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path) 4658 { 4659 struct nvme_ctrl *ctrl; 4660 struct file *f; 4661 4662 f = filp_open(path, O_RDWR, 0); 4663 if (IS_ERR(f)) 4664 return ERR_CAST(f); 4665 4666 if (f->f_op != &nvme_dev_fops) { 4667 ctrl = ERR_PTR(-EINVAL); 4668 goto out_close; 4669 } 4670 4671 ctrl = f->private_data; 4672 nvme_get_ctrl(ctrl); 4673 4674 out_close: 4675 filp_close(f, NULL); 4676 return ctrl; 4677 } 4678 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU); 4679 4680 /* 4681 * Check we didn't inadvertently grow the command structure sizes: 4682 */ 4683 static inline void _nvme_check_size(void) 4684 { 4685 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4686 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4687 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4688 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4689 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4690 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4691 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4692 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4693 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4694 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4695 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4696 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4697 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4698 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4699 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4700 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4701 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4702 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4703 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4704 } 4705 4706 4707 static int __init nvme_core_init(void) 4708 { 4709 int result = -ENOMEM; 4710 4711 _nvme_check_size(); 4712 4713 nvme_wq = alloc_workqueue("nvme-wq", 4714 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4715 if (!nvme_wq) 4716 goto out; 4717 4718 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4719 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4720 if (!nvme_reset_wq) 4721 goto destroy_wq; 4722 4723 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4724 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4725 if (!nvme_delete_wq) 4726 goto destroy_reset_wq; 4727 4728 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4729 if (result < 0) 4730 goto destroy_delete_wq; 4731 4732 nvme_class = class_create(THIS_MODULE, "nvme"); 4733 if (IS_ERR(nvme_class)) { 4734 result = PTR_ERR(nvme_class); 4735 goto unregister_chrdev; 4736 } 4737 nvme_class->dev_uevent = nvme_class_uevent; 4738 4739 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4740 if (IS_ERR(nvme_subsys_class)) { 4741 result = PTR_ERR(nvme_subsys_class); 4742 goto destroy_class; 4743 } 4744 return 0; 4745 4746 destroy_class: 4747 class_destroy(nvme_class); 4748 unregister_chrdev: 4749 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4750 destroy_delete_wq: 4751 destroy_workqueue(nvme_delete_wq); 4752 destroy_reset_wq: 4753 destroy_workqueue(nvme_reset_wq); 4754 destroy_wq: 4755 destroy_workqueue(nvme_wq); 4756 out: 4757 return result; 4758 } 4759 4760 static void __exit nvme_core_exit(void) 4761 { 4762 class_destroy(nvme_subsys_class); 4763 class_destroy(nvme_class); 4764 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4765 destroy_workqueue(nvme_delete_wq); 4766 destroy_workqueue(nvme_reset_wq); 4767 destroy_workqueue(nvme_wq); 4768 ida_destroy(&nvme_instance_ida); 4769 } 4770 4771 MODULE_LICENSE("GPL"); 4772 MODULE_VERSION("1.0"); 4773 module_init(nvme_core_init); 4774 module_exit(nvme_core_exit); 4775