1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/list_sort.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/t10-pi.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such are scan, aen handling, fw activation, 70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 nvme_put_ctrl(ctrl); 175 } 176 177 static void nvme_delete_ctrl_work(struct work_struct *work) 178 { 179 struct nvme_ctrl *ctrl = 180 container_of(work, struct nvme_ctrl, delete_work); 181 182 nvme_do_delete_ctrl(ctrl); 183 } 184 185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 186 { 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 188 return -EBUSY; 189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 190 return -EBUSY; 191 return 0; 192 } 193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 194 195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 196 { 197 int ret = 0; 198 199 /* 200 * Keep a reference until nvme_do_delete_ctrl() complete, 201 * since ->delete_ctrl can free the controller. 202 */ 203 nvme_get_ctrl(ctrl); 204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 205 ret = -EBUSY; 206 if (!ret) 207 nvme_do_delete_ctrl(ctrl); 208 nvme_put_ctrl(ctrl); 209 return ret; 210 } 211 212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 213 { 214 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 215 } 216 217 static blk_status_t nvme_error_status(u16 status) 218 { 219 switch (status & 0x7ff) { 220 case NVME_SC_SUCCESS: 221 return BLK_STS_OK; 222 case NVME_SC_CAP_EXCEEDED: 223 return BLK_STS_NOSPC; 224 case NVME_SC_LBA_RANGE: 225 case NVME_SC_CMD_INTERRUPTED: 226 case NVME_SC_NS_NOT_READY: 227 return BLK_STS_TARGET; 228 case NVME_SC_BAD_ATTRIBUTES: 229 case NVME_SC_ONCS_NOT_SUPPORTED: 230 case NVME_SC_INVALID_OPCODE: 231 case NVME_SC_INVALID_FIELD: 232 case NVME_SC_INVALID_NS: 233 return BLK_STS_NOTSUPP; 234 case NVME_SC_WRITE_FAULT: 235 case NVME_SC_READ_ERROR: 236 case NVME_SC_UNWRITTEN_BLOCK: 237 case NVME_SC_ACCESS_DENIED: 238 case NVME_SC_READ_ONLY: 239 case NVME_SC_COMPARE_FAILED: 240 return BLK_STS_MEDIUM; 241 case NVME_SC_GUARD_CHECK: 242 case NVME_SC_APPTAG_CHECK: 243 case NVME_SC_REFTAG_CHECK: 244 case NVME_SC_INVALID_PI: 245 return BLK_STS_PROTECTION; 246 case NVME_SC_RESERVATION_CONFLICT: 247 return BLK_STS_NEXUS; 248 case NVME_SC_HOST_PATH_ERROR: 249 return BLK_STS_TRANSPORT; 250 default: 251 return BLK_STS_IOERR; 252 } 253 } 254 255 static inline bool nvme_req_needs_retry(struct request *req) 256 { 257 if (blk_noretry_request(req)) 258 return false; 259 if (nvme_req(req)->status & NVME_SC_DNR) 260 return false; 261 if (nvme_req(req)->retries >= nvme_max_retries) 262 return false; 263 return true; 264 } 265 266 static void nvme_retry_req(struct request *req) 267 { 268 struct nvme_ns *ns = req->q->queuedata; 269 unsigned long delay = 0; 270 u16 crd; 271 272 /* The mask and shift result must be <= 3 */ 273 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 274 if (ns && crd) 275 delay = ns->ctrl->crdt[crd - 1] * 100; 276 277 nvme_req(req)->retries++; 278 blk_mq_requeue_request(req, false); 279 blk_mq_delay_kick_requeue_list(req->q, delay); 280 } 281 282 void nvme_complete_rq(struct request *req) 283 { 284 blk_status_t status = nvme_error_status(nvme_req(req)->status); 285 286 trace_nvme_complete_rq(req); 287 288 nvme_cleanup_cmd(req); 289 290 if (nvme_req(req)->ctrl->kas) 291 nvme_req(req)->ctrl->comp_seen = true; 292 293 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 294 if ((req->cmd_flags & REQ_NVME_MPATH) && 295 blk_path_error(status)) { 296 nvme_failover_req(req); 297 return; 298 } 299 300 if (!blk_queue_dying(req->q)) { 301 nvme_retry_req(req); 302 return; 303 } 304 } 305 306 nvme_trace_bio_complete(req, status); 307 blk_mq_end_request(req, status); 308 } 309 EXPORT_SYMBOL_GPL(nvme_complete_rq); 310 311 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 312 { 313 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 314 "Cancelling I/O %d", req->tag); 315 316 /* don't abort one completed request */ 317 if (blk_mq_request_completed(req)) 318 return true; 319 320 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 321 blk_mq_complete_request(req); 322 return true; 323 } 324 EXPORT_SYMBOL_GPL(nvme_cancel_request); 325 326 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 327 enum nvme_ctrl_state new_state) 328 { 329 enum nvme_ctrl_state old_state; 330 unsigned long flags; 331 bool changed = false; 332 333 spin_lock_irqsave(&ctrl->lock, flags); 334 335 old_state = ctrl->state; 336 switch (new_state) { 337 case NVME_CTRL_LIVE: 338 switch (old_state) { 339 case NVME_CTRL_NEW: 340 case NVME_CTRL_RESETTING: 341 case NVME_CTRL_CONNECTING: 342 changed = true; 343 /* FALLTHRU */ 344 default: 345 break; 346 } 347 break; 348 case NVME_CTRL_RESETTING: 349 switch (old_state) { 350 case NVME_CTRL_NEW: 351 case NVME_CTRL_LIVE: 352 changed = true; 353 /* FALLTHRU */ 354 default: 355 break; 356 } 357 break; 358 case NVME_CTRL_CONNECTING: 359 switch (old_state) { 360 case NVME_CTRL_NEW: 361 case NVME_CTRL_RESETTING: 362 changed = true; 363 /* FALLTHRU */ 364 default: 365 break; 366 } 367 break; 368 case NVME_CTRL_DELETING: 369 switch (old_state) { 370 case NVME_CTRL_LIVE: 371 case NVME_CTRL_RESETTING: 372 case NVME_CTRL_CONNECTING: 373 changed = true; 374 /* FALLTHRU */ 375 default: 376 break; 377 } 378 break; 379 case NVME_CTRL_DEAD: 380 switch (old_state) { 381 case NVME_CTRL_DELETING: 382 changed = true; 383 /* FALLTHRU */ 384 default: 385 break; 386 } 387 break; 388 default: 389 break; 390 } 391 392 if (changed) { 393 ctrl->state = new_state; 394 wake_up_all(&ctrl->state_wq); 395 } 396 397 spin_unlock_irqrestore(&ctrl->lock, flags); 398 if (changed && ctrl->state == NVME_CTRL_LIVE) 399 nvme_kick_requeue_lists(ctrl); 400 return changed; 401 } 402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 403 404 /* 405 * Returns true for sink states that can't ever transition back to live. 406 */ 407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 408 { 409 switch (ctrl->state) { 410 case NVME_CTRL_NEW: 411 case NVME_CTRL_LIVE: 412 case NVME_CTRL_RESETTING: 413 case NVME_CTRL_CONNECTING: 414 return false; 415 case NVME_CTRL_DELETING: 416 case NVME_CTRL_DEAD: 417 return true; 418 default: 419 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 420 return true; 421 } 422 } 423 424 /* 425 * Waits for the controller state to be resetting, or returns false if it is 426 * not possible to ever transition to that state. 427 */ 428 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 429 { 430 wait_event(ctrl->state_wq, 431 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 432 nvme_state_terminal(ctrl)); 433 return ctrl->state == NVME_CTRL_RESETTING; 434 } 435 EXPORT_SYMBOL_GPL(nvme_wait_reset); 436 437 static void nvme_free_ns_head(struct kref *ref) 438 { 439 struct nvme_ns_head *head = 440 container_of(ref, struct nvme_ns_head, ref); 441 442 nvme_mpath_remove_disk(head); 443 ida_simple_remove(&head->subsys->ns_ida, head->instance); 444 list_del_init(&head->entry); 445 cleanup_srcu_struct(&head->srcu); 446 nvme_put_subsystem(head->subsys); 447 kfree(head); 448 } 449 450 static void nvme_put_ns_head(struct nvme_ns_head *head) 451 { 452 kref_put(&head->ref, nvme_free_ns_head); 453 } 454 455 static void nvme_free_ns(struct kref *kref) 456 { 457 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 458 459 if (ns->ndev) 460 nvme_nvm_unregister(ns); 461 462 put_disk(ns->disk); 463 nvme_put_ns_head(ns->head); 464 nvme_put_ctrl(ns->ctrl); 465 kfree(ns); 466 } 467 468 static void nvme_put_ns(struct nvme_ns *ns) 469 { 470 kref_put(&ns->kref, nvme_free_ns); 471 } 472 473 static inline void nvme_clear_nvme_request(struct request *req) 474 { 475 if (!(req->rq_flags & RQF_DONTPREP)) { 476 nvme_req(req)->retries = 0; 477 nvme_req(req)->flags = 0; 478 req->rq_flags |= RQF_DONTPREP; 479 } 480 } 481 482 struct request *nvme_alloc_request(struct request_queue *q, 483 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 484 { 485 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 486 struct request *req; 487 488 if (qid == NVME_QID_ANY) { 489 req = blk_mq_alloc_request(q, op, flags); 490 } else { 491 req = blk_mq_alloc_request_hctx(q, op, flags, 492 qid ? qid - 1 : 0); 493 } 494 if (IS_ERR(req)) 495 return req; 496 497 req->cmd_flags |= REQ_FAILFAST_DRIVER; 498 nvme_clear_nvme_request(req); 499 nvme_req(req)->cmd = cmd; 500 501 return req; 502 } 503 EXPORT_SYMBOL_GPL(nvme_alloc_request); 504 505 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 506 { 507 struct nvme_command c; 508 509 memset(&c, 0, sizeof(c)); 510 511 c.directive.opcode = nvme_admin_directive_send; 512 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 513 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 514 c.directive.dtype = NVME_DIR_IDENTIFY; 515 c.directive.tdtype = NVME_DIR_STREAMS; 516 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 517 518 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 519 } 520 521 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 522 { 523 return nvme_toggle_streams(ctrl, false); 524 } 525 526 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 527 { 528 return nvme_toggle_streams(ctrl, true); 529 } 530 531 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 532 struct streams_directive_params *s, u32 nsid) 533 { 534 struct nvme_command c; 535 536 memset(&c, 0, sizeof(c)); 537 memset(s, 0, sizeof(*s)); 538 539 c.directive.opcode = nvme_admin_directive_recv; 540 c.directive.nsid = cpu_to_le32(nsid); 541 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 542 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 543 c.directive.dtype = NVME_DIR_STREAMS; 544 545 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 546 } 547 548 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 549 { 550 struct streams_directive_params s; 551 int ret; 552 553 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 554 return 0; 555 if (!streams) 556 return 0; 557 558 ret = nvme_enable_streams(ctrl); 559 if (ret) 560 return ret; 561 562 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 563 if (ret) 564 return ret; 565 566 ctrl->nssa = le16_to_cpu(s.nssa); 567 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 568 dev_info(ctrl->device, "too few streams (%u) available\n", 569 ctrl->nssa); 570 nvme_disable_streams(ctrl); 571 return 0; 572 } 573 574 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 575 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 576 return 0; 577 } 578 579 /* 580 * Check if 'req' has a write hint associated with it. If it does, assign 581 * a valid namespace stream to the write. 582 */ 583 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 584 struct request *req, u16 *control, 585 u32 *dsmgmt) 586 { 587 enum rw_hint streamid = req->write_hint; 588 589 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 590 streamid = 0; 591 else { 592 streamid--; 593 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 594 return; 595 596 *control |= NVME_RW_DTYPE_STREAMS; 597 *dsmgmt |= streamid << 16; 598 } 599 600 if (streamid < ARRAY_SIZE(req->q->write_hints)) 601 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 602 } 603 604 static inline void nvme_setup_flush(struct nvme_ns *ns, 605 struct nvme_command *cmnd) 606 { 607 cmnd->common.opcode = nvme_cmd_flush; 608 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 609 } 610 611 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 612 struct nvme_command *cmnd) 613 { 614 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 615 struct nvme_dsm_range *range; 616 struct bio *bio; 617 618 /* 619 * Some devices do not consider the DSM 'Number of Ranges' field when 620 * determining how much data to DMA. Always allocate memory for maximum 621 * number of segments to prevent device reading beyond end of buffer. 622 */ 623 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 624 625 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 626 if (!range) { 627 /* 628 * If we fail allocation our range, fallback to the controller 629 * discard page. If that's also busy, it's safe to return 630 * busy, as we know we can make progress once that's freed. 631 */ 632 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 633 return BLK_STS_RESOURCE; 634 635 range = page_address(ns->ctrl->discard_page); 636 } 637 638 __rq_for_each_bio(bio, req) { 639 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 640 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 641 642 if (n < segments) { 643 range[n].cattr = cpu_to_le32(0); 644 range[n].nlb = cpu_to_le32(nlb); 645 range[n].slba = cpu_to_le64(slba); 646 } 647 n++; 648 } 649 650 if (WARN_ON_ONCE(n != segments)) { 651 if (virt_to_page(range) == ns->ctrl->discard_page) 652 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 653 else 654 kfree(range); 655 return BLK_STS_IOERR; 656 } 657 658 cmnd->dsm.opcode = nvme_cmd_dsm; 659 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 660 cmnd->dsm.nr = cpu_to_le32(segments - 1); 661 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 662 663 req->special_vec.bv_page = virt_to_page(range); 664 req->special_vec.bv_offset = offset_in_page(range); 665 req->special_vec.bv_len = alloc_size; 666 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 667 668 return BLK_STS_OK; 669 } 670 671 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 672 struct request *req, struct nvme_command *cmnd) 673 { 674 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 675 return nvme_setup_discard(ns, req, cmnd); 676 677 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 678 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 679 cmnd->write_zeroes.slba = 680 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 681 cmnd->write_zeroes.length = 682 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 683 cmnd->write_zeroes.control = 0; 684 return BLK_STS_OK; 685 } 686 687 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 688 struct request *req, struct nvme_command *cmnd) 689 { 690 struct nvme_ctrl *ctrl = ns->ctrl; 691 u16 control = 0; 692 u32 dsmgmt = 0; 693 694 if (req->cmd_flags & REQ_FUA) 695 control |= NVME_RW_FUA; 696 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 697 control |= NVME_RW_LR; 698 699 if (req->cmd_flags & REQ_RAHEAD) 700 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 701 702 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 703 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 704 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 705 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 706 707 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 708 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 709 710 if (ns->ms) { 711 /* 712 * If formated with metadata, the block layer always provides a 713 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 714 * we enable the PRACT bit for protection information or set the 715 * namespace capacity to zero to prevent any I/O. 716 */ 717 if (!blk_integrity_rq(req)) { 718 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 719 return BLK_STS_NOTSUPP; 720 control |= NVME_RW_PRINFO_PRACT; 721 } 722 723 switch (ns->pi_type) { 724 case NVME_NS_DPS_PI_TYPE3: 725 control |= NVME_RW_PRINFO_PRCHK_GUARD; 726 break; 727 case NVME_NS_DPS_PI_TYPE1: 728 case NVME_NS_DPS_PI_TYPE2: 729 control |= NVME_RW_PRINFO_PRCHK_GUARD | 730 NVME_RW_PRINFO_PRCHK_REF; 731 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 732 break; 733 } 734 } 735 736 cmnd->rw.control = cpu_to_le16(control); 737 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 738 return 0; 739 } 740 741 void nvme_cleanup_cmd(struct request *req) 742 { 743 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 744 struct nvme_ns *ns = req->rq_disk->private_data; 745 struct page *page = req->special_vec.bv_page; 746 747 if (page == ns->ctrl->discard_page) 748 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 749 else 750 kfree(page_address(page) + req->special_vec.bv_offset); 751 } 752 } 753 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 754 755 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 756 struct nvme_command *cmd) 757 { 758 blk_status_t ret = BLK_STS_OK; 759 760 nvme_clear_nvme_request(req); 761 762 memset(cmd, 0, sizeof(*cmd)); 763 switch (req_op(req)) { 764 case REQ_OP_DRV_IN: 765 case REQ_OP_DRV_OUT: 766 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 767 break; 768 case REQ_OP_FLUSH: 769 nvme_setup_flush(ns, cmd); 770 break; 771 case REQ_OP_WRITE_ZEROES: 772 ret = nvme_setup_write_zeroes(ns, req, cmd); 773 break; 774 case REQ_OP_DISCARD: 775 ret = nvme_setup_discard(ns, req, cmd); 776 break; 777 case REQ_OP_READ: 778 case REQ_OP_WRITE: 779 ret = nvme_setup_rw(ns, req, cmd); 780 break; 781 default: 782 WARN_ON_ONCE(1); 783 return BLK_STS_IOERR; 784 } 785 786 cmd->common.command_id = req->tag; 787 trace_nvme_setup_cmd(req, cmd); 788 return ret; 789 } 790 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 791 792 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 793 { 794 struct completion *waiting = rq->end_io_data; 795 796 rq->end_io_data = NULL; 797 complete(waiting); 798 } 799 800 static void nvme_execute_rq_polled(struct request_queue *q, 801 struct gendisk *bd_disk, struct request *rq, int at_head) 802 { 803 DECLARE_COMPLETION_ONSTACK(wait); 804 805 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 806 807 rq->cmd_flags |= REQ_HIPRI; 808 rq->end_io_data = &wait; 809 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 810 811 while (!completion_done(&wait)) { 812 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 813 cond_resched(); 814 } 815 } 816 817 /* 818 * Returns 0 on success. If the result is negative, it's a Linux error code; 819 * if the result is positive, it's an NVM Express status code 820 */ 821 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 822 union nvme_result *result, void *buffer, unsigned bufflen, 823 unsigned timeout, int qid, int at_head, 824 blk_mq_req_flags_t flags, bool poll) 825 { 826 struct request *req; 827 int ret; 828 829 req = nvme_alloc_request(q, cmd, flags, qid); 830 if (IS_ERR(req)) 831 return PTR_ERR(req); 832 833 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 834 835 if (buffer && bufflen) { 836 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 837 if (ret) 838 goto out; 839 } 840 841 if (poll) 842 nvme_execute_rq_polled(req->q, NULL, req, at_head); 843 else 844 blk_execute_rq(req->q, NULL, req, at_head); 845 if (result) 846 *result = nvme_req(req)->result; 847 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 848 ret = -EINTR; 849 else 850 ret = nvme_req(req)->status; 851 out: 852 blk_mq_free_request(req); 853 return ret; 854 } 855 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 856 857 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 858 void *buffer, unsigned bufflen) 859 { 860 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 861 NVME_QID_ANY, 0, 0, false); 862 } 863 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 864 865 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 866 unsigned len, u32 seed, bool write) 867 { 868 struct bio_integrity_payload *bip; 869 int ret = -ENOMEM; 870 void *buf; 871 872 buf = kmalloc(len, GFP_KERNEL); 873 if (!buf) 874 goto out; 875 876 ret = -EFAULT; 877 if (write && copy_from_user(buf, ubuf, len)) 878 goto out_free_meta; 879 880 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 881 if (IS_ERR(bip)) { 882 ret = PTR_ERR(bip); 883 goto out_free_meta; 884 } 885 886 bip->bip_iter.bi_size = len; 887 bip->bip_iter.bi_sector = seed; 888 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 889 offset_in_page(buf)); 890 if (ret == len) 891 return buf; 892 ret = -ENOMEM; 893 out_free_meta: 894 kfree(buf); 895 out: 896 return ERR_PTR(ret); 897 } 898 899 static int nvme_submit_user_cmd(struct request_queue *q, 900 struct nvme_command *cmd, void __user *ubuffer, 901 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 902 u32 meta_seed, u64 *result, unsigned timeout) 903 { 904 bool write = nvme_is_write(cmd); 905 struct nvme_ns *ns = q->queuedata; 906 struct gendisk *disk = ns ? ns->disk : NULL; 907 struct request *req; 908 struct bio *bio = NULL; 909 void *meta = NULL; 910 int ret; 911 912 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 913 if (IS_ERR(req)) 914 return PTR_ERR(req); 915 916 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 917 nvme_req(req)->flags |= NVME_REQ_USERCMD; 918 919 if (ubuffer && bufflen) { 920 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 921 GFP_KERNEL); 922 if (ret) 923 goto out; 924 bio = req->bio; 925 bio->bi_disk = disk; 926 if (disk && meta_buffer && meta_len) { 927 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 928 meta_seed, write); 929 if (IS_ERR(meta)) { 930 ret = PTR_ERR(meta); 931 goto out_unmap; 932 } 933 req->cmd_flags |= REQ_INTEGRITY; 934 } 935 } 936 937 blk_execute_rq(req->q, disk, req, 0); 938 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 939 ret = -EINTR; 940 else 941 ret = nvme_req(req)->status; 942 if (result) 943 *result = le64_to_cpu(nvme_req(req)->result.u64); 944 if (meta && !ret && !write) { 945 if (copy_to_user(meta_buffer, meta, meta_len)) 946 ret = -EFAULT; 947 } 948 kfree(meta); 949 out_unmap: 950 if (bio) 951 blk_rq_unmap_user(bio); 952 out: 953 blk_mq_free_request(req); 954 return ret; 955 } 956 957 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 958 { 959 struct nvme_ctrl *ctrl = rq->end_io_data; 960 unsigned long flags; 961 bool startka = false; 962 963 blk_mq_free_request(rq); 964 965 if (status) { 966 dev_err(ctrl->device, 967 "failed nvme_keep_alive_end_io error=%d\n", 968 status); 969 return; 970 } 971 972 ctrl->comp_seen = false; 973 spin_lock_irqsave(&ctrl->lock, flags); 974 if (ctrl->state == NVME_CTRL_LIVE || 975 ctrl->state == NVME_CTRL_CONNECTING) 976 startka = true; 977 spin_unlock_irqrestore(&ctrl->lock, flags); 978 if (startka) 979 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 980 } 981 982 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 983 { 984 struct request *rq; 985 986 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 987 NVME_QID_ANY); 988 if (IS_ERR(rq)) 989 return PTR_ERR(rq); 990 991 rq->timeout = ctrl->kato * HZ; 992 rq->end_io_data = ctrl; 993 994 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 995 996 return 0; 997 } 998 999 static void nvme_keep_alive_work(struct work_struct *work) 1000 { 1001 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1002 struct nvme_ctrl, ka_work); 1003 bool comp_seen = ctrl->comp_seen; 1004 1005 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1006 dev_dbg(ctrl->device, 1007 "reschedule traffic based keep-alive timer\n"); 1008 ctrl->comp_seen = false; 1009 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 1010 return; 1011 } 1012 1013 if (nvme_keep_alive(ctrl)) { 1014 /* allocation failure, reset the controller */ 1015 dev_err(ctrl->device, "keep-alive failed\n"); 1016 nvme_reset_ctrl(ctrl); 1017 return; 1018 } 1019 } 1020 1021 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1022 { 1023 if (unlikely(ctrl->kato == 0)) 1024 return; 1025 1026 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 1027 } 1028 1029 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1030 { 1031 if (unlikely(ctrl->kato == 0)) 1032 return; 1033 1034 cancel_delayed_work_sync(&ctrl->ka_work); 1035 } 1036 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1037 1038 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1039 { 1040 struct nvme_command c = { }; 1041 int error; 1042 1043 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1044 c.identify.opcode = nvme_admin_identify; 1045 c.identify.cns = NVME_ID_CNS_CTRL; 1046 1047 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1048 if (!*id) 1049 return -ENOMEM; 1050 1051 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1052 sizeof(struct nvme_id_ctrl)); 1053 if (error) 1054 kfree(*id); 1055 return error; 1056 } 1057 1058 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1059 struct nvme_ns_ids *ids) 1060 { 1061 struct nvme_command c = { }; 1062 int status; 1063 void *data; 1064 int pos; 1065 int len; 1066 1067 c.identify.opcode = nvme_admin_identify; 1068 c.identify.nsid = cpu_to_le32(nsid); 1069 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1070 1071 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1072 if (!data) 1073 return -ENOMEM; 1074 1075 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1076 NVME_IDENTIFY_DATA_SIZE); 1077 if (status) 1078 goto free_data; 1079 1080 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1081 struct nvme_ns_id_desc *cur = data + pos; 1082 1083 if (cur->nidl == 0) 1084 break; 1085 1086 switch (cur->nidt) { 1087 case NVME_NIDT_EUI64: 1088 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1089 dev_warn(ctrl->device, 1090 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1091 cur->nidl); 1092 goto free_data; 1093 } 1094 len = NVME_NIDT_EUI64_LEN; 1095 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1096 break; 1097 case NVME_NIDT_NGUID: 1098 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1099 dev_warn(ctrl->device, 1100 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1101 cur->nidl); 1102 goto free_data; 1103 } 1104 len = NVME_NIDT_NGUID_LEN; 1105 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1106 break; 1107 case NVME_NIDT_UUID: 1108 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1109 dev_warn(ctrl->device, 1110 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1111 cur->nidl); 1112 goto free_data; 1113 } 1114 len = NVME_NIDT_UUID_LEN; 1115 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1116 break; 1117 default: 1118 /* Skip unknown types */ 1119 len = cur->nidl; 1120 break; 1121 } 1122 1123 len += sizeof(*cur); 1124 } 1125 free_data: 1126 kfree(data); 1127 return status; 1128 } 1129 1130 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1131 { 1132 struct nvme_command c = { }; 1133 1134 c.identify.opcode = nvme_admin_identify; 1135 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1136 c.identify.nsid = cpu_to_le32(nsid); 1137 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1138 NVME_IDENTIFY_DATA_SIZE); 1139 } 1140 1141 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1142 unsigned nsid, struct nvme_id_ns **id) 1143 { 1144 struct nvme_command c = { }; 1145 int error; 1146 1147 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1148 c.identify.opcode = nvme_admin_identify; 1149 c.identify.nsid = cpu_to_le32(nsid); 1150 c.identify.cns = NVME_ID_CNS_NS; 1151 1152 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1153 if (!*id) 1154 return -ENOMEM; 1155 1156 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1157 if (error) { 1158 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1159 kfree(*id); 1160 } 1161 1162 return error; 1163 } 1164 1165 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1166 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1167 { 1168 struct nvme_command c; 1169 union nvme_result res; 1170 int ret; 1171 1172 memset(&c, 0, sizeof(c)); 1173 c.features.opcode = op; 1174 c.features.fid = cpu_to_le32(fid); 1175 c.features.dword11 = cpu_to_le32(dword11); 1176 1177 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1178 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1179 if (ret >= 0 && result) 1180 *result = le32_to_cpu(res.u32); 1181 return ret; 1182 } 1183 1184 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1185 unsigned int dword11, void *buffer, size_t buflen, 1186 u32 *result) 1187 { 1188 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1189 buflen, result); 1190 } 1191 EXPORT_SYMBOL_GPL(nvme_set_features); 1192 1193 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1194 unsigned int dword11, void *buffer, size_t buflen, 1195 u32 *result) 1196 { 1197 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1198 buflen, result); 1199 } 1200 EXPORT_SYMBOL_GPL(nvme_get_features); 1201 1202 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1203 { 1204 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1205 u32 result; 1206 int status, nr_io_queues; 1207 1208 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1209 &result); 1210 if (status < 0) 1211 return status; 1212 1213 /* 1214 * Degraded controllers might return an error when setting the queue 1215 * count. We still want to be able to bring them online and offer 1216 * access to the admin queue, as that might be only way to fix them up. 1217 */ 1218 if (status > 0) { 1219 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1220 *count = 0; 1221 } else { 1222 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1223 *count = min(*count, nr_io_queues); 1224 } 1225 1226 return 0; 1227 } 1228 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1229 1230 #define NVME_AEN_SUPPORTED \ 1231 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1232 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1233 1234 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1235 { 1236 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1237 int status; 1238 1239 if (!supported_aens) 1240 return; 1241 1242 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1243 NULL, 0, &result); 1244 if (status) 1245 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1246 supported_aens); 1247 1248 queue_work(nvme_wq, &ctrl->async_event_work); 1249 } 1250 1251 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1252 { 1253 struct nvme_user_io io; 1254 struct nvme_command c; 1255 unsigned length, meta_len; 1256 void __user *metadata; 1257 1258 if (copy_from_user(&io, uio, sizeof(io))) 1259 return -EFAULT; 1260 if (io.flags) 1261 return -EINVAL; 1262 1263 switch (io.opcode) { 1264 case nvme_cmd_write: 1265 case nvme_cmd_read: 1266 case nvme_cmd_compare: 1267 break; 1268 default: 1269 return -EINVAL; 1270 } 1271 1272 length = (io.nblocks + 1) << ns->lba_shift; 1273 meta_len = (io.nblocks + 1) * ns->ms; 1274 metadata = (void __user *)(uintptr_t)io.metadata; 1275 1276 if (ns->ext) { 1277 length += meta_len; 1278 meta_len = 0; 1279 } else if (meta_len) { 1280 if ((io.metadata & 3) || !io.metadata) 1281 return -EINVAL; 1282 } 1283 1284 memset(&c, 0, sizeof(c)); 1285 c.rw.opcode = io.opcode; 1286 c.rw.flags = io.flags; 1287 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1288 c.rw.slba = cpu_to_le64(io.slba); 1289 c.rw.length = cpu_to_le16(io.nblocks); 1290 c.rw.control = cpu_to_le16(io.control); 1291 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1292 c.rw.reftag = cpu_to_le32(io.reftag); 1293 c.rw.apptag = cpu_to_le16(io.apptag); 1294 c.rw.appmask = cpu_to_le16(io.appmask); 1295 1296 return nvme_submit_user_cmd(ns->queue, &c, 1297 (void __user *)(uintptr_t)io.addr, length, 1298 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1299 } 1300 1301 static u32 nvme_known_admin_effects(u8 opcode) 1302 { 1303 switch (opcode) { 1304 case nvme_admin_format_nvm: 1305 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1306 NVME_CMD_EFFECTS_CSE_MASK; 1307 case nvme_admin_sanitize_nvm: 1308 return NVME_CMD_EFFECTS_CSE_MASK; 1309 default: 1310 break; 1311 } 1312 return 0; 1313 } 1314 1315 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1316 u8 opcode) 1317 { 1318 u32 effects = 0; 1319 1320 if (ns) { 1321 if (ctrl->effects) 1322 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1323 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1324 dev_warn(ctrl->device, 1325 "IO command:%02x has unhandled effects:%08x\n", 1326 opcode, effects); 1327 return 0; 1328 } 1329 1330 if (ctrl->effects) 1331 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1332 effects |= nvme_known_admin_effects(opcode); 1333 1334 /* 1335 * For simplicity, IO to all namespaces is quiesced even if the command 1336 * effects say only one namespace is affected. 1337 */ 1338 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1339 mutex_lock(&ctrl->scan_lock); 1340 mutex_lock(&ctrl->subsys->lock); 1341 nvme_mpath_start_freeze(ctrl->subsys); 1342 nvme_mpath_wait_freeze(ctrl->subsys); 1343 nvme_start_freeze(ctrl); 1344 nvme_wait_freeze(ctrl); 1345 } 1346 return effects; 1347 } 1348 1349 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1350 { 1351 struct nvme_ns *ns; 1352 1353 down_read(&ctrl->namespaces_rwsem); 1354 list_for_each_entry(ns, &ctrl->namespaces, list) 1355 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1356 nvme_set_queue_dying(ns); 1357 up_read(&ctrl->namespaces_rwsem); 1358 } 1359 1360 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1361 { 1362 /* 1363 * Revalidate LBA changes prior to unfreezing. This is necessary to 1364 * prevent memory corruption if a logical block size was changed by 1365 * this command. 1366 */ 1367 if (effects & NVME_CMD_EFFECTS_LBCC) 1368 nvme_update_formats(ctrl); 1369 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1370 nvme_unfreeze(ctrl); 1371 nvme_mpath_unfreeze(ctrl->subsys); 1372 mutex_unlock(&ctrl->subsys->lock); 1373 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1374 mutex_unlock(&ctrl->scan_lock); 1375 } 1376 if (effects & NVME_CMD_EFFECTS_CCC) 1377 nvme_init_identify(ctrl); 1378 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1379 nvme_queue_scan(ctrl); 1380 } 1381 1382 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1383 struct nvme_passthru_cmd __user *ucmd) 1384 { 1385 struct nvme_passthru_cmd cmd; 1386 struct nvme_command c; 1387 unsigned timeout = 0; 1388 u32 effects; 1389 u64 result; 1390 int status; 1391 1392 if (!capable(CAP_SYS_ADMIN)) 1393 return -EACCES; 1394 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1395 return -EFAULT; 1396 if (cmd.flags) 1397 return -EINVAL; 1398 1399 memset(&c, 0, sizeof(c)); 1400 c.common.opcode = cmd.opcode; 1401 c.common.flags = cmd.flags; 1402 c.common.nsid = cpu_to_le32(cmd.nsid); 1403 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1404 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1405 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1406 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1407 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1408 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1409 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1410 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1411 1412 if (cmd.timeout_ms) 1413 timeout = msecs_to_jiffies(cmd.timeout_ms); 1414 1415 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1416 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1417 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1418 (void __user *)(uintptr_t)cmd.metadata, 1419 cmd.metadata_len, 0, &result, timeout); 1420 nvme_passthru_end(ctrl, effects); 1421 1422 if (status >= 0) { 1423 if (put_user(result, &ucmd->result)) 1424 return -EFAULT; 1425 } 1426 1427 return status; 1428 } 1429 1430 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1431 struct nvme_passthru_cmd64 __user *ucmd) 1432 { 1433 struct nvme_passthru_cmd64 cmd; 1434 struct nvme_command c; 1435 unsigned timeout = 0; 1436 u32 effects; 1437 int status; 1438 1439 if (!capable(CAP_SYS_ADMIN)) 1440 return -EACCES; 1441 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1442 return -EFAULT; 1443 if (cmd.flags) 1444 return -EINVAL; 1445 1446 memset(&c, 0, sizeof(c)); 1447 c.common.opcode = cmd.opcode; 1448 c.common.flags = cmd.flags; 1449 c.common.nsid = cpu_to_le32(cmd.nsid); 1450 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1451 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1452 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1453 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1454 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1455 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1456 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1457 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1458 1459 if (cmd.timeout_ms) 1460 timeout = msecs_to_jiffies(cmd.timeout_ms); 1461 1462 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1463 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1464 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1465 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1466 0, &cmd.result, timeout); 1467 nvme_passthru_end(ctrl, effects); 1468 1469 if (status >= 0) { 1470 if (put_user(cmd.result, &ucmd->result)) 1471 return -EFAULT; 1472 } 1473 1474 return status; 1475 } 1476 1477 /* 1478 * Issue ioctl requests on the first available path. Note that unlike normal 1479 * block layer requests we will not retry failed request on another controller. 1480 */ 1481 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1482 struct nvme_ns_head **head, int *srcu_idx) 1483 { 1484 #ifdef CONFIG_NVME_MULTIPATH 1485 if (disk->fops == &nvme_ns_head_ops) { 1486 struct nvme_ns *ns; 1487 1488 *head = disk->private_data; 1489 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1490 ns = nvme_find_path(*head); 1491 if (!ns) 1492 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1493 return ns; 1494 } 1495 #endif 1496 *head = NULL; 1497 *srcu_idx = -1; 1498 return disk->private_data; 1499 } 1500 1501 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1502 { 1503 if (head) 1504 srcu_read_unlock(&head->srcu, idx); 1505 } 1506 1507 static bool is_ctrl_ioctl(unsigned int cmd) 1508 { 1509 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1510 return true; 1511 if (is_sed_ioctl(cmd)) 1512 return true; 1513 return false; 1514 } 1515 1516 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1517 void __user *argp, 1518 struct nvme_ns_head *head, 1519 int srcu_idx) 1520 { 1521 struct nvme_ctrl *ctrl = ns->ctrl; 1522 int ret; 1523 1524 nvme_get_ctrl(ns->ctrl); 1525 nvme_put_ns_from_disk(head, srcu_idx); 1526 1527 switch (cmd) { 1528 case NVME_IOCTL_ADMIN_CMD: 1529 ret = nvme_user_cmd(ctrl, NULL, argp); 1530 break; 1531 case NVME_IOCTL_ADMIN64_CMD: 1532 ret = nvme_user_cmd64(ctrl, NULL, argp); 1533 break; 1534 default: 1535 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1536 break; 1537 } 1538 nvme_put_ctrl(ctrl); 1539 return ret; 1540 } 1541 1542 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1543 unsigned int cmd, unsigned long arg) 1544 { 1545 struct nvme_ns_head *head = NULL; 1546 void __user *argp = (void __user *)arg; 1547 struct nvme_ns *ns; 1548 int srcu_idx, ret; 1549 1550 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1551 if (unlikely(!ns)) 1552 return -EWOULDBLOCK; 1553 1554 /* 1555 * Handle ioctls that apply to the controller instead of the namespace 1556 * seperately and drop the ns SRCU reference early. This avoids a 1557 * deadlock when deleting namespaces using the passthrough interface. 1558 */ 1559 if (is_ctrl_ioctl(cmd)) 1560 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1561 1562 switch (cmd) { 1563 case NVME_IOCTL_ID: 1564 force_successful_syscall_return(); 1565 ret = ns->head->ns_id; 1566 break; 1567 case NVME_IOCTL_IO_CMD: 1568 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1569 break; 1570 case NVME_IOCTL_SUBMIT_IO: 1571 ret = nvme_submit_io(ns, argp); 1572 break; 1573 case NVME_IOCTL_IO64_CMD: 1574 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1575 break; 1576 default: 1577 if (ns->ndev) 1578 ret = nvme_nvm_ioctl(ns, cmd, arg); 1579 else 1580 ret = -ENOTTY; 1581 } 1582 1583 nvme_put_ns_from_disk(head, srcu_idx); 1584 return ret; 1585 } 1586 1587 static int nvme_open(struct block_device *bdev, fmode_t mode) 1588 { 1589 struct nvme_ns *ns = bdev->bd_disk->private_data; 1590 1591 #ifdef CONFIG_NVME_MULTIPATH 1592 /* should never be called due to GENHD_FL_HIDDEN */ 1593 if (WARN_ON_ONCE(ns->head->disk)) 1594 goto fail; 1595 #endif 1596 if (!kref_get_unless_zero(&ns->kref)) 1597 goto fail; 1598 if (!try_module_get(ns->ctrl->ops->module)) 1599 goto fail_put_ns; 1600 1601 return 0; 1602 1603 fail_put_ns: 1604 nvme_put_ns(ns); 1605 fail: 1606 return -ENXIO; 1607 } 1608 1609 static void nvme_release(struct gendisk *disk, fmode_t mode) 1610 { 1611 struct nvme_ns *ns = disk->private_data; 1612 1613 module_put(ns->ctrl->ops->module); 1614 nvme_put_ns(ns); 1615 } 1616 1617 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1618 { 1619 /* some standard values */ 1620 geo->heads = 1 << 6; 1621 geo->sectors = 1 << 5; 1622 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1623 return 0; 1624 } 1625 1626 #ifdef CONFIG_BLK_DEV_INTEGRITY 1627 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1628 { 1629 struct blk_integrity integrity; 1630 1631 memset(&integrity, 0, sizeof(integrity)); 1632 switch (pi_type) { 1633 case NVME_NS_DPS_PI_TYPE3: 1634 integrity.profile = &t10_pi_type3_crc; 1635 integrity.tag_size = sizeof(u16) + sizeof(u32); 1636 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1637 break; 1638 case NVME_NS_DPS_PI_TYPE1: 1639 case NVME_NS_DPS_PI_TYPE2: 1640 integrity.profile = &t10_pi_type1_crc; 1641 integrity.tag_size = sizeof(u16); 1642 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1643 break; 1644 default: 1645 integrity.profile = NULL; 1646 break; 1647 } 1648 integrity.tuple_size = ms; 1649 blk_integrity_register(disk, &integrity); 1650 blk_queue_max_integrity_segments(disk->queue, 1); 1651 } 1652 #else 1653 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1654 { 1655 } 1656 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1657 1658 static void nvme_set_chunk_size(struct nvme_ns *ns) 1659 { 1660 u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob); 1661 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1662 } 1663 1664 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1665 { 1666 struct nvme_ctrl *ctrl = ns->ctrl; 1667 struct request_queue *queue = disk->queue; 1668 u32 size = queue_logical_block_size(queue); 1669 1670 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1671 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1672 return; 1673 } 1674 1675 if (ctrl->nr_streams && ns->sws && ns->sgs) 1676 size *= ns->sws * ns->sgs; 1677 1678 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1679 NVME_DSM_MAX_RANGES); 1680 1681 queue->limits.discard_alignment = 0; 1682 queue->limits.discard_granularity = size; 1683 1684 /* If discard is already enabled, don't reset queue limits */ 1685 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1686 return; 1687 1688 blk_queue_max_discard_sectors(queue, UINT_MAX); 1689 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1690 1691 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1692 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1693 } 1694 1695 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1696 { 1697 u64 max_blocks; 1698 1699 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1700 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1701 return; 1702 /* 1703 * Even though NVMe spec explicitly states that MDTS is not 1704 * applicable to the write-zeroes:- "The restriction does not apply to 1705 * commands that do not transfer data between the host and the 1706 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1707 * In order to be more cautious use controller's max_hw_sectors value 1708 * to configure the maximum sectors for the write-zeroes which is 1709 * configured based on the controller's MDTS field in the 1710 * nvme_init_identify() if available. 1711 */ 1712 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1713 max_blocks = (u64)USHRT_MAX + 1; 1714 else 1715 max_blocks = ns->ctrl->max_hw_sectors + 1; 1716 1717 blk_queue_max_write_zeroes_sectors(disk->queue, 1718 nvme_lba_to_sect(ns, max_blocks)); 1719 } 1720 1721 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1722 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1723 { 1724 int ret = 0; 1725 1726 memset(ids, 0, sizeof(*ids)); 1727 1728 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1729 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1730 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1731 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1732 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1733 /* Don't treat error as fatal we potentially 1734 * already have a NGUID or EUI-64 1735 */ 1736 ret = nvme_identify_ns_descs(ctrl, nsid, ids); 1737 if (ret) 1738 dev_warn(ctrl->device, 1739 "Identify Descriptors failed (%d)\n", ret); 1740 if (ret > 0) 1741 ret = 0; 1742 } 1743 return ret; 1744 } 1745 1746 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1747 { 1748 return !uuid_is_null(&ids->uuid) || 1749 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1750 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1751 } 1752 1753 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1754 { 1755 return uuid_equal(&a->uuid, &b->uuid) && 1756 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1757 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1758 } 1759 1760 static void nvme_update_disk_info(struct gendisk *disk, 1761 struct nvme_ns *ns, struct nvme_id_ns *id) 1762 { 1763 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1764 unsigned short bs = 1 << ns->lba_shift; 1765 u32 atomic_bs, phys_bs, io_opt; 1766 1767 if (ns->lba_shift > PAGE_SHIFT) { 1768 /* unsupported block size, set capacity to 0 later */ 1769 bs = (1 << 9); 1770 } 1771 blk_mq_freeze_queue(disk->queue); 1772 blk_integrity_unregister(disk); 1773 1774 if (id->nabo == 0) { 1775 /* 1776 * Bit 1 indicates whether NAWUPF is defined for this namespace 1777 * and whether it should be used instead of AWUPF. If NAWUPF == 1778 * 0 then AWUPF must be used instead. 1779 */ 1780 if (id->nsfeat & (1 << 1) && id->nawupf) 1781 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1782 else 1783 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1784 } else { 1785 atomic_bs = bs; 1786 } 1787 phys_bs = bs; 1788 io_opt = bs; 1789 if (id->nsfeat & (1 << 4)) { 1790 /* NPWG = Namespace Preferred Write Granularity */ 1791 phys_bs *= 1 + le16_to_cpu(id->npwg); 1792 /* NOWS = Namespace Optimal Write Size */ 1793 io_opt *= 1 + le16_to_cpu(id->nows); 1794 } 1795 1796 blk_queue_logical_block_size(disk->queue, bs); 1797 /* 1798 * Linux filesystems assume writing a single physical block is 1799 * an atomic operation. Hence limit the physical block size to the 1800 * value of the Atomic Write Unit Power Fail parameter. 1801 */ 1802 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1803 blk_queue_io_min(disk->queue, phys_bs); 1804 blk_queue_io_opt(disk->queue, io_opt); 1805 1806 if (ns->ms && !ns->ext && 1807 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1808 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1809 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1810 ns->lba_shift > PAGE_SHIFT) 1811 capacity = 0; 1812 1813 set_capacity(disk, capacity); 1814 1815 nvme_config_discard(disk, ns); 1816 nvme_config_write_zeroes(disk, ns); 1817 1818 if (id->nsattr & (1 << 0)) 1819 set_disk_ro(disk, true); 1820 else 1821 set_disk_ro(disk, false); 1822 1823 blk_mq_unfreeze_queue(disk->queue); 1824 } 1825 1826 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1827 { 1828 struct nvme_ns *ns = disk->private_data; 1829 1830 /* 1831 * If identify namespace failed, use default 512 byte block size so 1832 * block layer can use before failing read/write for 0 capacity. 1833 */ 1834 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1835 if (ns->lba_shift == 0) 1836 ns->lba_shift = 9; 1837 ns->noiob = le16_to_cpu(id->noiob); 1838 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1839 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1840 /* the PI implementation requires metadata equal t10 pi tuple size */ 1841 if (ns->ms == sizeof(struct t10_pi_tuple)) 1842 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1843 else 1844 ns->pi_type = 0; 1845 1846 if (ns->noiob) 1847 nvme_set_chunk_size(ns); 1848 nvme_update_disk_info(disk, ns, id); 1849 #ifdef CONFIG_NVME_MULTIPATH 1850 if (ns->head->disk) { 1851 nvme_update_disk_info(ns->head->disk, ns, id); 1852 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1853 revalidate_disk(ns->head->disk); 1854 } 1855 #endif 1856 } 1857 1858 static int nvme_revalidate_disk(struct gendisk *disk) 1859 { 1860 struct nvme_ns *ns = disk->private_data; 1861 struct nvme_ctrl *ctrl = ns->ctrl; 1862 struct nvme_id_ns *id; 1863 struct nvme_ns_ids ids; 1864 int ret = 0; 1865 1866 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1867 set_capacity(disk, 0); 1868 return -ENODEV; 1869 } 1870 1871 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 1872 if (ret) 1873 goto out; 1874 1875 if (id->ncap == 0) { 1876 ret = -ENODEV; 1877 goto free_id; 1878 } 1879 1880 __nvme_revalidate_disk(disk, id); 1881 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1882 if (ret) 1883 goto free_id; 1884 1885 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1886 dev_err(ctrl->device, 1887 "identifiers changed for nsid %d\n", ns->head->ns_id); 1888 ret = -ENODEV; 1889 } 1890 1891 free_id: 1892 kfree(id); 1893 out: 1894 /* 1895 * Only fail the function if we got a fatal error back from the 1896 * device, otherwise ignore the error and just move on. 1897 */ 1898 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 1899 ret = 0; 1900 else if (ret > 0) 1901 ret = blk_status_to_errno(nvme_error_status(ret)); 1902 return ret; 1903 } 1904 1905 static char nvme_pr_type(enum pr_type type) 1906 { 1907 switch (type) { 1908 case PR_WRITE_EXCLUSIVE: 1909 return 1; 1910 case PR_EXCLUSIVE_ACCESS: 1911 return 2; 1912 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1913 return 3; 1914 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1915 return 4; 1916 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1917 return 5; 1918 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1919 return 6; 1920 default: 1921 return 0; 1922 } 1923 }; 1924 1925 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1926 u64 key, u64 sa_key, u8 op) 1927 { 1928 struct nvme_ns_head *head = NULL; 1929 struct nvme_ns *ns; 1930 struct nvme_command c; 1931 int srcu_idx, ret; 1932 u8 data[16] = { 0, }; 1933 1934 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1935 if (unlikely(!ns)) 1936 return -EWOULDBLOCK; 1937 1938 put_unaligned_le64(key, &data[0]); 1939 put_unaligned_le64(sa_key, &data[8]); 1940 1941 memset(&c, 0, sizeof(c)); 1942 c.common.opcode = op; 1943 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1944 c.common.cdw10 = cpu_to_le32(cdw10); 1945 1946 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1947 nvme_put_ns_from_disk(head, srcu_idx); 1948 return ret; 1949 } 1950 1951 static int nvme_pr_register(struct block_device *bdev, u64 old, 1952 u64 new, unsigned flags) 1953 { 1954 u32 cdw10; 1955 1956 if (flags & ~PR_FL_IGNORE_KEY) 1957 return -EOPNOTSUPP; 1958 1959 cdw10 = old ? 2 : 0; 1960 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1961 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1962 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1963 } 1964 1965 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1966 enum pr_type type, unsigned flags) 1967 { 1968 u32 cdw10; 1969 1970 if (flags & ~PR_FL_IGNORE_KEY) 1971 return -EOPNOTSUPP; 1972 1973 cdw10 = nvme_pr_type(type) << 8; 1974 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1975 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1976 } 1977 1978 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1979 enum pr_type type, bool abort) 1980 { 1981 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1982 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1983 } 1984 1985 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1986 { 1987 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1988 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1989 } 1990 1991 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1992 { 1993 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1994 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1995 } 1996 1997 static const struct pr_ops nvme_pr_ops = { 1998 .pr_register = nvme_pr_register, 1999 .pr_reserve = nvme_pr_reserve, 2000 .pr_release = nvme_pr_release, 2001 .pr_preempt = nvme_pr_preempt, 2002 .pr_clear = nvme_pr_clear, 2003 }; 2004 2005 #ifdef CONFIG_BLK_SED_OPAL 2006 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2007 bool send) 2008 { 2009 struct nvme_ctrl *ctrl = data; 2010 struct nvme_command cmd; 2011 2012 memset(&cmd, 0, sizeof(cmd)); 2013 if (send) 2014 cmd.common.opcode = nvme_admin_security_send; 2015 else 2016 cmd.common.opcode = nvme_admin_security_recv; 2017 cmd.common.nsid = 0; 2018 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2019 cmd.common.cdw11 = cpu_to_le32(len); 2020 2021 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2022 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2023 } 2024 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2025 #endif /* CONFIG_BLK_SED_OPAL */ 2026 2027 static const struct block_device_operations nvme_fops = { 2028 .owner = THIS_MODULE, 2029 .ioctl = nvme_ioctl, 2030 .compat_ioctl = nvme_ioctl, 2031 .open = nvme_open, 2032 .release = nvme_release, 2033 .getgeo = nvme_getgeo, 2034 .revalidate_disk= nvme_revalidate_disk, 2035 .pr_ops = &nvme_pr_ops, 2036 }; 2037 2038 #ifdef CONFIG_NVME_MULTIPATH 2039 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2040 { 2041 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2042 2043 if (!kref_get_unless_zero(&head->ref)) 2044 return -ENXIO; 2045 return 0; 2046 } 2047 2048 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2049 { 2050 nvme_put_ns_head(disk->private_data); 2051 } 2052 2053 const struct block_device_operations nvme_ns_head_ops = { 2054 .owner = THIS_MODULE, 2055 .open = nvme_ns_head_open, 2056 .release = nvme_ns_head_release, 2057 .ioctl = nvme_ioctl, 2058 .compat_ioctl = nvme_ioctl, 2059 .getgeo = nvme_getgeo, 2060 .pr_ops = &nvme_pr_ops, 2061 }; 2062 #endif /* CONFIG_NVME_MULTIPATH */ 2063 2064 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2065 { 2066 unsigned long timeout = 2067 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2068 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2069 int ret; 2070 2071 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2072 if (csts == ~0) 2073 return -ENODEV; 2074 if ((csts & NVME_CSTS_RDY) == bit) 2075 break; 2076 2077 msleep(100); 2078 if (fatal_signal_pending(current)) 2079 return -EINTR; 2080 if (time_after(jiffies, timeout)) { 2081 dev_err(ctrl->device, 2082 "Device not ready; aborting %s\n", enabled ? 2083 "initialisation" : "reset"); 2084 return -ENODEV; 2085 } 2086 } 2087 2088 return ret; 2089 } 2090 2091 /* 2092 * If the device has been passed off to us in an enabled state, just clear 2093 * the enabled bit. The spec says we should set the 'shutdown notification 2094 * bits', but doing so may cause the device to complete commands to the 2095 * admin queue ... and we don't know what memory that might be pointing at! 2096 */ 2097 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2098 { 2099 int ret; 2100 2101 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2102 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2103 2104 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2105 if (ret) 2106 return ret; 2107 2108 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2109 msleep(NVME_QUIRK_DELAY_AMOUNT); 2110 2111 return nvme_wait_ready(ctrl, ctrl->cap, false); 2112 } 2113 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2114 2115 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2116 { 2117 /* 2118 * Default to a 4K page size, with the intention to update this 2119 * path in the future to accomodate architectures with differing 2120 * kernel and IO page sizes. 2121 */ 2122 unsigned dev_page_min, page_shift = 12; 2123 int ret; 2124 2125 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2126 if (ret) { 2127 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2128 return ret; 2129 } 2130 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2131 2132 if (page_shift < dev_page_min) { 2133 dev_err(ctrl->device, 2134 "Minimum device page size %u too large for host (%u)\n", 2135 1 << dev_page_min, 1 << page_shift); 2136 return -ENODEV; 2137 } 2138 2139 ctrl->page_size = 1 << page_shift; 2140 2141 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2142 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2143 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2144 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2145 ctrl->ctrl_config |= NVME_CC_ENABLE; 2146 2147 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2148 if (ret) 2149 return ret; 2150 return nvme_wait_ready(ctrl, ctrl->cap, true); 2151 } 2152 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2153 2154 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2155 { 2156 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2157 u32 csts; 2158 int ret; 2159 2160 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2161 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2162 2163 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2164 if (ret) 2165 return ret; 2166 2167 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2168 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2169 break; 2170 2171 msleep(100); 2172 if (fatal_signal_pending(current)) 2173 return -EINTR; 2174 if (time_after(jiffies, timeout)) { 2175 dev_err(ctrl->device, 2176 "Device shutdown incomplete; abort shutdown\n"); 2177 return -ENODEV; 2178 } 2179 } 2180 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2184 2185 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2186 struct request_queue *q) 2187 { 2188 bool vwc = false; 2189 2190 if (ctrl->max_hw_sectors) { 2191 u32 max_segments = 2192 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2193 2194 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2195 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2196 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2197 } 2198 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2199 is_power_of_2(ctrl->max_hw_sectors)) 2200 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2201 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2202 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2203 vwc = true; 2204 blk_queue_write_cache(q, vwc, vwc); 2205 } 2206 2207 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2208 { 2209 __le64 ts; 2210 int ret; 2211 2212 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2213 return 0; 2214 2215 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2216 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2217 NULL); 2218 if (ret) 2219 dev_warn_once(ctrl->device, 2220 "could not set timestamp (%d)\n", ret); 2221 return ret; 2222 } 2223 2224 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2225 { 2226 struct nvme_feat_host_behavior *host; 2227 int ret; 2228 2229 /* Don't bother enabling the feature if retry delay is not reported */ 2230 if (!ctrl->crdt[0]) 2231 return 0; 2232 2233 host = kzalloc(sizeof(*host), GFP_KERNEL); 2234 if (!host) 2235 return 0; 2236 2237 host->acre = NVME_ENABLE_ACRE; 2238 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2239 host, sizeof(*host), NULL); 2240 kfree(host); 2241 return ret; 2242 } 2243 2244 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2245 { 2246 /* 2247 * APST (Autonomous Power State Transition) lets us program a 2248 * table of power state transitions that the controller will 2249 * perform automatically. We configure it with a simple 2250 * heuristic: we are willing to spend at most 2% of the time 2251 * transitioning between power states. Therefore, when running 2252 * in any given state, we will enter the next lower-power 2253 * non-operational state after waiting 50 * (enlat + exlat) 2254 * microseconds, as long as that state's exit latency is under 2255 * the requested maximum latency. 2256 * 2257 * We will not autonomously enter any non-operational state for 2258 * which the total latency exceeds ps_max_latency_us. Users 2259 * can set ps_max_latency_us to zero to turn off APST. 2260 */ 2261 2262 unsigned apste; 2263 struct nvme_feat_auto_pst *table; 2264 u64 max_lat_us = 0; 2265 int max_ps = -1; 2266 int ret; 2267 2268 /* 2269 * If APST isn't supported or if we haven't been initialized yet, 2270 * then don't do anything. 2271 */ 2272 if (!ctrl->apsta) 2273 return 0; 2274 2275 if (ctrl->npss > 31) { 2276 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2277 return 0; 2278 } 2279 2280 table = kzalloc(sizeof(*table), GFP_KERNEL); 2281 if (!table) 2282 return 0; 2283 2284 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2285 /* Turn off APST. */ 2286 apste = 0; 2287 dev_dbg(ctrl->device, "APST disabled\n"); 2288 } else { 2289 __le64 target = cpu_to_le64(0); 2290 int state; 2291 2292 /* 2293 * Walk through all states from lowest- to highest-power. 2294 * According to the spec, lower-numbered states use more 2295 * power. NPSS, despite the name, is the index of the 2296 * lowest-power state, not the number of states. 2297 */ 2298 for (state = (int)ctrl->npss; state >= 0; state--) { 2299 u64 total_latency_us, exit_latency_us, transition_ms; 2300 2301 if (target) 2302 table->entries[state] = target; 2303 2304 /* 2305 * Don't allow transitions to the deepest state 2306 * if it's quirked off. 2307 */ 2308 if (state == ctrl->npss && 2309 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2310 continue; 2311 2312 /* 2313 * Is this state a useful non-operational state for 2314 * higher-power states to autonomously transition to? 2315 */ 2316 if (!(ctrl->psd[state].flags & 2317 NVME_PS_FLAGS_NON_OP_STATE)) 2318 continue; 2319 2320 exit_latency_us = 2321 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2322 if (exit_latency_us > ctrl->ps_max_latency_us) 2323 continue; 2324 2325 total_latency_us = 2326 exit_latency_us + 2327 le32_to_cpu(ctrl->psd[state].entry_lat); 2328 2329 /* 2330 * This state is good. Use it as the APST idle 2331 * target for higher power states. 2332 */ 2333 transition_ms = total_latency_us + 19; 2334 do_div(transition_ms, 20); 2335 if (transition_ms > (1 << 24) - 1) 2336 transition_ms = (1 << 24) - 1; 2337 2338 target = cpu_to_le64((state << 3) | 2339 (transition_ms << 8)); 2340 2341 if (max_ps == -1) 2342 max_ps = state; 2343 2344 if (total_latency_us > max_lat_us) 2345 max_lat_us = total_latency_us; 2346 } 2347 2348 apste = 1; 2349 2350 if (max_ps == -1) { 2351 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2352 } else { 2353 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2354 max_ps, max_lat_us, (int)sizeof(*table), table); 2355 } 2356 } 2357 2358 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2359 table, sizeof(*table), NULL); 2360 if (ret) 2361 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2362 2363 kfree(table); 2364 return ret; 2365 } 2366 2367 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2368 { 2369 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2370 u64 latency; 2371 2372 switch (val) { 2373 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2374 case PM_QOS_LATENCY_ANY: 2375 latency = U64_MAX; 2376 break; 2377 2378 default: 2379 latency = val; 2380 } 2381 2382 if (ctrl->ps_max_latency_us != latency) { 2383 ctrl->ps_max_latency_us = latency; 2384 nvme_configure_apst(ctrl); 2385 } 2386 } 2387 2388 struct nvme_core_quirk_entry { 2389 /* 2390 * NVMe model and firmware strings are padded with spaces. For 2391 * simplicity, strings in the quirk table are padded with NULLs 2392 * instead. 2393 */ 2394 u16 vid; 2395 const char *mn; 2396 const char *fr; 2397 unsigned long quirks; 2398 }; 2399 2400 static const struct nvme_core_quirk_entry core_quirks[] = { 2401 { 2402 /* 2403 * This Toshiba device seems to die using any APST states. See: 2404 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2405 */ 2406 .vid = 0x1179, 2407 .mn = "THNSF5256GPUK TOSHIBA", 2408 .quirks = NVME_QUIRK_NO_APST, 2409 }, 2410 { 2411 /* 2412 * This LiteON CL1-3D*-Q11 firmware version has a race 2413 * condition associated with actions related to suspend to idle 2414 * LiteON has resolved the problem in future firmware 2415 */ 2416 .vid = 0x14a4, 2417 .fr = "22301111", 2418 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2419 } 2420 }; 2421 2422 /* match is null-terminated but idstr is space-padded. */ 2423 static bool string_matches(const char *idstr, const char *match, size_t len) 2424 { 2425 size_t matchlen; 2426 2427 if (!match) 2428 return true; 2429 2430 matchlen = strlen(match); 2431 WARN_ON_ONCE(matchlen > len); 2432 2433 if (memcmp(idstr, match, matchlen)) 2434 return false; 2435 2436 for (; matchlen < len; matchlen++) 2437 if (idstr[matchlen] != ' ') 2438 return false; 2439 2440 return true; 2441 } 2442 2443 static bool quirk_matches(const struct nvme_id_ctrl *id, 2444 const struct nvme_core_quirk_entry *q) 2445 { 2446 return q->vid == le16_to_cpu(id->vid) && 2447 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2448 string_matches(id->fr, q->fr, sizeof(id->fr)); 2449 } 2450 2451 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2452 struct nvme_id_ctrl *id) 2453 { 2454 size_t nqnlen; 2455 int off; 2456 2457 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2458 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2459 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2460 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2461 return; 2462 } 2463 2464 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2465 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2466 } 2467 2468 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2469 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2470 "nqn.2014.08.org.nvmexpress:%04x%04x", 2471 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2472 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2473 off += sizeof(id->sn); 2474 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2475 off += sizeof(id->mn); 2476 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2477 } 2478 2479 static void nvme_release_subsystem(struct device *dev) 2480 { 2481 struct nvme_subsystem *subsys = 2482 container_of(dev, struct nvme_subsystem, dev); 2483 2484 if (subsys->instance >= 0) 2485 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2486 kfree(subsys); 2487 } 2488 2489 static void nvme_destroy_subsystem(struct kref *ref) 2490 { 2491 struct nvme_subsystem *subsys = 2492 container_of(ref, struct nvme_subsystem, ref); 2493 2494 mutex_lock(&nvme_subsystems_lock); 2495 list_del(&subsys->entry); 2496 mutex_unlock(&nvme_subsystems_lock); 2497 2498 ida_destroy(&subsys->ns_ida); 2499 device_del(&subsys->dev); 2500 put_device(&subsys->dev); 2501 } 2502 2503 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2504 { 2505 kref_put(&subsys->ref, nvme_destroy_subsystem); 2506 } 2507 2508 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2509 { 2510 struct nvme_subsystem *subsys; 2511 2512 lockdep_assert_held(&nvme_subsystems_lock); 2513 2514 /* 2515 * Fail matches for discovery subsystems. This results 2516 * in each discovery controller bound to a unique subsystem. 2517 * This avoids issues with validating controller values 2518 * that can only be true when there is a single unique subsystem. 2519 * There may be multiple and completely independent entities 2520 * that provide discovery controllers. 2521 */ 2522 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2523 return NULL; 2524 2525 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2526 if (strcmp(subsys->subnqn, subsysnqn)) 2527 continue; 2528 if (!kref_get_unless_zero(&subsys->ref)) 2529 continue; 2530 return subsys; 2531 } 2532 2533 return NULL; 2534 } 2535 2536 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2537 struct device_attribute subsys_attr_##_name = \ 2538 __ATTR(_name, _mode, _show, NULL) 2539 2540 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2541 struct device_attribute *attr, 2542 char *buf) 2543 { 2544 struct nvme_subsystem *subsys = 2545 container_of(dev, struct nvme_subsystem, dev); 2546 2547 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2548 } 2549 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2550 2551 #define nvme_subsys_show_str_function(field) \ 2552 static ssize_t subsys_##field##_show(struct device *dev, \ 2553 struct device_attribute *attr, char *buf) \ 2554 { \ 2555 struct nvme_subsystem *subsys = \ 2556 container_of(dev, struct nvme_subsystem, dev); \ 2557 return sprintf(buf, "%.*s\n", \ 2558 (int)sizeof(subsys->field), subsys->field); \ 2559 } \ 2560 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2561 2562 nvme_subsys_show_str_function(model); 2563 nvme_subsys_show_str_function(serial); 2564 nvme_subsys_show_str_function(firmware_rev); 2565 2566 static struct attribute *nvme_subsys_attrs[] = { 2567 &subsys_attr_model.attr, 2568 &subsys_attr_serial.attr, 2569 &subsys_attr_firmware_rev.attr, 2570 &subsys_attr_subsysnqn.attr, 2571 #ifdef CONFIG_NVME_MULTIPATH 2572 &subsys_attr_iopolicy.attr, 2573 #endif 2574 NULL, 2575 }; 2576 2577 static struct attribute_group nvme_subsys_attrs_group = { 2578 .attrs = nvme_subsys_attrs, 2579 }; 2580 2581 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2582 &nvme_subsys_attrs_group, 2583 NULL, 2584 }; 2585 2586 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2587 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2588 { 2589 struct nvme_ctrl *tmp; 2590 2591 lockdep_assert_held(&nvme_subsystems_lock); 2592 2593 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2594 if (tmp->state == NVME_CTRL_DELETING || 2595 tmp->state == NVME_CTRL_DEAD) 2596 continue; 2597 2598 if (tmp->cntlid == ctrl->cntlid) { 2599 dev_err(ctrl->device, 2600 "Duplicate cntlid %u with %s, rejecting\n", 2601 ctrl->cntlid, dev_name(tmp->device)); 2602 return false; 2603 } 2604 2605 if ((id->cmic & (1 << 1)) || 2606 (ctrl->opts && ctrl->opts->discovery_nqn)) 2607 continue; 2608 2609 dev_err(ctrl->device, 2610 "Subsystem does not support multiple controllers\n"); 2611 return false; 2612 } 2613 2614 return true; 2615 } 2616 2617 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2618 { 2619 struct nvme_subsystem *subsys, *found; 2620 int ret; 2621 2622 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2623 if (!subsys) 2624 return -ENOMEM; 2625 2626 subsys->instance = -1; 2627 mutex_init(&subsys->lock); 2628 kref_init(&subsys->ref); 2629 INIT_LIST_HEAD(&subsys->ctrls); 2630 INIT_LIST_HEAD(&subsys->nsheads); 2631 nvme_init_subnqn(subsys, ctrl, id); 2632 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2633 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2634 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2635 subsys->vendor_id = le16_to_cpu(id->vid); 2636 subsys->cmic = id->cmic; 2637 subsys->awupf = le16_to_cpu(id->awupf); 2638 #ifdef CONFIG_NVME_MULTIPATH 2639 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2640 #endif 2641 2642 subsys->dev.class = nvme_subsys_class; 2643 subsys->dev.release = nvme_release_subsystem; 2644 subsys->dev.groups = nvme_subsys_attrs_groups; 2645 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2646 device_initialize(&subsys->dev); 2647 2648 mutex_lock(&nvme_subsystems_lock); 2649 found = __nvme_find_get_subsystem(subsys->subnqn); 2650 if (found) { 2651 put_device(&subsys->dev); 2652 subsys = found; 2653 2654 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2655 ret = -EINVAL; 2656 goto out_put_subsystem; 2657 } 2658 } else { 2659 ret = device_add(&subsys->dev); 2660 if (ret) { 2661 dev_err(ctrl->device, 2662 "failed to register subsystem device.\n"); 2663 put_device(&subsys->dev); 2664 goto out_unlock; 2665 } 2666 ida_init(&subsys->ns_ida); 2667 list_add_tail(&subsys->entry, &nvme_subsystems); 2668 } 2669 2670 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2671 dev_name(ctrl->device)); 2672 if (ret) { 2673 dev_err(ctrl->device, 2674 "failed to create sysfs link from subsystem.\n"); 2675 goto out_put_subsystem; 2676 } 2677 2678 if (!found) 2679 subsys->instance = ctrl->instance; 2680 ctrl->subsys = subsys; 2681 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2682 mutex_unlock(&nvme_subsystems_lock); 2683 return 0; 2684 2685 out_put_subsystem: 2686 nvme_put_subsystem(subsys); 2687 out_unlock: 2688 mutex_unlock(&nvme_subsystems_lock); 2689 return ret; 2690 } 2691 2692 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2693 void *log, size_t size, u64 offset) 2694 { 2695 struct nvme_command c = { }; 2696 unsigned long dwlen = size / 4 - 1; 2697 2698 c.get_log_page.opcode = nvme_admin_get_log_page; 2699 c.get_log_page.nsid = cpu_to_le32(nsid); 2700 c.get_log_page.lid = log_page; 2701 c.get_log_page.lsp = lsp; 2702 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2703 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2704 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2705 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2706 2707 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2708 } 2709 2710 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2711 { 2712 int ret; 2713 2714 if (!ctrl->effects) 2715 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2716 2717 if (!ctrl->effects) 2718 return 0; 2719 2720 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2721 ctrl->effects, sizeof(*ctrl->effects), 0); 2722 if (ret) { 2723 kfree(ctrl->effects); 2724 ctrl->effects = NULL; 2725 } 2726 return ret; 2727 } 2728 2729 /* 2730 * Initialize the cached copies of the Identify data and various controller 2731 * register in our nvme_ctrl structure. This should be called as soon as 2732 * the admin queue is fully up and running. 2733 */ 2734 int nvme_init_identify(struct nvme_ctrl *ctrl) 2735 { 2736 struct nvme_id_ctrl *id; 2737 int ret, page_shift; 2738 u32 max_hw_sectors; 2739 bool prev_apst_enabled; 2740 2741 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2742 if (ret) { 2743 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2744 return ret; 2745 } 2746 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2747 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2748 2749 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2750 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2751 2752 ret = nvme_identify_ctrl(ctrl, &id); 2753 if (ret) { 2754 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2755 return -EIO; 2756 } 2757 2758 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2759 ret = nvme_get_effects_log(ctrl); 2760 if (ret < 0) 2761 goto out_free; 2762 } 2763 2764 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2765 ctrl->cntlid = le16_to_cpu(id->cntlid); 2766 2767 if (!ctrl->identified) { 2768 int i; 2769 2770 ret = nvme_init_subsystem(ctrl, id); 2771 if (ret) 2772 goto out_free; 2773 2774 /* 2775 * Check for quirks. Quirk can depend on firmware version, 2776 * so, in principle, the set of quirks present can change 2777 * across a reset. As a possible future enhancement, we 2778 * could re-scan for quirks every time we reinitialize 2779 * the device, but we'd have to make sure that the driver 2780 * behaves intelligently if the quirks change. 2781 */ 2782 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2783 if (quirk_matches(id, &core_quirks[i])) 2784 ctrl->quirks |= core_quirks[i].quirks; 2785 } 2786 } 2787 2788 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2789 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2790 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2791 } 2792 2793 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2794 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2795 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2796 2797 ctrl->oacs = le16_to_cpu(id->oacs); 2798 ctrl->oncs = le16_to_cpu(id->oncs); 2799 ctrl->mtfa = le16_to_cpu(id->mtfa); 2800 ctrl->oaes = le32_to_cpu(id->oaes); 2801 ctrl->wctemp = le16_to_cpu(id->wctemp); 2802 ctrl->cctemp = le16_to_cpu(id->cctemp); 2803 2804 atomic_set(&ctrl->abort_limit, id->acl + 1); 2805 ctrl->vwc = id->vwc; 2806 if (id->mdts) 2807 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2808 else 2809 max_hw_sectors = UINT_MAX; 2810 ctrl->max_hw_sectors = 2811 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2812 2813 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2814 ctrl->sgls = le32_to_cpu(id->sgls); 2815 ctrl->kas = le16_to_cpu(id->kas); 2816 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2817 ctrl->ctratt = le32_to_cpu(id->ctratt); 2818 2819 if (id->rtd3e) { 2820 /* us -> s */ 2821 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2822 2823 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2824 shutdown_timeout, 60); 2825 2826 if (ctrl->shutdown_timeout != shutdown_timeout) 2827 dev_info(ctrl->device, 2828 "Shutdown timeout set to %u seconds\n", 2829 ctrl->shutdown_timeout); 2830 } else 2831 ctrl->shutdown_timeout = shutdown_timeout; 2832 2833 ctrl->npss = id->npss; 2834 ctrl->apsta = id->apsta; 2835 prev_apst_enabled = ctrl->apst_enabled; 2836 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2837 if (force_apst && id->apsta) { 2838 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2839 ctrl->apst_enabled = true; 2840 } else { 2841 ctrl->apst_enabled = false; 2842 } 2843 } else { 2844 ctrl->apst_enabled = id->apsta; 2845 } 2846 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2847 2848 if (ctrl->ops->flags & NVME_F_FABRICS) { 2849 ctrl->icdoff = le16_to_cpu(id->icdoff); 2850 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2851 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2852 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2853 2854 /* 2855 * In fabrics we need to verify the cntlid matches the 2856 * admin connect 2857 */ 2858 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2859 dev_err(ctrl->device, 2860 "Mismatching cntlid: Connect %u vs Identify " 2861 "%u, rejecting\n", 2862 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2863 ret = -EINVAL; 2864 goto out_free; 2865 } 2866 2867 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2868 dev_err(ctrl->device, 2869 "keep-alive support is mandatory for fabrics\n"); 2870 ret = -EINVAL; 2871 goto out_free; 2872 } 2873 } else { 2874 ctrl->hmpre = le32_to_cpu(id->hmpre); 2875 ctrl->hmmin = le32_to_cpu(id->hmmin); 2876 ctrl->hmminds = le32_to_cpu(id->hmminds); 2877 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2878 } 2879 2880 ret = nvme_mpath_init(ctrl, id); 2881 kfree(id); 2882 2883 if (ret < 0) 2884 return ret; 2885 2886 if (ctrl->apst_enabled && !prev_apst_enabled) 2887 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2888 else if (!ctrl->apst_enabled && prev_apst_enabled) 2889 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2890 2891 ret = nvme_configure_apst(ctrl); 2892 if (ret < 0) 2893 return ret; 2894 2895 ret = nvme_configure_timestamp(ctrl); 2896 if (ret < 0) 2897 return ret; 2898 2899 ret = nvme_configure_directives(ctrl); 2900 if (ret < 0) 2901 return ret; 2902 2903 ret = nvme_configure_acre(ctrl); 2904 if (ret < 0) 2905 return ret; 2906 2907 if (!ctrl->identified) 2908 nvme_hwmon_init(ctrl); 2909 2910 ctrl->identified = true; 2911 2912 return 0; 2913 2914 out_free: 2915 kfree(id); 2916 return ret; 2917 } 2918 EXPORT_SYMBOL_GPL(nvme_init_identify); 2919 2920 static int nvme_dev_open(struct inode *inode, struct file *file) 2921 { 2922 struct nvme_ctrl *ctrl = 2923 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2924 2925 switch (ctrl->state) { 2926 case NVME_CTRL_LIVE: 2927 break; 2928 default: 2929 return -EWOULDBLOCK; 2930 } 2931 2932 file->private_data = ctrl; 2933 return 0; 2934 } 2935 2936 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2937 { 2938 struct nvme_ns *ns; 2939 int ret; 2940 2941 down_read(&ctrl->namespaces_rwsem); 2942 if (list_empty(&ctrl->namespaces)) { 2943 ret = -ENOTTY; 2944 goto out_unlock; 2945 } 2946 2947 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2948 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2949 dev_warn(ctrl->device, 2950 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2951 ret = -EINVAL; 2952 goto out_unlock; 2953 } 2954 2955 dev_warn(ctrl->device, 2956 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2957 kref_get(&ns->kref); 2958 up_read(&ctrl->namespaces_rwsem); 2959 2960 ret = nvme_user_cmd(ctrl, ns, argp); 2961 nvme_put_ns(ns); 2962 return ret; 2963 2964 out_unlock: 2965 up_read(&ctrl->namespaces_rwsem); 2966 return ret; 2967 } 2968 2969 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2970 unsigned long arg) 2971 { 2972 struct nvme_ctrl *ctrl = file->private_data; 2973 void __user *argp = (void __user *)arg; 2974 2975 switch (cmd) { 2976 case NVME_IOCTL_ADMIN_CMD: 2977 return nvme_user_cmd(ctrl, NULL, argp); 2978 case NVME_IOCTL_ADMIN64_CMD: 2979 return nvme_user_cmd64(ctrl, NULL, argp); 2980 case NVME_IOCTL_IO_CMD: 2981 return nvme_dev_user_cmd(ctrl, argp); 2982 case NVME_IOCTL_RESET: 2983 dev_warn(ctrl->device, "resetting controller\n"); 2984 return nvme_reset_ctrl_sync(ctrl); 2985 case NVME_IOCTL_SUBSYS_RESET: 2986 return nvme_reset_subsystem(ctrl); 2987 case NVME_IOCTL_RESCAN: 2988 nvme_queue_scan(ctrl); 2989 return 0; 2990 default: 2991 return -ENOTTY; 2992 } 2993 } 2994 2995 static const struct file_operations nvme_dev_fops = { 2996 .owner = THIS_MODULE, 2997 .open = nvme_dev_open, 2998 .unlocked_ioctl = nvme_dev_ioctl, 2999 .compat_ioctl = compat_ptr_ioctl, 3000 }; 3001 3002 static ssize_t nvme_sysfs_reset(struct device *dev, 3003 struct device_attribute *attr, const char *buf, 3004 size_t count) 3005 { 3006 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3007 int ret; 3008 3009 ret = nvme_reset_ctrl_sync(ctrl); 3010 if (ret < 0) 3011 return ret; 3012 return count; 3013 } 3014 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3015 3016 static ssize_t nvme_sysfs_rescan(struct device *dev, 3017 struct device_attribute *attr, const char *buf, 3018 size_t count) 3019 { 3020 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3021 3022 nvme_queue_scan(ctrl); 3023 return count; 3024 } 3025 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3026 3027 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3028 { 3029 struct gendisk *disk = dev_to_disk(dev); 3030 3031 if (disk->fops == &nvme_fops) 3032 return nvme_get_ns_from_dev(dev)->head; 3033 else 3034 return disk->private_data; 3035 } 3036 3037 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3038 char *buf) 3039 { 3040 struct nvme_ns_head *head = dev_to_ns_head(dev); 3041 struct nvme_ns_ids *ids = &head->ids; 3042 struct nvme_subsystem *subsys = head->subsys; 3043 int serial_len = sizeof(subsys->serial); 3044 int model_len = sizeof(subsys->model); 3045 3046 if (!uuid_is_null(&ids->uuid)) 3047 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3048 3049 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3050 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3051 3052 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3053 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3054 3055 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3056 subsys->serial[serial_len - 1] == '\0')) 3057 serial_len--; 3058 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3059 subsys->model[model_len - 1] == '\0')) 3060 model_len--; 3061 3062 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3063 serial_len, subsys->serial, model_len, subsys->model, 3064 head->ns_id); 3065 } 3066 static DEVICE_ATTR_RO(wwid); 3067 3068 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3069 char *buf) 3070 { 3071 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3072 } 3073 static DEVICE_ATTR_RO(nguid); 3074 3075 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3076 char *buf) 3077 { 3078 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3079 3080 /* For backward compatibility expose the NGUID to userspace if 3081 * we have no UUID set 3082 */ 3083 if (uuid_is_null(&ids->uuid)) { 3084 printk_ratelimited(KERN_WARNING 3085 "No UUID available providing old NGUID\n"); 3086 return sprintf(buf, "%pU\n", ids->nguid); 3087 } 3088 return sprintf(buf, "%pU\n", &ids->uuid); 3089 } 3090 static DEVICE_ATTR_RO(uuid); 3091 3092 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3093 char *buf) 3094 { 3095 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3096 } 3097 static DEVICE_ATTR_RO(eui); 3098 3099 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3100 char *buf) 3101 { 3102 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3103 } 3104 static DEVICE_ATTR_RO(nsid); 3105 3106 static struct attribute *nvme_ns_id_attrs[] = { 3107 &dev_attr_wwid.attr, 3108 &dev_attr_uuid.attr, 3109 &dev_attr_nguid.attr, 3110 &dev_attr_eui.attr, 3111 &dev_attr_nsid.attr, 3112 #ifdef CONFIG_NVME_MULTIPATH 3113 &dev_attr_ana_grpid.attr, 3114 &dev_attr_ana_state.attr, 3115 #endif 3116 NULL, 3117 }; 3118 3119 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3120 struct attribute *a, int n) 3121 { 3122 struct device *dev = container_of(kobj, struct device, kobj); 3123 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3124 3125 if (a == &dev_attr_uuid.attr) { 3126 if (uuid_is_null(&ids->uuid) && 3127 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3128 return 0; 3129 } 3130 if (a == &dev_attr_nguid.attr) { 3131 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3132 return 0; 3133 } 3134 if (a == &dev_attr_eui.attr) { 3135 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3136 return 0; 3137 } 3138 #ifdef CONFIG_NVME_MULTIPATH 3139 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3140 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3141 return 0; 3142 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3143 return 0; 3144 } 3145 #endif 3146 return a->mode; 3147 } 3148 3149 static const struct attribute_group nvme_ns_id_attr_group = { 3150 .attrs = nvme_ns_id_attrs, 3151 .is_visible = nvme_ns_id_attrs_are_visible, 3152 }; 3153 3154 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3155 &nvme_ns_id_attr_group, 3156 #ifdef CONFIG_NVM 3157 &nvme_nvm_attr_group, 3158 #endif 3159 NULL, 3160 }; 3161 3162 #define nvme_show_str_function(field) \ 3163 static ssize_t field##_show(struct device *dev, \ 3164 struct device_attribute *attr, char *buf) \ 3165 { \ 3166 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3167 return sprintf(buf, "%.*s\n", \ 3168 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3169 } \ 3170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3171 3172 nvme_show_str_function(model); 3173 nvme_show_str_function(serial); 3174 nvme_show_str_function(firmware_rev); 3175 3176 #define nvme_show_int_function(field) \ 3177 static ssize_t field##_show(struct device *dev, \ 3178 struct device_attribute *attr, char *buf) \ 3179 { \ 3180 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3181 return sprintf(buf, "%d\n", ctrl->field); \ 3182 } \ 3183 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3184 3185 nvme_show_int_function(cntlid); 3186 nvme_show_int_function(numa_node); 3187 nvme_show_int_function(queue_count); 3188 nvme_show_int_function(sqsize); 3189 3190 static ssize_t nvme_sysfs_delete(struct device *dev, 3191 struct device_attribute *attr, const char *buf, 3192 size_t count) 3193 { 3194 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3195 3196 if (device_remove_file_self(dev, attr)) 3197 nvme_delete_ctrl_sync(ctrl); 3198 return count; 3199 } 3200 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3201 3202 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3203 struct device_attribute *attr, 3204 char *buf) 3205 { 3206 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3207 3208 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3209 } 3210 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3211 3212 static ssize_t nvme_sysfs_show_state(struct device *dev, 3213 struct device_attribute *attr, 3214 char *buf) 3215 { 3216 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3217 static const char *const state_name[] = { 3218 [NVME_CTRL_NEW] = "new", 3219 [NVME_CTRL_LIVE] = "live", 3220 [NVME_CTRL_RESETTING] = "resetting", 3221 [NVME_CTRL_CONNECTING] = "connecting", 3222 [NVME_CTRL_DELETING] = "deleting", 3223 [NVME_CTRL_DEAD] = "dead", 3224 }; 3225 3226 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3227 state_name[ctrl->state]) 3228 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3229 3230 return sprintf(buf, "unknown state\n"); 3231 } 3232 3233 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3234 3235 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3236 struct device_attribute *attr, 3237 char *buf) 3238 { 3239 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3240 3241 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3242 } 3243 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3244 3245 static ssize_t nvme_sysfs_show_address(struct device *dev, 3246 struct device_attribute *attr, 3247 char *buf) 3248 { 3249 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3250 3251 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3252 } 3253 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3254 3255 static struct attribute *nvme_dev_attrs[] = { 3256 &dev_attr_reset_controller.attr, 3257 &dev_attr_rescan_controller.attr, 3258 &dev_attr_model.attr, 3259 &dev_attr_serial.attr, 3260 &dev_attr_firmware_rev.attr, 3261 &dev_attr_cntlid.attr, 3262 &dev_attr_delete_controller.attr, 3263 &dev_attr_transport.attr, 3264 &dev_attr_subsysnqn.attr, 3265 &dev_attr_address.attr, 3266 &dev_attr_state.attr, 3267 &dev_attr_numa_node.attr, 3268 &dev_attr_queue_count.attr, 3269 &dev_attr_sqsize.attr, 3270 NULL 3271 }; 3272 3273 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3274 struct attribute *a, int n) 3275 { 3276 struct device *dev = container_of(kobj, struct device, kobj); 3277 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3278 3279 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3280 return 0; 3281 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3282 return 0; 3283 3284 return a->mode; 3285 } 3286 3287 static struct attribute_group nvme_dev_attrs_group = { 3288 .attrs = nvme_dev_attrs, 3289 .is_visible = nvme_dev_attrs_are_visible, 3290 }; 3291 3292 static const struct attribute_group *nvme_dev_attr_groups[] = { 3293 &nvme_dev_attrs_group, 3294 NULL, 3295 }; 3296 3297 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3298 unsigned nsid) 3299 { 3300 struct nvme_ns_head *h; 3301 3302 lockdep_assert_held(&subsys->lock); 3303 3304 list_for_each_entry(h, &subsys->nsheads, entry) { 3305 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3306 return h; 3307 } 3308 3309 return NULL; 3310 } 3311 3312 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3313 struct nvme_ns_head *new) 3314 { 3315 struct nvme_ns_head *h; 3316 3317 lockdep_assert_held(&subsys->lock); 3318 3319 list_for_each_entry(h, &subsys->nsheads, entry) { 3320 if (nvme_ns_ids_valid(&new->ids) && 3321 !list_empty(&h->list) && 3322 nvme_ns_ids_equal(&new->ids, &h->ids)) 3323 return -EINVAL; 3324 } 3325 3326 return 0; 3327 } 3328 3329 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3330 unsigned nsid, struct nvme_id_ns *id) 3331 { 3332 struct nvme_ns_head *head; 3333 size_t size = sizeof(*head); 3334 int ret = -ENOMEM; 3335 3336 #ifdef CONFIG_NVME_MULTIPATH 3337 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3338 #endif 3339 3340 head = kzalloc(size, GFP_KERNEL); 3341 if (!head) 3342 goto out; 3343 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3344 if (ret < 0) 3345 goto out_free_head; 3346 head->instance = ret; 3347 INIT_LIST_HEAD(&head->list); 3348 ret = init_srcu_struct(&head->srcu); 3349 if (ret) 3350 goto out_ida_remove; 3351 head->subsys = ctrl->subsys; 3352 head->ns_id = nsid; 3353 kref_init(&head->ref); 3354 3355 ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3356 if (ret) 3357 goto out_cleanup_srcu; 3358 3359 ret = __nvme_check_ids(ctrl->subsys, head); 3360 if (ret) { 3361 dev_err(ctrl->device, 3362 "duplicate IDs for nsid %d\n", nsid); 3363 goto out_cleanup_srcu; 3364 } 3365 3366 ret = nvme_mpath_alloc_disk(ctrl, head); 3367 if (ret) 3368 goto out_cleanup_srcu; 3369 3370 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3371 3372 kref_get(&ctrl->subsys->ref); 3373 3374 return head; 3375 out_cleanup_srcu: 3376 cleanup_srcu_struct(&head->srcu); 3377 out_ida_remove: 3378 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3379 out_free_head: 3380 kfree(head); 3381 out: 3382 if (ret > 0) 3383 ret = blk_status_to_errno(nvme_error_status(ret)); 3384 return ERR_PTR(ret); 3385 } 3386 3387 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3388 struct nvme_id_ns *id) 3389 { 3390 struct nvme_ctrl *ctrl = ns->ctrl; 3391 bool is_shared = id->nmic & (1 << 0); 3392 struct nvme_ns_head *head = NULL; 3393 int ret = 0; 3394 3395 mutex_lock(&ctrl->subsys->lock); 3396 if (is_shared) 3397 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3398 if (!head) { 3399 head = nvme_alloc_ns_head(ctrl, nsid, id); 3400 if (IS_ERR(head)) { 3401 ret = PTR_ERR(head); 3402 goto out_unlock; 3403 } 3404 } else { 3405 struct nvme_ns_ids ids; 3406 3407 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3408 if (ret) 3409 goto out_unlock; 3410 3411 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3412 dev_err(ctrl->device, 3413 "IDs don't match for shared namespace %d\n", 3414 nsid); 3415 ret = -EINVAL; 3416 goto out_unlock; 3417 } 3418 } 3419 3420 list_add_tail(&ns->siblings, &head->list); 3421 ns->head = head; 3422 3423 out_unlock: 3424 mutex_unlock(&ctrl->subsys->lock); 3425 if (ret > 0) 3426 ret = blk_status_to_errno(nvme_error_status(ret)); 3427 return ret; 3428 } 3429 3430 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3431 { 3432 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3433 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3434 3435 return nsa->head->ns_id - nsb->head->ns_id; 3436 } 3437 3438 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3439 { 3440 struct nvme_ns *ns, *ret = NULL; 3441 3442 down_read(&ctrl->namespaces_rwsem); 3443 list_for_each_entry(ns, &ctrl->namespaces, list) { 3444 if (ns->head->ns_id == nsid) { 3445 if (!kref_get_unless_zero(&ns->kref)) 3446 continue; 3447 ret = ns; 3448 break; 3449 } 3450 if (ns->head->ns_id > nsid) 3451 break; 3452 } 3453 up_read(&ctrl->namespaces_rwsem); 3454 return ret; 3455 } 3456 3457 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3458 { 3459 struct streams_directive_params s; 3460 int ret; 3461 3462 if (!ctrl->nr_streams) 3463 return 0; 3464 3465 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3466 if (ret) 3467 return ret; 3468 3469 ns->sws = le32_to_cpu(s.sws); 3470 ns->sgs = le16_to_cpu(s.sgs); 3471 3472 if (ns->sws) { 3473 unsigned int bs = 1 << ns->lba_shift; 3474 3475 blk_queue_io_min(ns->queue, bs * ns->sws); 3476 if (ns->sgs) 3477 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3478 } 3479 3480 return 0; 3481 } 3482 3483 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3484 { 3485 struct nvme_ns *ns; 3486 struct gendisk *disk; 3487 struct nvme_id_ns *id; 3488 char disk_name[DISK_NAME_LEN]; 3489 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3490 3491 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3492 if (!ns) 3493 return -ENOMEM; 3494 3495 ns->queue = blk_mq_init_queue(ctrl->tagset); 3496 if (IS_ERR(ns->queue)) { 3497 ret = PTR_ERR(ns->queue); 3498 goto out_free_ns; 3499 } 3500 3501 if (ctrl->opts && ctrl->opts->data_digest) 3502 ns->queue->backing_dev_info->capabilities 3503 |= BDI_CAP_STABLE_WRITES; 3504 3505 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3506 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3507 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3508 3509 ns->queue->queuedata = ns; 3510 ns->ctrl = ctrl; 3511 3512 kref_init(&ns->kref); 3513 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3514 3515 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3516 nvme_set_queue_limits(ctrl, ns->queue); 3517 3518 ret = nvme_identify_ns(ctrl, nsid, &id); 3519 if (ret) 3520 goto out_free_queue; 3521 3522 if (id->ncap == 0) { 3523 ret = -EINVAL; 3524 goto out_free_id; 3525 } 3526 3527 ret = nvme_init_ns_head(ns, nsid, id); 3528 if (ret) 3529 goto out_free_id; 3530 nvme_setup_streams_ns(ctrl, ns); 3531 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3532 3533 disk = alloc_disk_node(0, node); 3534 if (!disk) { 3535 ret = -ENOMEM; 3536 goto out_unlink_ns; 3537 } 3538 3539 disk->fops = &nvme_fops; 3540 disk->private_data = ns; 3541 disk->queue = ns->queue; 3542 disk->flags = flags; 3543 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3544 ns->disk = disk; 3545 3546 __nvme_revalidate_disk(disk, id); 3547 3548 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3549 ret = nvme_nvm_register(ns, disk_name, node); 3550 if (ret) { 3551 dev_warn(ctrl->device, "LightNVM init failure\n"); 3552 goto out_put_disk; 3553 } 3554 } 3555 3556 down_write(&ctrl->namespaces_rwsem); 3557 list_add_tail(&ns->list, &ctrl->namespaces); 3558 up_write(&ctrl->namespaces_rwsem); 3559 3560 nvme_get_ctrl(ctrl); 3561 3562 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3563 3564 nvme_mpath_add_disk(ns, id); 3565 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3566 kfree(id); 3567 3568 return 0; 3569 out_put_disk: 3570 put_disk(ns->disk); 3571 out_unlink_ns: 3572 mutex_lock(&ctrl->subsys->lock); 3573 list_del_rcu(&ns->siblings); 3574 mutex_unlock(&ctrl->subsys->lock); 3575 nvme_put_ns_head(ns->head); 3576 out_free_id: 3577 kfree(id); 3578 out_free_queue: 3579 blk_cleanup_queue(ns->queue); 3580 out_free_ns: 3581 kfree(ns); 3582 if (ret > 0) 3583 ret = blk_status_to_errno(nvme_error_status(ret)); 3584 return ret; 3585 } 3586 3587 static void nvme_ns_remove(struct nvme_ns *ns) 3588 { 3589 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3590 return; 3591 3592 nvme_fault_inject_fini(&ns->fault_inject); 3593 3594 mutex_lock(&ns->ctrl->subsys->lock); 3595 list_del_rcu(&ns->siblings); 3596 mutex_unlock(&ns->ctrl->subsys->lock); 3597 synchronize_rcu(); /* guarantee not available in head->list */ 3598 nvme_mpath_clear_current_path(ns); 3599 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3600 3601 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3602 del_gendisk(ns->disk); 3603 blk_cleanup_queue(ns->queue); 3604 if (blk_get_integrity(ns->disk)) 3605 blk_integrity_unregister(ns->disk); 3606 } 3607 3608 down_write(&ns->ctrl->namespaces_rwsem); 3609 list_del_init(&ns->list); 3610 up_write(&ns->ctrl->namespaces_rwsem); 3611 3612 nvme_mpath_check_last_path(ns); 3613 nvme_put_ns(ns); 3614 } 3615 3616 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3617 { 3618 struct nvme_ns *ns; 3619 3620 ns = nvme_find_get_ns(ctrl, nsid); 3621 if (ns) { 3622 if (ns->disk && revalidate_disk(ns->disk)) 3623 nvme_ns_remove(ns); 3624 nvme_put_ns(ns); 3625 } else 3626 nvme_alloc_ns(ctrl, nsid); 3627 } 3628 3629 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3630 unsigned nsid) 3631 { 3632 struct nvme_ns *ns, *next; 3633 LIST_HEAD(rm_list); 3634 3635 down_write(&ctrl->namespaces_rwsem); 3636 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3637 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3638 list_move_tail(&ns->list, &rm_list); 3639 } 3640 up_write(&ctrl->namespaces_rwsem); 3641 3642 list_for_each_entry_safe(ns, next, &rm_list, list) 3643 nvme_ns_remove(ns); 3644 3645 } 3646 3647 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3648 { 3649 struct nvme_ns *ns; 3650 __le32 *ns_list; 3651 unsigned i, j, nsid, prev = 0; 3652 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3653 int ret = 0; 3654 3655 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3656 if (!ns_list) 3657 return -ENOMEM; 3658 3659 for (i = 0; i < num_lists; i++) { 3660 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3661 if (ret) 3662 goto free; 3663 3664 for (j = 0; j < min(nn, 1024U); j++) { 3665 nsid = le32_to_cpu(ns_list[j]); 3666 if (!nsid) 3667 goto out; 3668 3669 nvme_validate_ns(ctrl, nsid); 3670 3671 while (++prev < nsid) { 3672 ns = nvme_find_get_ns(ctrl, prev); 3673 if (ns) { 3674 nvme_ns_remove(ns); 3675 nvme_put_ns(ns); 3676 } 3677 } 3678 } 3679 nn -= j; 3680 } 3681 out: 3682 nvme_remove_invalid_namespaces(ctrl, prev); 3683 free: 3684 kfree(ns_list); 3685 return ret; 3686 } 3687 3688 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3689 { 3690 unsigned i; 3691 3692 for (i = 1; i <= nn; i++) 3693 nvme_validate_ns(ctrl, i); 3694 3695 nvme_remove_invalid_namespaces(ctrl, nn); 3696 } 3697 3698 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3699 { 3700 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3701 __le32 *log; 3702 int error; 3703 3704 log = kzalloc(log_size, GFP_KERNEL); 3705 if (!log) 3706 return; 3707 3708 /* 3709 * We need to read the log to clear the AEN, but we don't want to rely 3710 * on it for the changed namespace information as userspace could have 3711 * raced with us in reading the log page, which could cause us to miss 3712 * updates. 3713 */ 3714 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3715 log_size, 0); 3716 if (error) 3717 dev_warn(ctrl->device, 3718 "reading changed ns log failed: %d\n", error); 3719 3720 kfree(log); 3721 } 3722 3723 static void nvme_scan_work(struct work_struct *work) 3724 { 3725 struct nvme_ctrl *ctrl = 3726 container_of(work, struct nvme_ctrl, scan_work); 3727 struct nvme_id_ctrl *id; 3728 unsigned nn; 3729 3730 /* No tagset on a live ctrl means IO queues could not created */ 3731 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3732 return; 3733 3734 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3735 dev_info(ctrl->device, "rescanning namespaces.\n"); 3736 nvme_clear_changed_ns_log(ctrl); 3737 } 3738 3739 if (nvme_identify_ctrl(ctrl, &id)) 3740 return; 3741 3742 mutex_lock(&ctrl->scan_lock); 3743 nn = le32_to_cpu(id->nn); 3744 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3745 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3746 if (!nvme_scan_ns_list(ctrl, nn)) 3747 goto out_free_id; 3748 } 3749 nvme_scan_ns_sequential(ctrl, nn); 3750 out_free_id: 3751 mutex_unlock(&ctrl->scan_lock); 3752 kfree(id); 3753 down_write(&ctrl->namespaces_rwsem); 3754 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3755 up_write(&ctrl->namespaces_rwsem); 3756 } 3757 3758 /* 3759 * This function iterates the namespace list unlocked to allow recovery from 3760 * controller failure. It is up to the caller to ensure the namespace list is 3761 * not modified by scan work while this function is executing. 3762 */ 3763 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3764 { 3765 struct nvme_ns *ns, *next; 3766 LIST_HEAD(ns_list); 3767 3768 /* 3769 * make sure to requeue I/O to all namespaces as these 3770 * might result from the scan itself and must complete 3771 * for the scan_work to make progress 3772 */ 3773 nvme_mpath_clear_ctrl_paths(ctrl); 3774 3775 /* prevent racing with ns scanning */ 3776 flush_work(&ctrl->scan_work); 3777 3778 /* 3779 * The dead states indicates the controller was not gracefully 3780 * disconnected. In that case, we won't be able to flush any data while 3781 * removing the namespaces' disks; fail all the queues now to avoid 3782 * potentially having to clean up the failed sync later. 3783 */ 3784 if (ctrl->state == NVME_CTRL_DEAD) 3785 nvme_kill_queues(ctrl); 3786 3787 down_write(&ctrl->namespaces_rwsem); 3788 list_splice_init(&ctrl->namespaces, &ns_list); 3789 up_write(&ctrl->namespaces_rwsem); 3790 3791 list_for_each_entry_safe(ns, next, &ns_list, list) 3792 nvme_ns_remove(ns); 3793 } 3794 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3795 3796 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3797 { 3798 struct nvme_ctrl *ctrl = 3799 container_of(dev, struct nvme_ctrl, ctrl_device); 3800 struct nvmf_ctrl_options *opts = ctrl->opts; 3801 int ret; 3802 3803 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3804 if (ret) 3805 return ret; 3806 3807 if (opts) { 3808 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3809 if (ret) 3810 return ret; 3811 3812 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3813 opts->trsvcid ?: "none"); 3814 if (ret) 3815 return ret; 3816 3817 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3818 opts->host_traddr ?: "none"); 3819 } 3820 return ret; 3821 } 3822 3823 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3824 { 3825 char *envp[2] = { NULL, NULL }; 3826 u32 aen_result = ctrl->aen_result; 3827 3828 ctrl->aen_result = 0; 3829 if (!aen_result) 3830 return; 3831 3832 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3833 if (!envp[0]) 3834 return; 3835 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3836 kfree(envp[0]); 3837 } 3838 3839 static void nvme_async_event_work(struct work_struct *work) 3840 { 3841 struct nvme_ctrl *ctrl = 3842 container_of(work, struct nvme_ctrl, async_event_work); 3843 3844 nvme_aen_uevent(ctrl); 3845 ctrl->ops->submit_async_event(ctrl); 3846 } 3847 3848 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3849 { 3850 3851 u32 csts; 3852 3853 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3854 return false; 3855 3856 if (csts == ~0) 3857 return false; 3858 3859 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3860 } 3861 3862 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3863 { 3864 struct nvme_fw_slot_info_log *log; 3865 3866 log = kmalloc(sizeof(*log), GFP_KERNEL); 3867 if (!log) 3868 return; 3869 3870 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3871 sizeof(*log), 0)) 3872 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3873 kfree(log); 3874 } 3875 3876 static void nvme_fw_act_work(struct work_struct *work) 3877 { 3878 struct nvme_ctrl *ctrl = container_of(work, 3879 struct nvme_ctrl, fw_act_work); 3880 unsigned long fw_act_timeout; 3881 3882 if (ctrl->mtfa) 3883 fw_act_timeout = jiffies + 3884 msecs_to_jiffies(ctrl->mtfa * 100); 3885 else 3886 fw_act_timeout = jiffies + 3887 msecs_to_jiffies(admin_timeout * 1000); 3888 3889 nvme_stop_queues(ctrl); 3890 while (nvme_ctrl_pp_status(ctrl)) { 3891 if (time_after(jiffies, fw_act_timeout)) { 3892 dev_warn(ctrl->device, 3893 "Fw activation timeout, reset controller\n"); 3894 nvme_try_sched_reset(ctrl); 3895 return; 3896 } 3897 msleep(100); 3898 } 3899 3900 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 3901 return; 3902 3903 nvme_start_queues(ctrl); 3904 /* read FW slot information to clear the AER */ 3905 nvme_get_fw_slot_info(ctrl); 3906 } 3907 3908 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3909 { 3910 u32 aer_notice_type = (result & 0xff00) >> 8; 3911 3912 trace_nvme_async_event(ctrl, aer_notice_type); 3913 3914 switch (aer_notice_type) { 3915 case NVME_AER_NOTICE_NS_CHANGED: 3916 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3917 nvme_queue_scan(ctrl); 3918 break; 3919 case NVME_AER_NOTICE_FW_ACT_STARTING: 3920 /* 3921 * We are (ab)using the RESETTING state to prevent subsequent 3922 * recovery actions from interfering with the controller's 3923 * firmware activation. 3924 */ 3925 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 3926 queue_work(nvme_wq, &ctrl->fw_act_work); 3927 break; 3928 #ifdef CONFIG_NVME_MULTIPATH 3929 case NVME_AER_NOTICE_ANA: 3930 if (!ctrl->ana_log_buf) 3931 break; 3932 queue_work(nvme_wq, &ctrl->ana_work); 3933 break; 3934 #endif 3935 case NVME_AER_NOTICE_DISC_CHANGED: 3936 ctrl->aen_result = result; 3937 break; 3938 default: 3939 dev_warn(ctrl->device, "async event result %08x\n", result); 3940 } 3941 } 3942 3943 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3944 volatile union nvme_result *res) 3945 { 3946 u32 result = le32_to_cpu(res->u32); 3947 u32 aer_type = result & 0x07; 3948 3949 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3950 return; 3951 3952 switch (aer_type) { 3953 case NVME_AER_NOTICE: 3954 nvme_handle_aen_notice(ctrl, result); 3955 break; 3956 case NVME_AER_ERROR: 3957 case NVME_AER_SMART: 3958 case NVME_AER_CSS: 3959 case NVME_AER_VS: 3960 trace_nvme_async_event(ctrl, aer_type); 3961 ctrl->aen_result = result; 3962 break; 3963 default: 3964 break; 3965 } 3966 queue_work(nvme_wq, &ctrl->async_event_work); 3967 } 3968 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3969 3970 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3971 { 3972 nvme_mpath_stop(ctrl); 3973 nvme_stop_keep_alive(ctrl); 3974 flush_work(&ctrl->async_event_work); 3975 cancel_work_sync(&ctrl->fw_act_work); 3976 } 3977 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3978 3979 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3980 { 3981 if (ctrl->kato) 3982 nvme_start_keep_alive(ctrl); 3983 3984 nvme_enable_aen(ctrl); 3985 3986 if (ctrl->queue_count > 1) { 3987 nvme_queue_scan(ctrl); 3988 nvme_start_queues(ctrl); 3989 } 3990 } 3991 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3992 3993 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3994 { 3995 nvme_fault_inject_fini(&ctrl->fault_inject); 3996 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3997 cdev_device_del(&ctrl->cdev, ctrl->device); 3998 } 3999 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4000 4001 static void nvme_free_ctrl(struct device *dev) 4002 { 4003 struct nvme_ctrl *ctrl = 4004 container_of(dev, struct nvme_ctrl, ctrl_device); 4005 struct nvme_subsystem *subsys = ctrl->subsys; 4006 4007 if (subsys && ctrl->instance != subsys->instance) 4008 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4009 4010 kfree(ctrl->effects); 4011 nvme_mpath_uninit(ctrl); 4012 __free_page(ctrl->discard_page); 4013 4014 if (subsys) { 4015 mutex_lock(&nvme_subsystems_lock); 4016 list_del(&ctrl->subsys_entry); 4017 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4018 mutex_unlock(&nvme_subsystems_lock); 4019 } 4020 4021 ctrl->ops->free_ctrl(ctrl); 4022 4023 if (subsys) 4024 nvme_put_subsystem(subsys); 4025 } 4026 4027 /* 4028 * Initialize a NVMe controller structures. This needs to be called during 4029 * earliest initialization so that we have the initialized structured around 4030 * during probing. 4031 */ 4032 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4033 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4034 { 4035 int ret; 4036 4037 ctrl->state = NVME_CTRL_NEW; 4038 spin_lock_init(&ctrl->lock); 4039 mutex_init(&ctrl->scan_lock); 4040 INIT_LIST_HEAD(&ctrl->namespaces); 4041 init_rwsem(&ctrl->namespaces_rwsem); 4042 ctrl->dev = dev; 4043 ctrl->ops = ops; 4044 ctrl->quirks = quirks; 4045 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4046 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4047 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4048 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4049 init_waitqueue_head(&ctrl->state_wq); 4050 4051 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4052 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4053 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4054 4055 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4056 PAGE_SIZE); 4057 ctrl->discard_page = alloc_page(GFP_KERNEL); 4058 if (!ctrl->discard_page) { 4059 ret = -ENOMEM; 4060 goto out; 4061 } 4062 4063 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4064 if (ret < 0) 4065 goto out; 4066 ctrl->instance = ret; 4067 4068 device_initialize(&ctrl->ctrl_device); 4069 ctrl->device = &ctrl->ctrl_device; 4070 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4071 ctrl->device->class = nvme_class; 4072 ctrl->device->parent = ctrl->dev; 4073 ctrl->device->groups = nvme_dev_attr_groups; 4074 ctrl->device->release = nvme_free_ctrl; 4075 dev_set_drvdata(ctrl->device, ctrl); 4076 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4077 if (ret) 4078 goto out_release_instance; 4079 4080 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4081 ctrl->cdev.owner = ops->module; 4082 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4083 if (ret) 4084 goto out_free_name; 4085 4086 /* 4087 * Initialize latency tolerance controls. The sysfs files won't 4088 * be visible to userspace unless the device actually supports APST. 4089 */ 4090 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4091 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4092 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4093 4094 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4095 4096 return 0; 4097 out_free_name: 4098 kfree_const(ctrl->device->kobj.name); 4099 out_release_instance: 4100 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4101 out: 4102 if (ctrl->discard_page) 4103 __free_page(ctrl->discard_page); 4104 return ret; 4105 } 4106 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4107 4108 /** 4109 * nvme_kill_queues(): Ends all namespace queues 4110 * @ctrl: the dead controller that needs to end 4111 * 4112 * Call this function when the driver determines it is unable to get the 4113 * controller in a state capable of servicing IO. 4114 */ 4115 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4116 { 4117 struct nvme_ns *ns; 4118 4119 down_read(&ctrl->namespaces_rwsem); 4120 4121 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4122 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4123 blk_mq_unquiesce_queue(ctrl->admin_q); 4124 4125 list_for_each_entry(ns, &ctrl->namespaces, list) 4126 nvme_set_queue_dying(ns); 4127 4128 up_read(&ctrl->namespaces_rwsem); 4129 } 4130 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4131 4132 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4133 { 4134 struct nvme_ns *ns; 4135 4136 down_read(&ctrl->namespaces_rwsem); 4137 list_for_each_entry(ns, &ctrl->namespaces, list) 4138 blk_mq_unfreeze_queue(ns->queue); 4139 up_read(&ctrl->namespaces_rwsem); 4140 } 4141 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4142 4143 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4144 { 4145 struct nvme_ns *ns; 4146 4147 down_read(&ctrl->namespaces_rwsem); 4148 list_for_each_entry(ns, &ctrl->namespaces, list) { 4149 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4150 if (timeout <= 0) 4151 break; 4152 } 4153 up_read(&ctrl->namespaces_rwsem); 4154 } 4155 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4156 4157 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4158 { 4159 struct nvme_ns *ns; 4160 4161 down_read(&ctrl->namespaces_rwsem); 4162 list_for_each_entry(ns, &ctrl->namespaces, list) 4163 blk_mq_freeze_queue_wait(ns->queue); 4164 up_read(&ctrl->namespaces_rwsem); 4165 } 4166 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4167 4168 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4169 { 4170 struct nvme_ns *ns; 4171 4172 down_read(&ctrl->namespaces_rwsem); 4173 list_for_each_entry(ns, &ctrl->namespaces, list) 4174 blk_freeze_queue_start(ns->queue); 4175 up_read(&ctrl->namespaces_rwsem); 4176 } 4177 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4178 4179 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4180 { 4181 struct nvme_ns *ns; 4182 4183 down_read(&ctrl->namespaces_rwsem); 4184 list_for_each_entry(ns, &ctrl->namespaces, list) 4185 blk_mq_quiesce_queue(ns->queue); 4186 up_read(&ctrl->namespaces_rwsem); 4187 } 4188 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4189 4190 void nvme_start_queues(struct nvme_ctrl *ctrl) 4191 { 4192 struct nvme_ns *ns; 4193 4194 down_read(&ctrl->namespaces_rwsem); 4195 list_for_each_entry(ns, &ctrl->namespaces, list) 4196 blk_mq_unquiesce_queue(ns->queue); 4197 up_read(&ctrl->namespaces_rwsem); 4198 } 4199 EXPORT_SYMBOL_GPL(nvme_start_queues); 4200 4201 4202 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4203 { 4204 struct nvme_ns *ns; 4205 4206 down_read(&ctrl->namespaces_rwsem); 4207 list_for_each_entry(ns, &ctrl->namespaces, list) 4208 blk_sync_queue(ns->queue); 4209 up_read(&ctrl->namespaces_rwsem); 4210 4211 if (ctrl->admin_q) 4212 blk_sync_queue(ctrl->admin_q); 4213 } 4214 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4215 4216 /* 4217 * Check we didn't inadvertently grow the command structure sizes: 4218 */ 4219 static inline void _nvme_check_size(void) 4220 { 4221 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4222 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4223 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4224 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4225 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4226 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4227 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4228 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4229 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4230 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4231 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4232 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4233 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4234 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4235 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4236 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4237 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4238 } 4239 4240 4241 static int __init nvme_core_init(void) 4242 { 4243 int result = -ENOMEM; 4244 4245 _nvme_check_size(); 4246 4247 nvme_wq = alloc_workqueue("nvme-wq", 4248 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4249 if (!nvme_wq) 4250 goto out; 4251 4252 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4253 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4254 if (!nvme_reset_wq) 4255 goto destroy_wq; 4256 4257 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4258 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4259 if (!nvme_delete_wq) 4260 goto destroy_reset_wq; 4261 4262 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4263 if (result < 0) 4264 goto destroy_delete_wq; 4265 4266 nvme_class = class_create(THIS_MODULE, "nvme"); 4267 if (IS_ERR(nvme_class)) { 4268 result = PTR_ERR(nvme_class); 4269 goto unregister_chrdev; 4270 } 4271 nvme_class->dev_uevent = nvme_class_uevent; 4272 4273 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4274 if (IS_ERR(nvme_subsys_class)) { 4275 result = PTR_ERR(nvme_subsys_class); 4276 goto destroy_class; 4277 } 4278 return 0; 4279 4280 destroy_class: 4281 class_destroy(nvme_class); 4282 unregister_chrdev: 4283 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4284 destroy_delete_wq: 4285 destroy_workqueue(nvme_delete_wq); 4286 destroy_reset_wq: 4287 destroy_workqueue(nvme_reset_wq); 4288 destroy_wq: 4289 destroy_workqueue(nvme_wq); 4290 out: 4291 return result; 4292 } 4293 4294 static void __exit nvme_core_exit(void) 4295 { 4296 class_destroy(nvme_subsys_class); 4297 class_destroy(nvme_class); 4298 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4299 destroy_workqueue(nvme_delete_wq); 4300 destroy_workqueue(nvme_reset_wq); 4301 destroy_workqueue(nvme_wq); 4302 } 4303 4304 MODULE_LICENSE("GPL"); 4305 MODULE_VERSION("1.0"); 4306 module_init(nvme_core_init); 4307 module_exit(nvme_core_exit); 4308