1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <scsi/sg.h> 31 #include <asm/unaligned.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 #define NVME_MINORS (1U << MINORBITS) 37 38 unsigned char admin_timeout = 60; 39 module_param(admin_timeout, byte, 0644); 40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 41 EXPORT_SYMBOL_GPL(admin_timeout); 42 43 unsigned char nvme_io_timeout = 30; 44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 46 EXPORT_SYMBOL_GPL(nvme_io_timeout); 47 48 unsigned char shutdown_timeout = 5; 49 module_param(shutdown_timeout, byte, 0644); 50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 51 52 static u8 nvme_max_retries = 5; 53 module_param_named(max_retries, nvme_max_retries, byte, 0644); 54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 55 56 static int nvme_char_major; 57 module_param(nvme_char_major, int, 0); 58 59 static unsigned long default_ps_max_latency_us = 100000; 60 module_param(default_ps_max_latency_us, ulong, 0644); 61 MODULE_PARM_DESC(default_ps_max_latency_us, 62 "max power saving latency for new devices; use PM QOS to change per device"); 63 64 static bool force_apst; 65 module_param(force_apst, bool, 0644); 66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 67 68 static LIST_HEAD(nvme_ctrl_list); 69 static DEFINE_SPINLOCK(dev_list_lock); 70 71 static struct class *nvme_class; 72 73 static int nvme_error_status(struct request *req) 74 { 75 switch (nvme_req(req)->status & 0x7ff) { 76 case NVME_SC_SUCCESS: 77 return 0; 78 case NVME_SC_CAP_EXCEEDED: 79 return -ENOSPC; 80 default: 81 return -EIO; 82 83 /* 84 * XXX: these errors are a nasty side-band protocol to 85 * drivers/md/dm-mpath.c:noretry_error() that aren't documented 86 * anywhere.. 87 */ 88 case NVME_SC_CMD_SEQ_ERROR: 89 return -EILSEQ; 90 case NVME_SC_ONCS_NOT_SUPPORTED: 91 return -EOPNOTSUPP; 92 case NVME_SC_WRITE_FAULT: 93 case NVME_SC_READ_ERROR: 94 case NVME_SC_UNWRITTEN_BLOCK: 95 return -ENODATA; 96 } 97 } 98 99 static inline bool nvme_req_needs_retry(struct request *req) 100 { 101 if (blk_noretry_request(req)) 102 return false; 103 if (nvme_req(req)->status & NVME_SC_DNR) 104 return false; 105 if (jiffies - req->start_time >= req->timeout) 106 return false; 107 if (nvme_req(req)->retries >= nvme_max_retries) 108 return false; 109 return true; 110 } 111 112 void nvme_complete_rq(struct request *req) 113 { 114 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { 115 nvme_req(req)->retries++; 116 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); 117 return; 118 } 119 120 blk_mq_end_request(req, nvme_error_status(req)); 121 } 122 EXPORT_SYMBOL_GPL(nvme_complete_rq); 123 124 void nvme_cancel_request(struct request *req, void *data, bool reserved) 125 { 126 int status; 127 128 if (!blk_mq_request_started(req)) 129 return; 130 131 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 132 "Cancelling I/O %d", req->tag); 133 134 status = NVME_SC_ABORT_REQ; 135 if (blk_queue_dying(req->q)) 136 status |= NVME_SC_DNR; 137 nvme_req(req)->status = status; 138 blk_mq_complete_request(req); 139 140 } 141 EXPORT_SYMBOL_GPL(nvme_cancel_request); 142 143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 144 enum nvme_ctrl_state new_state) 145 { 146 enum nvme_ctrl_state old_state; 147 bool changed = false; 148 149 spin_lock_irq(&ctrl->lock); 150 151 old_state = ctrl->state; 152 switch (new_state) { 153 case NVME_CTRL_LIVE: 154 switch (old_state) { 155 case NVME_CTRL_NEW: 156 case NVME_CTRL_RESETTING: 157 case NVME_CTRL_RECONNECTING: 158 changed = true; 159 /* FALLTHRU */ 160 default: 161 break; 162 } 163 break; 164 case NVME_CTRL_RESETTING: 165 switch (old_state) { 166 case NVME_CTRL_NEW: 167 case NVME_CTRL_LIVE: 168 case NVME_CTRL_RECONNECTING: 169 changed = true; 170 /* FALLTHRU */ 171 default: 172 break; 173 } 174 break; 175 case NVME_CTRL_RECONNECTING: 176 switch (old_state) { 177 case NVME_CTRL_LIVE: 178 changed = true; 179 /* FALLTHRU */ 180 default: 181 break; 182 } 183 break; 184 case NVME_CTRL_DELETING: 185 switch (old_state) { 186 case NVME_CTRL_LIVE: 187 case NVME_CTRL_RESETTING: 188 case NVME_CTRL_RECONNECTING: 189 changed = true; 190 /* FALLTHRU */ 191 default: 192 break; 193 } 194 break; 195 case NVME_CTRL_DEAD: 196 switch (old_state) { 197 case NVME_CTRL_DELETING: 198 changed = true; 199 /* FALLTHRU */ 200 default: 201 break; 202 } 203 break; 204 default: 205 break; 206 } 207 208 if (changed) 209 ctrl->state = new_state; 210 211 spin_unlock_irq(&ctrl->lock); 212 213 return changed; 214 } 215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 216 217 static void nvme_free_ns(struct kref *kref) 218 { 219 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 220 221 if (ns->ndev) 222 nvme_nvm_unregister(ns); 223 224 if (ns->disk) { 225 spin_lock(&dev_list_lock); 226 ns->disk->private_data = NULL; 227 spin_unlock(&dev_list_lock); 228 } 229 230 put_disk(ns->disk); 231 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 232 nvme_put_ctrl(ns->ctrl); 233 kfree(ns); 234 } 235 236 static void nvme_put_ns(struct nvme_ns *ns) 237 { 238 kref_put(&ns->kref, nvme_free_ns); 239 } 240 241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 242 { 243 struct nvme_ns *ns; 244 245 spin_lock(&dev_list_lock); 246 ns = disk->private_data; 247 if (ns) { 248 if (!kref_get_unless_zero(&ns->kref)) 249 goto fail; 250 if (!try_module_get(ns->ctrl->ops->module)) 251 goto fail_put_ns; 252 } 253 spin_unlock(&dev_list_lock); 254 255 return ns; 256 257 fail_put_ns: 258 kref_put(&ns->kref, nvme_free_ns); 259 fail: 260 spin_unlock(&dev_list_lock); 261 return NULL; 262 } 263 264 struct request *nvme_alloc_request(struct request_queue *q, 265 struct nvme_command *cmd, unsigned int flags, int qid) 266 { 267 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 268 struct request *req; 269 270 if (qid == NVME_QID_ANY) { 271 req = blk_mq_alloc_request(q, op, flags); 272 } else { 273 req = blk_mq_alloc_request_hctx(q, op, flags, 274 qid ? qid - 1 : 0); 275 } 276 if (IS_ERR(req)) 277 return req; 278 279 req->cmd_flags |= REQ_FAILFAST_DRIVER; 280 nvme_req(req)->cmd = cmd; 281 282 return req; 283 } 284 EXPORT_SYMBOL_GPL(nvme_alloc_request); 285 286 static inline void nvme_setup_flush(struct nvme_ns *ns, 287 struct nvme_command *cmnd) 288 { 289 memset(cmnd, 0, sizeof(*cmnd)); 290 cmnd->common.opcode = nvme_cmd_flush; 291 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 292 } 293 294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, 295 struct nvme_command *cmnd) 296 { 297 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 298 struct nvme_dsm_range *range; 299 struct bio *bio; 300 301 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 302 if (!range) 303 return BLK_MQ_RQ_QUEUE_BUSY; 304 305 __rq_for_each_bio(bio, req) { 306 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 307 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 308 309 range[n].cattr = cpu_to_le32(0); 310 range[n].nlb = cpu_to_le32(nlb); 311 range[n].slba = cpu_to_le64(slba); 312 n++; 313 } 314 315 if (WARN_ON_ONCE(n != segments)) { 316 kfree(range); 317 return BLK_MQ_RQ_QUEUE_ERROR; 318 } 319 320 memset(cmnd, 0, sizeof(*cmnd)); 321 cmnd->dsm.opcode = nvme_cmd_dsm; 322 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 323 cmnd->dsm.nr = cpu_to_le32(segments - 1); 324 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 325 326 req->special_vec.bv_page = virt_to_page(range); 327 req->special_vec.bv_offset = offset_in_page(range); 328 req->special_vec.bv_len = sizeof(*range) * segments; 329 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 330 331 return BLK_MQ_RQ_QUEUE_OK; 332 } 333 334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, 335 struct nvme_command *cmnd) 336 { 337 u16 control = 0; 338 u32 dsmgmt = 0; 339 340 if (req->cmd_flags & REQ_FUA) 341 control |= NVME_RW_FUA; 342 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 343 control |= NVME_RW_LR; 344 345 if (req->cmd_flags & REQ_RAHEAD) 346 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 347 348 memset(cmnd, 0, sizeof(*cmnd)); 349 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 350 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 351 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 352 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 353 354 if (ns->ms) { 355 switch (ns->pi_type) { 356 case NVME_NS_DPS_PI_TYPE3: 357 control |= NVME_RW_PRINFO_PRCHK_GUARD; 358 break; 359 case NVME_NS_DPS_PI_TYPE1: 360 case NVME_NS_DPS_PI_TYPE2: 361 control |= NVME_RW_PRINFO_PRCHK_GUARD | 362 NVME_RW_PRINFO_PRCHK_REF; 363 cmnd->rw.reftag = cpu_to_le32( 364 nvme_block_nr(ns, blk_rq_pos(req))); 365 break; 366 } 367 if (!blk_integrity_rq(req)) 368 control |= NVME_RW_PRINFO_PRACT; 369 } 370 371 cmnd->rw.control = cpu_to_le16(control); 372 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 373 } 374 375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 376 struct nvme_command *cmd) 377 { 378 int ret = BLK_MQ_RQ_QUEUE_OK; 379 380 if (!(req->rq_flags & RQF_DONTPREP)) { 381 nvme_req(req)->retries = 0; 382 nvme_req(req)->flags = 0; 383 req->rq_flags |= RQF_DONTPREP; 384 } 385 386 switch (req_op(req)) { 387 case REQ_OP_DRV_IN: 388 case REQ_OP_DRV_OUT: 389 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 390 break; 391 case REQ_OP_FLUSH: 392 nvme_setup_flush(ns, cmd); 393 break; 394 case REQ_OP_WRITE_ZEROES: 395 /* currently only aliased to deallocate for a few ctrls: */ 396 case REQ_OP_DISCARD: 397 ret = nvme_setup_discard(ns, req, cmd); 398 break; 399 case REQ_OP_READ: 400 case REQ_OP_WRITE: 401 nvme_setup_rw(ns, req, cmd); 402 break; 403 default: 404 WARN_ON_ONCE(1); 405 return BLK_MQ_RQ_QUEUE_ERROR; 406 } 407 408 cmd->common.command_id = req->tag; 409 return ret; 410 } 411 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 412 413 /* 414 * Returns 0 on success. If the result is negative, it's a Linux error code; 415 * if the result is positive, it's an NVM Express status code 416 */ 417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 418 union nvme_result *result, void *buffer, unsigned bufflen, 419 unsigned timeout, int qid, int at_head, int flags) 420 { 421 struct request *req; 422 int ret; 423 424 req = nvme_alloc_request(q, cmd, flags, qid); 425 if (IS_ERR(req)) 426 return PTR_ERR(req); 427 428 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 429 430 if (buffer && bufflen) { 431 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 432 if (ret) 433 goto out; 434 } 435 436 blk_execute_rq(req->q, NULL, req, at_head); 437 if (result) 438 *result = nvme_req(req)->result; 439 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 440 ret = -EINTR; 441 else 442 ret = nvme_req(req)->status; 443 out: 444 blk_mq_free_request(req); 445 return ret; 446 } 447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 448 449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 450 void *buffer, unsigned bufflen) 451 { 452 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 453 NVME_QID_ANY, 0, 0); 454 } 455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 456 457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 458 void __user *ubuffer, unsigned bufflen, 459 void __user *meta_buffer, unsigned meta_len, u32 meta_seed, 460 u32 *result, unsigned timeout) 461 { 462 bool write = nvme_is_write(cmd); 463 struct nvme_ns *ns = q->queuedata; 464 struct gendisk *disk = ns ? ns->disk : NULL; 465 struct request *req; 466 struct bio *bio = NULL; 467 void *meta = NULL; 468 int ret; 469 470 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 471 if (IS_ERR(req)) 472 return PTR_ERR(req); 473 474 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 475 476 if (ubuffer && bufflen) { 477 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 478 GFP_KERNEL); 479 if (ret) 480 goto out; 481 bio = req->bio; 482 483 if (!disk) 484 goto submit; 485 bio->bi_bdev = bdget_disk(disk, 0); 486 if (!bio->bi_bdev) { 487 ret = -ENODEV; 488 goto out_unmap; 489 } 490 491 if (meta_buffer && meta_len) { 492 struct bio_integrity_payload *bip; 493 494 meta = kmalloc(meta_len, GFP_KERNEL); 495 if (!meta) { 496 ret = -ENOMEM; 497 goto out_unmap; 498 } 499 500 if (write) { 501 if (copy_from_user(meta, meta_buffer, 502 meta_len)) { 503 ret = -EFAULT; 504 goto out_free_meta; 505 } 506 } 507 508 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 509 if (IS_ERR(bip)) { 510 ret = PTR_ERR(bip); 511 goto out_free_meta; 512 } 513 514 bip->bip_iter.bi_size = meta_len; 515 bip->bip_iter.bi_sector = meta_seed; 516 517 ret = bio_integrity_add_page(bio, virt_to_page(meta), 518 meta_len, offset_in_page(meta)); 519 if (ret != meta_len) { 520 ret = -ENOMEM; 521 goto out_free_meta; 522 } 523 } 524 } 525 submit: 526 blk_execute_rq(req->q, disk, req, 0); 527 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 528 ret = -EINTR; 529 else 530 ret = nvme_req(req)->status; 531 if (result) 532 *result = le32_to_cpu(nvme_req(req)->result.u32); 533 if (meta && !ret && !write) { 534 if (copy_to_user(meta_buffer, meta, meta_len)) 535 ret = -EFAULT; 536 } 537 out_free_meta: 538 kfree(meta); 539 out_unmap: 540 if (bio) { 541 if (disk && bio->bi_bdev) 542 bdput(bio->bi_bdev); 543 blk_rq_unmap_user(bio); 544 } 545 out: 546 blk_mq_free_request(req); 547 return ret; 548 } 549 550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 551 void __user *ubuffer, unsigned bufflen, u32 *result, 552 unsigned timeout) 553 { 554 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, 555 result, timeout); 556 } 557 558 static void nvme_keep_alive_end_io(struct request *rq, int error) 559 { 560 struct nvme_ctrl *ctrl = rq->end_io_data; 561 562 blk_mq_free_request(rq); 563 564 if (error) { 565 dev_err(ctrl->device, 566 "failed nvme_keep_alive_end_io error=%d\n", error); 567 return; 568 } 569 570 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 571 } 572 573 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 574 { 575 struct nvme_command c; 576 struct request *rq; 577 578 memset(&c, 0, sizeof(c)); 579 c.common.opcode = nvme_admin_keep_alive; 580 581 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 582 NVME_QID_ANY); 583 if (IS_ERR(rq)) 584 return PTR_ERR(rq); 585 586 rq->timeout = ctrl->kato * HZ; 587 rq->end_io_data = ctrl; 588 589 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 590 591 return 0; 592 } 593 594 static void nvme_keep_alive_work(struct work_struct *work) 595 { 596 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 597 struct nvme_ctrl, ka_work); 598 599 if (nvme_keep_alive(ctrl)) { 600 /* allocation failure, reset the controller */ 601 dev_err(ctrl->device, "keep-alive failed\n"); 602 ctrl->ops->reset_ctrl(ctrl); 603 return; 604 } 605 } 606 607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 608 { 609 if (unlikely(ctrl->kato == 0)) 610 return; 611 612 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 613 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 614 } 615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 616 617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 618 { 619 if (unlikely(ctrl->kato == 0)) 620 return; 621 622 cancel_delayed_work_sync(&ctrl->ka_work); 623 } 624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 625 626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 627 { 628 struct nvme_command c = { }; 629 int error; 630 631 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 632 c.identify.opcode = nvme_admin_identify; 633 c.identify.cns = NVME_ID_CNS_CTRL; 634 635 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 636 if (!*id) 637 return -ENOMEM; 638 639 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 640 sizeof(struct nvme_id_ctrl)); 641 if (error) 642 kfree(*id); 643 return error; 644 } 645 646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 647 { 648 struct nvme_command c = { }; 649 650 c.identify.opcode = nvme_admin_identify; 651 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 652 c.identify.nsid = cpu_to_le32(nsid); 653 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 654 } 655 656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, 657 struct nvme_id_ns **id) 658 { 659 struct nvme_command c = { }; 660 int error; 661 662 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 663 c.identify.opcode = nvme_admin_identify; 664 c.identify.nsid = cpu_to_le32(nsid); 665 c.identify.cns = NVME_ID_CNS_NS; 666 667 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); 668 if (!*id) 669 return -ENOMEM; 670 671 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 672 sizeof(struct nvme_id_ns)); 673 if (error) 674 kfree(*id); 675 return error; 676 } 677 678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, 679 void *buffer, size_t buflen, u32 *result) 680 { 681 struct nvme_command c; 682 union nvme_result res; 683 int ret; 684 685 memset(&c, 0, sizeof(c)); 686 c.features.opcode = nvme_admin_get_features; 687 c.features.nsid = cpu_to_le32(nsid); 688 c.features.fid = cpu_to_le32(fid); 689 690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, 691 NVME_QID_ANY, 0, 0); 692 if (ret >= 0 && result) 693 *result = le32_to_cpu(res.u32); 694 return ret; 695 } 696 697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 698 void *buffer, size_t buflen, u32 *result) 699 { 700 struct nvme_command c; 701 union nvme_result res; 702 int ret; 703 704 memset(&c, 0, sizeof(c)); 705 c.features.opcode = nvme_admin_set_features; 706 c.features.fid = cpu_to_le32(fid); 707 c.features.dword11 = cpu_to_le32(dword11); 708 709 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 710 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 711 if (ret >= 0 && result) 712 *result = le32_to_cpu(res.u32); 713 return ret; 714 } 715 716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) 717 { 718 struct nvme_command c = { }; 719 int error; 720 721 c.common.opcode = nvme_admin_get_log_page, 722 c.common.nsid = cpu_to_le32(0xFFFFFFFF), 723 c.common.cdw10[0] = cpu_to_le32( 724 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | 725 NVME_LOG_SMART), 726 727 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); 728 if (!*log) 729 return -ENOMEM; 730 731 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, 732 sizeof(struct nvme_smart_log)); 733 if (error) 734 kfree(*log); 735 return error; 736 } 737 738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 739 { 740 u32 q_count = (*count - 1) | ((*count - 1) << 16); 741 u32 result; 742 int status, nr_io_queues; 743 744 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 745 &result); 746 if (status < 0) 747 return status; 748 749 /* 750 * Degraded controllers might return an error when setting the queue 751 * count. We still want to be able to bring them online and offer 752 * access to the admin queue, as that might be only way to fix them up. 753 */ 754 if (status > 0) { 755 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); 756 *count = 0; 757 } else { 758 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 759 *count = min(*count, nr_io_queues); 760 } 761 762 return 0; 763 } 764 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 765 766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 767 { 768 struct nvme_user_io io; 769 struct nvme_command c; 770 unsigned length, meta_len; 771 void __user *metadata; 772 773 if (copy_from_user(&io, uio, sizeof(io))) 774 return -EFAULT; 775 if (io.flags) 776 return -EINVAL; 777 778 switch (io.opcode) { 779 case nvme_cmd_write: 780 case nvme_cmd_read: 781 case nvme_cmd_compare: 782 break; 783 default: 784 return -EINVAL; 785 } 786 787 length = (io.nblocks + 1) << ns->lba_shift; 788 meta_len = (io.nblocks + 1) * ns->ms; 789 metadata = (void __user *)(uintptr_t)io.metadata; 790 791 if (ns->ext) { 792 length += meta_len; 793 meta_len = 0; 794 } else if (meta_len) { 795 if ((io.metadata & 3) || !io.metadata) 796 return -EINVAL; 797 } 798 799 memset(&c, 0, sizeof(c)); 800 c.rw.opcode = io.opcode; 801 c.rw.flags = io.flags; 802 c.rw.nsid = cpu_to_le32(ns->ns_id); 803 c.rw.slba = cpu_to_le64(io.slba); 804 c.rw.length = cpu_to_le16(io.nblocks); 805 c.rw.control = cpu_to_le16(io.control); 806 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 807 c.rw.reftag = cpu_to_le32(io.reftag); 808 c.rw.apptag = cpu_to_le16(io.apptag); 809 c.rw.appmask = cpu_to_le16(io.appmask); 810 811 return __nvme_submit_user_cmd(ns->queue, &c, 812 (void __user *)(uintptr_t)io.addr, length, 813 metadata, meta_len, io.slba, NULL, 0); 814 } 815 816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 817 struct nvme_passthru_cmd __user *ucmd) 818 { 819 struct nvme_passthru_cmd cmd; 820 struct nvme_command c; 821 unsigned timeout = 0; 822 int status; 823 824 if (!capable(CAP_SYS_ADMIN)) 825 return -EACCES; 826 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 827 return -EFAULT; 828 if (cmd.flags) 829 return -EINVAL; 830 831 memset(&c, 0, sizeof(c)); 832 c.common.opcode = cmd.opcode; 833 c.common.flags = cmd.flags; 834 c.common.nsid = cpu_to_le32(cmd.nsid); 835 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 836 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 837 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 838 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 839 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 840 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 841 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 842 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 843 844 if (cmd.timeout_ms) 845 timeout = msecs_to_jiffies(cmd.timeout_ms); 846 847 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 848 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 849 &cmd.result, timeout); 850 if (status >= 0) { 851 if (put_user(cmd.result, &ucmd->result)) 852 return -EFAULT; 853 } 854 855 return status; 856 } 857 858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 859 unsigned int cmd, unsigned long arg) 860 { 861 struct nvme_ns *ns = bdev->bd_disk->private_data; 862 863 switch (cmd) { 864 case NVME_IOCTL_ID: 865 force_successful_syscall_return(); 866 return ns->ns_id; 867 case NVME_IOCTL_ADMIN_CMD: 868 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 869 case NVME_IOCTL_IO_CMD: 870 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 871 case NVME_IOCTL_SUBMIT_IO: 872 return nvme_submit_io(ns, (void __user *)arg); 873 #ifdef CONFIG_BLK_DEV_NVME_SCSI 874 case SG_GET_VERSION_NUM: 875 return nvme_sg_get_version_num((void __user *)arg); 876 case SG_IO: 877 return nvme_sg_io(ns, (void __user *)arg); 878 #endif 879 default: 880 #ifdef CONFIG_NVM 881 if (ns->ndev) 882 return nvme_nvm_ioctl(ns, cmd, arg); 883 #endif 884 if (is_sed_ioctl(cmd)) 885 return sed_ioctl(ns->ctrl->opal_dev, cmd, 886 (void __user *) arg); 887 return -ENOTTY; 888 } 889 } 890 891 #ifdef CONFIG_COMPAT 892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 893 unsigned int cmd, unsigned long arg) 894 { 895 switch (cmd) { 896 case SG_IO: 897 return -ENOIOCTLCMD; 898 } 899 return nvme_ioctl(bdev, mode, cmd, arg); 900 } 901 #else 902 #define nvme_compat_ioctl NULL 903 #endif 904 905 static int nvme_open(struct block_device *bdev, fmode_t mode) 906 { 907 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 908 } 909 910 static void nvme_release(struct gendisk *disk, fmode_t mode) 911 { 912 struct nvme_ns *ns = disk->private_data; 913 914 module_put(ns->ctrl->ops->module); 915 nvme_put_ns(ns); 916 } 917 918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 919 { 920 /* some standard values */ 921 geo->heads = 1 << 6; 922 geo->sectors = 1 << 5; 923 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 924 return 0; 925 } 926 927 #ifdef CONFIG_BLK_DEV_INTEGRITY 928 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 929 u16 bs) 930 { 931 struct nvme_ns *ns = disk->private_data; 932 u16 old_ms = ns->ms; 933 u8 pi_type = 0; 934 935 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 936 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 937 938 /* PI implementation requires metadata equal t10 pi tuple size */ 939 if (ns->ms == sizeof(struct t10_pi_tuple)) 940 pi_type = id->dps & NVME_NS_DPS_PI_MASK; 941 942 if (blk_get_integrity(disk) && 943 (ns->pi_type != pi_type || ns->ms != old_ms || 944 bs != queue_logical_block_size(disk->queue) || 945 (ns->ms && ns->ext))) 946 blk_integrity_unregister(disk); 947 948 ns->pi_type = pi_type; 949 } 950 951 static void nvme_init_integrity(struct nvme_ns *ns) 952 { 953 struct blk_integrity integrity; 954 955 memset(&integrity, 0, sizeof(integrity)); 956 switch (ns->pi_type) { 957 case NVME_NS_DPS_PI_TYPE3: 958 integrity.profile = &t10_pi_type3_crc; 959 integrity.tag_size = sizeof(u16) + sizeof(u32); 960 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 961 break; 962 case NVME_NS_DPS_PI_TYPE1: 963 case NVME_NS_DPS_PI_TYPE2: 964 integrity.profile = &t10_pi_type1_crc; 965 integrity.tag_size = sizeof(u16); 966 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 967 break; 968 default: 969 integrity.profile = NULL; 970 break; 971 } 972 integrity.tuple_size = ns->ms; 973 blk_integrity_register(ns->disk, &integrity); 974 blk_queue_max_integrity_segments(ns->queue, 1); 975 } 976 #else 977 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 978 u16 bs) 979 { 980 } 981 static void nvme_init_integrity(struct nvme_ns *ns) 982 { 983 } 984 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 985 986 static void nvme_config_discard(struct nvme_ns *ns) 987 { 988 struct nvme_ctrl *ctrl = ns->ctrl; 989 u32 logical_block_size = queue_logical_block_size(ns->queue); 990 991 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 992 NVME_DSM_MAX_RANGES); 993 994 ns->queue->limits.discard_alignment = logical_block_size; 995 ns->queue->limits.discard_granularity = logical_block_size; 996 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 997 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 998 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 999 1000 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1001 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); 1002 } 1003 1004 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) 1005 { 1006 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { 1007 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); 1008 return -ENODEV; 1009 } 1010 1011 if ((*id)->ncap == 0) { 1012 kfree(*id); 1013 return -ENODEV; 1014 } 1015 1016 if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) 1017 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); 1018 if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) 1019 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); 1020 1021 return 0; 1022 } 1023 1024 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1025 { 1026 struct nvme_ns *ns = disk->private_data; 1027 u16 bs; 1028 1029 /* 1030 * If identify namespace failed, use default 512 byte block size so 1031 * block layer can use before failing read/write for 0 capacity. 1032 */ 1033 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1034 if (ns->lba_shift == 0) 1035 ns->lba_shift = 9; 1036 bs = 1 << ns->lba_shift; 1037 1038 blk_mq_freeze_queue(disk->queue); 1039 1040 if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1041 nvme_prep_integrity(disk, id, bs); 1042 blk_queue_logical_block_size(ns->queue, bs); 1043 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 1044 nvme_init_integrity(ns); 1045 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 1046 set_capacity(disk, 0); 1047 else 1048 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 1049 1050 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1051 nvme_config_discard(ns); 1052 blk_mq_unfreeze_queue(disk->queue); 1053 } 1054 1055 static int nvme_revalidate_disk(struct gendisk *disk) 1056 { 1057 struct nvme_ns *ns = disk->private_data; 1058 struct nvme_id_ns *id = NULL; 1059 int ret; 1060 1061 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1062 set_capacity(disk, 0); 1063 return -ENODEV; 1064 } 1065 1066 ret = nvme_revalidate_ns(ns, &id); 1067 if (ret) 1068 return ret; 1069 1070 __nvme_revalidate_disk(disk, id); 1071 kfree(id); 1072 1073 return 0; 1074 } 1075 1076 static char nvme_pr_type(enum pr_type type) 1077 { 1078 switch (type) { 1079 case PR_WRITE_EXCLUSIVE: 1080 return 1; 1081 case PR_EXCLUSIVE_ACCESS: 1082 return 2; 1083 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1084 return 3; 1085 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1086 return 4; 1087 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1088 return 5; 1089 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1090 return 6; 1091 default: 1092 return 0; 1093 } 1094 }; 1095 1096 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1097 u64 key, u64 sa_key, u8 op) 1098 { 1099 struct nvme_ns *ns = bdev->bd_disk->private_data; 1100 struct nvme_command c; 1101 u8 data[16] = { 0, }; 1102 1103 put_unaligned_le64(key, &data[0]); 1104 put_unaligned_le64(sa_key, &data[8]); 1105 1106 memset(&c, 0, sizeof(c)); 1107 c.common.opcode = op; 1108 c.common.nsid = cpu_to_le32(ns->ns_id); 1109 c.common.cdw10[0] = cpu_to_le32(cdw10); 1110 1111 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1112 } 1113 1114 static int nvme_pr_register(struct block_device *bdev, u64 old, 1115 u64 new, unsigned flags) 1116 { 1117 u32 cdw10; 1118 1119 if (flags & ~PR_FL_IGNORE_KEY) 1120 return -EOPNOTSUPP; 1121 1122 cdw10 = old ? 2 : 0; 1123 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1124 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1125 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1126 } 1127 1128 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1129 enum pr_type type, unsigned flags) 1130 { 1131 u32 cdw10; 1132 1133 if (flags & ~PR_FL_IGNORE_KEY) 1134 return -EOPNOTSUPP; 1135 1136 cdw10 = nvme_pr_type(type) << 8; 1137 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1138 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1139 } 1140 1141 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1142 enum pr_type type, bool abort) 1143 { 1144 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1145 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1146 } 1147 1148 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1149 { 1150 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1151 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1152 } 1153 1154 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1155 { 1156 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1157 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1158 } 1159 1160 static const struct pr_ops nvme_pr_ops = { 1161 .pr_register = nvme_pr_register, 1162 .pr_reserve = nvme_pr_reserve, 1163 .pr_release = nvme_pr_release, 1164 .pr_preempt = nvme_pr_preempt, 1165 .pr_clear = nvme_pr_clear, 1166 }; 1167 1168 #ifdef CONFIG_BLK_SED_OPAL 1169 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1170 bool send) 1171 { 1172 struct nvme_ctrl *ctrl = data; 1173 struct nvme_command cmd; 1174 1175 memset(&cmd, 0, sizeof(cmd)); 1176 if (send) 1177 cmd.common.opcode = nvme_admin_security_send; 1178 else 1179 cmd.common.opcode = nvme_admin_security_recv; 1180 cmd.common.nsid = 0; 1181 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1182 cmd.common.cdw10[1] = cpu_to_le32(len); 1183 1184 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1185 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1186 } 1187 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1188 #endif /* CONFIG_BLK_SED_OPAL */ 1189 1190 static const struct block_device_operations nvme_fops = { 1191 .owner = THIS_MODULE, 1192 .ioctl = nvme_ioctl, 1193 .compat_ioctl = nvme_compat_ioctl, 1194 .open = nvme_open, 1195 .release = nvme_release, 1196 .getgeo = nvme_getgeo, 1197 .revalidate_disk= nvme_revalidate_disk, 1198 .pr_ops = &nvme_pr_ops, 1199 }; 1200 1201 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1202 { 1203 unsigned long timeout = 1204 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1205 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1206 int ret; 1207 1208 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1209 if (csts == ~0) 1210 return -ENODEV; 1211 if ((csts & NVME_CSTS_RDY) == bit) 1212 break; 1213 1214 msleep(100); 1215 if (fatal_signal_pending(current)) 1216 return -EINTR; 1217 if (time_after(jiffies, timeout)) { 1218 dev_err(ctrl->device, 1219 "Device not ready; aborting %s\n", enabled ? 1220 "initialisation" : "reset"); 1221 return -ENODEV; 1222 } 1223 } 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * If the device has been passed off to us in an enabled state, just clear 1230 * the enabled bit. The spec says we should set the 'shutdown notification 1231 * bits', but doing so may cause the device to complete commands to the 1232 * admin queue ... and we don't know what memory that might be pointing at! 1233 */ 1234 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1235 { 1236 int ret; 1237 1238 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1239 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1240 1241 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1242 if (ret) 1243 return ret; 1244 1245 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1246 msleep(NVME_QUIRK_DELAY_AMOUNT); 1247 1248 return nvme_wait_ready(ctrl, cap, false); 1249 } 1250 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1251 1252 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1253 { 1254 /* 1255 * Default to a 4K page size, with the intention to update this 1256 * path in the future to accomodate architectures with differing 1257 * kernel and IO page sizes. 1258 */ 1259 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1260 int ret; 1261 1262 if (page_shift < dev_page_min) { 1263 dev_err(ctrl->device, 1264 "Minimum device page size %u too large for host (%u)\n", 1265 1 << dev_page_min, 1 << page_shift); 1266 return -ENODEV; 1267 } 1268 1269 ctrl->page_size = 1 << page_shift; 1270 1271 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1272 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1273 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; 1274 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1275 ctrl->ctrl_config |= NVME_CC_ENABLE; 1276 1277 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1278 if (ret) 1279 return ret; 1280 return nvme_wait_ready(ctrl, cap, true); 1281 } 1282 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1283 1284 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1285 { 1286 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; 1287 u32 csts; 1288 int ret; 1289 1290 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1291 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1292 1293 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1294 if (ret) 1295 return ret; 1296 1297 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1298 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1299 break; 1300 1301 msleep(100); 1302 if (fatal_signal_pending(current)) 1303 return -EINTR; 1304 if (time_after(jiffies, timeout)) { 1305 dev_err(ctrl->device, 1306 "Device shutdown incomplete; abort shutdown\n"); 1307 return -ENODEV; 1308 } 1309 } 1310 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1314 1315 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1316 struct request_queue *q) 1317 { 1318 bool vwc = false; 1319 1320 if (ctrl->max_hw_sectors) { 1321 u32 max_segments = 1322 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1323 1324 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1325 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1326 } 1327 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1328 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1329 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1330 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1331 vwc = true; 1332 blk_queue_write_cache(q, vwc, vwc); 1333 } 1334 1335 static void nvme_configure_apst(struct nvme_ctrl *ctrl) 1336 { 1337 /* 1338 * APST (Autonomous Power State Transition) lets us program a 1339 * table of power state transitions that the controller will 1340 * perform automatically. We configure it with a simple 1341 * heuristic: we are willing to spend at most 2% of the time 1342 * transitioning between power states. Therefore, when running 1343 * in any given state, we will enter the next lower-power 1344 * non-operational state after waiting 50 * (enlat + exlat) 1345 * microseconds, as long as that state's exit latency is under 1346 * the requested maximum latency. 1347 * 1348 * We will not autonomously enter any non-operational state for 1349 * which the total latency exceeds ps_max_latency_us. Users 1350 * can set ps_max_latency_us to zero to turn off APST. 1351 */ 1352 1353 unsigned apste; 1354 struct nvme_feat_auto_pst *table; 1355 u64 max_lat_us = 0; 1356 int max_ps = -1; 1357 int ret; 1358 1359 /* 1360 * If APST isn't supported or if we haven't been initialized yet, 1361 * then don't do anything. 1362 */ 1363 if (!ctrl->apsta) 1364 return; 1365 1366 if (ctrl->npss > 31) { 1367 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1368 return; 1369 } 1370 1371 table = kzalloc(sizeof(*table), GFP_KERNEL); 1372 if (!table) 1373 return; 1374 1375 if (ctrl->ps_max_latency_us == 0) { 1376 /* Turn off APST. */ 1377 apste = 0; 1378 dev_dbg(ctrl->device, "APST disabled\n"); 1379 } else { 1380 __le64 target = cpu_to_le64(0); 1381 int state; 1382 1383 /* 1384 * Walk through all states from lowest- to highest-power. 1385 * According to the spec, lower-numbered states use more 1386 * power. NPSS, despite the name, is the index of the 1387 * lowest-power state, not the number of states. 1388 */ 1389 for (state = (int)ctrl->npss; state >= 0; state--) { 1390 u64 total_latency_us, exit_latency_us, transition_ms; 1391 1392 if (target) 1393 table->entries[state] = target; 1394 1395 /* 1396 * Don't allow transitions to the deepest state 1397 * if it's quirked off. 1398 */ 1399 if (state == ctrl->npss && 1400 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1401 continue; 1402 1403 /* 1404 * Is this state a useful non-operational state for 1405 * higher-power states to autonomously transition to? 1406 */ 1407 if (!(ctrl->psd[state].flags & 1408 NVME_PS_FLAGS_NON_OP_STATE)) 1409 continue; 1410 1411 exit_latency_us = 1412 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 1413 if (exit_latency_us > ctrl->ps_max_latency_us) 1414 continue; 1415 1416 total_latency_us = 1417 exit_latency_us + 1418 le32_to_cpu(ctrl->psd[state].entry_lat); 1419 1420 /* 1421 * This state is good. Use it as the APST idle 1422 * target for higher power states. 1423 */ 1424 transition_ms = total_latency_us + 19; 1425 do_div(transition_ms, 20); 1426 if (transition_ms > (1 << 24) - 1) 1427 transition_ms = (1 << 24) - 1; 1428 1429 target = cpu_to_le64((state << 3) | 1430 (transition_ms << 8)); 1431 1432 if (max_ps == -1) 1433 max_ps = state; 1434 1435 if (total_latency_us > max_lat_us) 1436 max_lat_us = total_latency_us; 1437 } 1438 1439 apste = 1; 1440 1441 if (max_ps == -1) { 1442 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1443 } else { 1444 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1445 max_ps, max_lat_us, (int)sizeof(*table), table); 1446 } 1447 } 1448 1449 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1450 table, sizeof(*table), NULL); 1451 if (ret) 1452 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1453 1454 kfree(table); 1455 } 1456 1457 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1458 { 1459 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1460 u64 latency; 1461 1462 switch (val) { 1463 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1464 case PM_QOS_LATENCY_ANY: 1465 latency = U64_MAX; 1466 break; 1467 1468 default: 1469 latency = val; 1470 } 1471 1472 if (ctrl->ps_max_latency_us != latency) { 1473 ctrl->ps_max_latency_us = latency; 1474 nvme_configure_apst(ctrl); 1475 } 1476 } 1477 1478 struct nvme_core_quirk_entry { 1479 /* 1480 * NVMe model and firmware strings are padded with spaces. For 1481 * simplicity, strings in the quirk table are padded with NULLs 1482 * instead. 1483 */ 1484 u16 vid; 1485 const char *mn; 1486 const char *fr; 1487 unsigned long quirks; 1488 }; 1489 1490 static const struct nvme_core_quirk_entry core_quirks[] = { 1491 { 1492 /* 1493 * This Toshiba device seems to die using any APST states. See: 1494 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1495 */ 1496 .vid = 0x1179, 1497 .mn = "THNSF5256GPUK TOSHIBA", 1498 .quirks = NVME_QUIRK_NO_APST, 1499 } 1500 }; 1501 1502 /* match is null-terminated but idstr is space-padded. */ 1503 static bool string_matches(const char *idstr, const char *match, size_t len) 1504 { 1505 size_t matchlen; 1506 1507 if (!match) 1508 return true; 1509 1510 matchlen = strlen(match); 1511 WARN_ON_ONCE(matchlen > len); 1512 1513 if (memcmp(idstr, match, matchlen)) 1514 return false; 1515 1516 for (; matchlen < len; matchlen++) 1517 if (idstr[matchlen] != ' ') 1518 return false; 1519 1520 return true; 1521 } 1522 1523 static bool quirk_matches(const struct nvme_id_ctrl *id, 1524 const struct nvme_core_quirk_entry *q) 1525 { 1526 return q->vid == le16_to_cpu(id->vid) && 1527 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1528 string_matches(id->fr, q->fr, sizeof(id->fr)); 1529 } 1530 1531 /* 1532 * Initialize the cached copies of the Identify data and various controller 1533 * register in our nvme_ctrl structure. This should be called as soon as 1534 * the admin queue is fully up and running. 1535 */ 1536 int nvme_init_identify(struct nvme_ctrl *ctrl) 1537 { 1538 struct nvme_id_ctrl *id; 1539 u64 cap; 1540 int ret, page_shift; 1541 u32 max_hw_sectors; 1542 u8 prev_apsta; 1543 1544 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1545 if (ret) { 1546 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1547 return ret; 1548 } 1549 1550 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1551 if (ret) { 1552 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1553 return ret; 1554 } 1555 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1556 1557 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1558 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1559 1560 ret = nvme_identify_ctrl(ctrl, &id); 1561 if (ret) { 1562 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1563 return -EIO; 1564 } 1565 1566 if (!ctrl->identified) { 1567 /* 1568 * Check for quirks. Quirk can depend on firmware version, 1569 * so, in principle, the set of quirks present can change 1570 * across a reset. As a possible future enhancement, we 1571 * could re-scan for quirks every time we reinitialize 1572 * the device, but we'd have to make sure that the driver 1573 * behaves intelligently if the quirks change. 1574 */ 1575 1576 int i; 1577 1578 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 1579 if (quirk_matches(id, &core_quirks[i])) 1580 ctrl->quirks |= core_quirks[i].quirks; 1581 } 1582 } 1583 1584 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 1585 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 1586 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 1587 } 1588 1589 ctrl->oacs = le16_to_cpu(id->oacs); 1590 ctrl->vid = le16_to_cpu(id->vid); 1591 ctrl->oncs = le16_to_cpup(&id->oncs); 1592 atomic_set(&ctrl->abort_limit, id->acl + 1); 1593 ctrl->vwc = id->vwc; 1594 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1595 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1596 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1597 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1598 if (id->mdts) 1599 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1600 else 1601 max_hw_sectors = UINT_MAX; 1602 ctrl->max_hw_sectors = 1603 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1604 1605 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1606 ctrl->sgls = le32_to_cpu(id->sgls); 1607 ctrl->kas = le16_to_cpu(id->kas); 1608 1609 ctrl->npss = id->npss; 1610 prev_apsta = ctrl->apsta; 1611 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 1612 if (force_apst && id->apsta) { 1613 dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 1614 ctrl->apsta = 1; 1615 } else { 1616 ctrl->apsta = 0; 1617 } 1618 } else { 1619 ctrl->apsta = id->apsta; 1620 } 1621 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 1622 1623 if (ctrl->ops->flags & NVME_F_FABRICS) { 1624 ctrl->icdoff = le16_to_cpu(id->icdoff); 1625 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1626 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1627 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1628 1629 /* 1630 * In fabrics we need to verify the cntlid matches the 1631 * admin connect 1632 */ 1633 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) 1634 ret = -EINVAL; 1635 1636 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1637 dev_err(ctrl->dev, 1638 "keep-alive support is mandatory for fabrics\n"); 1639 ret = -EINVAL; 1640 } 1641 } else { 1642 ctrl->cntlid = le16_to_cpu(id->cntlid); 1643 } 1644 1645 kfree(id); 1646 1647 if (ctrl->apsta && !prev_apsta) 1648 dev_pm_qos_expose_latency_tolerance(ctrl->device); 1649 else if (!ctrl->apsta && prev_apsta) 1650 dev_pm_qos_hide_latency_tolerance(ctrl->device); 1651 1652 nvme_configure_apst(ctrl); 1653 1654 ctrl->identified = true; 1655 1656 return ret; 1657 } 1658 EXPORT_SYMBOL_GPL(nvme_init_identify); 1659 1660 static int nvme_dev_open(struct inode *inode, struct file *file) 1661 { 1662 struct nvme_ctrl *ctrl; 1663 int instance = iminor(inode); 1664 int ret = -ENODEV; 1665 1666 spin_lock(&dev_list_lock); 1667 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1668 if (ctrl->instance != instance) 1669 continue; 1670 1671 if (!ctrl->admin_q) { 1672 ret = -EWOULDBLOCK; 1673 break; 1674 } 1675 if (!kref_get_unless_zero(&ctrl->kref)) 1676 break; 1677 file->private_data = ctrl; 1678 ret = 0; 1679 break; 1680 } 1681 spin_unlock(&dev_list_lock); 1682 1683 return ret; 1684 } 1685 1686 static int nvme_dev_release(struct inode *inode, struct file *file) 1687 { 1688 nvme_put_ctrl(file->private_data); 1689 return 0; 1690 } 1691 1692 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1693 { 1694 struct nvme_ns *ns; 1695 int ret; 1696 1697 mutex_lock(&ctrl->namespaces_mutex); 1698 if (list_empty(&ctrl->namespaces)) { 1699 ret = -ENOTTY; 1700 goto out_unlock; 1701 } 1702 1703 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1704 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1705 dev_warn(ctrl->device, 1706 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1707 ret = -EINVAL; 1708 goto out_unlock; 1709 } 1710 1711 dev_warn(ctrl->device, 1712 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1713 kref_get(&ns->kref); 1714 mutex_unlock(&ctrl->namespaces_mutex); 1715 1716 ret = nvme_user_cmd(ctrl, ns, argp); 1717 nvme_put_ns(ns); 1718 return ret; 1719 1720 out_unlock: 1721 mutex_unlock(&ctrl->namespaces_mutex); 1722 return ret; 1723 } 1724 1725 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1726 unsigned long arg) 1727 { 1728 struct nvme_ctrl *ctrl = file->private_data; 1729 void __user *argp = (void __user *)arg; 1730 1731 switch (cmd) { 1732 case NVME_IOCTL_ADMIN_CMD: 1733 return nvme_user_cmd(ctrl, NULL, argp); 1734 case NVME_IOCTL_IO_CMD: 1735 return nvme_dev_user_cmd(ctrl, argp); 1736 case NVME_IOCTL_RESET: 1737 dev_warn(ctrl->device, "resetting controller\n"); 1738 return ctrl->ops->reset_ctrl(ctrl); 1739 case NVME_IOCTL_SUBSYS_RESET: 1740 return nvme_reset_subsystem(ctrl); 1741 case NVME_IOCTL_RESCAN: 1742 nvme_queue_scan(ctrl); 1743 return 0; 1744 default: 1745 return -ENOTTY; 1746 } 1747 } 1748 1749 static const struct file_operations nvme_dev_fops = { 1750 .owner = THIS_MODULE, 1751 .open = nvme_dev_open, 1752 .release = nvme_dev_release, 1753 .unlocked_ioctl = nvme_dev_ioctl, 1754 .compat_ioctl = nvme_dev_ioctl, 1755 }; 1756 1757 static ssize_t nvme_sysfs_reset(struct device *dev, 1758 struct device_attribute *attr, const char *buf, 1759 size_t count) 1760 { 1761 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1762 int ret; 1763 1764 ret = ctrl->ops->reset_ctrl(ctrl); 1765 if (ret < 0) 1766 return ret; 1767 return count; 1768 } 1769 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 1770 1771 static ssize_t nvme_sysfs_rescan(struct device *dev, 1772 struct device_attribute *attr, const char *buf, 1773 size_t count) 1774 { 1775 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1776 1777 nvme_queue_scan(ctrl); 1778 return count; 1779 } 1780 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 1781 1782 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 1783 char *buf) 1784 { 1785 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1786 struct nvme_ctrl *ctrl = ns->ctrl; 1787 int serial_len = sizeof(ctrl->serial); 1788 int model_len = sizeof(ctrl->model); 1789 1790 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1791 return sprintf(buf, "eui.%16phN\n", ns->uuid); 1792 1793 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1794 return sprintf(buf, "eui.%8phN\n", ns->eui); 1795 1796 while (ctrl->serial[serial_len - 1] == ' ') 1797 serial_len--; 1798 while (ctrl->model[model_len - 1] == ' ') 1799 model_len--; 1800 1801 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 1802 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 1803 } 1804 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 1805 1806 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 1807 char *buf) 1808 { 1809 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1810 return sprintf(buf, "%pU\n", ns->uuid); 1811 } 1812 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 1813 1814 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 1815 char *buf) 1816 { 1817 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1818 return sprintf(buf, "%8phd\n", ns->eui); 1819 } 1820 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 1821 1822 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 1823 char *buf) 1824 { 1825 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1826 return sprintf(buf, "%d\n", ns->ns_id); 1827 } 1828 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 1829 1830 static struct attribute *nvme_ns_attrs[] = { 1831 &dev_attr_wwid.attr, 1832 &dev_attr_uuid.attr, 1833 &dev_attr_eui.attr, 1834 &dev_attr_nsid.attr, 1835 NULL, 1836 }; 1837 1838 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 1839 struct attribute *a, int n) 1840 { 1841 struct device *dev = container_of(kobj, struct device, kobj); 1842 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1843 1844 if (a == &dev_attr_uuid.attr) { 1845 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1846 return 0; 1847 } 1848 if (a == &dev_attr_eui.attr) { 1849 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1850 return 0; 1851 } 1852 return a->mode; 1853 } 1854 1855 static const struct attribute_group nvme_ns_attr_group = { 1856 .attrs = nvme_ns_attrs, 1857 .is_visible = nvme_ns_attrs_are_visible, 1858 }; 1859 1860 #define nvme_show_str_function(field) \ 1861 static ssize_t field##_show(struct device *dev, \ 1862 struct device_attribute *attr, char *buf) \ 1863 { \ 1864 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1865 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 1866 } \ 1867 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1868 1869 #define nvme_show_int_function(field) \ 1870 static ssize_t field##_show(struct device *dev, \ 1871 struct device_attribute *attr, char *buf) \ 1872 { \ 1873 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1874 return sprintf(buf, "%d\n", ctrl->field); \ 1875 } \ 1876 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1877 1878 nvme_show_str_function(model); 1879 nvme_show_str_function(serial); 1880 nvme_show_str_function(firmware_rev); 1881 nvme_show_int_function(cntlid); 1882 1883 static ssize_t nvme_sysfs_delete(struct device *dev, 1884 struct device_attribute *attr, const char *buf, 1885 size_t count) 1886 { 1887 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1888 1889 if (device_remove_file_self(dev, attr)) 1890 ctrl->ops->delete_ctrl(ctrl); 1891 return count; 1892 } 1893 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 1894 1895 static ssize_t nvme_sysfs_show_transport(struct device *dev, 1896 struct device_attribute *attr, 1897 char *buf) 1898 { 1899 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1900 1901 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 1902 } 1903 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 1904 1905 static ssize_t nvme_sysfs_show_state(struct device *dev, 1906 struct device_attribute *attr, 1907 char *buf) 1908 { 1909 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1910 static const char *const state_name[] = { 1911 [NVME_CTRL_NEW] = "new", 1912 [NVME_CTRL_LIVE] = "live", 1913 [NVME_CTRL_RESETTING] = "resetting", 1914 [NVME_CTRL_RECONNECTING]= "reconnecting", 1915 [NVME_CTRL_DELETING] = "deleting", 1916 [NVME_CTRL_DEAD] = "dead", 1917 }; 1918 1919 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 1920 state_name[ctrl->state]) 1921 return sprintf(buf, "%s\n", state_name[ctrl->state]); 1922 1923 return sprintf(buf, "unknown state\n"); 1924 } 1925 1926 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 1927 1928 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 1929 struct device_attribute *attr, 1930 char *buf) 1931 { 1932 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1933 1934 return snprintf(buf, PAGE_SIZE, "%s\n", 1935 ctrl->ops->get_subsysnqn(ctrl)); 1936 } 1937 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 1938 1939 static ssize_t nvme_sysfs_show_address(struct device *dev, 1940 struct device_attribute *attr, 1941 char *buf) 1942 { 1943 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1944 1945 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 1946 } 1947 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 1948 1949 static struct attribute *nvme_dev_attrs[] = { 1950 &dev_attr_reset_controller.attr, 1951 &dev_attr_rescan_controller.attr, 1952 &dev_attr_model.attr, 1953 &dev_attr_serial.attr, 1954 &dev_attr_firmware_rev.attr, 1955 &dev_attr_cntlid.attr, 1956 &dev_attr_delete_controller.attr, 1957 &dev_attr_transport.attr, 1958 &dev_attr_subsysnqn.attr, 1959 &dev_attr_address.attr, 1960 &dev_attr_state.attr, 1961 NULL 1962 }; 1963 1964 #define CHECK_ATTR(ctrl, a, name) \ 1965 if ((a) == &dev_attr_##name.attr && \ 1966 !(ctrl)->ops->get_##name) \ 1967 return 0 1968 1969 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 1970 struct attribute *a, int n) 1971 { 1972 struct device *dev = container_of(kobj, struct device, kobj); 1973 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1974 1975 if (a == &dev_attr_delete_controller.attr) { 1976 if (!ctrl->ops->delete_ctrl) 1977 return 0; 1978 } 1979 1980 CHECK_ATTR(ctrl, a, subsysnqn); 1981 CHECK_ATTR(ctrl, a, address); 1982 1983 return a->mode; 1984 } 1985 1986 static struct attribute_group nvme_dev_attrs_group = { 1987 .attrs = nvme_dev_attrs, 1988 .is_visible = nvme_dev_attrs_are_visible, 1989 }; 1990 1991 static const struct attribute_group *nvme_dev_attr_groups[] = { 1992 &nvme_dev_attrs_group, 1993 NULL, 1994 }; 1995 1996 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 1997 { 1998 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 1999 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 2000 2001 return nsa->ns_id - nsb->ns_id; 2002 } 2003 2004 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2005 { 2006 struct nvme_ns *ns, *ret = NULL; 2007 2008 mutex_lock(&ctrl->namespaces_mutex); 2009 list_for_each_entry(ns, &ctrl->namespaces, list) { 2010 if (ns->ns_id == nsid) { 2011 kref_get(&ns->kref); 2012 ret = ns; 2013 break; 2014 } 2015 if (ns->ns_id > nsid) 2016 break; 2017 } 2018 mutex_unlock(&ctrl->namespaces_mutex); 2019 return ret; 2020 } 2021 2022 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2023 { 2024 struct nvme_ns *ns; 2025 struct gendisk *disk; 2026 struct nvme_id_ns *id; 2027 char disk_name[DISK_NAME_LEN]; 2028 int node = dev_to_node(ctrl->dev); 2029 2030 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2031 if (!ns) 2032 return; 2033 2034 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 2035 if (ns->instance < 0) 2036 goto out_free_ns; 2037 2038 ns->queue = blk_mq_init_queue(ctrl->tagset); 2039 if (IS_ERR(ns->queue)) 2040 goto out_release_instance; 2041 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2042 ns->queue->queuedata = ns; 2043 ns->ctrl = ctrl; 2044 2045 kref_init(&ns->kref); 2046 ns->ns_id = nsid; 2047 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2048 2049 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2050 nvme_set_queue_limits(ctrl, ns->queue); 2051 2052 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 2053 2054 if (nvme_revalidate_ns(ns, &id)) 2055 goto out_free_queue; 2056 2057 if (nvme_nvm_ns_supported(ns, id) && 2058 nvme_nvm_register(ns, disk_name, node)) { 2059 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); 2060 goto out_free_id; 2061 } 2062 2063 disk = alloc_disk_node(0, node); 2064 if (!disk) 2065 goto out_free_id; 2066 2067 disk->fops = &nvme_fops; 2068 disk->private_data = ns; 2069 disk->queue = ns->queue; 2070 disk->flags = GENHD_FL_EXT_DEVT; 2071 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 2072 ns->disk = disk; 2073 2074 __nvme_revalidate_disk(disk, id); 2075 2076 mutex_lock(&ctrl->namespaces_mutex); 2077 list_add_tail(&ns->list, &ctrl->namespaces); 2078 mutex_unlock(&ctrl->namespaces_mutex); 2079 2080 kref_get(&ctrl->kref); 2081 2082 kfree(id); 2083 2084 device_add_disk(ctrl->device, ns->disk); 2085 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 2086 &nvme_ns_attr_group)) 2087 pr_warn("%s: failed to create sysfs group for identification\n", 2088 ns->disk->disk_name); 2089 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 2090 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 2091 ns->disk->disk_name); 2092 return; 2093 out_free_id: 2094 kfree(id); 2095 out_free_queue: 2096 blk_cleanup_queue(ns->queue); 2097 out_release_instance: 2098 ida_simple_remove(&ctrl->ns_ida, ns->instance); 2099 out_free_ns: 2100 kfree(ns); 2101 } 2102 2103 static void nvme_ns_remove(struct nvme_ns *ns) 2104 { 2105 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 2106 return; 2107 2108 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 2109 if (blk_get_integrity(ns->disk)) 2110 blk_integrity_unregister(ns->disk); 2111 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 2112 &nvme_ns_attr_group); 2113 if (ns->ndev) 2114 nvme_nvm_unregister_sysfs(ns); 2115 del_gendisk(ns->disk); 2116 blk_cleanup_queue(ns->queue); 2117 } 2118 2119 mutex_lock(&ns->ctrl->namespaces_mutex); 2120 list_del_init(&ns->list); 2121 mutex_unlock(&ns->ctrl->namespaces_mutex); 2122 2123 nvme_put_ns(ns); 2124 } 2125 2126 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2127 { 2128 struct nvme_ns *ns; 2129 2130 ns = nvme_find_get_ns(ctrl, nsid); 2131 if (ns) { 2132 if (ns->disk && revalidate_disk(ns->disk)) 2133 nvme_ns_remove(ns); 2134 nvme_put_ns(ns); 2135 } else 2136 nvme_alloc_ns(ctrl, nsid); 2137 } 2138 2139 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 2140 unsigned nsid) 2141 { 2142 struct nvme_ns *ns, *next; 2143 2144 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 2145 if (ns->ns_id > nsid) 2146 nvme_ns_remove(ns); 2147 } 2148 } 2149 2150 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 2151 { 2152 struct nvme_ns *ns; 2153 __le32 *ns_list; 2154 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 2155 int ret = 0; 2156 2157 ns_list = kzalloc(0x1000, GFP_KERNEL); 2158 if (!ns_list) 2159 return -ENOMEM; 2160 2161 for (i = 0; i < num_lists; i++) { 2162 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 2163 if (ret) 2164 goto free; 2165 2166 for (j = 0; j < min(nn, 1024U); j++) { 2167 nsid = le32_to_cpu(ns_list[j]); 2168 if (!nsid) 2169 goto out; 2170 2171 nvme_validate_ns(ctrl, nsid); 2172 2173 while (++prev < nsid) { 2174 ns = nvme_find_get_ns(ctrl, prev); 2175 if (ns) { 2176 nvme_ns_remove(ns); 2177 nvme_put_ns(ns); 2178 } 2179 } 2180 } 2181 nn -= j; 2182 } 2183 out: 2184 nvme_remove_invalid_namespaces(ctrl, prev); 2185 free: 2186 kfree(ns_list); 2187 return ret; 2188 } 2189 2190 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 2191 { 2192 unsigned i; 2193 2194 for (i = 1; i <= nn; i++) 2195 nvme_validate_ns(ctrl, i); 2196 2197 nvme_remove_invalid_namespaces(ctrl, nn); 2198 } 2199 2200 static void nvme_scan_work(struct work_struct *work) 2201 { 2202 struct nvme_ctrl *ctrl = 2203 container_of(work, struct nvme_ctrl, scan_work); 2204 struct nvme_id_ctrl *id; 2205 unsigned nn; 2206 2207 if (ctrl->state != NVME_CTRL_LIVE) 2208 return; 2209 2210 if (nvme_identify_ctrl(ctrl, &id)) 2211 return; 2212 2213 nn = le32_to_cpu(id->nn); 2214 if (ctrl->vs >= NVME_VS(1, 1, 0) && 2215 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2216 if (!nvme_scan_ns_list(ctrl, nn)) 2217 goto done; 2218 } 2219 nvme_scan_ns_sequential(ctrl, nn); 2220 done: 2221 mutex_lock(&ctrl->namespaces_mutex); 2222 list_sort(NULL, &ctrl->namespaces, ns_cmp); 2223 mutex_unlock(&ctrl->namespaces_mutex); 2224 kfree(id); 2225 } 2226 2227 void nvme_queue_scan(struct nvme_ctrl *ctrl) 2228 { 2229 /* 2230 * Do not queue new scan work when a controller is reset during 2231 * removal. 2232 */ 2233 if (ctrl->state == NVME_CTRL_LIVE) 2234 schedule_work(&ctrl->scan_work); 2235 } 2236 EXPORT_SYMBOL_GPL(nvme_queue_scan); 2237 2238 /* 2239 * This function iterates the namespace list unlocked to allow recovery from 2240 * controller failure. It is up to the caller to ensure the namespace list is 2241 * not modified by scan work while this function is executing. 2242 */ 2243 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 2244 { 2245 struct nvme_ns *ns, *next; 2246 2247 /* 2248 * The dead states indicates the controller was not gracefully 2249 * disconnected. In that case, we won't be able to flush any data while 2250 * removing the namespaces' disks; fail all the queues now to avoid 2251 * potentially having to clean up the failed sync later. 2252 */ 2253 if (ctrl->state == NVME_CTRL_DEAD) 2254 nvme_kill_queues(ctrl); 2255 2256 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 2257 nvme_ns_remove(ns); 2258 } 2259 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 2260 2261 static void nvme_async_event_work(struct work_struct *work) 2262 { 2263 struct nvme_ctrl *ctrl = 2264 container_of(work, struct nvme_ctrl, async_event_work); 2265 2266 spin_lock_irq(&ctrl->lock); 2267 while (ctrl->event_limit > 0) { 2268 int aer_idx = --ctrl->event_limit; 2269 2270 spin_unlock_irq(&ctrl->lock); 2271 ctrl->ops->submit_async_event(ctrl, aer_idx); 2272 spin_lock_irq(&ctrl->lock); 2273 } 2274 spin_unlock_irq(&ctrl->lock); 2275 } 2276 2277 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 2278 union nvme_result *res) 2279 { 2280 u32 result = le32_to_cpu(res->u32); 2281 bool done = true; 2282 2283 switch (le16_to_cpu(status) >> 1) { 2284 case NVME_SC_SUCCESS: 2285 done = false; 2286 /*FALLTHRU*/ 2287 case NVME_SC_ABORT_REQ: 2288 ++ctrl->event_limit; 2289 schedule_work(&ctrl->async_event_work); 2290 break; 2291 default: 2292 break; 2293 } 2294 2295 if (done) 2296 return; 2297 2298 switch (result & 0xff07) { 2299 case NVME_AER_NOTICE_NS_CHANGED: 2300 dev_info(ctrl->device, "rescanning\n"); 2301 nvme_queue_scan(ctrl); 2302 break; 2303 default: 2304 dev_warn(ctrl->device, "async event result %08x\n", result); 2305 } 2306 } 2307 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 2308 2309 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 2310 { 2311 ctrl->event_limit = NVME_NR_AERS; 2312 schedule_work(&ctrl->async_event_work); 2313 } 2314 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 2315 2316 static DEFINE_IDA(nvme_instance_ida); 2317 2318 static int nvme_set_instance(struct nvme_ctrl *ctrl) 2319 { 2320 int instance, error; 2321 2322 do { 2323 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 2324 return -ENODEV; 2325 2326 spin_lock(&dev_list_lock); 2327 error = ida_get_new(&nvme_instance_ida, &instance); 2328 spin_unlock(&dev_list_lock); 2329 } while (error == -EAGAIN); 2330 2331 if (error) 2332 return -ENODEV; 2333 2334 ctrl->instance = instance; 2335 return 0; 2336 } 2337 2338 static void nvme_release_instance(struct nvme_ctrl *ctrl) 2339 { 2340 spin_lock(&dev_list_lock); 2341 ida_remove(&nvme_instance_ida, ctrl->instance); 2342 spin_unlock(&dev_list_lock); 2343 } 2344 2345 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 2346 { 2347 flush_work(&ctrl->async_event_work); 2348 flush_work(&ctrl->scan_work); 2349 nvme_remove_namespaces(ctrl); 2350 2351 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2352 2353 spin_lock(&dev_list_lock); 2354 list_del(&ctrl->node); 2355 spin_unlock(&dev_list_lock); 2356 } 2357 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2358 2359 static void nvme_free_ctrl(struct kref *kref) 2360 { 2361 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2362 2363 put_device(ctrl->device); 2364 nvme_release_instance(ctrl); 2365 ida_destroy(&ctrl->ns_ida); 2366 2367 ctrl->ops->free_ctrl(ctrl); 2368 } 2369 2370 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2371 { 2372 kref_put(&ctrl->kref, nvme_free_ctrl); 2373 } 2374 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2375 2376 /* 2377 * Initialize a NVMe controller structures. This needs to be called during 2378 * earliest initialization so that we have the initialized structured around 2379 * during probing. 2380 */ 2381 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2382 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2383 { 2384 int ret; 2385 2386 ctrl->state = NVME_CTRL_NEW; 2387 spin_lock_init(&ctrl->lock); 2388 INIT_LIST_HEAD(&ctrl->namespaces); 2389 mutex_init(&ctrl->namespaces_mutex); 2390 kref_init(&ctrl->kref); 2391 ctrl->dev = dev; 2392 ctrl->ops = ops; 2393 ctrl->quirks = quirks; 2394 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2395 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2396 2397 ret = nvme_set_instance(ctrl); 2398 if (ret) 2399 goto out; 2400 2401 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2402 MKDEV(nvme_char_major, ctrl->instance), 2403 ctrl, nvme_dev_attr_groups, 2404 "nvme%d", ctrl->instance); 2405 if (IS_ERR(ctrl->device)) { 2406 ret = PTR_ERR(ctrl->device); 2407 goto out_release_instance; 2408 } 2409 get_device(ctrl->device); 2410 ida_init(&ctrl->ns_ida); 2411 2412 spin_lock(&dev_list_lock); 2413 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2414 spin_unlock(&dev_list_lock); 2415 2416 /* 2417 * Initialize latency tolerance controls. The sysfs files won't 2418 * be visible to userspace unless the device actually supports APST. 2419 */ 2420 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 2421 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 2422 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 2423 2424 return 0; 2425 out_release_instance: 2426 nvme_release_instance(ctrl); 2427 out: 2428 return ret; 2429 } 2430 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2431 2432 /** 2433 * nvme_kill_queues(): Ends all namespace queues 2434 * @ctrl: the dead controller that needs to end 2435 * 2436 * Call this function when the driver determines it is unable to get the 2437 * controller in a state capable of servicing IO. 2438 */ 2439 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2440 { 2441 struct nvme_ns *ns; 2442 2443 mutex_lock(&ctrl->namespaces_mutex); 2444 2445 /* Forcibly start all queues to avoid having stuck requests */ 2446 blk_mq_start_hw_queues(ctrl->admin_q); 2447 2448 list_for_each_entry(ns, &ctrl->namespaces, list) { 2449 /* 2450 * Revalidating a dead namespace sets capacity to 0. This will 2451 * end buffered writers dirtying pages that can't be synced. 2452 */ 2453 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2454 continue; 2455 revalidate_disk(ns->disk); 2456 blk_set_queue_dying(ns->queue); 2457 2458 /* 2459 * Forcibly start all queues to avoid having stuck requests. 2460 * Note that we must ensure the queues are not stopped 2461 * when the final removal happens. 2462 */ 2463 blk_mq_start_hw_queues(ns->queue); 2464 2465 /* draining requests in requeue list */ 2466 blk_mq_kick_requeue_list(ns->queue); 2467 } 2468 mutex_unlock(&ctrl->namespaces_mutex); 2469 } 2470 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2471 2472 void nvme_unfreeze(struct nvme_ctrl *ctrl) 2473 { 2474 struct nvme_ns *ns; 2475 2476 mutex_lock(&ctrl->namespaces_mutex); 2477 list_for_each_entry(ns, &ctrl->namespaces, list) 2478 blk_mq_unfreeze_queue(ns->queue); 2479 mutex_unlock(&ctrl->namespaces_mutex); 2480 } 2481 EXPORT_SYMBOL_GPL(nvme_unfreeze); 2482 2483 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 2484 { 2485 struct nvme_ns *ns; 2486 2487 mutex_lock(&ctrl->namespaces_mutex); 2488 list_for_each_entry(ns, &ctrl->namespaces, list) { 2489 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 2490 if (timeout <= 0) 2491 break; 2492 } 2493 mutex_unlock(&ctrl->namespaces_mutex); 2494 } 2495 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 2496 2497 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 2498 { 2499 struct nvme_ns *ns; 2500 2501 mutex_lock(&ctrl->namespaces_mutex); 2502 list_for_each_entry(ns, &ctrl->namespaces, list) 2503 blk_mq_freeze_queue_wait(ns->queue); 2504 mutex_unlock(&ctrl->namespaces_mutex); 2505 } 2506 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 2507 2508 void nvme_start_freeze(struct nvme_ctrl *ctrl) 2509 { 2510 struct nvme_ns *ns; 2511 2512 mutex_lock(&ctrl->namespaces_mutex); 2513 list_for_each_entry(ns, &ctrl->namespaces, list) 2514 blk_freeze_queue_start(ns->queue); 2515 mutex_unlock(&ctrl->namespaces_mutex); 2516 } 2517 EXPORT_SYMBOL_GPL(nvme_start_freeze); 2518 2519 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2520 { 2521 struct nvme_ns *ns; 2522 2523 mutex_lock(&ctrl->namespaces_mutex); 2524 list_for_each_entry(ns, &ctrl->namespaces, list) 2525 blk_mq_quiesce_queue(ns->queue); 2526 mutex_unlock(&ctrl->namespaces_mutex); 2527 } 2528 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2529 2530 void nvme_start_queues(struct nvme_ctrl *ctrl) 2531 { 2532 struct nvme_ns *ns; 2533 2534 mutex_lock(&ctrl->namespaces_mutex); 2535 list_for_each_entry(ns, &ctrl->namespaces, list) { 2536 blk_mq_start_stopped_hw_queues(ns->queue, true); 2537 blk_mq_kick_requeue_list(ns->queue); 2538 } 2539 mutex_unlock(&ctrl->namespaces_mutex); 2540 } 2541 EXPORT_SYMBOL_GPL(nvme_start_queues); 2542 2543 int __init nvme_core_init(void) 2544 { 2545 int result; 2546 2547 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2548 &nvme_dev_fops); 2549 if (result < 0) 2550 return result; 2551 else if (result > 0) 2552 nvme_char_major = result; 2553 2554 nvme_class = class_create(THIS_MODULE, "nvme"); 2555 if (IS_ERR(nvme_class)) { 2556 result = PTR_ERR(nvme_class); 2557 goto unregister_chrdev; 2558 } 2559 2560 return 0; 2561 2562 unregister_chrdev: 2563 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2564 return result; 2565 } 2566 2567 void nvme_core_exit(void) 2568 { 2569 class_destroy(nvme_class); 2570 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2571 } 2572 2573 MODULE_LICENSE("GPL"); 2574 MODULE_VERSION("1.0"); 2575 module_init(nvme_core_init); 2576 module_exit(nvme_core_exit); 2577